Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / hfsplus / btree.c
diff --git a/kernel/fs/hfsplus/btree.c b/kernel/fs/hfsplus/btree.c
new file mode 100644 (file)
index 0000000..3345c75
--- /dev/null
@@ -0,0 +1,497 @@
+/*
+ *  linux/fs/hfsplus/btree.c
+ *
+ * Copyright (C) 2001
+ * Brad Boyer (flar@allandria.com)
+ * (C) 2003 Ardis Technologies <roman@ardistech.com>
+ *
+ * Handle opening/closing btree
+ */
+
+#include <linux/slab.h>
+#include <linux/pagemap.h>
+#include <linux/log2.h>
+
+#include "hfsplus_fs.h"
+#include "hfsplus_raw.h"
+
+/*
+ * Initial source code of clump size calculation is gotten
+ * from http://opensource.apple.com/tarballs/diskdev_cmds/
+ */
+#define CLUMP_ENTRIES  15
+
+static short clumptbl[CLUMP_ENTRIES * 3] = {
+/*
+ *         Volume      Attributes       Catalog         Extents
+ *          Size       Clump (MB)      Clump (MB)      Clump (MB)
+ */
+       /*   1GB */       4,              4,             4,
+       /*   2GB */       6,              6,             4,
+       /*   4GB */       8,              8,             4,
+       /*   8GB */      11,             11,             5,
+       /*
+        * For volumes 16GB and larger, we want to make sure that a full OS
+        * install won't require fragmentation of the Catalog or Attributes
+        * B-trees.  We do this by making the clump sizes sufficiently large,
+        * and by leaving a gap after the B-trees for them to grow into.
+        *
+        * For SnowLeopard 10A298, a FullNetInstall with all packages selected
+        * results in:
+        * Catalog B-tree Header
+        *      nodeSize:          8192
+        *      totalNodes:       31616
+        *      freeNodes:         1978
+        * (used = 231.55 MB)
+        * Attributes B-tree Header
+        *      nodeSize:          8192
+        *      totalNodes:       63232
+        *      freeNodes:          958
+        * (used = 486.52 MB)
+        *
+        * We also want Time Machine backup volumes to have a sufficiently
+        * large clump size to reduce fragmentation.
+        *
+        * The series of numbers for Catalog and Attribute form a geometric
+        * series. For Catalog (16GB to 512GB), each term is 8**(1/5) times
+        * the previous term.  For Attributes (16GB to 512GB), each term is
+        * 4**(1/5) times the previous term.  For 1TB to 16TB, each term is
+        * 2**(1/5) times the previous term.
+        */
+       /*  16GB */      64,             32,             5,
+       /*  32GB */      84,             49,             6,
+       /*  64GB */     111,             74,             7,
+       /* 128GB */     147,            111,             8,
+       /* 256GB */     194,            169,             9,
+       /* 512GB */     256,            256,            11,
+       /*   1TB */     294,            294,            14,
+       /*   2TB */     338,            338,            16,
+       /*   4TB */     388,            388,            20,
+       /*   8TB */     446,            446,            25,
+       /*  16TB */     512,            512,            32
+};
+
+u32 hfsplus_calc_btree_clump_size(u32 block_size, u32 node_size,
+                                       u64 sectors, int file_id)
+{
+       u32 mod = max(node_size, block_size);
+       u32 clump_size;
+       int column;
+       int i;
+
+       /* Figure out which column of the above table to use for this file. */
+       switch (file_id) {
+       case HFSPLUS_ATTR_CNID:
+               column = 0;
+               break;
+       case HFSPLUS_CAT_CNID:
+               column = 1;
+               break;
+       default:
+               column = 2;
+               break;
+       }
+
+       /*
+        * The default clump size is 0.8% of the volume size. And
+        * it must also be a multiple of the node and block size.
+        */
+       if (sectors < 0x200000) {
+               clump_size = sectors << 2;      /*  0.8 %  */
+               if (clump_size < (8 * node_size))
+                       clump_size = 8 * node_size;
+       } else {
+               /* turn exponent into table index... */
+               for (i = 0, sectors = sectors >> 22;
+                    sectors && (i < CLUMP_ENTRIES - 1);
+                    ++i, sectors = sectors >> 1) {
+                       /* empty body */
+               }
+
+               clump_size = clumptbl[column + (i) * 3] * 1024 * 1024;
+       }
+
+       /*
+        * Round the clump size to a multiple of node and block size.
+        * NOTE: This rounds down.
+        */
+       clump_size /= mod;
+       clump_size *= mod;
+
+       /*
+        * Rounding down could have rounded down to 0 if the block size was
+        * greater than the clump size.  If so, just use one block or node.
+        */
+       if (clump_size == 0)
+               clump_size = mod;
+
+       return clump_size;
+}
+
+/* Get a reference to a B*Tree and do some initial checks */
+struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
+{
+       struct hfs_btree *tree;
+       struct hfs_btree_header_rec *head;
+       struct address_space *mapping;
+       struct inode *inode;
+       struct page *page;
+       unsigned int size;
+
+       tree = kzalloc(sizeof(*tree), GFP_KERNEL);
+       if (!tree)
+               return NULL;
+
+       mutex_init(&tree->tree_lock);
+       spin_lock_init(&tree->hash_lock);
+       tree->sb = sb;
+       tree->cnid = id;
+       inode = hfsplus_iget(sb, id);
+       if (IS_ERR(inode))
+               goto free_tree;
+       tree->inode = inode;
+
+       if (!HFSPLUS_I(tree->inode)->first_blocks) {
+               pr_err("invalid btree extent records (0 size)\n");
+               goto free_inode;
+       }
+
+       mapping = tree->inode->i_mapping;
+       page = read_mapping_page(mapping, 0, NULL);
+       if (IS_ERR(page))
+               goto free_inode;
+
+       /* Load the header */
+       head = (struct hfs_btree_header_rec *)(kmap(page) +
+               sizeof(struct hfs_bnode_desc));
+       tree->root = be32_to_cpu(head->root);
+       tree->leaf_count = be32_to_cpu(head->leaf_count);
+       tree->leaf_head = be32_to_cpu(head->leaf_head);
+       tree->leaf_tail = be32_to_cpu(head->leaf_tail);
+       tree->node_count = be32_to_cpu(head->node_count);
+       tree->free_nodes = be32_to_cpu(head->free_nodes);
+       tree->attributes = be32_to_cpu(head->attributes);
+       tree->node_size = be16_to_cpu(head->node_size);
+       tree->max_key_len = be16_to_cpu(head->max_key_len);
+       tree->depth = be16_to_cpu(head->depth);
+
+       /* Verify the tree and set the correct compare function */
+       switch (id) {
+       case HFSPLUS_EXT_CNID:
+               if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
+                       pr_err("invalid extent max_key_len %d\n",
+                               tree->max_key_len);
+                       goto fail_page;
+               }
+               if (tree->attributes & HFS_TREE_VARIDXKEYS) {
+                       pr_err("invalid extent btree flag\n");
+                       goto fail_page;
+               }
+
+               tree->keycmp = hfsplus_ext_cmp_key;
+               break;
+       case HFSPLUS_CAT_CNID:
+               if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
+                       pr_err("invalid catalog max_key_len %d\n",
+                               tree->max_key_len);
+                       goto fail_page;
+               }
+               if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
+                       pr_err("invalid catalog btree flag\n");
+                       goto fail_page;
+               }
+
+               if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
+                   (head->key_type == HFSPLUS_KEY_BINARY))
+                       tree->keycmp = hfsplus_cat_bin_cmp_key;
+               else {
+                       tree->keycmp = hfsplus_cat_case_cmp_key;
+                       set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
+               }
+               break;
+       case HFSPLUS_ATTR_CNID:
+               if (tree->max_key_len != HFSPLUS_ATTR_KEYLEN - sizeof(u16)) {
+                       pr_err("invalid attributes max_key_len %d\n",
+                               tree->max_key_len);
+                       goto fail_page;
+               }
+               tree->keycmp = hfsplus_attr_bin_cmp_key;
+               break;
+       default:
+               pr_err("unknown B*Tree requested\n");
+               goto fail_page;
+       }
+
+       if (!(tree->attributes & HFS_TREE_BIGKEYS)) {
+               pr_err("invalid btree flag\n");
+               goto fail_page;
+       }
+
+       size = tree->node_size;
+       if (!is_power_of_2(size))
+               goto fail_page;
+       if (!tree->node_count)
+               goto fail_page;
+
+       tree->node_size_shift = ffs(size) - 1;
+
+       tree->pages_per_bnode =
+               (tree->node_size + PAGE_CACHE_SIZE - 1) >>
+               PAGE_CACHE_SHIFT;
+
+       kunmap(page);
+       page_cache_release(page);
+       return tree;
+
+ fail_page:
+       page_cache_release(page);
+ free_inode:
+       tree->inode->i_mapping->a_ops = &hfsplus_aops;
+       iput(tree->inode);
+ free_tree:
+       kfree(tree);
+       return NULL;
+}
+
+/* Release resources used by a btree */
+void hfs_btree_close(struct hfs_btree *tree)
+{
+       struct hfs_bnode *node;
+       int i;
+
+       if (!tree)
+               return;
+
+       for (i = 0; i < NODE_HASH_SIZE; i++) {
+               while ((node = tree->node_hash[i])) {
+                       tree->node_hash[i] = node->next_hash;
+                       if (atomic_read(&node->refcnt))
+                               pr_crit("node %d:%d "
+                                               "still has %d user(s)!\n",
+                                       node->tree->cnid, node->this,
+                                       atomic_read(&node->refcnt));
+                       hfs_bnode_free(node);
+                       tree->node_hash_cnt--;
+               }
+       }
+       iput(tree->inode);
+       kfree(tree);
+}
+
+int hfs_btree_write(struct hfs_btree *tree)
+{
+       struct hfs_btree_header_rec *head;
+       struct hfs_bnode *node;
+       struct page *page;
+
+       node = hfs_bnode_find(tree, 0);
+       if (IS_ERR(node))
+               /* panic? */
+               return -EIO;
+       /* Load the header */
+       page = node->page[0];
+       head = (struct hfs_btree_header_rec *)(kmap(page) +
+               sizeof(struct hfs_bnode_desc));
+
+       head->root = cpu_to_be32(tree->root);
+       head->leaf_count = cpu_to_be32(tree->leaf_count);
+       head->leaf_head = cpu_to_be32(tree->leaf_head);
+       head->leaf_tail = cpu_to_be32(tree->leaf_tail);
+       head->node_count = cpu_to_be32(tree->node_count);
+       head->free_nodes = cpu_to_be32(tree->free_nodes);
+       head->attributes = cpu_to_be32(tree->attributes);
+       head->depth = cpu_to_be16(tree->depth);
+
+       kunmap(page);
+       set_page_dirty(page);
+       hfs_bnode_put(node);
+       return 0;
+}
+
+static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
+{
+       struct hfs_btree *tree = prev->tree;
+       struct hfs_bnode *node;
+       struct hfs_bnode_desc desc;
+       __be32 cnid;
+
+       node = hfs_bnode_create(tree, idx);
+       if (IS_ERR(node))
+               return node;
+
+       tree->free_nodes--;
+       prev->next = idx;
+       cnid = cpu_to_be32(idx);
+       hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
+
+       node->type = HFS_NODE_MAP;
+       node->num_recs = 1;
+       hfs_bnode_clear(node, 0, tree->node_size);
+       desc.next = 0;
+       desc.prev = 0;
+       desc.type = HFS_NODE_MAP;
+       desc.height = 0;
+       desc.num_recs = cpu_to_be16(1);
+       desc.reserved = 0;
+       hfs_bnode_write(node, &desc, 0, sizeof(desc));
+       hfs_bnode_write_u16(node, 14, 0x8000);
+       hfs_bnode_write_u16(node, tree->node_size - 2, 14);
+       hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
+
+       return node;
+}
+
+struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
+{
+       struct hfs_bnode *node, *next_node;
+       struct page **pagep;
+       u32 nidx, idx;
+       unsigned off;
+       u16 off16;
+       u16 len;
+       u8 *data, byte, m;
+       int i;
+
+       while (!tree->free_nodes) {
+               struct inode *inode = tree->inode;
+               struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
+               u32 count;
+               int res;
+
+               res = hfsplus_file_extend(inode, hfs_bnode_need_zeroout(tree));
+               if (res)
+                       return ERR_PTR(res);
+               hip->phys_size = inode->i_size =
+                       (loff_t)hip->alloc_blocks <<
+                               HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
+               hip->fs_blocks =
+                       hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
+               inode_set_bytes(inode, inode->i_size);
+               count = inode->i_size >> tree->node_size_shift;
+               tree->free_nodes = count - tree->node_count;
+               tree->node_count = count;
+       }
+
+       nidx = 0;
+       node = hfs_bnode_find(tree, nidx);
+       if (IS_ERR(node))
+               return node;
+       len = hfs_brec_lenoff(node, 2, &off16);
+       off = off16;
+
+       off += node->page_offset;
+       pagep = node->page + (off >> PAGE_CACHE_SHIFT);
+       data = kmap(*pagep);
+       off &= ~PAGE_CACHE_MASK;
+       idx = 0;
+
+       for (;;) {
+               while (len) {
+                       byte = data[off];
+                       if (byte != 0xff) {
+                               for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
+                                       if (!(byte & m)) {
+                                               idx += i;
+                                               data[off] |= m;
+                                               set_page_dirty(*pagep);
+                                               kunmap(*pagep);
+                                               tree->free_nodes--;
+                                               mark_inode_dirty(tree->inode);
+                                               hfs_bnode_put(node);
+                                               return hfs_bnode_create(tree,
+                                                       idx);
+                                       }
+                               }
+                       }
+                       if (++off >= PAGE_CACHE_SIZE) {
+                               kunmap(*pagep);
+                               data = kmap(*++pagep);
+                               off = 0;
+                       }
+                       idx += 8;
+                       len--;
+               }
+               kunmap(*pagep);
+               nidx = node->next;
+               if (!nidx) {
+                       hfs_dbg(BNODE_MOD, "create new bmap node\n");
+                       next_node = hfs_bmap_new_bmap(node, idx);
+               } else
+                       next_node = hfs_bnode_find(tree, nidx);
+               hfs_bnode_put(node);
+               if (IS_ERR(next_node))
+                       return next_node;
+               node = next_node;
+
+               len = hfs_brec_lenoff(node, 0, &off16);
+               off = off16;
+               off += node->page_offset;
+               pagep = node->page + (off >> PAGE_CACHE_SHIFT);
+               data = kmap(*pagep);
+               off &= ~PAGE_CACHE_MASK;
+       }
+}
+
+void hfs_bmap_free(struct hfs_bnode *node)
+{
+       struct hfs_btree *tree;
+       struct page *page;
+       u16 off, len;
+       u32 nidx;
+       u8 *data, byte, m;
+
+       hfs_dbg(BNODE_MOD, "btree_free_node: %u\n", node->this);
+       BUG_ON(!node->this);
+       tree = node->tree;
+       nidx = node->this;
+       node = hfs_bnode_find(tree, 0);
+       if (IS_ERR(node))
+               return;
+       len = hfs_brec_lenoff(node, 2, &off);
+       while (nidx >= len * 8) {
+               u32 i;
+
+               nidx -= len * 8;
+               i = node->next;
+               hfs_bnode_put(node);
+               if (!i) {
+                       /* panic */;
+                       pr_crit("unable to free bnode %u. "
+                                       "bmap not found!\n",
+                               node->this);
+                       return;
+               }
+               node = hfs_bnode_find(tree, i);
+               if (IS_ERR(node))
+                       return;
+               if (node->type != HFS_NODE_MAP) {
+                       /* panic */;
+                       pr_crit("invalid bmap found! "
+                                       "(%u,%d)\n",
+                               node->this, node->type);
+                       hfs_bnode_put(node);
+                       return;
+               }
+               len = hfs_brec_lenoff(node, 0, &off);
+       }
+       off += node->page_offset + nidx / 8;
+       page = node->page[off >> PAGE_CACHE_SHIFT];
+       data = kmap(page);
+       off &= ~PAGE_CACHE_MASK;
+       m = 1 << (~nidx & 7);
+       byte = data[off];
+       if (!(byte & m)) {
+               pr_crit("trying to free free bnode "
+                               "%u(%d)\n",
+                       node->this, node->type);
+               kunmap(page);
+               hfs_bnode_put(node);
+               return;
+       }
+       data[off] = byte & ~m;
+       set_page_dirty(page);
+       kunmap(page);
+       hfs_bnode_put(node);
+       tree->free_nodes++;
+       mark_inode_dirty(tree->inode);
+}