Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / direct-io.c
diff --git a/kernel/fs/direct-io.c b/kernel/fs/direct-io.c
new file mode 100644 (file)
index 0000000..745d234
--- /dev/null
@@ -0,0 +1,1332 @@
+/*
+ * fs/direct-io.c
+ *
+ * Copyright (C) 2002, Linus Torvalds.
+ *
+ * O_DIRECT
+ *
+ * 04Jul2002   Andrew Morton
+ *             Initial version
+ * 11Sep2002   janetinc@us.ibm.com
+ *             added readv/writev support.
+ * 29Oct2002   Andrew Morton
+ *             rewrote bio_add_page() support.
+ * 30Oct2002   pbadari@us.ibm.com
+ *             added support for non-aligned IO.
+ * 06Nov2002   pbadari@us.ibm.com
+ *             added asynchronous IO support.
+ * 21Jul2003   nathans@sgi.com
+ *             added IO completion notifier.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/task_io_accounting_ops.h>
+#include <linux/bio.h>
+#include <linux/wait.h>
+#include <linux/err.h>
+#include <linux/blkdev.h>
+#include <linux/buffer_head.h>
+#include <linux/rwsem.h>
+#include <linux/uio.h>
+#include <linux/atomic.h>
+#include <linux/prefetch.h>
+
+/*
+ * How many user pages to map in one call to get_user_pages().  This determines
+ * the size of a structure in the slab cache
+ */
+#define DIO_PAGES      64
+
+/*
+ * This code generally works in units of "dio_blocks".  A dio_block is
+ * somewhere between the hard sector size and the filesystem block size.  it
+ * is determined on a per-invocation basis.   When talking to the filesystem
+ * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
+ * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
+ * to bio_block quantities by shifting left by blkfactor.
+ *
+ * If blkfactor is zero then the user's request was aligned to the filesystem's
+ * blocksize.
+ */
+
+/* dio_state only used in the submission path */
+
+struct dio_submit {
+       struct bio *bio;                /* bio under assembly */
+       unsigned blkbits;               /* doesn't change */
+       unsigned blkfactor;             /* When we're using an alignment which
+                                          is finer than the filesystem's soft
+                                          blocksize, this specifies how much
+                                          finer.  blkfactor=2 means 1/4-block
+                                          alignment.  Does not change */
+       unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
+                                          been performed at the start of a
+                                          write */
+       int pages_in_io;                /* approximate total IO pages */
+       sector_t block_in_file;         /* Current offset into the underlying
+                                          file in dio_block units. */
+       unsigned blocks_available;      /* At block_in_file.  changes */
+       int reap_counter;               /* rate limit reaping */
+       sector_t final_block_in_request;/* doesn't change */
+       int boundary;                   /* prev block is at a boundary */
+       get_block_t *get_block;         /* block mapping function */
+       dio_submit_t *submit_io;        /* IO submition function */
+
+       loff_t logical_offset_in_bio;   /* current first logical block in bio */
+       sector_t final_block_in_bio;    /* current final block in bio + 1 */
+       sector_t next_block_for_io;     /* next block to be put under IO,
+                                          in dio_blocks units */
+
+       /*
+        * Deferred addition of a page to the dio.  These variables are
+        * private to dio_send_cur_page(), submit_page_section() and
+        * dio_bio_add_page().
+        */
+       struct page *cur_page;          /* The page */
+       unsigned cur_page_offset;       /* Offset into it, in bytes */
+       unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
+       sector_t cur_page_block;        /* Where it starts */
+       loff_t cur_page_fs_offset;      /* Offset in file */
+
+       struct iov_iter *iter;
+       /*
+        * Page queue.  These variables belong to dio_refill_pages() and
+        * dio_get_page().
+        */
+       unsigned head;                  /* next page to process */
+       unsigned tail;                  /* last valid page + 1 */
+       size_t from, to;
+};
+
+/* dio_state communicated between submission path and end_io */
+struct dio {
+       int flags;                      /* doesn't change */
+       int rw;
+       struct inode *inode;
+       loff_t i_size;                  /* i_size when submitted */
+       dio_iodone_t *end_io;           /* IO completion function */
+
+       void *private;                  /* copy from map_bh.b_private */
+
+       /* BIO completion state */
+       spinlock_t bio_lock;            /* protects BIO fields below */
+       int page_errors;                /* errno from get_user_pages() */
+       int is_async;                   /* is IO async ? */
+       bool defer_completion;          /* defer AIO completion to workqueue? */
+       int io_error;                   /* IO error in completion path */
+       unsigned long refcount;         /* direct_io_worker() and bios */
+       struct bio *bio_list;           /* singly linked via bi_private */
+       struct task_struct *waiter;     /* waiting task (NULL if none) */
+
+       /* AIO related stuff */
+       struct kiocb *iocb;             /* kiocb */
+       ssize_t result;                 /* IO result */
+
+       /*
+        * pages[] (and any fields placed after it) are not zeroed out at
+        * allocation time.  Don't add new fields after pages[] unless you
+        * wish that they not be zeroed.
+        */
+       union {
+               struct page *pages[DIO_PAGES];  /* page buffer */
+               struct work_struct complete_work;/* deferred AIO completion */
+       };
+} ____cacheline_aligned_in_smp;
+
+static struct kmem_cache *dio_cache __read_mostly;
+
+/*
+ * How many pages are in the queue?
+ */
+static inline unsigned dio_pages_present(struct dio_submit *sdio)
+{
+       return sdio->tail - sdio->head;
+}
+
+/*
+ * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
+ */
+static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
+{
+       ssize_t ret;
+
+       ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
+                               &sdio->from);
+
+       if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
+               struct page *page = ZERO_PAGE(0);
+               /*
+                * A memory fault, but the filesystem has some outstanding
+                * mapped blocks.  We need to use those blocks up to avoid
+                * leaking stale data in the file.
+                */
+               if (dio->page_errors == 0)
+                       dio->page_errors = ret;
+               page_cache_get(page);
+               dio->pages[0] = page;
+               sdio->head = 0;
+               sdio->tail = 1;
+               sdio->from = 0;
+               sdio->to = PAGE_SIZE;
+               return 0;
+       }
+
+       if (ret >= 0) {
+               iov_iter_advance(sdio->iter, ret);
+               ret += sdio->from;
+               sdio->head = 0;
+               sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
+               sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
+               return 0;
+       }
+       return ret;     
+}
+
+/*
+ * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
+ * buffered inside the dio so that we can call get_user_pages() against a
+ * decent number of pages, less frequently.  To provide nicer use of the
+ * L1 cache.
+ */
+static inline struct page *dio_get_page(struct dio *dio,
+                                       struct dio_submit *sdio)
+{
+       if (dio_pages_present(sdio) == 0) {
+               int ret;
+
+               ret = dio_refill_pages(dio, sdio);
+               if (ret)
+                       return ERR_PTR(ret);
+               BUG_ON(dio_pages_present(sdio) == 0);
+       }
+       return dio->pages[sdio->head];
+}
+
+/**
+ * dio_complete() - called when all DIO BIO I/O has been completed
+ * @offset: the byte offset in the file of the completed operation
+ *
+ * This drops i_dio_count, lets interested parties know that a DIO operation
+ * has completed, and calculates the resulting return code for the operation.
+ *
+ * It lets the filesystem know if it registered an interest earlier via
+ * get_block.  Pass the private field of the map buffer_head so that
+ * filesystems can use it to hold additional state between get_block calls and
+ * dio_complete.
+ */
+static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
+               bool is_async)
+{
+       ssize_t transferred = 0;
+
+       /*
+        * AIO submission can race with bio completion to get here while
+        * expecting to have the last io completed by bio completion.
+        * In that case -EIOCBQUEUED is in fact not an error we want
+        * to preserve through this call.
+        */
+       if (ret == -EIOCBQUEUED)
+               ret = 0;
+
+       if (dio->result) {
+               transferred = dio->result;
+
+               /* Check for short read case */
+               if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
+                       transferred = dio->i_size - offset;
+       }
+
+       if (ret == 0)
+               ret = dio->page_errors;
+       if (ret == 0)
+               ret = dio->io_error;
+       if (ret == 0)
+               ret = transferred;
+
+       if (dio->end_io && dio->result)
+               dio->end_io(dio->iocb, offset, transferred, dio->private);
+
+       if (!(dio->flags & DIO_SKIP_DIO_COUNT))
+               inode_dio_end(dio->inode);
+
+       if (is_async) {
+               if (dio->rw & WRITE) {
+                       int err;
+
+                       err = generic_write_sync(dio->iocb->ki_filp, offset,
+                                                transferred);
+                       if (err < 0 && ret > 0)
+                               ret = err;
+               }
+
+               dio->iocb->ki_complete(dio->iocb, ret, 0);
+       }
+
+       kmem_cache_free(dio_cache, dio);
+       return ret;
+}
+
+static void dio_aio_complete_work(struct work_struct *work)
+{
+       struct dio *dio = container_of(work, struct dio, complete_work);
+
+       dio_complete(dio, dio->iocb->ki_pos, 0, true);
+}
+
+static int dio_bio_complete(struct dio *dio, struct bio *bio);
+
+/*
+ * Asynchronous IO callback. 
+ */
+static void dio_bio_end_aio(struct bio *bio, int error)
+{
+       struct dio *dio = bio->bi_private;
+       unsigned long remaining;
+       unsigned long flags;
+
+       /* cleanup the bio */
+       dio_bio_complete(dio, bio);
+
+       spin_lock_irqsave(&dio->bio_lock, flags);
+       remaining = --dio->refcount;
+       if (remaining == 1 && dio->waiter)
+               wake_up_process(dio->waiter);
+       spin_unlock_irqrestore(&dio->bio_lock, flags);
+
+       if (remaining == 0) {
+               if (dio->result && dio->defer_completion) {
+                       INIT_WORK(&dio->complete_work, dio_aio_complete_work);
+                       queue_work(dio->inode->i_sb->s_dio_done_wq,
+                                  &dio->complete_work);
+               } else {
+                       dio_complete(dio, dio->iocb->ki_pos, 0, true);
+               }
+       }
+}
+
+/*
+ * The BIO completion handler simply queues the BIO up for the process-context
+ * handler.
+ *
+ * During I/O bi_private points at the dio.  After I/O, bi_private is used to
+ * implement a singly-linked list of completed BIOs, at dio->bio_list.
+ */
+static void dio_bio_end_io(struct bio *bio, int error)
+{
+       struct dio *dio = bio->bi_private;
+       unsigned long flags;
+
+       spin_lock_irqsave(&dio->bio_lock, flags);
+       bio->bi_private = dio->bio_list;
+       dio->bio_list = bio;
+       if (--dio->refcount == 1 && dio->waiter)
+               wake_up_process(dio->waiter);
+       spin_unlock_irqrestore(&dio->bio_lock, flags);
+}
+
+/**
+ * dio_end_io - handle the end io action for the given bio
+ * @bio: The direct io bio thats being completed
+ * @error: Error if there was one
+ *
+ * This is meant to be called by any filesystem that uses their own dio_submit_t
+ * so that the DIO specific endio actions are dealt with after the filesystem
+ * has done it's completion work.
+ */
+void dio_end_io(struct bio *bio, int error)
+{
+       struct dio *dio = bio->bi_private;
+
+       if (dio->is_async)
+               dio_bio_end_aio(bio, error);
+       else
+               dio_bio_end_io(bio, error);
+}
+EXPORT_SYMBOL_GPL(dio_end_io);
+
+static inline void
+dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
+             struct block_device *bdev,
+             sector_t first_sector, int nr_vecs)
+{
+       struct bio *bio;
+
+       /*
+        * bio_alloc() is guaranteed to return a bio when called with
+        * __GFP_WAIT and we request a valid number of vectors.
+        */
+       bio = bio_alloc(GFP_KERNEL, nr_vecs);
+
+       bio->bi_bdev = bdev;
+       bio->bi_iter.bi_sector = first_sector;
+       if (dio->is_async)
+               bio->bi_end_io = dio_bio_end_aio;
+       else
+               bio->bi_end_io = dio_bio_end_io;
+
+       sdio->bio = bio;
+       sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
+}
+
+/*
+ * In the AIO read case we speculatively dirty the pages before starting IO.
+ * During IO completion, any of these pages which happen to have been written
+ * back will be redirtied by bio_check_pages_dirty().
+ *
+ * bios hold a dio reference between submit_bio and ->end_io.
+ */
+static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
+{
+       struct bio *bio = sdio->bio;
+       unsigned long flags;
+
+       bio->bi_private = dio;
+
+       spin_lock_irqsave(&dio->bio_lock, flags);
+       dio->refcount++;
+       spin_unlock_irqrestore(&dio->bio_lock, flags);
+
+       if (dio->is_async && dio->rw == READ)
+               bio_set_pages_dirty(bio);
+
+       if (sdio->submit_io)
+               sdio->submit_io(dio->rw, bio, dio->inode,
+                              sdio->logical_offset_in_bio);
+       else
+               submit_bio(dio->rw, bio);
+
+       sdio->bio = NULL;
+       sdio->boundary = 0;
+       sdio->logical_offset_in_bio = 0;
+}
+
+/*
+ * Release any resources in case of a failure
+ */
+static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
+{
+       while (sdio->head < sdio->tail)
+               page_cache_release(dio->pages[sdio->head++]);
+}
+
+/*
+ * Wait for the next BIO to complete.  Remove it and return it.  NULL is
+ * returned once all BIOs have been completed.  This must only be called once
+ * all bios have been issued so that dio->refcount can only decrease.  This
+ * requires that that the caller hold a reference on the dio.
+ */
+static struct bio *dio_await_one(struct dio *dio)
+{
+       unsigned long flags;
+       struct bio *bio = NULL;
+
+       spin_lock_irqsave(&dio->bio_lock, flags);
+
+       /*
+        * Wait as long as the list is empty and there are bios in flight.  bio
+        * completion drops the count, maybe adds to the list, and wakes while
+        * holding the bio_lock so we don't need set_current_state()'s barrier
+        * and can call it after testing our condition.
+        */
+       while (dio->refcount > 1 && dio->bio_list == NULL) {
+               __set_current_state(TASK_UNINTERRUPTIBLE);
+               dio->waiter = current;
+               spin_unlock_irqrestore(&dio->bio_lock, flags);
+               io_schedule();
+               /* wake up sets us TASK_RUNNING */
+               spin_lock_irqsave(&dio->bio_lock, flags);
+               dio->waiter = NULL;
+       }
+       if (dio->bio_list) {
+               bio = dio->bio_list;
+               dio->bio_list = bio->bi_private;
+       }
+       spin_unlock_irqrestore(&dio->bio_lock, flags);
+       return bio;
+}
+
+/*
+ * Process one completed BIO.  No locks are held.
+ */
+static int dio_bio_complete(struct dio *dio, struct bio *bio)
+{
+       const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+       struct bio_vec *bvec;
+       unsigned i;
+
+       if (!uptodate)
+               dio->io_error = -EIO;
+
+       if (dio->is_async && dio->rw == READ) {
+               bio_check_pages_dirty(bio);     /* transfers ownership */
+       } else {
+               bio_for_each_segment_all(bvec, bio, i) {
+                       struct page *page = bvec->bv_page;
+
+                       if (dio->rw == READ && !PageCompound(page))
+                               set_page_dirty_lock(page);
+                       page_cache_release(page);
+               }
+               bio_put(bio);
+       }
+       return uptodate ? 0 : -EIO;
+}
+
+/*
+ * Wait on and process all in-flight BIOs.  This must only be called once
+ * all bios have been issued so that the refcount can only decrease.
+ * This just waits for all bios to make it through dio_bio_complete.  IO
+ * errors are propagated through dio->io_error and should be propagated via
+ * dio_complete().
+ */
+static void dio_await_completion(struct dio *dio)
+{
+       struct bio *bio;
+       do {
+               bio = dio_await_one(dio);
+               if (bio)
+                       dio_bio_complete(dio, bio);
+       } while (bio);
+}
+
+/*
+ * A really large O_DIRECT read or write can generate a lot of BIOs.  So
+ * to keep the memory consumption sane we periodically reap any completed BIOs
+ * during the BIO generation phase.
+ *
+ * This also helps to limit the peak amount of pinned userspace memory.
+ */
+static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
+{
+       int ret = 0;
+
+       if (sdio->reap_counter++ >= 64) {
+               while (dio->bio_list) {
+                       unsigned long flags;
+                       struct bio *bio;
+                       int ret2;
+
+                       spin_lock_irqsave(&dio->bio_lock, flags);
+                       bio = dio->bio_list;
+                       dio->bio_list = bio->bi_private;
+                       spin_unlock_irqrestore(&dio->bio_lock, flags);
+                       ret2 = dio_bio_complete(dio, bio);
+                       if (ret == 0)
+                               ret = ret2;
+               }
+               sdio->reap_counter = 0;
+       }
+       return ret;
+}
+
+/*
+ * Create workqueue for deferred direct IO completions. We allocate the
+ * workqueue when it's first needed. This avoids creating workqueue for
+ * filesystems that don't need it and also allows us to create the workqueue
+ * late enough so the we can include s_id in the name of the workqueue.
+ */
+static int sb_init_dio_done_wq(struct super_block *sb)
+{
+       struct workqueue_struct *old;
+       struct workqueue_struct *wq = alloc_workqueue("dio/%s",
+                                                     WQ_MEM_RECLAIM, 0,
+                                                     sb->s_id);
+       if (!wq)
+               return -ENOMEM;
+       /*
+        * This has to be atomic as more DIOs can race to create the workqueue
+        */
+       old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
+       /* Someone created workqueue before us? Free ours... */
+       if (old)
+               destroy_workqueue(wq);
+       return 0;
+}
+
+static int dio_set_defer_completion(struct dio *dio)
+{
+       struct super_block *sb = dio->inode->i_sb;
+
+       if (dio->defer_completion)
+               return 0;
+       dio->defer_completion = true;
+       if (!sb->s_dio_done_wq)
+               return sb_init_dio_done_wq(sb);
+       return 0;
+}
+
+/*
+ * Call into the fs to map some more disk blocks.  We record the current number
+ * of available blocks at sdio->blocks_available.  These are in units of the
+ * fs blocksize, (1 << inode->i_blkbits).
+ *
+ * The fs is allowed to map lots of blocks at once.  If it wants to do that,
+ * it uses the passed inode-relative block number as the file offset, as usual.
+ *
+ * get_block() is passed the number of i_blkbits-sized blocks which direct_io
+ * has remaining to do.  The fs should not map more than this number of blocks.
+ *
+ * If the fs has mapped a lot of blocks, it should populate bh->b_size to
+ * indicate how much contiguous disk space has been made available at
+ * bh->b_blocknr.
+ *
+ * If *any* of the mapped blocks are new, then the fs must set buffer_new().
+ * This isn't very efficient...
+ *
+ * In the case of filesystem holes: the fs may return an arbitrarily-large
+ * hole by returning an appropriate value in b_size and by clearing
+ * buffer_mapped().  However the direct-io code will only process holes one
+ * block at a time - it will repeatedly call get_block() as it walks the hole.
+ */
+static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
+                          struct buffer_head *map_bh)
+{
+       int ret;
+       sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
+       sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
+       unsigned long fs_count; /* Number of filesystem-sized blocks */
+       int create;
+       unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
+
+       /*
+        * If there was a memory error and we've overwritten all the
+        * mapped blocks then we can now return that memory error
+        */
+       ret = dio->page_errors;
+       if (ret == 0) {
+               BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
+               fs_startblk = sdio->block_in_file >> sdio->blkfactor;
+               fs_endblk = (sdio->final_block_in_request - 1) >>
+                                       sdio->blkfactor;
+               fs_count = fs_endblk - fs_startblk + 1;
+
+               map_bh->b_state = 0;
+               map_bh->b_size = fs_count << i_blkbits;
+
+               /*
+                * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
+                * forbid block creations: only overwrites are permitted.
+                * We will return early to the caller once we see an
+                * unmapped buffer head returned, and the caller will fall
+                * back to buffered I/O.
+                *
+                * Otherwise the decision is left to the get_blocks method,
+                * which may decide to handle it or also return an unmapped
+                * buffer head.
+                */
+               create = dio->rw & WRITE;
+               if (dio->flags & DIO_SKIP_HOLES) {
+                       if (sdio->block_in_file < (i_size_read(dio->inode) >>
+                                                       sdio->blkbits))
+                               create = 0;
+               }
+
+               ret = (*sdio->get_block)(dio->inode, fs_startblk,
+                                               map_bh, create);
+
+               /* Store for completion */
+               dio->private = map_bh->b_private;
+
+               if (ret == 0 && buffer_defer_completion(map_bh))
+                       ret = dio_set_defer_completion(dio);
+       }
+       return ret;
+}
+
+/*
+ * There is no bio.  Make one now.
+ */
+static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
+               sector_t start_sector, struct buffer_head *map_bh)
+{
+       sector_t sector;
+       int ret, nr_pages;
+
+       ret = dio_bio_reap(dio, sdio);
+       if (ret)
+               goto out;
+       sector = start_sector << (sdio->blkbits - 9);
+       nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
+       BUG_ON(nr_pages <= 0);
+       dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
+       sdio->boundary = 0;
+out:
+       return ret;
+}
+
+/*
+ * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
+ * that was successful then update final_block_in_bio and take a ref against
+ * the just-added page.
+ *
+ * Return zero on success.  Non-zero means the caller needs to start a new BIO.
+ */
+static inline int dio_bio_add_page(struct dio_submit *sdio)
+{
+       int ret;
+
+       ret = bio_add_page(sdio->bio, sdio->cur_page,
+                       sdio->cur_page_len, sdio->cur_page_offset);
+       if (ret == sdio->cur_page_len) {
+               /*
+                * Decrement count only, if we are done with this page
+                */
+               if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
+                       sdio->pages_in_io--;
+               page_cache_get(sdio->cur_page);
+               sdio->final_block_in_bio = sdio->cur_page_block +
+                       (sdio->cur_page_len >> sdio->blkbits);
+               ret = 0;
+       } else {
+               ret = 1;
+       }
+       return ret;
+}
+               
+/*
+ * Put cur_page under IO.  The section of cur_page which is described by
+ * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
+ * starts on-disk at cur_page_block.
+ *
+ * We take a ref against the page here (on behalf of its presence in the bio).
+ *
+ * The caller of this function is responsible for removing cur_page from the
+ * dio, and for dropping the refcount which came from that presence.
+ */
+static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
+               struct buffer_head *map_bh)
+{
+       int ret = 0;
+
+       if (sdio->bio) {
+               loff_t cur_offset = sdio->cur_page_fs_offset;
+               loff_t bio_next_offset = sdio->logical_offset_in_bio +
+                       sdio->bio->bi_iter.bi_size;
+
+               /*
+                * See whether this new request is contiguous with the old.
+                *
+                * Btrfs cannot handle having logically non-contiguous requests
+                * submitted.  For example if you have
+                *
+                * Logical:  [0-4095][HOLE][8192-12287]
+                * Physical: [0-4095]      [4096-8191]
+                *
+                * We cannot submit those pages together as one BIO.  So if our
+                * current logical offset in the file does not equal what would
+                * be the next logical offset in the bio, submit the bio we
+                * have.
+                */
+               if (sdio->final_block_in_bio != sdio->cur_page_block ||
+                   cur_offset != bio_next_offset)
+                       dio_bio_submit(dio, sdio);
+       }
+
+       if (sdio->bio == NULL) {
+               ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
+               if (ret)
+                       goto out;
+       }
+
+       if (dio_bio_add_page(sdio) != 0) {
+               dio_bio_submit(dio, sdio);
+               ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
+               if (ret == 0) {
+                       ret = dio_bio_add_page(sdio);
+                       BUG_ON(ret != 0);
+               }
+       }
+out:
+       return ret;
+}
+
+/*
+ * An autonomous function to put a chunk of a page under deferred IO.
+ *
+ * The caller doesn't actually know (or care) whether this piece of page is in
+ * a BIO, or is under IO or whatever.  We just take care of all possible 
+ * situations here.  The separation between the logic of do_direct_IO() and
+ * that of submit_page_section() is important for clarity.  Please don't break.
+ *
+ * The chunk of page starts on-disk at blocknr.
+ *
+ * We perform deferred IO, by recording the last-submitted page inside our
+ * private part of the dio structure.  If possible, we just expand the IO
+ * across that page here.
+ *
+ * If that doesn't work out then we put the old page into the bio and add this
+ * page to the dio instead.
+ */
+static inline int
+submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
+                   unsigned offset, unsigned len, sector_t blocknr,
+                   struct buffer_head *map_bh)
+{
+       int ret = 0;
+
+       if (dio->rw & WRITE) {
+               /*
+                * Read accounting is performed in submit_bio()
+                */
+               task_io_account_write(len);
+       }
+
+       /*
+        * Can we just grow the current page's presence in the dio?
+        */
+       if (sdio->cur_page == page &&
+           sdio->cur_page_offset + sdio->cur_page_len == offset &&
+           sdio->cur_page_block +
+           (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
+               sdio->cur_page_len += len;
+               goto out;
+       }
+
+       /*
+        * If there's a deferred page already there then send it.
+        */
+       if (sdio->cur_page) {
+               ret = dio_send_cur_page(dio, sdio, map_bh);
+               page_cache_release(sdio->cur_page);
+               sdio->cur_page = NULL;
+               if (ret)
+                       return ret;
+       }
+
+       page_cache_get(page);           /* It is in dio */
+       sdio->cur_page = page;
+       sdio->cur_page_offset = offset;
+       sdio->cur_page_len = len;
+       sdio->cur_page_block = blocknr;
+       sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
+out:
+       /*
+        * If sdio->boundary then we want to schedule the IO now to
+        * avoid metadata seeks.
+        */
+       if (sdio->boundary) {
+               ret = dio_send_cur_page(dio, sdio, map_bh);
+               dio_bio_submit(dio, sdio);
+               page_cache_release(sdio->cur_page);
+               sdio->cur_page = NULL;
+       }
+       return ret;
+}
+
+/*
+ * Clean any dirty buffers in the blockdev mapping which alias newly-created
+ * file blocks.  Only called for S_ISREG files - blockdevs do not set
+ * buffer_new
+ */
+static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
+{
+       unsigned i;
+       unsigned nblocks;
+
+       nblocks = map_bh->b_size >> dio->inode->i_blkbits;
+
+       for (i = 0; i < nblocks; i++) {
+               unmap_underlying_metadata(map_bh->b_bdev,
+                                         map_bh->b_blocknr + i);
+       }
+}
+
+/*
+ * If we are not writing the entire block and get_block() allocated
+ * the block for us, we need to fill-in the unused portion of the
+ * block with zeros. This happens only if user-buffer, fileoffset or
+ * io length is not filesystem block-size multiple.
+ *
+ * `end' is zero if we're doing the start of the IO, 1 at the end of the
+ * IO.
+ */
+static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
+               int end, struct buffer_head *map_bh)
+{
+       unsigned dio_blocks_per_fs_block;
+       unsigned this_chunk_blocks;     /* In dio_blocks */
+       unsigned this_chunk_bytes;
+       struct page *page;
+
+       sdio->start_zero_done = 1;
+       if (!sdio->blkfactor || !buffer_new(map_bh))
+               return;
+
+       dio_blocks_per_fs_block = 1 << sdio->blkfactor;
+       this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
+
+       if (!this_chunk_blocks)
+               return;
+
+       /*
+        * We need to zero out part of an fs block.  It is either at the
+        * beginning or the end of the fs block.
+        */
+       if (end) 
+               this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
+
+       this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
+
+       page = ZERO_PAGE(0);
+       if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
+                               sdio->next_block_for_io, map_bh))
+               return;
+
+       sdio->next_block_for_io += this_chunk_blocks;
+}
+
+/*
+ * Walk the user pages, and the file, mapping blocks to disk and generating
+ * a sequence of (page,offset,len,block) mappings.  These mappings are injected
+ * into submit_page_section(), which takes care of the next stage of submission
+ *
+ * Direct IO against a blockdev is different from a file.  Because we can
+ * happily perform page-sized but 512-byte aligned IOs.  It is important that
+ * blockdev IO be able to have fine alignment and large sizes.
+ *
+ * So what we do is to permit the ->get_block function to populate bh.b_size
+ * with the size of IO which is permitted at this offset and this i_blkbits.
+ *
+ * For best results, the blockdev should be set up with 512-byte i_blkbits and
+ * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
+ * fine alignment but still allows this function to work in PAGE_SIZE units.
+ */
+static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
+                       struct buffer_head *map_bh)
+{
+       const unsigned blkbits = sdio->blkbits;
+       int ret = 0;
+
+       while (sdio->block_in_file < sdio->final_block_in_request) {
+               struct page *page;
+               size_t from, to;
+
+               page = dio_get_page(dio, sdio);
+               if (IS_ERR(page)) {
+                       ret = PTR_ERR(page);
+                       goto out;
+               }
+               from = sdio->head ? 0 : sdio->from;
+               to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
+               sdio->head++;
+
+               while (from < to) {
+                       unsigned this_chunk_bytes;      /* # of bytes mapped */
+                       unsigned this_chunk_blocks;     /* # of blocks */
+                       unsigned u;
+
+                       if (sdio->blocks_available == 0) {
+                               /*
+                                * Need to go and map some more disk
+                                */
+                               unsigned long blkmask;
+                               unsigned long dio_remainder;
+
+                               ret = get_more_blocks(dio, sdio, map_bh);
+                               if (ret) {
+                                       page_cache_release(page);
+                                       goto out;
+                               }
+                               if (!buffer_mapped(map_bh))
+                                       goto do_holes;
+
+                               sdio->blocks_available =
+                                               map_bh->b_size >> sdio->blkbits;
+                               sdio->next_block_for_io =
+                                       map_bh->b_blocknr << sdio->blkfactor;
+                               if (buffer_new(map_bh))
+                                       clean_blockdev_aliases(dio, map_bh);
+
+                               if (!sdio->blkfactor)
+                                       goto do_holes;
+
+                               blkmask = (1 << sdio->blkfactor) - 1;
+                               dio_remainder = (sdio->block_in_file & blkmask);
+
+                               /*
+                                * If we are at the start of IO and that IO
+                                * starts partway into a fs-block,
+                                * dio_remainder will be non-zero.  If the IO
+                                * is a read then we can simply advance the IO
+                                * cursor to the first block which is to be
+                                * read.  But if the IO is a write and the
+                                * block was newly allocated we cannot do that;
+                                * the start of the fs block must be zeroed out
+                                * on-disk
+                                */
+                               if (!buffer_new(map_bh))
+                                       sdio->next_block_for_io += dio_remainder;
+                               sdio->blocks_available -= dio_remainder;
+                       }
+do_holes:
+                       /* Handle holes */
+                       if (!buffer_mapped(map_bh)) {
+                               loff_t i_size_aligned;
+
+                               /* AKPM: eargh, -ENOTBLK is a hack */
+                               if (dio->rw & WRITE) {
+                                       page_cache_release(page);
+                                       return -ENOTBLK;
+                               }
+
+                               /*
+                                * Be sure to account for a partial block as the
+                                * last block in the file
+                                */
+                               i_size_aligned = ALIGN(i_size_read(dio->inode),
+                                                       1 << blkbits);
+                               if (sdio->block_in_file >=
+                                               i_size_aligned >> blkbits) {
+                                       /* We hit eof */
+                                       page_cache_release(page);
+                                       goto out;
+                               }
+                               zero_user(page, from, 1 << blkbits);
+                               sdio->block_in_file++;
+                               from += 1 << blkbits;
+                               dio->result += 1 << blkbits;
+                               goto next_block;
+                       }
+
+                       /*
+                        * If we're performing IO which has an alignment which
+                        * is finer than the underlying fs, go check to see if
+                        * we must zero out the start of this block.
+                        */
+                       if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
+                               dio_zero_block(dio, sdio, 0, map_bh);
+
+                       /*
+                        * Work out, in this_chunk_blocks, how much disk we
+                        * can add to this page
+                        */
+                       this_chunk_blocks = sdio->blocks_available;
+                       u = (to - from) >> blkbits;
+                       if (this_chunk_blocks > u)
+                               this_chunk_blocks = u;
+                       u = sdio->final_block_in_request - sdio->block_in_file;
+                       if (this_chunk_blocks > u)
+                               this_chunk_blocks = u;
+                       this_chunk_bytes = this_chunk_blocks << blkbits;
+                       BUG_ON(this_chunk_bytes == 0);
+
+                       if (this_chunk_blocks == sdio->blocks_available)
+                               sdio->boundary = buffer_boundary(map_bh);
+                       ret = submit_page_section(dio, sdio, page,
+                                                 from,
+                                                 this_chunk_bytes,
+                                                 sdio->next_block_for_io,
+                                                 map_bh);
+                       if (ret) {
+                               page_cache_release(page);
+                               goto out;
+                       }
+                       sdio->next_block_for_io += this_chunk_blocks;
+
+                       sdio->block_in_file += this_chunk_blocks;
+                       from += this_chunk_bytes;
+                       dio->result += this_chunk_bytes;
+                       sdio->blocks_available -= this_chunk_blocks;
+next_block:
+                       BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
+                       if (sdio->block_in_file == sdio->final_block_in_request)
+                               break;
+               }
+
+               /* Drop the ref which was taken in get_user_pages() */
+               page_cache_release(page);
+       }
+out:
+       return ret;
+}
+
+static inline int drop_refcount(struct dio *dio)
+{
+       int ret2;
+       unsigned long flags;
+
+       /*
+        * Sync will always be dropping the final ref and completing the
+        * operation.  AIO can if it was a broken operation described above or
+        * in fact if all the bios race to complete before we get here.  In
+        * that case dio_complete() translates the EIOCBQUEUED into the proper
+        * return code that the caller will hand to ->complete().
+        *
+        * This is managed by the bio_lock instead of being an atomic_t so that
+        * completion paths can drop their ref and use the remaining count to
+        * decide to wake the submission path atomically.
+        */
+       spin_lock_irqsave(&dio->bio_lock, flags);
+       ret2 = --dio->refcount;
+       spin_unlock_irqrestore(&dio->bio_lock, flags);
+       return ret2;
+}
+
+/*
+ * This is a library function for use by filesystem drivers.
+ *
+ * The locking rules are governed by the flags parameter:
+ *  - if the flags value contains DIO_LOCKING we use a fancy locking
+ *    scheme for dumb filesystems.
+ *    For writes this function is called under i_mutex and returns with
+ *    i_mutex held, for reads, i_mutex is not held on entry, but it is
+ *    taken and dropped again before returning.
+ *  - if the flags value does NOT contain DIO_LOCKING we don't use any
+ *    internal locking but rather rely on the filesystem to synchronize
+ *    direct I/O reads/writes versus each other and truncate.
+ *
+ * To help with locking against truncate we incremented the i_dio_count
+ * counter before starting direct I/O, and decrement it once we are done.
+ * Truncate can wait for it to reach zero to provide exclusion.  It is
+ * expected that filesystem provide exclusion between new direct I/O
+ * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
+ * but other filesystems need to take care of this on their own.
+ *
+ * NOTE: if you pass "sdio" to anything by pointer make sure that function
+ * is always inlined. Otherwise gcc is unable to split the structure into
+ * individual fields and will generate much worse code. This is important
+ * for the whole file.
+ */
+static inline ssize_t
+do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
+                     struct block_device *bdev, struct iov_iter *iter,
+                     loff_t offset, get_block_t get_block, dio_iodone_t end_io,
+                     dio_submit_t submit_io, int flags)
+{
+       unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
+       unsigned blkbits = i_blkbits;
+       unsigned blocksize_mask = (1 << blkbits) - 1;
+       ssize_t retval = -EINVAL;
+       size_t count = iov_iter_count(iter);
+       loff_t end = offset + count;
+       struct dio *dio;
+       struct dio_submit sdio = { 0, };
+       struct buffer_head map_bh = { 0, };
+       struct blk_plug plug;
+       unsigned long align = offset | iov_iter_alignment(iter);
+
+       /*
+        * Avoid references to bdev if not absolutely needed to give
+        * the early prefetch in the caller enough time.
+        */
+
+       if (align & blocksize_mask) {
+               if (bdev)
+                       blkbits = blksize_bits(bdev_logical_block_size(bdev));
+               blocksize_mask = (1 << blkbits) - 1;
+               if (align & blocksize_mask)
+                       goto out;
+       }
+
+       /* watch out for a 0 len io from a tricksy fs */
+       if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
+               return 0;
+
+       dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
+       retval = -ENOMEM;
+       if (!dio)
+               goto out;
+       /*
+        * Believe it or not, zeroing out the page array caused a .5%
+        * performance regression in a database benchmark.  So, we take
+        * care to only zero out what's needed.
+        */
+       memset(dio, 0, offsetof(struct dio, pages));
+
+       dio->flags = flags;
+       if (dio->flags & DIO_LOCKING) {
+               if (iov_iter_rw(iter) == READ) {
+                       struct address_space *mapping =
+                                       iocb->ki_filp->f_mapping;
+
+                       /* will be released by direct_io_worker */
+                       mutex_lock(&inode->i_mutex);
+
+                       retval = filemap_write_and_wait_range(mapping, offset,
+                                                             end - 1);
+                       if (retval) {
+                               mutex_unlock(&inode->i_mutex);
+                               kmem_cache_free(dio_cache, dio);
+                               goto out;
+                       }
+               }
+       }
+
+       /*
+        * For file extending writes updating i_size before data writeouts
+        * complete can expose uninitialized blocks in dumb filesystems.
+        * In that case we need to wait for I/O completion even if asked
+        * for an asynchronous write.
+        */
+       if (is_sync_kiocb(iocb))
+               dio->is_async = false;
+       else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
+                iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
+               dio->is_async = false;
+       else
+               dio->is_async = true;
+
+       dio->inode = inode;
+       dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
+
+       /*
+        * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
+        * so that we can call ->fsync.
+        */
+       if (dio->is_async && iov_iter_rw(iter) == WRITE &&
+           ((iocb->ki_filp->f_flags & O_DSYNC) ||
+            IS_SYNC(iocb->ki_filp->f_mapping->host))) {
+               retval = dio_set_defer_completion(dio);
+               if (retval) {
+                       /*
+                        * We grab i_mutex only for reads so we don't have
+                        * to release it here
+                        */
+                       kmem_cache_free(dio_cache, dio);
+                       goto out;
+               }
+       }
+
+       /*
+        * Will be decremented at I/O completion time.
+        */
+       if (!(dio->flags & DIO_SKIP_DIO_COUNT))
+               inode_dio_begin(inode);
+
+       retval = 0;
+       sdio.blkbits = blkbits;
+       sdio.blkfactor = i_blkbits - blkbits;
+       sdio.block_in_file = offset >> blkbits;
+
+       sdio.get_block = get_block;
+       dio->end_io = end_io;
+       sdio.submit_io = submit_io;
+       sdio.final_block_in_bio = -1;
+       sdio.next_block_for_io = -1;
+
+       dio->iocb = iocb;
+       dio->i_size = i_size_read(inode);
+
+       spin_lock_init(&dio->bio_lock);
+       dio->refcount = 1;
+
+       sdio.iter = iter;
+       sdio.final_block_in_request =
+               (offset + iov_iter_count(iter)) >> blkbits;
+
+       /*
+        * In case of non-aligned buffers, we may need 2 more
+        * pages since we need to zero out first and last block.
+        */
+       if (unlikely(sdio.blkfactor))
+               sdio.pages_in_io = 2;
+
+       sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
+
+       blk_start_plug(&plug);
+
+       retval = do_direct_IO(dio, &sdio, &map_bh);
+       if (retval)
+               dio_cleanup(dio, &sdio);
+
+       if (retval == -ENOTBLK) {
+               /*
+                * The remaining part of the request will be
+                * be handled by buffered I/O when we return
+                */
+               retval = 0;
+       }
+       /*
+        * There may be some unwritten disk at the end of a part-written
+        * fs-block-sized block.  Go zero that now.
+        */
+       dio_zero_block(dio, &sdio, 1, &map_bh);
+
+       if (sdio.cur_page) {
+               ssize_t ret2;
+
+               ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
+               if (retval == 0)
+                       retval = ret2;
+               page_cache_release(sdio.cur_page);
+               sdio.cur_page = NULL;
+       }
+       if (sdio.bio)
+               dio_bio_submit(dio, &sdio);
+
+       blk_finish_plug(&plug);
+
+       /*
+        * It is possible that, we return short IO due to end of file.
+        * In that case, we need to release all the pages we got hold on.
+        */
+       dio_cleanup(dio, &sdio);
+
+       /*
+        * All block lookups have been performed. For READ requests
+        * we can let i_mutex go now that its achieved its purpose
+        * of protecting us from looking up uninitialized blocks.
+        */
+       if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
+               mutex_unlock(&dio->inode->i_mutex);
+
+       /*
+        * The only time we want to leave bios in flight is when a successful
+        * partial aio read or full aio write have been setup.  In that case
+        * bio completion will call aio_complete.  The only time it's safe to
+        * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
+        * This had *better* be the only place that raises -EIOCBQUEUED.
+        */
+       BUG_ON(retval == -EIOCBQUEUED);
+       if (dio->is_async && retval == 0 && dio->result &&
+           (iov_iter_rw(iter) == READ || dio->result == count))
+               retval = -EIOCBQUEUED;
+       else
+               dio_await_completion(dio);
+
+       if (drop_refcount(dio) == 0) {
+               retval = dio_complete(dio, offset, retval, false);
+       } else
+               BUG_ON(retval != -EIOCBQUEUED);
+
+out:
+       return retval;
+}
+
+ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
+                            struct block_device *bdev, struct iov_iter *iter,
+                            loff_t offset, get_block_t get_block,
+                            dio_iodone_t end_io, dio_submit_t submit_io,
+                            int flags)
+{
+       /*
+        * The block device state is needed in the end to finally
+        * submit everything.  Since it's likely to be cache cold
+        * prefetch it here as first thing to hide some of the
+        * latency.
+        *
+        * Attempt to prefetch the pieces we likely need later.
+        */
+       prefetch(&bdev->bd_disk->part_tbl);
+       prefetch(bdev->bd_queue);
+       prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
+
+       return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
+                                    end_io, submit_io, flags);
+}
+
+EXPORT_SYMBOL(__blockdev_direct_IO);
+
+static __init int dio_init(void)
+{
+       dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
+       return 0;
+}
+module_init(dio_init)