Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / gfs2 / lock_dlm.c
diff --git a/kernel/fs/gfs2/lock_dlm.c b/kernel/fs/gfs2/lock_dlm.c
new file mode 100644 (file)
index 0000000..641383a
--- /dev/null
@@ -0,0 +1,1336 @@
+/*
+ * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
+ * Copyright 2004-2011 Red Hat, Inc.
+ *
+ * This copyrighted material is made available to anyone wishing to use,
+ * modify, copy, or redistribute it subject to the terms and conditions
+ * of the GNU General Public License version 2.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/fs.h>
+#include <linux/dlm.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/delay.h>
+#include <linux/gfs2_ondisk.h>
+
+#include "incore.h"
+#include "glock.h"
+#include "util.h"
+#include "sys.h"
+#include "trace_gfs2.h"
+
+extern struct workqueue_struct *gfs2_control_wq;
+
+/**
+ * gfs2_update_stats - Update time based stats
+ * @mv: Pointer to mean/variance structure to update
+ * @sample: New data to include
+ *
+ * @delta is the difference between the current rtt sample and the
+ * running average srtt. We add 1/8 of that to the srtt in order to
+ * update the current srtt estimate. The varience estimate is a bit
+ * more complicated. We subtract the abs value of the @delta from
+ * the current variance estimate and add 1/4 of that to the running
+ * total.
+ *
+ * Note that the index points at the array entry containing the smoothed
+ * mean value, and the variance is always in the following entry
+ *
+ * Reference: TCP/IP Illustrated, vol 2, p. 831,832
+ * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
+ * they are not scaled fixed point.
+ */
+
+static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
+                                    s64 sample)
+{
+       s64 delta = sample - s->stats[index];
+       s->stats[index] += (delta >> 3);
+       index++;
+       s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
+}
+
+/**
+ * gfs2_update_reply_times - Update locking statistics
+ * @gl: The glock to update
+ *
+ * This assumes that gl->gl_dstamp has been set earlier.
+ *
+ * The rtt (lock round trip time) is an estimate of the time
+ * taken to perform a dlm lock request. We update it on each
+ * reply from the dlm.
+ *
+ * The blocking flag is set on the glock for all dlm requests
+ * which may potentially block due to lock requests from other nodes.
+ * DLM requests where the current lock state is exclusive, the
+ * requested state is null (or unlocked) or where the TRY or
+ * TRY_1CB flags are set are classified as non-blocking. All
+ * other DLM requests are counted as (potentially) blocking.
+ */
+static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
+{
+       struct gfs2_pcpu_lkstats *lks;
+       const unsigned gltype = gl->gl_name.ln_type;
+       unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
+                        GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
+       s64 rtt;
+
+       preempt_disable();
+       rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
+       lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
+       gfs2_update_stats(&gl->gl_stats, index, rtt);           /* Local */
+       gfs2_update_stats(&lks->lkstats[gltype], index, rtt);   /* Global */
+       preempt_enable();
+
+       trace_gfs2_glock_lock_time(gl, rtt);
+}
+
+/**
+ * gfs2_update_request_times - Update locking statistics
+ * @gl: The glock to update
+ *
+ * The irt (lock inter-request times) measures the average time
+ * between requests to the dlm. It is updated immediately before
+ * each dlm call.
+ */
+
+static inline void gfs2_update_request_times(struct gfs2_glock *gl)
+{
+       struct gfs2_pcpu_lkstats *lks;
+       const unsigned gltype = gl->gl_name.ln_type;
+       ktime_t dstamp;
+       s64 irt;
+
+       preempt_disable();
+       dstamp = gl->gl_dstamp;
+       gl->gl_dstamp = ktime_get_real();
+       irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
+       lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
+       gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);           /* Local */
+       gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);   /* Global */
+       preempt_enable();
+}
+static void gdlm_ast(void *arg)
+{
+       struct gfs2_glock *gl = arg;
+       unsigned ret = gl->gl_state;
+
+       gfs2_update_reply_times(gl);
+       BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
+
+       if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
+               memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
+
+       switch (gl->gl_lksb.sb_status) {
+       case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
+               gfs2_glock_free(gl);
+               return;
+       case -DLM_ECANCEL: /* Cancel while getting lock */
+               ret |= LM_OUT_CANCELED;
+               goto out;
+       case -EAGAIN: /* Try lock fails */
+       case -EDEADLK: /* Deadlock detected */
+               goto out;
+       case -ETIMEDOUT: /* Canceled due to timeout */
+               ret |= LM_OUT_ERROR;
+               goto out;
+       case 0: /* Success */
+               break;
+       default: /* Something unexpected */
+               BUG();
+       }
+
+       ret = gl->gl_req;
+       if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
+               if (gl->gl_req == LM_ST_SHARED)
+                       ret = LM_ST_DEFERRED;
+               else if (gl->gl_req == LM_ST_DEFERRED)
+                       ret = LM_ST_SHARED;
+               else
+                       BUG();
+       }
+
+       set_bit(GLF_INITIAL, &gl->gl_flags);
+       gfs2_glock_complete(gl, ret);
+       return;
+out:
+       if (!test_bit(GLF_INITIAL, &gl->gl_flags))
+               gl->gl_lksb.sb_lkid = 0;
+       gfs2_glock_complete(gl, ret);
+}
+
+static void gdlm_bast(void *arg, int mode)
+{
+       struct gfs2_glock *gl = arg;
+
+       switch (mode) {
+       case DLM_LOCK_EX:
+               gfs2_glock_cb(gl, LM_ST_UNLOCKED);
+               break;
+       case DLM_LOCK_CW:
+               gfs2_glock_cb(gl, LM_ST_DEFERRED);
+               break;
+       case DLM_LOCK_PR:
+               gfs2_glock_cb(gl, LM_ST_SHARED);
+               break;
+       default:
+               pr_err("unknown bast mode %d\n", mode);
+               BUG();
+       }
+}
+
+/* convert gfs lock-state to dlm lock-mode */
+
+static int make_mode(const unsigned int lmstate)
+{
+       switch (lmstate) {
+       case LM_ST_UNLOCKED:
+               return DLM_LOCK_NL;
+       case LM_ST_EXCLUSIVE:
+               return DLM_LOCK_EX;
+       case LM_ST_DEFERRED:
+               return DLM_LOCK_CW;
+       case LM_ST_SHARED:
+               return DLM_LOCK_PR;
+       }
+       pr_err("unknown LM state %d\n", lmstate);
+       BUG();
+       return -1;
+}
+
+static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
+                     const int req)
+{
+       u32 lkf = 0;
+
+       if (gl->gl_lksb.sb_lvbptr)
+               lkf |= DLM_LKF_VALBLK;
+
+       if (gfs_flags & LM_FLAG_TRY)
+               lkf |= DLM_LKF_NOQUEUE;
+
+       if (gfs_flags & LM_FLAG_TRY_1CB) {
+               lkf |= DLM_LKF_NOQUEUE;
+               lkf |= DLM_LKF_NOQUEUEBAST;
+       }
+
+       if (gfs_flags & LM_FLAG_PRIORITY) {
+               lkf |= DLM_LKF_NOORDER;
+               lkf |= DLM_LKF_HEADQUE;
+       }
+
+       if (gfs_flags & LM_FLAG_ANY) {
+               if (req == DLM_LOCK_PR)
+                       lkf |= DLM_LKF_ALTCW;
+               else if (req == DLM_LOCK_CW)
+                       lkf |= DLM_LKF_ALTPR;
+               else
+                       BUG();
+       }
+
+       if (gl->gl_lksb.sb_lkid != 0) {
+               lkf |= DLM_LKF_CONVERT;
+               if (test_bit(GLF_BLOCKING, &gl->gl_flags))
+                       lkf |= DLM_LKF_QUECVT;
+       }
+
+       return lkf;
+}
+
+static void gfs2_reverse_hex(char *c, u64 value)
+{
+       *c = '0';
+       while (value) {
+               *c-- = hex_asc[value & 0x0f];
+               value >>= 4;
+       }
+}
+
+static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
+                    unsigned int flags)
+{
+       struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
+       int req;
+       u32 lkf;
+       char strname[GDLM_STRNAME_BYTES] = "";
+
+       req = make_mode(req_state);
+       lkf = make_flags(gl, flags, req);
+       gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
+       gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
+       if (gl->gl_lksb.sb_lkid) {
+               gfs2_update_request_times(gl);
+       } else {
+               memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
+               strname[GDLM_STRNAME_BYTES - 1] = '\0';
+               gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
+               gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
+               gl->gl_dstamp = ktime_get_real();
+       }
+       /*
+        * Submit the actual lock request.
+        */
+
+       return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
+                       GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
+}
+
+static void gdlm_put_lock(struct gfs2_glock *gl)
+{
+       struct gfs2_sbd *sdp = gl->gl_sbd;
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       int lvb_needs_unlock = 0;
+       int error;
+
+       if (gl->gl_lksb.sb_lkid == 0) {
+               gfs2_glock_free(gl);
+               return;
+       }
+
+       clear_bit(GLF_BLOCKING, &gl->gl_flags);
+       gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
+       gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
+       gfs2_update_request_times(gl);
+
+       /* don't want to skip dlm_unlock writing the lvb when lock is ex */
+
+       if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
+               lvb_needs_unlock = 1;
+
+       if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
+           !lvb_needs_unlock) {
+               gfs2_glock_free(gl);
+               return;
+       }
+
+       error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
+                          NULL, gl);
+       if (error) {
+               pr_err("gdlm_unlock %x,%llx err=%d\n",
+                      gl->gl_name.ln_type,
+                      (unsigned long long)gl->gl_name.ln_number, error);
+               return;
+       }
+}
+
+static void gdlm_cancel(struct gfs2_glock *gl)
+{
+       struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
+       dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
+}
+
+/*
+ * dlm/gfs2 recovery coordination using dlm_recover callbacks
+ *
+ *  1. dlm_controld sees lockspace members change
+ *  2. dlm_controld blocks dlm-kernel locking activity
+ *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
+ *  4. dlm_controld starts and finishes its own user level recovery
+ *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
+ *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
+ *  7. dlm_recoverd does its own lock recovery
+ *  8. dlm_recoverd unblocks dlm-kernel locking activity
+ *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
+ * 10. gfs2_control updates control_lock lvb with new generation and jid bits
+ * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
+ * 12. gfs2_recover dequeues and recovers journals of failed nodes
+ * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
+ * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
+ * 15. gfs2_control unblocks normal locking when all journals are recovered
+ *
+ * - failures during recovery
+ *
+ * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
+ * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
+ * recovering for a prior failure.  gfs2_control needs a way to detect
+ * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
+ * the recover_block and recover_start values.
+ *
+ * recover_done() provides a new lockspace generation number each time it
+ * is called (step 9).  This generation number is saved as recover_start.
+ * When recover_prep() is called, it sets BLOCK_LOCKS and sets
+ * recover_block = recover_start.  So, while recover_block is equal to
+ * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
+ * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
+ *
+ * - more specific gfs2 steps in sequence above
+ *
+ *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
+ *  6. recover_slot records any failed jids (maybe none)
+ *  9. recover_done sets recover_start = new generation number
+ * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
+ * 12. gfs2_recover does journal recoveries for failed jids identified above
+ * 14. gfs2_control clears control_lock lvb bits for recovered jids
+ * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
+ *     again) then do nothing, otherwise if recover_start > recover_block
+ *     then clear BLOCK_LOCKS.
+ *
+ * - parallel recovery steps across all nodes
+ *
+ * All nodes attempt to update the control_lock lvb with the new generation
+ * number and jid bits, but only the first to get the control_lock EX will
+ * do so; others will see that it's already done (lvb already contains new
+ * generation number.)
+ *
+ * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
+ * . All nodes attempt to set control_lock lvb gen + bits for the new gen
+ * . One node gets control_lock first and writes the lvb, others see it's done
+ * . All nodes attempt to recover jids for which they see control_lock bits set
+ * . One node succeeds for a jid, and that one clears the jid bit in the lvb
+ * . All nodes will eventually see all lvb bits clear and unblock locks
+ *
+ * - is there a problem with clearing an lvb bit that should be set
+ *   and missing a journal recovery?
+ *
+ * 1. jid fails
+ * 2. lvb bit set for step 1
+ * 3. jid recovered for step 1
+ * 4. jid taken again (new mount)
+ * 5. jid fails (for step 4)
+ * 6. lvb bit set for step 5 (will already be set)
+ * 7. lvb bit cleared for step 3
+ *
+ * This is not a problem because the failure in step 5 does not
+ * require recovery, because the mount in step 4 could not have
+ * progressed far enough to unblock locks and access the fs.  The
+ * control_mount() function waits for all recoveries to be complete
+ * for the latest lockspace generation before ever unblocking locks
+ * and returning.  The mount in step 4 waits until the recovery in
+ * step 1 is done.
+ *
+ * - special case of first mounter: first node to mount the fs
+ *
+ * The first node to mount a gfs2 fs needs to check all the journals
+ * and recover any that need recovery before other nodes are allowed
+ * to mount the fs.  (Others may begin mounting, but they must wait
+ * for the first mounter to be done before taking locks on the fs
+ * or accessing the fs.)  This has two parts:
+ *
+ * 1. The mounted_lock tells a node it's the first to mount the fs.
+ * Each node holds the mounted_lock in PR while it's mounted.
+ * Each node tries to acquire the mounted_lock in EX when it mounts.
+ * If a node is granted the mounted_lock EX it means there are no
+ * other mounted nodes (no PR locks exist), and it is the first mounter.
+ * The mounted_lock is demoted to PR when first recovery is done, so
+ * others will fail to get an EX lock, but will get a PR lock.
+ *
+ * 2. The control_lock blocks others in control_mount() while the first
+ * mounter is doing first mount recovery of all journals.
+ * A mounting node needs to acquire control_lock in EX mode before
+ * it can proceed.  The first mounter holds control_lock in EX while doing
+ * the first mount recovery, blocking mounts from other nodes, then demotes
+ * control_lock to NL when it's done (others_may_mount/first_done),
+ * allowing other nodes to continue mounting.
+ *
+ * first mounter:
+ * control_lock EX/NOQUEUE success
+ * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
+ * set first=1
+ * do first mounter recovery
+ * mounted_lock EX->PR
+ * control_lock EX->NL, write lvb generation
+ *
+ * other mounter:
+ * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
+ * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
+ * mounted_lock PR/NOQUEUE success
+ * read lvb generation
+ * control_lock EX->NL
+ * set first=0
+ *
+ * - mount during recovery
+ *
+ * If a node mounts while others are doing recovery (not first mounter),
+ * the mounting node will get its initial recover_done() callback without
+ * having seen any previous failures/callbacks.
+ *
+ * It must wait for all recoveries preceding its mount to be finished
+ * before it unblocks locks.  It does this by repeating the "other mounter"
+ * steps above until the lvb generation number is >= its mount generation
+ * number (from initial recover_done) and all lvb bits are clear.
+ *
+ * - control_lock lvb format
+ *
+ * 4 bytes generation number: the latest dlm lockspace generation number
+ * from recover_done callback.  Indicates the jid bitmap has been updated
+ * to reflect all slot failures through that generation.
+ * 4 bytes unused.
+ * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
+ * that jid N needs recovery.
+ */
+
+#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
+
+static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
+                            char *lvb_bits)
+{
+       __le32 gen;
+       memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
+       memcpy(&gen, lvb_bits, sizeof(__le32));
+       *lvb_gen = le32_to_cpu(gen);
+}
+
+static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
+                             char *lvb_bits)
+{
+       __le32 gen;
+       memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
+       gen = cpu_to_le32(lvb_gen);
+       memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
+}
+
+static int all_jid_bits_clear(char *lvb)
+{
+       return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
+                       GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
+}
+
+static void sync_wait_cb(void *arg)
+{
+       struct lm_lockstruct *ls = arg;
+       complete(&ls->ls_sync_wait);
+}
+
+static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       int error;
+
+       error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
+       if (error) {
+               fs_err(sdp, "%s lkid %x error %d\n",
+                      name, lksb->sb_lkid, error);
+               return error;
+       }
+
+       wait_for_completion(&ls->ls_sync_wait);
+
+       if (lksb->sb_status != -DLM_EUNLOCK) {
+               fs_err(sdp, "%s lkid %x status %d\n",
+                      name, lksb->sb_lkid, lksb->sb_status);
+               return -1;
+       }
+       return 0;
+}
+
+static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
+                    unsigned int num, struct dlm_lksb *lksb, char *name)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       char strname[GDLM_STRNAME_BYTES];
+       int error, status;
+
+       memset(strname, 0, GDLM_STRNAME_BYTES);
+       snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
+
+       error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
+                        strname, GDLM_STRNAME_BYTES - 1,
+                        0, sync_wait_cb, ls, NULL);
+       if (error) {
+               fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
+                      name, lksb->sb_lkid, flags, mode, error);
+               return error;
+       }
+
+       wait_for_completion(&ls->ls_sync_wait);
+
+       status = lksb->sb_status;
+
+       if (status && status != -EAGAIN) {
+               fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
+                      name, lksb->sb_lkid, flags, mode, status);
+       }
+
+       return status;
+}
+
+static int mounted_unlock(struct gfs2_sbd *sdp)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
+}
+
+static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
+                        &ls->ls_mounted_lksb, "mounted_lock");
+}
+
+static int control_unlock(struct gfs2_sbd *sdp)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
+}
+
+static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
+                        &ls->ls_control_lksb, "control_lock");
+}
+
+static void gfs2_control_func(struct work_struct *work)
+{
+       struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       uint32_t block_gen, start_gen, lvb_gen, flags;
+       int recover_set = 0;
+       int write_lvb = 0;
+       int recover_size;
+       int i, error;
+
+       spin_lock(&ls->ls_recover_spin);
+       /*
+        * No MOUNT_DONE means we're still mounting; control_mount()
+        * will set this flag, after which this thread will take over
+        * all further clearing of BLOCK_LOCKS.
+        *
+        * FIRST_MOUNT means this node is doing first mounter recovery,
+        * for which recovery control is handled by
+        * control_mount()/control_first_done(), not this thread.
+        */
+       if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
+            test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
+               spin_unlock(&ls->ls_recover_spin);
+               return;
+       }
+       block_gen = ls->ls_recover_block;
+       start_gen = ls->ls_recover_start;
+       spin_unlock(&ls->ls_recover_spin);
+
+       /*
+        * Equal block_gen and start_gen implies we are between
+        * recover_prep and recover_done callbacks, which means
+        * dlm recovery is in progress and dlm locking is blocked.
+        * There's no point trying to do any work until recover_done.
+        */
+
+       if (block_gen == start_gen)
+               return;
+
+       /*
+        * Propagate recover_submit[] and recover_result[] to lvb:
+        * dlm_recoverd adds to recover_submit[] jids needing recovery
+        * gfs2_recover adds to recover_result[] journal recovery results
+        *
+        * set lvb bit for jids in recover_submit[] if the lvb has not
+        * yet been updated for the generation of the failure
+        *
+        * clear lvb bit for jids in recover_result[] if the result of
+        * the journal recovery is SUCCESS
+        */
+
+       error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
+       if (error) {
+               fs_err(sdp, "control lock EX error %d\n", error);
+               return;
+       }
+
+       control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
+
+       spin_lock(&ls->ls_recover_spin);
+       if (block_gen != ls->ls_recover_block ||
+           start_gen != ls->ls_recover_start) {
+               fs_info(sdp, "recover generation %u block1 %u %u\n",
+                       start_gen, block_gen, ls->ls_recover_block);
+               spin_unlock(&ls->ls_recover_spin);
+               control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
+               return;
+       }
+
+       recover_size = ls->ls_recover_size;
+
+       if (lvb_gen <= start_gen) {
+               /*
+                * Clear lvb bits for jids we've successfully recovered.
+                * Because all nodes attempt to recover failed journals,
+                * a journal can be recovered multiple times successfully
+                * in succession.  Only the first will really do recovery,
+                * the others find it clean, but still report a successful
+                * recovery.  So, another node may have already recovered
+                * the jid and cleared the lvb bit for it.
+                */
+               for (i = 0; i < recover_size; i++) {
+                       if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
+                               continue;
+
+                       ls->ls_recover_result[i] = 0;
+
+                       if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
+                               continue;
+
+                       __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
+                       write_lvb = 1;
+               }
+       }
+
+       if (lvb_gen == start_gen) {
+               /*
+                * Failed slots before start_gen are already set in lvb.
+                */
+               for (i = 0; i < recover_size; i++) {
+                       if (!ls->ls_recover_submit[i])
+                               continue;
+                       if (ls->ls_recover_submit[i] < lvb_gen)
+                               ls->ls_recover_submit[i] = 0;
+               }
+       } else if (lvb_gen < start_gen) {
+               /*
+                * Failed slots before start_gen are not yet set in lvb.
+                */
+               for (i = 0; i < recover_size; i++) {
+                       if (!ls->ls_recover_submit[i])
+                               continue;
+                       if (ls->ls_recover_submit[i] < start_gen) {
+                               ls->ls_recover_submit[i] = 0;
+                               __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
+                       }
+               }
+               /* even if there are no bits to set, we need to write the
+                  latest generation to the lvb */
+               write_lvb = 1;
+       } else {
+               /*
+                * we should be getting a recover_done() for lvb_gen soon
+                */
+       }
+       spin_unlock(&ls->ls_recover_spin);
+
+       if (write_lvb) {
+               control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
+               flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
+       } else {
+               flags = DLM_LKF_CONVERT;
+       }
+
+       error = control_lock(sdp, DLM_LOCK_NL, flags);
+       if (error) {
+               fs_err(sdp, "control lock NL error %d\n", error);
+               return;
+       }
+
+       /*
+        * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
+        * and clear a jid bit in the lvb if the recovery is a success.
+        * Eventually all journals will be recovered, all jid bits will
+        * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
+        */
+
+       for (i = 0; i < recover_size; i++) {
+               if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
+                       fs_info(sdp, "recover generation %u jid %d\n",
+                               start_gen, i);
+                       gfs2_recover_set(sdp, i);
+                       recover_set++;
+               }
+       }
+       if (recover_set)
+               return;
+
+       /*
+        * No more jid bits set in lvb, all recovery is done, unblock locks
+        * (unless a new recover_prep callback has occured blocking locks
+        * again while working above)
+        */
+
+       spin_lock(&ls->ls_recover_spin);
+       if (ls->ls_recover_block == block_gen &&
+           ls->ls_recover_start == start_gen) {
+               clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
+               spin_unlock(&ls->ls_recover_spin);
+               fs_info(sdp, "recover generation %u done\n", start_gen);
+               gfs2_glock_thaw(sdp);
+       } else {
+               fs_info(sdp, "recover generation %u block2 %u %u\n",
+                       start_gen, block_gen, ls->ls_recover_block);
+               spin_unlock(&ls->ls_recover_spin);
+       }
+}
+
+static int control_mount(struct gfs2_sbd *sdp)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       uint32_t start_gen, block_gen, mount_gen, lvb_gen;
+       int mounted_mode;
+       int retries = 0;
+       int error;
+
+       memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
+       memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
+       memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
+       ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
+       init_completion(&ls->ls_sync_wait);
+
+       set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
+
+       error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
+       if (error) {
+               fs_err(sdp, "control_mount control_lock NL error %d\n", error);
+               return error;
+       }
+
+       error = mounted_lock(sdp, DLM_LOCK_NL, 0);
+       if (error) {
+               fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
+               control_unlock(sdp);
+               return error;
+       }
+       mounted_mode = DLM_LOCK_NL;
+
+restart:
+       if (retries++ && signal_pending(current)) {
+               error = -EINTR;
+               goto fail;
+       }
+
+       /*
+        * We always start with both locks in NL. control_lock is
+        * demoted to NL below so we don't need to do it here.
+        */
+
+       if (mounted_mode != DLM_LOCK_NL) {
+               error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
+               if (error)
+                       goto fail;
+               mounted_mode = DLM_LOCK_NL;
+       }
+
+       /*
+        * Other nodes need to do some work in dlm recovery and gfs2_control
+        * before the recover_done and control_lock will be ready for us below.
+        * A delay here is not required but often avoids having to retry.
+        */
+
+       msleep_interruptible(500);
+
+       /*
+        * Acquire control_lock in EX and mounted_lock in either EX or PR.
+        * control_lock lvb keeps track of any pending journal recoveries.
+        * mounted_lock indicates if any other nodes have the fs mounted.
+        */
+
+       error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
+       if (error == -EAGAIN) {
+               goto restart;
+       } else if (error) {
+               fs_err(sdp, "control_mount control_lock EX error %d\n", error);
+               goto fail;
+       }
+
+       error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
+       if (!error) {
+               mounted_mode = DLM_LOCK_EX;
+               goto locks_done;
+       } else if (error != -EAGAIN) {
+               fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
+               goto fail;
+       }
+
+       error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
+       if (!error) {
+               mounted_mode = DLM_LOCK_PR;
+               goto locks_done;
+       } else {
+               /* not even -EAGAIN should happen here */
+               fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
+               goto fail;
+       }
+
+locks_done:
+       /*
+        * If we got both locks above in EX, then we're the first mounter.
+        * If not, then we need to wait for the control_lock lvb to be
+        * updated by other mounted nodes to reflect our mount generation.
+        *
+        * In simple first mounter cases, first mounter will see zero lvb_gen,
+        * but in cases where all existing nodes leave/fail before mounting
+        * nodes finish control_mount, then all nodes will be mounting and
+        * lvb_gen will be non-zero.
+        */
+
+       control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
+
+       if (lvb_gen == 0xFFFFFFFF) {
+               /* special value to force mount attempts to fail */
+               fs_err(sdp, "control_mount control_lock disabled\n");
+               error = -EINVAL;
+               goto fail;
+       }
+
+       if (mounted_mode == DLM_LOCK_EX) {
+               /* first mounter, keep both EX while doing first recovery */
+               spin_lock(&ls->ls_recover_spin);
+               clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
+               set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
+               set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
+               spin_unlock(&ls->ls_recover_spin);
+               fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
+               return 0;
+       }
+
+       error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
+       if (error)
+               goto fail;
+
+       /*
+        * We are not first mounter, now we need to wait for the control_lock
+        * lvb generation to be >= the generation from our first recover_done
+        * and all lvb bits to be clear (no pending journal recoveries.)
+        */
+
+       if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
+               /* journals need recovery, wait until all are clear */
+               fs_info(sdp, "control_mount wait for journal recovery\n");
+               goto restart;
+       }
+
+       spin_lock(&ls->ls_recover_spin);
+       block_gen = ls->ls_recover_block;
+       start_gen = ls->ls_recover_start;
+       mount_gen = ls->ls_recover_mount;
+
+       if (lvb_gen < mount_gen) {
+               /* wait for mounted nodes to update control_lock lvb to our
+                  generation, which might include new recovery bits set */
+               fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
+                       "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
+                       lvb_gen, ls->ls_recover_flags);
+               spin_unlock(&ls->ls_recover_spin);
+               goto restart;
+       }
+
+       if (lvb_gen != start_gen) {
+               /* wait for mounted nodes to update control_lock lvb to the
+                  latest recovery generation */
+               fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
+                       "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
+                       lvb_gen, ls->ls_recover_flags);
+               spin_unlock(&ls->ls_recover_spin);
+               goto restart;
+       }
+
+       if (block_gen == start_gen) {
+               /* dlm recovery in progress, wait for it to finish */
+               fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
+                       "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
+                       lvb_gen, ls->ls_recover_flags);
+               spin_unlock(&ls->ls_recover_spin);
+               goto restart;
+       }
+
+       clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
+       set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
+       memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
+       memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
+       spin_unlock(&ls->ls_recover_spin);
+       return 0;
+
+fail:
+       mounted_unlock(sdp);
+       control_unlock(sdp);
+       return error;
+}
+
+static int control_first_done(struct gfs2_sbd *sdp)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       uint32_t start_gen, block_gen;
+       int error;
+
+restart:
+       spin_lock(&ls->ls_recover_spin);
+       start_gen = ls->ls_recover_start;
+       block_gen = ls->ls_recover_block;
+
+       if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
+           !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
+           !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
+               /* sanity check, should not happen */
+               fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
+                      start_gen, block_gen, ls->ls_recover_flags);
+               spin_unlock(&ls->ls_recover_spin);
+               control_unlock(sdp);
+               return -1;
+       }
+
+       if (start_gen == block_gen) {
+               /*
+                * Wait for the end of a dlm recovery cycle to switch from
+                * first mounter recovery.  We can ignore any recover_slot
+                * callbacks between the recover_prep and next recover_done
+                * because we are still the first mounter and any failed nodes
+                * have not fully mounted, so they don't need recovery.
+                */
+               spin_unlock(&ls->ls_recover_spin);
+               fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
+
+               wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
+                           TASK_UNINTERRUPTIBLE);
+               goto restart;
+       }
+
+       clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
+       set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
+       memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
+       memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
+       spin_unlock(&ls->ls_recover_spin);
+
+       memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
+       control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
+
+       error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
+       if (error)
+               fs_err(sdp, "control_first_done mounted PR error %d\n", error);
+
+       error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
+       if (error)
+               fs_err(sdp, "control_first_done control NL error %d\n", error);
+
+       return error;
+}
+
+/*
+ * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
+ * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
+ * gfs2 jids start at 0, so jid = slot - 1)
+ */
+
+#define RECOVER_SIZE_INC 16
+
+static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
+                           int num_slots)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       uint32_t *submit = NULL;
+       uint32_t *result = NULL;
+       uint32_t old_size, new_size;
+       int i, max_jid;
+
+       if (!ls->ls_lvb_bits) {
+               ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
+               if (!ls->ls_lvb_bits)
+                       return -ENOMEM;
+       }
+
+       max_jid = 0;
+       for (i = 0; i < num_slots; i++) {
+               if (max_jid < slots[i].slot - 1)
+                       max_jid = slots[i].slot - 1;
+       }
+
+       old_size = ls->ls_recover_size;
+
+       if (old_size >= max_jid + 1)
+               return 0;
+
+       new_size = old_size + RECOVER_SIZE_INC;
+
+       submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
+       result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
+       if (!submit || !result) {
+               kfree(submit);
+               kfree(result);
+               return -ENOMEM;
+       }
+
+       spin_lock(&ls->ls_recover_spin);
+       memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
+       memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
+       kfree(ls->ls_recover_submit);
+       kfree(ls->ls_recover_result);
+       ls->ls_recover_submit = submit;
+       ls->ls_recover_result = result;
+       ls->ls_recover_size = new_size;
+       spin_unlock(&ls->ls_recover_spin);
+       return 0;
+}
+
+static void free_recover_size(struct lm_lockstruct *ls)
+{
+       kfree(ls->ls_lvb_bits);
+       kfree(ls->ls_recover_submit);
+       kfree(ls->ls_recover_result);
+       ls->ls_recover_submit = NULL;
+       ls->ls_recover_result = NULL;
+       ls->ls_recover_size = 0;
+}
+
+/* dlm calls before it does lock recovery */
+
+static void gdlm_recover_prep(void *arg)
+{
+       struct gfs2_sbd *sdp = arg;
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+
+       spin_lock(&ls->ls_recover_spin);
+       ls->ls_recover_block = ls->ls_recover_start;
+       set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
+
+       if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
+            test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
+               spin_unlock(&ls->ls_recover_spin);
+               return;
+       }
+       set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
+       spin_unlock(&ls->ls_recover_spin);
+}
+
+/* dlm calls after recover_prep has been completed on all lockspace members;
+   identifies slot/jid of failed member */
+
+static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
+{
+       struct gfs2_sbd *sdp = arg;
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       int jid = slot->slot - 1;
+
+       spin_lock(&ls->ls_recover_spin);
+       if (ls->ls_recover_size < jid + 1) {
+               fs_err(sdp, "recover_slot jid %d gen %u short size %d",
+                      jid, ls->ls_recover_block, ls->ls_recover_size);
+               spin_unlock(&ls->ls_recover_spin);
+               return;
+       }
+
+       if (ls->ls_recover_submit[jid]) {
+               fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
+                       jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
+       }
+       ls->ls_recover_submit[jid] = ls->ls_recover_block;
+       spin_unlock(&ls->ls_recover_spin);
+}
+
+/* dlm calls after recover_slot and after it completes lock recovery */
+
+static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
+                             int our_slot, uint32_t generation)
+{
+       struct gfs2_sbd *sdp = arg;
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+
+       /* ensure the ls jid arrays are large enough */
+       set_recover_size(sdp, slots, num_slots);
+
+       spin_lock(&ls->ls_recover_spin);
+       ls->ls_recover_start = generation;
+
+       if (!ls->ls_recover_mount) {
+               ls->ls_recover_mount = generation;
+               ls->ls_jid = our_slot - 1;
+       }
+
+       if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
+               queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
+
+       clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
+       smp_mb__after_atomic();
+       wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
+       spin_unlock(&ls->ls_recover_spin);
+}
+
+/* gfs2_recover thread has a journal recovery result */
+
+static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
+                                unsigned int result)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+
+       if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
+               return;
+
+       /* don't care about the recovery of own journal during mount */
+       if (jid == ls->ls_jid)
+               return;
+
+       spin_lock(&ls->ls_recover_spin);
+       if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
+               spin_unlock(&ls->ls_recover_spin);
+               return;
+       }
+       if (ls->ls_recover_size < jid + 1) {
+               fs_err(sdp, "recovery_result jid %d short size %d",
+                      jid, ls->ls_recover_size);
+               spin_unlock(&ls->ls_recover_spin);
+               return;
+       }
+
+       fs_info(sdp, "recover jid %d result %s\n", jid,
+               result == LM_RD_GAVEUP ? "busy" : "success");
+
+       ls->ls_recover_result[jid] = result;
+
+       /* GAVEUP means another node is recovering the journal; delay our
+          next attempt to recover it, to give the other node a chance to
+          finish before trying again */
+
+       if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
+               queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
+                                  result == LM_RD_GAVEUP ? HZ : 0);
+       spin_unlock(&ls->ls_recover_spin);
+}
+
+const struct dlm_lockspace_ops gdlm_lockspace_ops = {
+       .recover_prep = gdlm_recover_prep,
+       .recover_slot = gdlm_recover_slot,
+       .recover_done = gdlm_recover_done,
+};
+
+static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       char cluster[GFS2_LOCKNAME_LEN];
+       const char *fsname;
+       uint32_t flags;
+       int error, ops_result;
+
+       /*
+        * initialize everything
+        */
+
+       INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
+       spin_lock_init(&ls->ls_recover_spin);
+       ls->ls_recover_flags = 0;
+       ls->ls_recover_mount = 0;
+       ls->ls_recover_start = 0;
+       ls->ls_recover_block = 0;
+       ls->ls_recover_size = 0;
+       ls->ls_recover_submit = NULL;
+       ls->ls_recover_result = NULL;
+       ls->ls_lvb_bits = NULL;
+
+       error = set_recover_size(sdp, NULL, 0);
+       if (error)
+               goto fail;
+
+       /*
+        * prepare dlm_new_lockspace args
+        */
+
+       fsname = strchr(table, ':');
+       if (!fsname) {
+               fs_info(sdp, "no fsname found\n");
+               error = -EINVAL;
+               goto fail_free;
+       }
+       memset(cluster, 0, sizeof(cluster));
+       memcpy(cluster, table, strlen(table) - strlen(fsname));
+       fsname++;
+
+       flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
+
+       /*
+        * create/join lockspace
+        */
+
+       error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
+                                 &gdlm_lockspace_ops, sdp, &ops_result,
+                                 &ls->ls_dlm);
+       if (error) {
+               fs_err(sdp, "dlm_new_lockspace error %d\n", error);
+               goto fail_free;
+       }
+
+       if (ops_result < 0) {
+               /*
+                * dlm does not support ops callbacks,
+                * old dlm_controld/gfs_controld are used, try without ops.
+                */
+               fs_info(sdp, "dlm lockspace ops not used\n");
+               free_recover_size(ls);
+               set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
+               return 0;
+       }
+
+       if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
+               fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
+               error = -EINVAL;
+               goto fail_release;
+       }
+
+       /*
+        * control_mount() uses control_lock to determine first mounter,
+        * and for later mounts, waits for any recoveries to be cleared.
+        */
+
+       error = control_mount(sdp);
+       if (error) {
+               fs_err(sdp, "mount control error %d\n", error);
+               goto fail_release;
+       }
+
+       ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
+       clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
+       smp_mb__after_atomic();
+       wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
+       return 0;
+
+fail_release:
+       dlm_release_lockspace(ls->ls_dlm, 2);
+fail_free:
+       free_recover_size(ls);
+fail:
+       return error;
+}
+
+static void gdlm_first_done(struct gfs2_sbd *sdp)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+       int error;
+
+       if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
+               return;
+
+       error = control_first_done(sdp);
+       if (error)
+               fs_err(sdp, "mount first_done error %d\n", error);
+}
+
+static void gdlm_unmount(struct gfs2_sbd *sdp)
+{
+       struct lm_lockstruct *ls = &sdp->sd_lockstruct;
+
+       if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
+               goto release;
+
+       /* wait for gfs2_control_wq to be done with this mount */
+
+       spin_lock(&ls->ls_recover_spin);
+       set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
+       spin_unlock(&ls->ls_recover_spin);
+       flush_delayed_work(&sdp->sd_control_work);
+
+       /* mounted_lock and control_lock will be purged in dlm recovery */
+release:
+       if (ls->ls_dlm) {
+               dlm_release_lockspace(ls->ls_dlm, 2);
+               ls->ls_dlm = NULL;
+       }
+
+       free_recover_size(ls);
+}
+
+static const match_table_t dlm_tokens = {
+       { Opt_jid, "jid=%d"},
+       { Opt_id, "id=%d"},
+       { Opt_first, "first=%d"},
+       { Opt_nodir, "nodir=%d"},
+       { Opt_err, NULL },
+};
+
+const struct lm_lockops gfs2_dlm_ops = {
+       .lm_proto_name = "lock_dlm",
+       .lm_mount = gdlm_mount,
+       .lm_first_done = gdlm_first_done,
+       .lm_recovery_result = gdlm_recovery_result,
+       .lm_unmount = gdlm_unmount,
+       .lm_put_lock = gdlm_put_lock,
+       .lm_lock = gdlm_lock,
+       .lm_cancel = gdlm_cancel,
+       .lm_tokens = &dlm_tokens,
+};
+