Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / ext4 / indirect.c
diff --git a/kernel/fs/ext4/indirect.c b/kernel/fs/ext4/indirect.c
new file mode 100644 (file)
index 0000000..9588240
--- /dev/null
@@ -0,0 +1,1558 @@
+/*
+ *  linux/fs/ext4/indirect.c
+ *
+ *  from
+ *
+ *  linux/fs/ext4/inode.c
+ *
+ * Copyright (C) 1992, 1993, 1994, 1995
+ * Remy Card (card@masi.ibp.fr)
+ * Laboratoire MASI - Institut Blaise Pascal
+ * Universite Pierre et Marie Curie (Paris VI)
+ *
+ *  from
+ *
+ *  linux/fs/minix/inode.c
+ *
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ *
+ *  Goal-directed block allocation by Stephen Tweedie
+ *     (sct@redhat.com), 1993, 1998
+ */
+
+#include "ext4_jbd2.h"
+#include "truncate.h"
+#include <linux/uio.h>
+
+#include <trace/events/ext4.h>
+
+typedef struct {
+       __le32  *p;
+       __le32  key;
+       struct buffer_head *bh;
+} Indirect;
+
+static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
+{
+       p->key = *(p->p = v);
+       p->bh = bh;
+}
+
+/**
+ *     ext4_block_to_path - parse the block number into array of offsets
+ *     @inode: inode in question (we are only interested in its superblock)
+ *     @i_block: block number to be parsed
+ *     @offsets: array to store the offsets in
+ *     @boundary: set this non-zero if the referred-to block is likely to be
+ *            followed (on disk) by an indirect block.
+ *
+ *     To store the locations of file's data ext4 uses a data structure common
+ *     for UNIX filesystems - tree of pointers anchored in the inode, with
+ *     data blocks at leaves and indirect blocks in intermediate nodes.
+ *     This function translates the block number into path in that tree -
+ *     return value is the path length and @offsets[n] is the offset of
+ *     pointer to (n+1)th node in the nth one. If @block is out of range
+ *     (negative or too large) warning is printed and zero returned.
+ *
+ *     Note: function doesn't find node addresses, so no IO is needed. All
+ *     we need to know is the capacity of indirect blocks (taken from the
+ *     inode->i_sb).
+ */
+
+/*
+ * Portability note: the last comparison (check that we fit into triple
+ * indirect block) is spelled differently, because otherwise on an
+ * architecture with 32-bit longs and 8Kb pages we might get into trouble
+ * if our filesystem had 8Kb blocks. We might use long long, but that would
+ * kill us on x86. Oh, well, at least the sign propagation does not matter -
+ * i_block would have to be negative in the very beginning, so we would not
+ * get there at all.
+ */
+
+static int ext4_block_to_path(struct inode *inode,
+                             ext4_lblk_t i_block,
+                             ext4_lblk_t offsets[4], int *boundary)
+{
+       int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+       int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
+       const long direct_blocks = EXT4_NDIR_BLOCKS,
+               indirect_blocks = ptrs,
+               double_blocks = (1 << (ptrs_bits * 2));
+       int n = 0;
+       int final = 0;
+
+       if (i_block < direct_blocks) {
+               offsets[n++] = i_block;
+               final = direct_blocks;
+       } else if ((i_block -= direct_blocks) < indirect_blocks) {
+               offsets[n++] = EXT4_IND_BLOCK;
+               offsets[n++] = i_block;
+               final = ptrs;
+       } else if ((i_block -= indirect_blocks) < double_blocks) {
+               offsets[n++] = EXT4_DIND_BLOCK;
+               offsets[n++] = i_block >> ptrs_bits;
+               offsets[n++] = i_block & (ptrs - 1);
+               final = ptrs;
+       } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
+               offsets[n++] = EXT4_TIND_BLOCK;
+               offsets[n++] = i_block >> (ptrs_bits * 2);
+               offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
+               offsets[n++] = i_block & (ptrs - 1);
+               final = ptrs;
+       } else {
+               ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
+                            i_block + direct_blocks +
+                            indirect_blocks + double_blocks, inode->i_ino);
+       }
+       if (boundary)
+               *boundary = final - 1 - (i_block & (ptrs - 1));
+       return n;
+}
+
+/**
+ *     ext4_get_branch - read the chain of indirect blocks leading to data
+ *     @inode: inode in question
+ *     @depth: depth of the chain (1 - direct pointer, etc.)
+ *     @offsets: offsets of pointers in inode/indirect blocks
+ *     @chain: place to store the result
+ *     @err: here we store the error value
+ *
+ *     Function fills the array of triples <key, p, bh> and returns %NULL
+ *     if everything went OK or the pointer to the last filled triple
+ *     (incomplete one) otherwise. Upon the return chain[i].key contains
+ *     the number of (i+1)-th block in the chain (as it is stored in memory,
+ *     i.e. little-endian 32-bit), chain[i].p contains the address of that
+ *     number (it points into struct inode for i==0 and into the bh->b_data
+ *     for i>0) and chain[i].bh points to the buffer_head of i-th indirect
+ *     block for i>0 and NULL for i==0. In other words, it holds the block
+ *     numbers of the chain, addresses they were taken from (and where we can
+ *     verify that chain did not change) and buffer_heads hosting these
+ *     numbers.
+ *
+ *     Function stops when it stumbles upon zero pointer (absent block)
+ *             (pointer to last triple returned, *@err == 0)
+ *     or when it gets an IO error reading an indirect block
+ *             (ditto, *@err == -EIO)
+ *     or when it reads all @depth-1 indirect blocks successfully and finds
+ *     the whole chain, all way to the data (returns %NULL, *err == 0).
+ *
+ *      Need to be called with
+ *      down_read(&EXT4_I(inode)->i_data_sem)
+ */
+static Indirect *ext4_get_branch(struct inode *inode, int depth,
+                                ext4_lblk_t  *offsets,
+                                Indirect chain[4], int *err)
+{
+       struct super_block *sb = inode->i_sb;
+       Indirect *p = chain;
+       struct buffer_head *bh;
+       int ret = -EIO;
+
+       *err = 0;
+       /* i_data is not going away, no lock needed */
+       add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
+       if (!p->key)
+               goto no_block;
+       while (--depth) {
+               bh = sb_getblk(sb, le32_to_cpu(p->key));
+               if (unlikely(!bh)) {
+                       ret = -ENOMEM;
+                       goto failure;
+               }
+
+               if (!bh_uptodate_or_lock(bh)) {
+                       if (bh_submit_read(bh) < 0) {
+                               put_bh(bh);
+                               goto failure;
+                       }
+                       /* validate block references */
+                       if (ext4_check_indirect_blockref(inode, bh)) {
+                               put_bh(bh);
+                               goto failure;
+                       }
+               }
+
+               add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
+               /* Reader: end */
+               if (!p->key)
+                       goto no_block;
+       }
+       return NULL;
+
+failure:
+       *err = ret;
+no_block:
+       return p;
+}
+
+/**
+ *     ext4_find_near - find a place for allocation with sufficient locality
+ *     @inode: owner
+ *     @ind: descriptor of indirect block.
+ *
+ *     This function returns the preferred place for block allocation.
+ *     It is used when heuristic for sequential allocation fails.
+ *     Rules are:
+ *       + if there is a block to the left of our position - allocate near it.
+ *       + if pointer will live in indirect block - allocate near that block.
+ *       + if pointer will live in inode - allocate in the same
+ *         cylinder group.
+ *
+ * In the latter case we colour the starting block by the callers PID to
+ * prevent it from clashing with concurrent allocations for a different inode
+ * in the same block group.   The PID is used here so that functionally related
+ * files will be close-by on-disk.
+ *
+ *     Caller must make sure that @ind is valid and will stay that way.
+ */
+static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
+{
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
+       __le32 *p;
+
+       /* Try to find previous block */
+       for (p = ind->p - 1; p >= start; p--) {
+               if (*p)
+                       return le32_to_cpu(*p);
+       }
+
+       /* No such thing, so let's try location of indirect block */
+       if (ind->bh)
+               return ind->bh->b_blocknr;
+
+       /*
+        * It is going to be referred to from the inode itself? OK, just put it
+        * into the same cylinder group then.
+        */
+       return ext4_inode_to_goal_block(inode);
+}
+
+/**
+ *     ext4_find_goal - find a preferred place for allocation.
+ *     @inode: owner
+ *     @block:  block we want
+ *     @partial: pointer to the last triple within a chain
+ *
+ *     Normally this function find the preferred place for block allocation,
+ *     returns it.
+ *     Because this is only used for non-extent files, we limit the block nr
+ *     to 32 bits.
+ */
+static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
+                                  Indirect *partial)
+{
+       ext4_fsblk_t goal;
+
+       /*
+        * XXX need to get goal block from mballoc's data structures
+        */
+
+       goal = ext4_find_near(inode, partial);
+       goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
+       return goal;
+}
+
+/**
+ *     ext4_blks_to_allocate - Look up the block map and count the number
+ *     of direct blocks need to be allocated for the given branch.
+ *
+ *     @branch: chain of indirect blocks
+ *     @k: number of blocks need for indirect blocks
+ *     @blks: number of data blocks to be mapped.
+ *     @blocks_to_boundary:  the offset in the indirect block
+ *
+ *     return the total number of blocks to be allocate, including the
+ *     direct and indirect blocks.
+ */
+static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
+                                int blocks_to_boundary)
+{
+       unsigned int count = 0;
+
+       /*
+        * Simple case, [t,d]Indirect block(s) has not allocated yet
+        * then it's clear blocks on that path have not allocated
+        */
+       if (k > 0) {
+               /* right now we don't handle cross boundary allocation */
+               if (blks < blocks_to_boundary + 1)
+                       count += blks;
+               else
+                       count += blocks_to_boundary + 1;
+               return count;
+       }
+
+       count++;
+       while (count < blks && count <= blocks_to_boundary &&
+               le32_to_cpu(*(branch[0].p + count)) == 0) {
+               count++;
+       }
+       return count;
+}
+
+/**
+ *     ext4_alloc_branch - allocate and set up a chain of blocks.
+ *     @handle: handle for this transaction
+ *     @inode: owner
+ *     @indirect_blks: number of allocated indirect blocks
+ *     @blks: number of allocated direct blocks
+ *     @goal: preferred place for allocation
+ *     @offsets: offsets (in the blocks) to store the pointers to next.
+ *     @branch: place to store the chain in.
+ *
+ *     This function allocates blocks, zeroes out all but the last one,
+ *     links them into chain and (if we are synchronous) writes them to disk.
+ *     In other words, it prepares a branch that can be spliced onto the
+ *     inode. It stores the information about that chain in the branch[], in
+ *     the same format as ext4_get_branch() would do. We are calling it after
+ *     we had read the existing part of chain and partial points to the last
+ *     triple of that (one with zero ->key). Upon the exit we have the same
+ *     picture as after the successful ext4_get_block(), except that in one
+ *     place chain is disconnected - *branch->p is still zero (we did not
+ *     set the last link), but branch->key contains the number that should
+ *     be placed into *branch->p to fill that gap.
+ *
+ *     If allocation fails we free all blocks we've allocated (and forget
+ *     their buffer_heads) and return the error value the from failed
+ *     ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
+ *     as described above and return 0.
+ */
+static int ext4_alloc_branch(handle_t *handle,
+                            struct ext4_allocation_request *ar,
+                            int indirect_blks, ext4_lblk_t *offsets,
+                            Indirect *branch)
+{
+       struct buffer_head *            bh;
+       ext4_fsblk_t                    b, new_blocks[4];
+       __le32                          *p;
+       int                             i, j, err, len = 1;
+
+       for (i = 0; i <= indirect_blks; i++) {
+               if (i == indirect_blks) {
+                       new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
+               } else
+                       ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
+                                       ar->inode, ar->goal,
+                                       ar->flags & EXT4_MB_DELALLOC_RESERVED,
+                                       NULL, &err);
+               if (err) {
+                       i--;
+                       goto failed;
+               }
+               branch[i].key = cpu_to_le32(new_blocks[i]);
+               if (i == 0)
+                       continue;
+
+               bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
+               if (unlikely(!bh)) {
+                       err = -ENOMEM;
+                       goto failed;
+               }
+               lock_buffer(bh);
+               BUFFER_TRACE(bh, "call get_create_access");
+               err = ext4_journal_get_create_access(handle, bh);
+               if (err) {
+                       unlock_buffer(bh);
+                       goto failed;
+               }
+
+               memset(bh->b_data, 0, bh->b_size);
+               p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
+               b = new_blocks[i];
+
+               if (i == indirect_blks)
+                       len = ar->len;
+               for (j = 0; j < len; j++)
+                       *p++ = cpu_to_le32(b++);
+
+               BUFFER_TRACE(bh, "marking uptodate");
+               set_buffer_uptodate(bh);
+               unlock_buffer(bh);
+
+               BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
+               err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
+               if (err)
+                       goto failed;
+       }
+       return 0;
+failed:
+       for (; i >= 0; i--) {
+               /*
+                * We want to ext4_forget() only freshly allocated indirect
+                * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
+                * buffer at branch[0].bh is indirect block / inode already
+                * existing before ext4_alloc_branch() was called.
+                */
+               if (i > 0 && i != indirect_blks && branch[i].bh)
+                       ext4_forget(handle, 1, ar->inode, branch[i].bh,
+                                   branch[i].bh->b_blocknr);
+               ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
+                                (i == indirect_blks) ? ar->len : 1, 0);
+       }
+       return err;
+}
+
+/**
+ * ext4_splice_branch - splice the allocated branch onto inode.
+ * @handle: handle for this transaction
+ * @inode: owner
+ * @block: (logical) number of block we are adding
+ * @chain: chain of indirect blocks (with a missing link - see
+ *     ext4_alloc_branch)
+ * @where: location of missing link
+ * @num:   number of indirect blocks we are adding
+ * @blks:  number of direct blocks we are adding
+ *
+ * This function fills the missing link and does all housekeeping needed in
+ * inode (->i_blocks, etc.). In case of success we end up with the full
+ * chain to new block and return 0.
+ */
+static int ext4_splice_branch(handle_t *handle,
+                             struct ext4_allocation_request *ar,
+                             Indirect *where, int num)
+{
+       int i;
+       int err = 0;
+       ext4_fsblk_t current_block;
+
+       /*
+        * If we're splicing into a [td]indirect block (as opposed to the
+        * inode) then we need to get write access to the [td]indirect block
+        * before the splice.
+        */
+       if (where->bh) {
+               BUFFER_TRACE(where->bh, "get_write_access");
+               err = ext4_journal_get_write_access(handle, where->bh);
+               if (err)
+                       goto err_out;
+       }
+       /* That's it */
+
+       *where->p = where->key;
+
+       /*
+        * Update the host buffer_head or inode to point to more just allocated
+        * direct blocks blocks
+        */
+       if (num == 0 && ar->len > 1) {
+               current_block = le32_to_cpu(where->key) + 1;
+               for (i = 1; i < ar->len; i++)
+                       *(where->p + i) = cpu_to_le32(current_block++);
+       }
+
+       /* We are done with atomic stuff, now do the rest of housekeeping */
+       /* had we spliced it onto indirect block? */
+       if (where->bh) {
+               /*
+                * If we spliced it onto an indirect block, we haven't
+                * altered the inode.  Note however that if it is being spliced
+                * onto an indirect block at the very end of the file (the
+                * file is growing) then we *will* alter the inode to reflect
+                * the new i_size.  But that is not done here - it is done in
+                * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
+                */
+               jbd_debug(5, "splicing indirect only\n");
+               BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
+               err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
+               if (err)
+                       goto err_out;
+       } else {
+               /*
+                * OK, we spliced it into the inode itself on a direct block.
+                */
+               ext4_mark_inode_dirty(handle, ar->inode);
+               jbd_debug(5, "splicing direct\n");
+       }
+       return err;
+
+err_out:
+       for (i = 1; i <= num; i++) {
+               /*
+                * branch[i].bh is newly allocated, so there is no
+                * need to revoke the block, which is why we don't
+                * need to set EXT4_FREE_BLOCKS_METADATA.
+                */
+               ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
+                                EXT4_FREE_BLOCKS_FORGET);
+       }
+       ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
+                        ar->len, 0);
+
+       return err;
+}
+
+/*
+ * The ext4_ind_map_blocks() function handles non-extents inodes
+ * (i.e., using the traditional indirect/double-indirect i_blocks
+ * scheme) for ext4_map_blocks().
+ *
+ * Allocation strategy is simple: if we have to allocate something, we will
+ * have to go the whole way to leaf. So let's do it before attaching anything
+ * to tree, set linkage between the newborn blocks, write them if sync is
+ * required, recheck the path, free and repeat if check fails, otherwise
+ * set the last missing link (that will protect us from any truncate-generated
+ * removals - all blocks on the path are immune now) and possibly force the
+ * write on the parent block.
+ * That has a nice additional property: no special recovery from the failed
+ * allocations is needed - we simply release blocks and do not touch anything
+ * reachable from inode.
+ *
+ * `handle' can be NULL if create == 0.
+ *
+ * return > 0, # of blocks mapped or allocated.
+ * return = 0, if plain lookup failed.
+ * return < 0, error case.
+ *
+ * The ext4_ind_get_blocks() function should be called with
+ * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
+ * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
+ * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
+ * blocks.
+ */
+int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
+                       struct ext4_map_blocks *map,
+                       int flags)
+{
+       struct ext4_allocation_request ar;
+       int err = -EIO;
+       ext4_lblk_t offsets[4];
+       Indirect chain[4];
+       Indirect *partial;
+       int indirect_blks;
+       int blocks_to_boundary = 0;
+       int depth;
+       int count = 0;
+       ext4_fsblk_t first_block = 0;
+
+       trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
+       J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
+       J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
+       depth = ext4_block_to_path(inode, map->m_lblk, offsets,
+                                  &blocks_to_boundary);
+
+       if (depth == 0)
+               goto out;
+
+       partial = ext4_get_branch(inode, depth, offsets, chain, &err);
+
+       /* Simplest case - block found, no allocation needed */
+       if (!partial) {
+               first_block = le32_to_cpu(chain[depth - 1].key);
+               count++;
+               /*map more blocks*/
+               while (count < map->m_len && count <= blocks_to_boundary) {
+                       ext4_fsblk_t blk;
+
+                       blk = le32_to_cpu(*(chain[depth-1].p + count));
+
+                       if (blk == first_block + count)
+                               count++;
+                       else
+                               break;
+               }
+               goto got_it;
+       }
+
+       /* Next simple case - plain lookup or failed read of indirect block */
+       if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
+               goto cleanup;
+
+       /*
+        * Okay, we need to do block allocation.
+       */
+       if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
+                                      EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
+               EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
+                                "non-extent mapped inodes with bigalloc");
+               return -ENOSPC;
+       }
+
+       /* Set up for the direct block allocation */
+       memset(&ar, 0, sizeof(ar));
+       ar.inode = inode;
+       ar.logical = map->m_lblk;
+       if (S_ISREG(inode->i_mode))
+               ar.flags = EXT4_MB_HINT_DATA;
+       if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
+               ar.flags |= EXT4_MB_DELALLOC_RESERVED;
+
+       ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
+
+       /* the number of blocks need to allocate for [d,t]indirect blocks */
+       indirect_blks = (chain + depth) - partial - 1;
+
+       /*
+        * Next look up the indirect map to count the totoal number of
+        * direct blocks to allocate for this branch.
+        */
+       ar.len = ext4_blks_to_allocate(partial, indirect_blks,
+                                      map->m_len, blocks_to_boundary);
+
+       /*
+        * Block out ext4_truncate while we alter the tree
+        */
+       err = ext4_alloc_branch(handle, &ar, indirect_blks,
+                               offsets + (partial - chain), partial);
+
+       /*
+        * The ext4_splice_branch call will free and forget any buffers
+        * on the new chain if there is a failure, but that risks using
+        * up transaction credits, especially for bitmaps where the
+        * credits cannot be returned.  Can we handle this somehow?  We
+        * may need to return -EAGAIN upwards in the worst case.  --sct
+        */
+       if (!err)
+               err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
+       if (err)
+               goto cleanup;
+
+       map->m_flags |= EXT4_MAP_NEW;
+
+       ext4_update_inode_fsync_trans(handle, inode, 1);
+       count = ar.len;
+got_it:
+       map->m_flags |= EXT4_MAP_MAPPED;
+       map->m_pblk = le32_to_cpu(chain[depth-1].key);
+       map->m_len = count;
+       if (count > blocks_to_boundary)
+               map->m_flags |= EXT4_MAP_BOUNDARY;
+       err = count;
+       /* Clean up and exit */
+       partial = chain + depth - 1;    /* the whole chain */
+cleanup:
+       while (partial > chain) {
+               BUFFER_TRACE(partial->bh, "call brelse");
+               brelse(partial->bh);
+               partial--;
+       }
+out:
+       trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
+       return err;
+}
+
+/*
+ * O_DIRECT for ext3 (or indirect map) based files
+ *
+ * If the O_DIRECT write will extend the file then add this inode to the
+ * orphan list.  So recovery will truncate it back to the original size
+ * if the machine crashes during the write.
+ *
+ * If the O_DIRECT write is intantiating holes inside i_size and the machine
+ * crashes then stale disk data _may_ be exposed inside the file. But current
+ * VFS code falls back into buffered path in that case so we are safe.
+ */
+ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
+                          loff_t offset)
+{
+       struct file *file = iocb->ki_filp;
+       struct inode *inode = file->f_mapping->host;
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       handle_t *handle;
+       ssize_t ret;
+       int orphan = 0;
+       size_t count = iov_iter_count(iter);
+       int retries = 0;
+
+       if (iov_iter_rw(iter) == WRITE) {
+               loff_t final_size = offset + count;
+
+               if (final_size > inode->i_size) {
+                       /* Credits for sb + inode write */
+                       handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
+                       if (IS_ERR(handle)) {
+                               ret = PTR_ERR(handle);
+                               goto out;
+                       }
+                       ret = ext4_orphan_add(handle, inode);
+                       if (ret) {
+                               ext4_journal_stop(handle);
+                               goto out;
+                       }
+                       orphan = 1;
+                       ei->i_disksize = inode->i_size;
+                       ext4_journal_stop(handle);
+               }
+       }
+
+retry:
+       if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) {
+               /*
+                * Nolock dioread optimization may be dynamically disabled
+                * via ext4_inode_block_unlocked_dio(). Check inode's state
+                * while holding extra i_dio_count ref.
+                */
+               inode_dio_begin(inode);
+               smp_mb();
+               if (unlikely(ext4_test_inode_state(inode,
+                                                   EXT4_STATE_DIOREAD_LOCK))) {
+                       inode_dio_end(inode);
+                       goto locked;
+               }
+               if (IS_DAX(inode))
+                       ret = dax_do_io(iocb, inode, iter, offset,
+                                       ext4_get_block, NULL, 0);
+               else
+                       ret = __blockdev_direct_IO(iocb, inode,
+                                                  inode->i_sb->s_bdev, iter,
+                                                  offset, ext4_get_block, NULL,
+                                                  NULL, 0);
+               inode_dio_end(inode);
+       } else {
+locked:
+               if (IS_DAX(inode))
+                       ret = dax_do_io(iocb, inode, iter, offset,
+                                       ext4_get_block, NULL, DIO_LOCKING);
+               else
+                       ret = blockdev_direct_IO(iocb, inode, iter, offset,
+                                                ext4_get_block);
+
+               if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
+                       loff_t isize = i_size_read(inode);
+                       loff_t end = offset + count;
+
+                       if (end > isize)
+                               ext4_truncate_failed_write(inode);
+               }
+       }
+       if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
+               goto retry;
+
+       if (orphan) {
+               int err;
+
+               /* Credits for sb + inode write */
+               handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
+               if (IS_ERR(handle)) {
+                       /* This is really bad luck. We've written the data
+                        * but cannot extend i_size. Bail out and pretend
+                        * the write failed... */
+                       ret = PTR_ERR(handle);
+                       if (inode->i_nlink)
+                               ext4_orphan_del(NULL, inode);
+
+                       goto out;
+               }
+               if (inode->i_nlink)
+                       ext4_orphan_del(handle, inode);
+               if (ret > 0) {
+                       loff_t end = offset + ret;
+                       if (end > inode->i_size) {
+                               ei->i_disksize = end;
+                               i_size_write(inode, end);
+                               /*
+                                * We're going to return a positive `ret'
+                                * here due to non-zero-length I/O, so there's
+                                * no way of reporting error returns from
+                                * ext4_mark_inode_dirty() to userspace.  So
+                                * ignore it.
+                                */
+                               ext4_mark_inode_dirty(handle, inode);
+                       }
+               }
+               err = ext4_journal_stop(handle);
+               if (ret == 0)
+                       ret = err;
+       }
+out:
+       return ret;
+}
+
+/*
+ * Calculate the number of metadata blocks need to reserve
+ * to allocate a new block at @lblocks for non extent file based file
+ */
+int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
+{
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
+       int blk_bits;
+
+       if (lblock < EXT4_NDIR_BLOCKS)
+               return 0;
+
+       lblock -= EXT4_NDIR_BLOCKS;
+
+       if (ei->i_da_metadata_calc_len &&
+           (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
+               ei->i_da_metadata_calc_len++;
+               return 0;
+       }
+       ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
+       ei->i_da_metadata_calc_len = 1;
+       blk_bits = order_base_2(lblock);
+       return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
+}
+
+/*
+ * Calculate number of indirect blocks touched by mapping @nrblocks logically
+ * contiguous blocks
+ */
+int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
+{
+       /*
+        * With N contiguous data blocks, we need at most
+        * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
+        * 2 dindirect blocks, and 1 tindirect block
+        */
+       return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
+}
+
+/*
+ * Truncate transactions can be complex and absolutely huge.  So we need to
+ * be able to restart the transaction at a conventient checkpoint to make
+ * sure we don't overflow the journal.
+ *
+ * Try to extend this transaction for the purposes of truncation.  If
+ * extend fails, we need to propagate the failure up and restart the
+ * transaction in the top-level truncate loop. --sct
+ *
+ * Returns 0 if we managed to create more room.  If we can't create more
+ * room, and the transaction must be restarted we return 1.
+ */
+static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
+{
+       if (!ext4_handle_valid(handle))
+               return 0;
+       if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
+               return 0;
+       if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
+               return 0;
+       return 1;
+}
+
+/*
+ * Probably it should be a library function... search for first non-zero word
+ * or memcmp with zero_page, whatever is better for particular architecture.
+ * Linus?
+ */
+static inline int all_zeroes(__le32 *p, __le32 *q)
+{
+       while (p < q)
+               if (*p++)
+                       return 0;
+       return 1;
+}
+
+/**
+ *     ext4_find_shared - find the indirect blocks for partial truncation.
+ *     @inode:   inode in question
+ *     @depth:   depth of the affected branch
+ *     @offsets: offsets of pointers in that branch (see ext4_block_to_path)
+ *     @chain:   place to store the pointers to partial indirect blocks
+ *     @top:     place to the (detached) top of branch
+ *
+ *     This is a helper function used by ext4_truncate().
+ *
+ *     When we do truncate() we may have to clean the ends of several
+ *     indirect blocks but leave the blocks themselves alive. Block is
+ *     partially truncated if some data below the new i_size is referred
+ *     from it (and it is on the path to the first completely truncated
+ *     data block, indeed).  We have to free the top of that path along
+ *     with everything to the right of the path. Since no allocation
+ *     past the truncation point is possible until ext4_truncate()
+ *     finishes, we may safely do the latter, but top of branch may
+ *     require special attention - pageout below the truncation point
+ *     might try to populate it.
+ *
+ *     We atomically detach the top of branch from the tree, store the
+ *     block number of its root in *@top, pointers to buffer_heads of
+ *     partially truncated blocks - in @chain[].bh and pointers to
+ *     their last elements that should not be removed - in
+ *     @chain[].p. Return value is the pointer to last filled element
+ *     of @chain.
+ *
+ *     The work left to caller to do the actual freeing of subtrees:
+ *             a) free the subtree starting from *@top
+ *             b) free the subtrees whose roots are stored in
+ *                     (@chain[i].p+1 .. end of @chain[i].bh->b_data)
+ *             c) free the subtrees growing from the inode past the @chain[0].
+ *                     (no partially truncated stuff there).  */
+
+static Indirect *ext4_find_shared(struct inode *inode, int depth,
+                                 ext4_lblk_t offsets[4], Indirect chain[4],
+                                 __le32 *top)
+{
+       Indirect *partial, *p;
+       int k, err;
+
+       *top = 0;
+       /* Make k index the deepest non-null offset + 1 */
+       for (k = depth; k > 1 && !offsets[k-1]; k--)
+               ;
+       partial = ext4_get_branch(inode, k, offsets, chain, &err);
+       /* Writer: pointers */
+       if (!partial)
+               partial = chain + k-1;
+       /*
+        * If the branch acquired continuation since we've looked at it -
+        * fine, it should all survive and (new) top doesn't belong to us.
+        */
+       if (!partial->key && *partial->p)
+               /* Writer: end */
+               goto no_top;
+       for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
+               ;
+       /*
+        * OK, we've found the last block that must survive. The rest of our
+        * branch should be detached before unlocking. However, if that rest
+        * of branch is all ours and does not grow immediately from the inode
+        * it's easier to cheat and just decrement partial->p.
+        */
+       if (p == chain + k - 1 && p > chain) {
+               p->p--;
+       } else {
+               *top = *p->p;
+               /* Nope, don't do this in ext4.  Must leave the tree intact */
+#if 0
+               *p->p = 0;
+#endif
+       }
+       /* Writer: end */
+
+       while (partial > p) {
+               brelse(partial->bh);
+               partial--;
+       }
+no_top:
+       return partial;
+}
+
+/*
+ * Zero a number of block pointers in either an inode or an indirect block.
+ * If we restart the transaction we must again get write access to the
+ * indirect block for further modification.
+ *
+ * We release `count' blocks on disk, but (last - first) may be greater
+ * than `count' because there can be holes in there.
+ *
+ * Return 0 on success, 1 on invalid block range
+ * and < 0 on fatal error.
+ */
+static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
+                            struct buffer_head *bh,
+                            ext4_fsblk_t block_to_free,
+                            unsigned long count, __le32 *first,
+                            __le32 *last)
+{
+       __le32 *p;
+       int     flags = EXT4_FREE_BLOCKS_VALIDATED;
+       int     err;
+
+       if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
+               flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
+       else if (ext4_should_journal_data(inode))
+               flags |= EXT4_FREE_BLOCKS_FORGET;
+
+       if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
+                                  count)) {
+               EXT4_ERROR_INODE(inode, "attempt to clear invalid "
+                                "blocks %llu len %lu",
+                                (unsigned long long) block_to_free, count);
+               return 1;
+       }
+
+       if (try_to_extend_transaction(handle, inode)) {
+               if (bh) {
+                       BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
+                       err = ext4_handle_dirty_metadata(handle, inode, bh);
+                       if (unlikely(err))
+                               goto out_err;
+               }
+               err = ext4_mark_inode_dirty(handle, inode);
+               if (unlikely(err))
+                       goto out_err;
+               err = ext4_truncate_restart_trans(handle, inode,
+                                       ext4_blocks_for_truncate(inode));
+               if (unlikely(err))
+                       goto out_err;
+               if (bh) {
+                       BUFFER_TRACE(bh, "retaking write access");
+                       err = ext4_journal_get_write_access(handle, bh);
+                       if (unlikely(err))
+                               goto out_err;
+               }
+       }
+
+       for (p = first; p < last; p++)
+               *p = 0;
+
+       ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
+       return 0;
+out_err:
+       ext4_std_error(inode->i_sb, err);
+       return err;
+}
+
+/**
+ * ext4_free_data - free a list of data blocks
+ * @handle:    handle for this transaction
+ * @inode:     inode we are dealing with
+ * @this_bh:   indirect buffer_head which contains *@first and *@last
+ * @first:     array of block numbers
+ * @last:      points immediately past the end of array
+ *
+ * We are freeing all blocks referred from that array (numbers are stored as
+ * little-endian 32-bit) and updating @inode->i_blocks appropriately.
+ *
+ * We accumulate contiguous runs of blocks to free.  Conveniently, if these
+ * blocks are contiguous then releasing them at one time will only affect one
+ * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
+ * actually use a lot of journal space.
+ *
+ * @this_bh will be %NULL if @first and @last point into the inode's direct
+ * block pointers.
+ */
+static void ext4_free_data(handle_t *handle, struct inode *inode,
+                          struct buffer_head *this_bh,
+                          __le32 *first, __le32 *last)
+{
+       ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
+       unsigned long count = 0;            /* Number of blocks in the run */
+       __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
+                                              corresponding to
+                                              block_to_free */
+       ext4_fsblk_t nr;                    /* Current block # */
+       __le32 *p;                          /* Pointer into inode/ind
+                                              for current block */
+       int err = 0;
+
+       if (this_bh) {                          /* For indirect block */
+               BUFFER_TRACE(this_bh, "get_write_access");
+               err = ext4_journal_get_write_access(handle, this_bh);
+               /* Important: if we can't update the indirect pointers
+                * to the blocks, we can't free them. */
+               if (err)
+                       return;
+       }
+
+       for (p = first; p < last; p++) {
+               nr = le32_to_cpu(*p);
+               if (nr) {
+                       /* accumulate blocks to free if they're contiguous */
+                       if (count == 0) {
+                               block_to_free = nr;
+                               block_to_free_p = p;
+                               count = 1;
+                       } else if (nr == block_to_free + count) {
+                               count++;
+                       } else {
+                               err = ext4_clear_blocks(handle, inode, this_bh,
+                                                       block_to_free, count,
+                                                       block_to_free_p, p);
+                               if (err)
+                                       break;
+                               block_to_free = nr;
+                               block_to_free_p = p;
+                               count = 1;
+                       }
+               }
+       }
+
+       if (!err && count > 0)
+               err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
+                                       count, block_to_free_p, p);
+       if (err < 0)
+               /* fatal error */
+               return;
+
+       if (this_bh) {
+               BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
+
+               /*
+                * The buffer head should have an attached journal head at this
+                * point. However, if the data is corrupted and an indirect
+                * block pointed to itself, it would have been detached when
+                * the block was cleared. Check for this instead of OOPSing.
+                */
+               if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
+                       ext4_handle_dirty_metadata(handle, inode, this_bh);
+               else
+                       EXT4_ERROR_INODE(inode,
+                                        "circular indirect block detected at "
+                                        "block %llu",
+                               (unsigned long long) this_bh->b_blocknr);
+       }
+}
+
+/**
+ *     ext4_free_branches - free an array of branches
+ *     @handle: JBD handle for this transaction
+ *     @inode: inode we are dealing with
+ *     @parent_bh: the buffer_head which contains *@first and *@last
+ *     @first: array of block numbers
+ *     @last:  pointer immediately past the end of array
+ *     @depth: depth of the branches to free
+ *
+ *     We are freeing all blocks referred from these branches (numbers are
+ *     stored as little-endian 32-bit) and updating @inode->i_blocks
+ *     appropriately.
+ */
+static void ext4_free_branches(handle_t *handle, struct inode *inode,
+                              struct buffer_head *parent_bh,
+                              __le32 *first, __le32 *last, int depth)
+{
+       ext4_fsblk_t nr;
+       __le32 *p;
+
+       if (ext4_handle_is_aborted(handle))
+               return;
+
+       if (depth--) {
+               struct buffer_head *bh;
+               int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+               p = last;
+               while (--p >= first) {
+                       nr = le32_to_cpu(*p);
+                       if (!nr)
+                               continue;               /* A hole */
+
+                       if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
+                                                  nr, 1)) {
+                               EXT4_ERROR_INODE(inode,
+                                                "invalid indirect mapped "
+                                                "block %lu (level %d)",
+                                                (unsigned long) nr, depth);
+                               break;
+                       }
+
+                       /* Go read the buffer for the next level down */
+                       bh = sb_bread(inode->i_sb, nr);
+
+                       /*
+                        * A read failure? Report error and clear slot
+                        * (should be rare).
+                        */
+                       if (!bh) {
+                               EXT4_ERROR_INODE_BLOCK(inode, nr,
+                                                      "Read failure");
+                               continue;
+                       }
+
+                       /* This zaps the entire block.  Bottom up. */
+                       BUFFER_TRACE(bh, "free child branches");
+                       ext4_free_branches(handle, inode, bh,
+                                       (__le32 *) bh->b_data,
+                                       (__le32 *) bh->b_data + addr_per_block,
+                                       depth);
+                       brelse(bh);
+
+                       /*
+                        * Everything below this this pointer has been
+                        * released.  Now let this top-of-subtree go.
+                        *
+                        * We want the freeing of this indirect block to be
+                        * atomic in the journal with the updating of the
+                        * bitmap block which owns it.  So make some room in
+                        * the journal.
+                        *
+                        * We zero the parent pointer *after* freeing its
+                        * pointee in the bitmaps, so if extend_transaction()
+                        * for some reason fails to put the bitmap changes and
+                        * the release into the same transaction, recovery
+                        * will merely complain about releasing a free block,
+                        * rather than leaking blocks.
+                        */
+                       if (ext4_handle_is_aborted(handle))
+                               return;
+                       if (try_to_extend_transaction(handle, inode)) {
+                               ext4_mark_inode_dirty(handle, inode);
+                               ext4_truncate_restart_trans(handle, inode,
+                                           ext4_blocks_for_truncate(inode));
+                       }
+
+                       /*
+                        * The forget flag here is critical because if
+                        * we are journaling (and not doing data
+                        * journaling), we have to make sure a revoke
+                        * record is written to prevent the journal
+                        * replay from overwriting the (former)
+                        * indirect block if it gets reallocated as a
+                        * data block.  This must happen in the same
+                        * transaction where the data blocks are
+                        * actually freed.
+                        */
+                       ext4_free_blocks(handle, inode, NULL, nr, 1,
+                                        EXT4_FREE_BLOCKS_METADATA|
+                                        EXT4_FREE_BLOCKS_FORGET);
+
+                       if (parent_bh) {
+                               /*
+                                * The block which we have just freed is
+                                * pointed to by an indirect block: journal it
+                                */
+                               BUFFER_TRACE(parent_bh, "get_write_access");
+                               if (!ext4_journal_get_write_access(handle,
+                                                                  parent_bh)){
+                                       *p = 0;
+                                       BUFFER_TRACE(parent_bh,
+                                       "call ext4_handle_dirty_metadata");
+                                       ext4_handle_dirty_metadata(handle,
+                                                                  inode,
+                                                                  parent_bh);
+                               }
+                       }
+               }
+       } else {
+               /* We have reached the bottom of the tree. */
+               BUFFER_TRACE(parent_bh, "free data blocks");
+               ext4_free_data(handle, inode, parent_bh, first, last);
+       }
+}
+
+void ext4_ind_truncate(handle_t *handle, struct inode *inode)
+{
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       __le32 *i_data = ei->i_data;
+       int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+       ext4_lblk_t offsets[4];
+       Indirect chain[4];
+       Indirect *partial;
+       __le32 nr = 0;
+       int n = 0;
+       ext4_lblk_t last_block, max_block;
+       unsigned blocksize = inode->i_sb->s_blocksize;
+
+       last_block = (inode->i_size + blocksize-1)
+                                       >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
+       max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
+                                       >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
+
+       if (last_block != max_block) {
+               n = ext4_block_to_path(inode, last_block, offsets, NULL);
+               if (n == 0)
+                       return;
+       }
+
+       ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
+
+       /*
+        * The orphan list entry will now protect us from any crash which
+        * occurs before the truncate completes, so it is now safe to propagate
+        * the new, shorter inode size (held for now in i_size) into the
+        * on-disk inode. We do this via i_disksize, which is the value which
+        * ext4 *really* writes onto the disk inode.
+        */
+       ei->i_disksize = inode->i_size;
+
+       if (last_block == max_block) {
+               /*
+                * It is unnecessary to free any data blocks if last_block is
+                * equal to the indirect block limit.
+                */
+               return;
+       } else if (n == 1) {            /* direct blocks */
+               ext4_free_data(handle, inode, NULL, i_data+offsets[0],
+                              i_data + EXT4_NDIR_BLOCKS);
+               goto do_indirects;
+       }
+
+       partial = ext4_find_shared(inode, n, offsets, chain, &nr);
+       /* Kill the top of shared branch (not detached) */
+       if (nr) {
+               if (partial == chain) {
+                       /* Shared branch grows from the inode */
+                       ext4_free_branches(handle, inode, NULL,
+                                          &nr, &nr+1, (chain+n-1) - partial);
+                       *partial->p = 0;
+                       /*
+                        * We mark the inode dirty prior to restart,
+                        * and prior to stop.  No need for it here.
+                        */
+               } else {
+                       /* Shared branch grows from an indirect block */
+                       BUFFER_TRACE(partial->bh, "get_write_access");
+                       ext4_free_branches(handle, inode, partial->bh,
+                                       partial->p,
+                                       partial->p+1, (chain+n-1) - partial);
+               }
+       }
+       /* Clear the ends of indirect blocks on the shared branch */
+       while (partial > chain) {
+               ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
+                                  (__le32*)partial->bh->b_data+addr_per_block,
+                                  (chain+n-1) - partial);
+               BUFFER_TRACE(partial->bh, "call brelse");
+               brelse(partial->bh);
+               partial--;
+       }
+do_indirects:
+       /* Kill the remaining (whole) subtrees */
+       switch (offsets[0]) {
+       default:
+               nr = i_data[EXT4_IND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
+                       i_data[EXT4_IND_BLOCK] = 0;
+               }
+       case EXT4_IND_BLOCK:
+               nr = i_data[EXT4_DIND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
+                       i_data[EXT4_DIND_BLOCK] = 0;
+               }
+       case EXT4_DIND_BLOCK:
+               nr = i_data[EXT4_TIND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
+                       i_data[EXT4_TIND_BLOCK] = 0;
+               }
+       case EXT4_TIND_BLOCK:
+               ;
+       }
+}
+
+/**
+ *     ext4_ind_remove_space - remove space from the range
+ *     @handle: JBD handle for this transaction
+ *     @inode: inode we are dealing with
+ *     @start: First block to remove
+ *     @end:   One block after the last block to remove (exclusive)
+ *
+ *     Free the blocks in the defined range (end is exclusive endpoint of
+ *     range). This is used by ext4_punch_hole().
+ */
+int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
+                         ext4_lblk_t start, ext4_lblk_t end)
+{
+       struct ext4_inode_info *ei = EXT4_I(inode);
+       __le32 *i_data = ei->i_data;
+       int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+       ext4_lblk_t offsets[4], offsets2[4];
+       Indirect chain[4], chain2[4];
+       Indirect *partial, *partial2;
+       ext4_lblk_t max_block;
+       __le32 nr = 0, nr2 = 0;
+       int n = 0, n2 = 0;
+       unsigned blocksize = inode->i_sb->s_blocksize;
+
+       max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
+                                       >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
+       if (end >= max_block)
+               end = max_block;
+       if ((start >= end) || (start > max_block))
+               return 0;
+
+       n = ext4_block_to_path(inode, start, offsets, NULL);
+       n2 = ext4_block_to_path(inode, end, offsets2, NULL);
+
+       BUG_ON(n > n2);
+
+       if ((n == 1) && (n == n2)) {
+               /* We're punching only within direct block range */
+               ext4_free_data(handle, inode, NULL, i_data + offsets[0],
+                              i_data + offsets2[0]);
+               return 0;
+       } else if (n2 > n) {
+               /*
+                * Start and end are on a different levels so we're going to
+                * free partial block at start, and partial block at end of
+                * the range. If there are some levels in between then
+                * do_indirects label will take care of that.
+                */
+
+               if (n == 1) {
+                       /*
+                        * Start is at the direct block level, free
+                        * everything to the end of the level.
+                        */
+                       ext4_free_data(handle, inode, NULL, i_data + offsets[0],
+                                      i_data + EXT4_NDIR_BLOCKS);
+                       goto end_range;
+               }
+
+
+               partial = ext4_find_shared(inode, n, offsets, chain, &nr);
+               if (nr) {
+                       if (partial == chain) {
+                               /* Shared branch grows from the inode */
+                               ext4_free_branches(handle, inode, NULL,
+                                          &nr, &nr+1, (chain+n-1) - partial);
+                               *partial->p = 0;
+                       } else {
+                               /* Shared branch grows from an indirect block */
+                               BUFFER_TRACE(partial->bh, "get_write_access");
+                               ext4_free_branches(handle, inode, partial->bh,
+                                       partial->p,
+                                       partial->p+1, (chain+n-1) - partial);
+                       }
+               }
+
+               /*
+                * Clear the ends of indirect blocks on the shared branch
+                * at the start of the range
+                */
+               while (partial > chain) {
+                       ext4_free_branches(handle, inode, partial->bh,
+                               partial->p + 1,
+                               (__le32 *)partial->bh->b_data+addr_per_block,
+                               (chain+n-1) - partial);
+                       BUFFER_TRACE(partial->bh, "call brelse");
+                       brelse(partial->bh);
+                       partial--;
+               }
+
+end_range:
+               partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
+               if (nr2) {
+                       if (partial2 == chain2) {
+                               /*
+                                * Remember, end is exclusive so here we're at
+                                * the start of the next level we're not going
+                                * to free. Everything was covered by the start
+                                * of the range.
+                                */
+                               goto do_indirects;
+                       }
+               } else {
+                       /*
+                        * ext4_find_shared returns Indirect structure which
+                        * points to the last element which should not be
+                        * removed by truncate. But this is end of the range
+                        * in punch_hole so we need to point to the next element
+                        */
+                       partial2->p++;
+               }
+
+               /*
+                * Clear the ends of indirect blocks on the shared branch
+                * at the end of the range
+                */
+               while (partial2 > chain2) {
+                       ext4_free_branches(handle, inode, partial2->bh,
+                                          (__le32 *)partial2->bh->b_data,
+                                          partial2->p,
+                                          (chain2+n2-1) - partial2);
+                       BUFFER_TRACE(partial2->bh, "call brelse");
+                       brelse(partial2->bh);
+                       partial2--;
+               }
+               goto do_indirects;
+       }
+
+       /* Punch happened within the same level (n == n2) */
+       partial = ext4_find_shared(inode, n, offsets, chain, &nr);
+       partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
+
+       /* Free top, but only if partial2 isn't its subtree. */
+       if (nr) {
+               int level = min(partial - chain, partial2 - chain2);
+               int i;
+               int subtree = 1;
+
+               for (i = 0; i <= level; i++) {
+                       if (offsets[i] != offsets2[i]) {
+                               subtree = 0;
+                               break;
+                       }
+               }
+
+               if (!subtree) {
+                       if (partial == chain) {
+                               /* Shared branch grows from the inode */
+                               ext4_free_branches(handle, inode, NULL,
+                                                  &nr, &nr+1,
+                                                  (chain+n-1) - partial);
+                               *partial->p = 0;
+                       } else {
+                               /* Shared branch grows from an indirect block */
+                               BUFFER_TRACE(partial->bh, "get_write_access");
+                               ext4_free_branches(handle, inode, partial->bh,
+                                                  partial->p,
+                                                  partial->p+1,
+                                                  (chain+n-1) - partial);
+                       }
+               }
+       }
+
+       if (!nr2) {
+               /*
+                * ext4_find_shared returns Indirect structure which
+                * points to the last element which should not be
+                * removed by truncate. But this is end of the range
+                * in punch_hole so we need to point to the next element
+                */
+               partial2->p++;
+       }
+
+       while (partial > chain || partial2 > chain2) {
+               int depth = (chain+n-1) - partial;
+               int depth2 = (chain2+n2-1) - partial2;
+
+               if (partial > chain && partial2 > chain2 &&
+                   partial->bh->b_blocknr == partial2->bh->b_blocknr) {
+                       /*
+                        * We've converged on the same block. Clear the range,
+                        * then we're done.
+                        */
+                       ext4_free_branches(handle, inode, partial->bh,
+                                          partial->p + 1,
+                                          partial2->p,
+                                          (chain+n-1) - partial);
+                       BUFFER_TRACE(partial->bh, "call brelse");
+                       brelse(partial->bh);
+                       BUFFER_TRACE(partial2->bh, "call brelse");
+                       brelse(partial2->bh);
+                       return 0;
+               }
+
+               /*
+                * The start and end partial branches may not be at the same
+                * level even though the punch happened within one level. So, we
+                * give them a chance to arrive at the same level, then walk
+                * them in step with each other until we converge on the same
+                * block.
+                */
+               if (partial > chain && depth <= depth2) {
+                       ext4_free_branches(handle, inode, partial->bh,
+                                          partial->p + 1,
+                                          (__le32 *)partial->bh->b_data+addr_per_block,
+                                          (chain+n-1) - partial);
+                       BUFFER_TRACE(partial->bh, "call brelse");
+                       brelse(partial->bh);
+                       partial--;
+               }
+               if (partial2 > chain2 && depth2 <= depth) {
+                       ext4_free_branches(handle, inode, partial2->bh,
+                                          (__le32 *)partial2->bh->b_data,
+                                          partial2->p,
+                                          (chain2+n2-1) - partial2);
+                       BUFFER_TRACE(partial2->bh, "call brelse");
+                       brelse(partial2->bh);
+                       partial2--;
+               }
+       }
+       return 0;
+
+do_indirects:
+       /* Kill the remaining (whole) subtrees */
+       switch (offsets[0]) {
+       default:
+               if (++n >= n2)
+                       return 0;
+               nr = i_data[EXT4_IND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
+                       i_data[EXT4_IND_BLOCK] = 0;
+               }
+       case EXT4_IND_BLOCK:
+               if (++n >= n2)
+                       return 0;
+               nr = i_data[EXT4_DIND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
+                       i_data[EXT4_DIND_BLOCK] = 0;
+               }
+       case EXT4_DIND_BLOCK:
+               if (++n >= n2)
+                       return 0;
+               nr = i_data[EXT4_TIND_BLOCK];
+               if (nr) {
+                       ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
+                       i_data[EXT4_TIND_BLOCK] = 0;
+               }
+       case EXT4_TIND_BLOCK:
+               ;
+       }
+       return 0;
+}