Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / dcache.c
diff --git a/kernel/fs/dcache.c b/kernel/fs/dcache.c
new file mode 100644 (file)
index 0000000..e1d20e1
--- /dev/null
@@ -0,0 +1,3459 @@
+/*
+ * fs/dcache.c
+ *
+ * Complete reimplementation
+ * (C) 1997 Thomas Schoebel-Theuer,
+ * with heavy changes by Linus Torvalds
+ */
+
+/*
+ * Notes on the allocation strategy:
+ *
+ * The dcache is a master of the icache - whenever a dcache entry
+ * exists, the inode will always exist. "iput()" is done either when
+ * the dcache entry is deleted or garbage collected.
+ */
+
+#include <linux/syscalls.h>
+#include <linux/string.h>
+#include <linux/mm.h>
+#include <linux/fs.h>
+#include <linux/fsnotify.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/hash.h>
+#include <linux/cache.h>
+#include <linux/export.h>
+#include <linux/mount.h>
+#include <linux/file.h>
+#include <asm/uaccess.h>
+#include <linux/security.h>
+#include <linux/seqlock.h>
+#include <linux/swap.h>
+#include <linux/bootmem.h>
+#include <linux/fs_struct.h>
+#include <linux/hardirq.h>
+#include <linux/bit_spinlock.h>
+#include <linux/rculist_bl.h>
+#include <linux/prefetch.h>
+#include <linux/ratelimit.h>
+#include <linux/list_lru.h>
+#include <linux/kasan.h>
+
+#include "internal.h"
+#include "mount.h"
+
+/*
+ * Usage:
+ * dcache->d_inode->i_lock protects:
+ *   - i_dentry, d_u.d_alias, d_inode of aliases
+ * dcache_hash_bucket lock protects:
+ *   - the dcache hash table
+ * s_anon bl list spinlock protects:
+ *   - the s_anon list (see __d_drop)
+ * dentry->d_sb->s_dentry_lru_lock protects:
+ *   - the dcache lru lists and counters
+ * d_lock protects:
+ *   - d_flags
+ *   - d_name
+ *   - d_lru
+ *   - d_count
+ *   - d_unhashed()
+ *   - d_parent and d_subdirs
+ *   - childrens' d_child and d_parent
+ *   - d_u.d_alias, d_inode
+ *
+ * Ordering:
+ * dentry->d_inode->i_lock
+ *   dentry->d_lock
+ *     dentry->d_sb->s_dentry_lru_lock
+ *     dcache_hash_bucket lock
+ *     s_anon lock
+ *
+ * If there is an ancestor relationship:
+ * dentry->d_parent->...->d_parent->d_lock
+ *   ...
+ *     dentry->d_parent->d_lock
+ *       dentry->d_lock
+ *
+ * If no ancestor relationship:
+ * if (dentry1 < dentry2)
+ *   dentry1->d_lock
+ *     dentry2->d_lock
+ */
+int sysctl_vfs_cache_pressure __read_mostly = 100;
+EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
+
+__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
+
+EXPORT_SYMBOL(rename_lock);
+
+static struct kmem_cache *dentry_cache __read_mostly;
+
+/*
+ * This is the single most critical data structure when it comes
+ * to the dcache: the hashtable for lookups. Somebody should try
+ * to make this good - I've just made it work.
+ *
+ * This hash-function tries to avoid losing too many bits of hash
+ * information, yet avoid using a prime hash-size or similar.
+ */
+
+static unsigned int d_hash_mask __read_mostly;
+static unsigned int d_hash_shift __read_mostly;
+
+static struct hlist_bl_head *dentry_hashtable __read_mostly;
+
+static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
+                                       unsigned int hash)
+{
+       hash += (unsigned long) parent / L1_CACHE_BYTES;
+       return dentry_hashtable + hash_32(hash, d_hash_shift);
+}
+
+/* Statistics gathering. */
+struct dentry_stat_t dentry_stat = {
+       .age_limit = 45,
+};
+
+static DEFINE_PER_CPU(long, nr_dentry);
+static DEFINE_PER_CPU(long, nr_dentry_unused);
+
+#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
+
+/*
+ * Here we resort to our own counters instead of using generic per-cpu counters
+ * for consistency with what the vfs inode code does. We are expected to harvest
+ * better code and performance by having our own specialized counters.
+ *
+ * Please note that the loop is done over all possible CPUs, not over all online
+ * CPUs. The reason for this is that we don't want to play games with CPUs going
+ * on and off. If one of them goes off, we will just keep their counters.
+ *
+ * glommer: See cffbc8a for details, and if you ever intend to change this,
+ * please update all vfs counters to match.
+ */
+static long get_nr_dentry(void)
+{
+       int i;
+       long sum = 0;
+       for_each_possible_cpu(i)
+               sum += per_cpu(nr_dentry, i);
+       return sum < 0 ? 0 : sum;
+}
+
+static long get_nr_dentry_unused(void)
+{
+       int i;
+       long sum = 0;
+       for_each_possible_cpu(i)
+               sum += per_cpu(nr_dentry_unused, i);
+       return sum < 0 ? 0 : sum;
+}
+
+int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
+                  size_t *lenp, loff_t *ppos)
+{
+       dentry_stat.nr_dentry = get_nr_dentry();
+       dentry_stat.nr_unused = get_nr_dentry_unused();
+       return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
+}
+#endif
+
+/*
+ * Compare 2 name strings, return 0 if they match, otherwise non-zero.
+ * The strings are both count bytes long, and count is non-zero.
+ */
+#ifdef CONFIG_DCACHE_WORD_ACCESS
+
+#include <asm/word-at-a-time.h>
+/*
+ * NOTE! 'cs' and 'scount' come from a dentry, so it has a
+ * aligned allocation for this particular component. We don't
+ * strictly need the load_unaligned_zeropad() safety, but it
+ * doesn't hurt either.
+ *
+ * In contrast, 'ct' and 'tcount' can be from a pathname, and do
+ * need the careful unaligned handling.
+ */
+static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
+{
+       unsigned long a,b,mask;
+
+       for (;;) {
+               a = *(unsigned long *)cs;
+               b = load_unaligned_zeropad(ct);
+               if (tcount < sizeof(unsigned long))
+                       break;
+               if (unlikely(a != b))
+                       return 1;
+               cs += sizeof(unsigned long);
+               ct += sizeof(unsigned long);
+               tcount -= sizeof(unsigned long);
+               if (!tcount)
+                       return 0;
+       }
+       mask = bytemask_from_count(tcount);
+       return unlikely(!!((a ^ b) & mask));
+}
+
+#else
+
+static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
+{
+       do {
+               if (*cs != *ct)
+                       return 1;
+               cs++;
+               ct++;
+               tcount--;
+       } while (tcount);
+       return 0;
+}
+
+#endif
+
+static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
+{
+       const unsigned char *cs;
+       /*
+        * Be careful about RCU walk racing with rename:
+        * use ACCESS_ONCE to fetch the name pointer.
+        *
+        * NOTE! Even if a rename will mean that the length
+        * was not loaded atomically, we don't care. The
+        * RCU walk will check the sequence count eventually,
+        * and catch it. And we won't overrun the buffer,
+        * because we're reading the name pointer atomically,
+        * and a dentry name is guaranteed to be properly
+        * terminated with a NUL byte.
+        *
+        * End result: even if 'len' is wrong, we'll exit
+        * early because the data cannot match (there can
+        * be no NUL in the ct/tcount data)
+        */
+       cs = ACCESS_ONCE(dentry->d_name.name);
+       smp_read_barrier_depends();
+       return dentry_string_cmp(cs, ct, tcount);
+}
+
+struct external_name {
+       union {
+               atomic_t count;
+               struct rcu_head head;
+       } u;
+       unsigned char name[];
+};
+
+static inline struct external_name *external_name(struct dentry *dentry)
+{
+       return container_of(dentry->d_name.name, struct external_name, name[0]);
+}
+
+static void __d_free(struct rcu_head *head)
+{
+       struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
+
+       kmem_cache_free(dentry_cache, dentry); 
+}
+
+static void __d_free_external(struct rcu_head *head)
+{
+       struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
+       kfree(external_name(dentry));
+       kmem_cache_free(dentry_cache, dentry); 
+}
+
+static inline int dname_external(const struct dentry *dentry)
+{
+       return dentry->d_name.name != dentry->d_iname;
+}
+
+/*
+ * Make sure other CPUs see the inode attached before the type is set.
+ */
+static inline void __d_set_inode_and_type(struct dentry *dentry,
+                                         struct inode *inode,
+                                         unsigned type_flags)
+{
+       unsigned flags;
+
+       dentry->d_inode = inode;
+       smp_wmb();
+       flags = READ_ONCE(dentry->d_flags);
+       flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
+       flags |= type_flags;
+       WRITE_ONCE(dentry->d_flags, flags);
+}
+
+/*
+ * Ideally, we want to make sure that other CPUs see the flags cleared before
+ * the inode is detached, but this is really a violation of RCU principles
+ * since the ordering suggests we should always set inode before flags.
+ *
+ * We should instead replace or discard the entire dentry - but that sucks
+ * performancewise on mass deletion/rename.
+ */
+static inline void __d_clear_type_and_inode(struct dentry *dentry)
+{
+       unsigned flags = READ_ONCE(dentry->d_flags);
+
+       flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
+       WRITE_ONCE(dentry->d_flags, flags);
+       smp_wmb();
+       dentry->d_inode = NULL;
+}
+
+static void dentry_free(struct dentry *dentry)
+{
+       WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
+       if (unlikely(dname_external(dentry))) {
+               struct external_name *p = external_name(dentry);
+               if (likely(atomic_dec_and_test(&p->u.count))) {
+                       call_rcu(&dentry->d_u.d_rcu, __d_free_external);
+                       return;
+               }
+       }
+       /* if dentry was never visible to RCU, immediate free is OK */
+       if (!(dentry->d_flags & DCACHE_RCUACCESS))
+               __d_free(&dentry->d_u.d_rcu);
+       else
+               call_rcu(&dentry->d_u.d_rcu, __d_free);
+}
+
+/**
+ * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
+ * @dentry: the target dentry
+ * After this call, in-progress rcu-walk path lookup will fail. This
+ * should be called after unhashing, and after changing d_inode (if
+ * the dentry has not already been unhashed).
+ */
+static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
+{
+       assert_spin_locked(&dentry->d_lock);
+       /* Go through a barrier */
+       write_seqcount_barrier(&dentry->d_seq);
+}
+
+/*
+ * Release the dentry's inode, using the filesystem
+ * d_iput() operation if defined. Dentry has no refcount
+ * and is unhashed.
+ */
+static void dentry_iput(struct dentry * dentry)
+       __releases(dentry->d_lock)
+       __releases(dentry->d_inode->i_lock)
+{
+       struct inode *inode = dentry->d_inode;
+       if (inode) {
+               __d_clear_type_and_inode(dentry);
+               hlist_del_init(&dentry->d_u.d_alias);
+               spin_unlock(&dentry->d_lock);
+               spin_unlock(&inode->i_lock);
+               if (!inode->i_nlink)
+                       fsnotify_inoderemove(inode);
+               if (dentry->d_op && dentry->d_op->d_iput)
+                       dentry->d_op->d_iput(dentry, inode);
+               else
+                       iput(inode);
+       } else {
+               spin_unlock(&dentry->d_lock);
+       }
+}
+
+/*
+ * Release the dentry's inode, using the filesystem
+ * d_iput() operation if defined. dentry remains in-use.
+ */
+static void dentry_unlink_inode(struct dentry * dentry)
+       __releases(dentry->d_lock)
+       __releases(dentry->d_inode->i_lock)
+{
+       struct inode *inode = dentry->d_inode;
+       __d_clear_type_and_inode(dentry);
+       hlist_del_init(&dentry->d_u.d_alias);
+       dentry_rcuwalk_barrier(dentry);
+       spin_unlock(&dentry->d_lock);
+       spin_unlock(&inode->i_lock);
+       if (!inode->i_nlink)
+               fsnotify_inoderemove(inode);
+       if (dentry->d_op && dentry->d_op->d_iput)
+               dentry->d_op->d_iput(dentry, inode);
+       else
+               iput(inode);
+}
+
+/*
+ * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
+ * is in use - which includes both the "real" per-superblock
+ * LRU list _and_ the DCACHE_SHRINK_LIST use.
+ *
+ * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
+ * on the shrink list (ie not on the superblock LRU list).
+ *
+ * The per-cpu "nr_dentry_unused" counters are updated with
+ * the DCACHE_LRU_LIST bit.
+ *
+ * These helper functions make sure we always follow the
+ * rules. d_lock must be held by the caller.
+ */
+#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
+static void d_lru_add(struct dentry *dentry)
+{
+       D_FLAG_VERIFY(dentry, 0);
+       dentry->d_flags |= DCACHE_LRU_LIST;
+       this_cpu_inc(nr_dentry_unused);
+       WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
+}
+
+static void d_lru_del(struct dentry *dentry)
+{
+       D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
+       dentry->d_flags &= ~DCACHE_LRU_LIST;
+       this_cpu_dec(nr_dentry_unused);
+       WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
+}
+
+static void d_shrink_del(struct dentry *dentry)
+{
+       D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
+       list_del_init(&dentry->d_lru);
+       dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
+       this_cpu_dec(nr_dentry_unused);
+}
+
+static void d_shrink_add(struct dentry *dentry, struct list_head *list)
+{
+       D_FLAG_VERIFY(dentry, 0);
+       list_add(&dentry->d_lru, list);
+       dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
+       this_cpu_inc(nr_dentry_unused);
+}
+
+/*
+ * These can only be called under the global LRU lock, ie during the
+ * callback for freeing the LRU list. "isolate" removes it from the
+ * LRU lists entirely, while shrink_move moves it to the indicated
+ * private list.
+ */
+static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
+{
+       D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
+       dentry->d_flags &= ~DCACHE_LRU_LIST;
+       this_cpu_dec(nr_dentry_unused);
+       list_lru_isolate(lru, &dentry->d_lru);
+}
+
+static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
+                             struct list_head *list)
+{
+       D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
+       dentry->d_flags |= DCACHE_SHRINK_LIST;
+       list_lru_isolate_move(lru, &dentry->d_lru, list);
+}
+
+/*
+ * dentry_lru_(add|del)_list) must be called with d_lock held.
+ */
+static void dentry_lru_add(struct dentry *dentry)
+{
+       if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
+               d_lru_add(dentry);
+}
+
+/**
+ * d_drop - drop a dentry
+ * @dentry: dentry to drop
+ *
+ * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
+ * be found through a VFS lookup any more. Note that this is different from
+ * deleting the dentry - d_delete will try to mark the dentry negative if
+ * possible, giving a successful _negative_ lookup, while d_drop will
+ * just make the cache lookup fail.
+ *
+ * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
+ * reason (NFS timeouts or autofs deletes).
+ *
+ * __d_drop requires dentry->d_lock.
+ */
+void __d_drop(struct dentry *dentry)
+{
+       if (!d_unhashed(dentry)) {
+               struct hlist_bl_head *b;
+               /*
+                * Hashed dentries are normally on the dentry hashtable,
+                * with the exception of those newly allocated by
+                * d_obtain_alias, which are always IS_ROOT:
+                */
+               if (unlikely(IS_ROOT(dentry)))
+                       b = &dentry->d_sb->s_anon;
+               else
+                       b = d_hash(dentry->d_parent, dentry->d_name.hash);
+
+               hlist_bl_lock(b);
+               __hlist_bl_del(&dentry->d_hash);
+               dentry->d_hash.pprev = NULL;
+               hlist_bl_unlock(b);
+               dentry_rcuwalk_barrier(dentry);
+       }
+}
+EXPORT_SYMBOL(__d_drop);
+
+void d_drop(struct dentry *dentry)
+{
+       spin_lock(&dentry->d_lock);
+       __d_drop(dentry);
+       spin_unlock(&dentry->d_lock);
+}
+EXPORT_SYMBOL(d_drop);
+
+static void __dentry_kill(struct dentry *dentry)
+{
+       struct dentry *parent = NULL;
+       bool can_free = true;
+       if (!IS_ROOT(dentry))
+               parent = dentry->d_parent;
+
+       /*
+        * The dentry is now unrecoverably dead to the world.
+        */
+       lockref_mark_dead(&dentry->d_lockref);
+
+       /*
+        * inform the fs via d_prune that this dentry is about to be
+        * unhashed and destroyed.
+        */
+       if (dentry->d_flags & DCACHE_OP_PRUNE)
+               dentry->d_op->d_prune(dentry);
+
+       if (dentry->d_flags & DCACHE_LRU_LIST) {
+               if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
+                       d_lru_del(dentry);
+       }
+       /* if it was on the hash then remove it */
+       __d_drop(dentry);
+       __list_del_entry(&dentry->d_child);
+       /*
+        * Inform d_walk() that we are no longer attached to the
+        * dentry tree
+        */
+       dentry->d_flags |= DCACHE_DENTRY_KILLED;
+       if (parent)
+               spin_unlock(&parent->d_lock);
+       dentry_iput(dentry);
+       /*
+        * dentry_iput drops the locks, at which point nobody (except
+        * transient RCU lookups) can reach this dentry.
+        */
+       BUG_ON(dentry->d_lockref.count > 0);
+       this_cpu_dec(nr_dentry);
+       if (dentry->d_op && dentry->d_op->d_release)
+               dentry->d_op->d_release(dentry);
+
+       spin_lock(&dentry->d_lock);
+       if (dentry->d_flags & DCACHE_SHRINK_LIST) {
+               dentry->d_flags |= DCACHE_MAY_FREE;
+               can_free = false;
+       }
+       spin_unlock(&dentry->d_lock);
+       if (likely(can_free))
+               dentry_free(dentry);
+}
+
+/*
+ * Finish off a dentry we've decided to kill.
+ * dentry->d_lock must be held, returns with it unlocked.
+ * If ref is non-zero, then decrement the refcount too.
+ * Returns dentry requiring refcount drop, or NULL if we're done.
+ */
+static struct dentry *dentry_kill(struct dentry *dentry)
+       __releases(dentry->d_lock)
+{
+       struct inode *inode = dentry->d_inode;
+       struct dentry *parent = NULL;
+
+       if (inode && unlikely(!spin_trylock(&inode->i_lock)))
+               goto failed;
+
+       if (!IS_ROOT(dentry)) {
+               parent = dentry->d_parent;
+               if (unlikely(!spin_trylock(&parent->d_lock))) {
+                       if (inode)
+                               spin_unlock(&inode->i_lock);
+                       goto failed;
+               }
+       }
+
+       __dentry_kill(dentry);
+       return parent;
+
+failed:
+       spin_unlock(&dentry->d_lock);
+       cpu_chill();
+       return dentry; /* try again with same dentry */
+}
+
+static inline struct dentry *lock_parent(struct dentry *dentry)
+{
+       struct dentry *parent = dentry->d_parent;
+       if (IS_ROOT(dentry))
+               return NULL;
+       if (unlikely(dentry->d_lockref.count < 0))
+               return NULL;
+       if (likely(spin_trylock(&parent->d_lock)))
+               return parent;
+       rcu_read_lock();
+       spin_unlock(&dentry->d_lock);
+again:
+       parent = ACCESS_ONCE(dentry->d_parent);
+       spin_lock(&parent->d_lock);
+       /*
+        * We can't blindly lock dentry until we are sure
+        * that we won't violate the locking order.
+        * Any changes of dentry->d_parent must have
+        * been done with parent->d_lock held, so
+        * spin_lock() above is enough of a barrier
+        * for checking if it's still our child.
+        */
+       if (unlikely(parent != dentry->d_parent)) {
+               spin_unlock(&parent->d_lock);
+               goto again;
+       }
+       rcu_read_unlock();
+       if (parent != dentry)
+               spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
+       else
+               parent = NULL;
+       return parent;
+}
+
+/*
+ * Try to do a lockless dput(), and return whether that was successful.
+ *
+ * If unsuccessful, we return false, having already taken the dentry lock.
+ *
+ * The caller needs to hold the RCU read lock, so that the dentry is
+ * guaranteed to stay around even if the refcount goes down to zero!
+ */
+static inline bool fast_dput(struct dentry *dentry)
+{
+       int ret;
+       unsigned int d_flags;
+
+       /*
+        * If we have a d_op->d_delete() operation, we sould not
+        * let the dentry count go to zero, so use "put__or_lock".
+        */
+       if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
+               return lockref_put_or_lock(&dentry->d_lockref);
+
+       /*
+        * .. otherwise, we can try to just decrement the
+        * lockref optimistically.
+        */
+       ret = lockref_put_return(&dentry->d_lockref);
+
+       /*
+        * If the lockref_put_return() failed due to the lock being held
+        * by somebody else, the fast path has failed. We will need to
+        * get the lock, and then check the count again.
+        */
+       if (unlikely(ret < 0)) {
+               spin_lock(&dentry->d_lock);
+               if (dentry->d_lockref.count > 1) {
+                       dentry->d_lockref.count--;
+                       spin_unlock(&dentry->d_lock);
+                       return 1;
+               }
+               return 0;
+       }
+
+       /*
+        * If we weren't the last ref, we're done.
+        */
+       if (ret)
+               return 1;
+
+       /*
+        * Careful, careful. The reference count went down
+        * to zero, but we don't hold the dentry lock, so
+        * somebody else could get it again, and do another
+        * dput(), and we need to not race with that.
+        *
+        * However, there is a very special and common case
+        * where we don't care, because there is nothing to
+        * do: the dentry is still hashed, it does not have
+        * a 'delete' op, and it's referenced and already on
+        * the LRU list.
+        *
+        * NOTE! Since we aren't locked, these values are
+        * not "stable". However, it is sufficient that at
+        * some point after we dropped the reference the
+        * dentry was hashed and the flags had the proper
+        * value. Other dentry users may have re-gotten
+        * a reference to the dentry and change that, but
+        * our work is done - we can leave the dentry
+        * around with a zero refcount.
+        */
+       smp_rmb();
+       d_flags = ACCESS_ONCE(dentry->d_flags);
+       d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
+
+       /* Nothing to do? Dropping the reference was all we needed? */
+       if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
+               return 1;
+
+       /*
+        * Not the fast normal case? Get the lock. We've already decremented
+        * the refcount, but we'll need to re-check the situation after
+        * getting the lock.
+        */
+       spin_lock(&dentry->d_lock);
+
+       /*
+        * Did somebody else grab a reference to it in the meantime, and
+        * we're no longer the last user after all? Alternatively, somebody
+        * else could have killed it and marked it dead. Either way, we
+        * don't need to do anything else.
+        */
+       if (dentry->d_lockref.count) {
+               spin_unlock(&dentry->d_lock);
+               return 1;
+       }
+
+       /*
+        * Re-get the reference we optimistically dropped. We hold the
+        * lock, and we just tested that it was zero, so we can just
+        * set it to 1.
+        */
+       dentry->d_lockref.count = 1;
+       return 0;
+}
+
+
+/* 
+ * This is dput
+ *
+ * This is complicated by the fact that we do not want to put
+ * dentries that are no longer on any hash chain on the unused
+ * list: we'd much rather just get rid of them immediately.
+ *
+ * However, that implies that we have to traverse the dentry
+ * tree upwards to the parents which might _also_ now be
+ * scheduled for deletion (it may have been only waiting for
+ * its last child to go away).
+ *
+ * This tail recursion is done by hand as we don't want to depend
+ * on the compiler to always get this right (gcc generally doesn't).
+ * Real recursion would eat up our stack space.
+ */
+
+/*
+ * dput - release a dentry
+ * @dentry: dentry to release 
+ *
+ * Release a dentry. This will drop the usage count and if appropriate
+ * call the dentry unlink method as well as removing it from the queues and
+ * releasing its resources. If the parent dentries were scheduled for release
+ * they too may now get deleted.
+ */
+void dput(struct dentry *dentry)
+{
+       if (unlikely(!dentry))
+               return;
+
+repeat:
+       rcu_read_lock();
+       if (likely(fast_dput(dentry))) {
+               rcu_read_unlock();
+               return;
+       }
+
+       /* Slow case: now with the dentry lock held */
+       rcu_read_unlock();
+
+       /* Unreachable? Get rid of it */
+       if (unlikely(d_unhashed(dentry)))
+               goto kill_it;
+
+       if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
+               if (dentry->d_op->d_delete(dentry))
+                       goto kill_it;
+       }
+
+       if (!(dentry->d_flags & DCACHE_REFERENCED))
+               dentry->d_flags |= DCACHE_REFERENCED;
+       dentry_lru_add(dentry);
+
+       dentry->d_lockref.count--;
+       spin_unlock(&dentry->d_lock);
+       return;
+
+kill_it:
+       dentry = dentry_kill(dentry);
+       if (dentry)
+               goto repeat;
+}
+EXPORT_SYMBOL(dput);
+
+
+/* This must be called with d_lock held */
+static inline void __dget_dlock(struct dentry *dentry)
+{
+       dentry->d_lockref.count++;
+}
+
+static inline void __dget(struct dentry *dentry)
+{
+       lockref_get(&dentry->d_lockref);
+}
+
+struct dentry *dget_parent(struct dentry *dentry)
+{
+       int gotref;
+       struct dentry *ret;
+
+       /*
+        * Do optimistic parent lookup without any
+        * locking.
+        */
+       rcu_read_lock();
+       ret = ACCESS_ONCE(dentry->d_parent);
+       gotref = lockref_get_not_zero(&ret->d_lockref);
+       rcu_read_unlock();
+       if (likely(gotref)) {
+               if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
+                       return ret;
+               dput(ret);
+       }
+
+repeat:
+       /*
+        * Don't need rcu_dereference because we re-check it was correct under
+        * the lock.
+        */
+       rcu_read_lock();
+       ret = dentry->d_parent;
+       spin_lock(&ret->d_lock);
+       if (unlikely(ret != dentry->d_parent)) {
+               spin_unlock(&ret->d_lock);
+               rcu_read_unlock();
+               goto repeat;
+       }
+       rcu_read_unlock();
+       BUG_ON(!ret->d_lockref.count);
+       ret->d_lockref.count++;
+       spin_unlock(&ret->d_lock);
+       return ret;
+}
+EXPORT_SYMBOL(dget_parent);
+
+/**
+ * d_find_alias - grab a hashed alias of inode
+ * @inode: inode in question
+ *
+ * If inode has a hashed alias, or is a directory and has any alias,
+ * acquire the reference to alias and return it. Otherwise return NULL.
+ * Notice that if inode is a directory there can be only one alias and
+ * it can be unhashed only if it has no children, or if it is the root
+ * of a filesystem, or if the directory was renamed and d_revalidate
+ * was the first vfs operation to notice.
+ *
+ * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
+ * any other hashed alias over that one.
+ */
+static struct dentry *__d_find_alias(struct inode *inode)
+{
+       struct dentry *alias, *discon_alias;
+
+again:
+       discon_alias = NULL;
+       hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
+               spin_lock(&alias->d_lock);
+               if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
+                       if (IS_ROOT(alias) &&
+                           (alias->d_flags & DCACHE_DISCONNECTED)) {
+                               discon_alias = alias;
+                       } else {
+                               __dget_dlock(alias);
+                               spin_unlock(&alias->d_lock);
+                               return alias;
+                       }
+               }
+               spin_unlock(&alias->d_lock);
+       }
+       if (discon_alias) {
+               alias = discon_alias;
+               spin_lock(&alias->d_lock);
+               if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
+                       __dget_dlock(alias);
+                       spin_unlock(&alias->d_lock);
+                       return alias;
+               }
+               spin_unlock(&alias->d_lock);
+               goto again;
+       }
+       return NULL;
+}
+
+struct dentry *d_find_alias(struct inode *inode)
+{
+       struct dentry *de = NULL;
+
+       if (!hlist_empty(&inode->i_dentry)) {
+               spin_lock(&inode->i_lock);
+               de = __d_find_alias(inode);
+               spin_unlock(&inode->i_lock);
+       }
+       return de;
+}
+EXPORT_SYMBOL(d_find_alias);
+
+/*
+ *     Try to kill dentries associated with this inode.
+ * WARNING: you must own a reference to inode.
+ */
+void d_prune_aliases(struct inode *inode)
+{
+       struct dentry *dentry;
+restart:
+       spin_lock(&inode->i_lock);
+       hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
+               spin_lock(&dentry->d_lock);
+               if (!dentry->d_lockref.count) {
+                       struct dentry *parent = lock_parent(dentry);
+                       if (likely(!dentry->d_lockref.count)) {
+                               __dentry_kill(dentry);
+                               dput(parent);
+                               goto restart;
+                       }
+                       if (parent)
+                               spin_unlock(&parent->d_lock);
+               }
+               spin_unlock(&dentry->d_lock);
+       }
+       spin_unlock(&inode->i_lock);
+}
+EXPORT_SYMBOL(d_prune_aliases);
+
+static void shrink_dentry_list(struct list_head *list)
+{
+       struct dentry *dentry, *parent;
+
+       while (!list_empty(list)) {
+               struct inode *inode;
+               dentry = list_entry(list->prev, struct dentry, d_lru);
+               spin_lock(&dentry->d_lock);
+               parent = lock_parent(dentry);
+
+               /*
+                * The dispose list is isolated and dentries are not accounted
+                * to the LRU here, so we can simply remove it from the list
+                * here regardless of whether it is referenced or not.
+                */
+               d_shrink_del(dentry);
+
+               /*
+                * We found an inuse dentry which was not removed from
+                * the LRU because of laziness during lookup. Do not free it.
+                */
+               if (dentry->d_lockref.count > 0) {
+                       spin_unlock(&dentry->d_lock);
+                       if (parent)
+                               spin_unlock(&parent->d_lock);
+                       continue;
+               }
+
+
+               if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
+                       bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
+                       spin_unlock(&dentry->d_lock);
+                       if (parent)
+                               spin_unlock(&parent->d_lock);
+                       if (can_free)
+                               dentry_free(dentry);
+                       continue;
+               }
+
+               inode = dentry->d_inode;
+               if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
+                       d_shrink_add(dentry, list);
+                       spin_unlock(&dentry->d_lock);
+                       if (parent)
+                               spin_unlock(&parent->d_lock);
+                       continue;
+               }
+
+               __dentry_kill(dentry);
+
+               /*
+                * We need to prune ancestors too. This is necessary to prevent
+                * quadratic behavior of shrink_dcache_parent(), but is also
+                * expected to be beneficial in reducing dentry cache
+                * fragmentation.
+                */
+               dentry = parent;
+               while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
+                       parent = lock_parent(dentry);
+                       if (dentry->d_lockref.count != 1) {
+                               dentry->d_lockref.count--;
+                               spin_unlock(&dentry->d_lock);
+                               if (parent)
+                                       spin_unlock(&parent->d_lock);
+                               break;
+                       }
+                       inode = dentry->d_inode;        /* can't be NULL */
+                       if (unlikely(!spin_trylock(&inode->i_lock))) {
+                               spin_unlock(&dentry->d_lock);
+                               if (parent)
+                                       spin_unlock(&parent->d_lock);
+                               cpu_relax();
+                               continue;
+                       }
+                       __dentry_kill(dentry);
+                       dentry = parent;
+               }
+       }
+}
+
+static enum lru_status dentry_lru_isolate(struct list_head *item,
+               struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
+{
+       struct list_head *freeable = arg;
+       struct dentry   *dentry = container_of(item, struct dentry, d_lru);
+
+
+       /*
+        * we are inverting the lru lock/dentry->d_lock here,
+        * so use a trylock. If we fail to get the lock, just skip
+        * it
+        */
+       if (!spin_trylock(&dentry->d_lock))
+               return LRU_SKIP;
+
+       /*
+        * Referenced dentries are still in use. If they have active
+        * counts, just remove them from the LRU. Otherwise give them
+        * another pass through the LRU.
+        */
+       if (dentry->d_lockref.count) {
+               d_lru_isolate(lru, dentry);
+               spin_unlock(&dentry->d_lock);
+               return LRU_REMOVED;
+       }
+
+       if (dentry->d_flags & DCACHE_REFERENCED) {
+               dentry->d_flags &= ~DCACHE_REFERENCED;
+               spin_unlock(&dentry->d_lock);
+
+               /*
+                * The list move itself will be made by the common LRU code. At
+                * this point, we've dropped the dentry->d_lock but keep the
+                * lru lock. This is safe to do, since every list movement is
+                * protected by the lru lock even if both locks are held.
+                *
+                * This is guaranteed by the fact that all LRU management
+                * functions are intermediated by the LRU API calls like
+                * list_lru_add and list_lru_del. List movement in this file
+                * only ever occur through this functions or through callbacks
+                * like this one, that are called from the LRU API.
+                *
+                * The only exceptions to this are functions like
+                * shrink_dentry_list, and code that first checks for the
+                * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
+                * operating only with stack provided lists after they are
+                * properly isolated from the main list.  It is thus, always a
+                * local access.
+                */
+               return LRU_ROTATE;
+       }
+
+       d_lru_shrink_move(lru, dentry, freeable);
+       spin_unlock(&dentry->d_lock);
+
+       return LRU_REMOVED;
+}
+
+/**
+ * prune_dcache_sb - shrink the dcache
+ * @sb: superblock
+ * @sc: shrink control, passed to list_lru_shrink_walk()
+ *
+ * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
+ * is done when we need more memory and called from the superblock shrinker
+ * function.
+ *
+ * This function may fail to free any resources if all the dentries are in
+ * use.
+ */
+long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
+{
+       LIST_HEAD(dispose);
+       long freed;
+
+       freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
+                                    dentry_lru_isolate, &dispose);
+       shrink_dentry_list(&dispose);
+       return freed;
+}
+
+static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
+               struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
+{
+       struct list_head *freeable = arg;
+       struct dentry   *dentry = container_of(item, struct dentry, d_lru);
+
+       /*
+        * we are inverting the lru lock/dentry->d_lock here,
+        * so use a trylock. If we fail to get the lock, just skip
+        * it
+        */
+       if (!spin_trylock(&dentry->d_lock))
+               return LRU_SKIP;
+
+       d_lru_shrink_move(lru, dentry, freeable);
+       spin_unlock(&dentry->d_lock);
+
+       return LRU_REMOVED;
+}
+
+
+/**
+ * shrink_dcache_sb - shrink dcache for a superblock
+ * @sb: superblock
+ *
+ * Shrink the dcache for the specified super block. This is used to free
+ * the dcache before unmounting a file system.
+ */
+void shrink_dcache_sb(struct super_block *sb)
+{
+       long freed;
+
+       do {
+               LIST_HEAD(dispose);
+
+               freed = list_lru_walk(&sb->s_dentry_lru,
+                       dentry_lru_isolate_shrink, &dispose, UINT_MAX);
+
+               this_cpu_sub(nr_dentry_unused, freed);
+               shrink_dentry_list(&dispose);
+       } while (freed > 0);
+}
+EXPORT_SYMBOL(shrink_dcache_sb);
+
+/**
+ * enum d_walk_ret - action to talke during tree walk
+ * @D_WALK_CONTINUE:   contrinue walk
+ * @D_WALK_QUIT:       quit walk
+ * @D_WALK_NORETRY:    quit when retry is needed
+ * @D_WALK_SKIP:       skip this dentry and its children
+ */
+enum d_walk_ret {
+       D_WALK_CONTINUE,
+       D_WALK_QUIT,
+       D_WALK_NORETRY,
+       D_WALK_SKIP,
+};
+
+/**
+ * d_walk - walk the dentry tree
+ * @parent:    start of walk
+ * @data:      data passed to @enter() and @finish()
+ * @enter:     callback when first entering the dentry
+ * @finish:    callback when successfully finished the walk
+ *
+ * The @enter() and @finish() callbacks are called with d_lock held.
+ */
+static void d_walk(struct dentry *parent, void *data,
+                  enum d_walk_ret (*enter)(void *, struct dentry *),
+                  void (*finish)(void *))
+{
+       struct dentry *this_parent;
+       struct list_head *next;
+       unsigned seq = 0;
+       enum d_walk_ret ret;
+       bool retry = true;
+
+again:
+       read_seqbegin_or_lock(&rename_lock, &seq);
+       this_parent = parent;
+       spin_lock(&this_parent->d_lock);
+
+       ret = enter(data, this_parent);
+       switch (ret) {
+       case D_WALK_CONTINUE:
+               break;
+       case D_WALK_QUIT:
+       case D_WALK_SKIP:
+               goto out_unlock;
+       case D_WALK_NORETRY:
+               retry = false;
+               break;
+       }
+repeat:
+       next = this_parent->d_subdirs.next;
+resume:
+       while (next != &this_parent->d_subdirs) {
+               struct list_head *tmp = next;
+               struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
+               next = tmp->next;
+
+               spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
+
+               ret = enter(data, dentry);
+               switch (ret) {
+               case D_WALK_CONTINUE:
+                       break;
+               case D_WALK_QUIT:
+                       spin_unlock(&dentry->d_lock);
+                       goto out_unlock;
+               case D_WALK_NORETRY:
+                       retry = false;
+                       break;
+               case D_WALK_SKIP:
+                       spin_unlock(&dentry->d_lock);
+                       continue;
+               }
+
+               if (!list_empty(&dentry->d_subdirs)) {
+                       spin_unlock(&this_parent->d_lock);
+                       spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
+                       this_parent = dentry;
+                       spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
+                       goto repeat;
+               }
+               spin_unlock(&dentry->d_lock);
+       }
+       /*
+        * All done at this level ... ascend and resume the search.
+        */
+       rcu_read_lock();
+ascend:
+       if (this_parent != parent) {
+               struct dentry *child = this_parent;
+               this_parent = child->d_parent;
+
+               spin_unlock(&child->d_lock);
+               spin_lock(&this_parent->d_lock);
+
+               /* might go back up the wrong parent if we have had a rename. */
+               if (need_seqretry(&rename_lock, seq))
+                       goto rename_retry;
+               /* go into the first sibling still alive */
+               do {
+                       next = child->d_child.next;
+                       if (next == &this_parent->d_subdirs)
+                               goto ascend;
+                       child = list_entry(next, struct dentry, d_child);
+               } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
+               rcu_read_unlock();
+               goto resume;
+       }
+       if (need_seqretry(&rename_lock, seq))
+               goto rename_retry;
+       rcu_read_unlock();
+       if (finish)
+               finish(data);
+
+out_unlock:
+       spin_unlock(&this_parent->d_lock);
+       done_seqretry(&rename_lock, seq);
+       return;
+
+rename_retry:
+       spin_unlock(&this_parent->d_lock);
+       rcu_read_unlock();
+       BUG_ON(seq & 1);
+       if (!retry)
+               return;
+       seq = 1;
+       goto again;
+}
+
+/*
+ * Search for at least 1 mount point in the dentry's subdirs.
+ * We descend to the next level whenever the d_subdirs
+ * list is non-empty and continue searching.
+ */
+
+static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
+{
+       int *ret = data;
+       if (d_mountpoint(dentry)) {
+               *ret = 1;
+               return D_WALK_QUIT;
+       }
+       return D_WALK_CONTINUE;
+}
+
+/**
+ * have_submounts - check for mounts over a dentry
+ * @parent: dentry to check.
+ *
+ * Return true if the parent or its subdirectories contain
+ * a mount point
+ */
+int have_submounts(struct dentry *parent)
+{
+       int ret = 0;
+
+       d_walk(parent, &ret, check_mount, NULL);
+
+       return ret;
+}
+EXPORT_SYMBOL(have_submounts);
+
+/*
+ * Called by mount code to set a mountpoint and check if the mountpoint is
+ * reachable (e.g. NFS can unhash a directory dentry and then the complete
+ * subtree can become unreachable).
+ *
+ * Only one of d_invalidate() and d_set_mounted() must succeed.  For
+ * this reason take rename_lock and d_lock on dentry and ancestors.
+ */
+int d_set_mounted(struct dentry *dentry)
+{
+       struct dentry *p;
+       int ret = -ENOENT;
+       write_seqlock(&rename_lock);
+       for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
+               /* Need exclusion wrt. d_invalidate() */
+               spin_lock(&p->d_lock);
+               if (unlikely(d_unhashed(p))) {
+                       spin_unlock(&p->d_lock);
+                       goto out;
+               }
+               spin_unlock(&p->d_lock);
+       }
+       spin_lock(&dentry->d_lock);
+       if (!d_unlinked(dentry)) {
+               dentry->d_flags |= DCACHE_MOUNTED;
+               ret = 0;
+       }
+       spin_unlock(&dentry->d_lock);
+out:
+       write_sequnlock(&rename_lock);
+       return ret;
+}
+
+/*
+ * Search the dentry child list of the specified parent,
+ * and move any unused dentries to the end of the unused
+ * list for prune_dcache(). We descend to the next level
+ * whenever the d_subdirs list is non-empty and continue
+ * searching.
+ *
+ * It returns zero iff there are no unused children,
+ * otherwise  it returns the number of children moved to
+ * the end of the unused list. This may not be the total
+ * number of unused children, because select_parent can
+ * drop the lock and return early due to latency
+ * constraints.
+ */
+
+struct select_data {
+       struct dentry *start;
+       struct list_head dispose;
+       int found;
+};
+
+static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
+{
+       struct select_data *data = _data;
+       enum d_walk_ret ret = D_WALK_CONTINUE;
+
+       if (data->start == dentry)
+               goto out;
+
+       if (dentry->d_flags & DCACHE_SHRINK_LIST) {
+               data->found++;
+       } else {
+               if (dentry->d_flags & DCACHE_LRU_LIST)
+                       d_lru_del(dentry);
+               if (!dentry->d_lockref.count) {
+                       d_shrink_add(dentry, &data->dispose);
+                       data->found++;
+               }
+       }
+       /*
+        * We can return to the caller if we have found some (this
+        * ensures forward progress). We'll be coming back to find
+        * the rest.
+        */
+       if (!list_empty(&data->dispose))
+               ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
+out:
+       return ret;
+}
+
+/**
+ * shrink_dcache_parent - prune dcache
+ * @parent: parent of entries to prune
+ *
+ * Prune the dcache to remove unused children of the parent dentry.
+ */
+void shrink_dcache_parent(struct dentry *parent)
+{
+       for (;;) {
+               struct select_data data;
+
+               INIT_LIST_HEAD(&data.dispose);
+               data.start = parent;
+               data.found = 0;
+
+               d_walk(parent, &data, select_collect, NULL);
+               if (!data.found)
+                       break;
+
+               shrink_dentry_list(&data.dispose);
+               cond_resched();
+       }
+}
+EXPORT_SYMBOL(shrink_dcache_parent);
+
+static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
+{
+       /* it has busy descendents; complain about those instead */
+       if (!list_empty(&dentry->d_subdirs))
+               return D_WALK_CONTINUE;
+
+       /* root with refcount 1 is fine */
+       if (dentry == _data && dentry->d_lockref.count == 1)
+               return D_WALK_CONTINUE;
+
+       printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
+                       " still in use (%d) [unmount of %s %s]\n",
+                      dentry,
+                      dentry->d_inode ?
+                      dentry->d_inode->i_ino : 0UL,
+                      dentry,
+                      dentry->d_lockref.count,
+                      dentry->d_sb->s_type->name,
+                      dentry->d_sb->s_id);
+       WARN_ON(1);
+       return D_WALK_CONTINUE;
+}
+
+static void do_one_tree(struct dentry *dentry)
+{
+       shrink_dcache_parent(dentry);
+       d_walk(dentry, dentry, umount_check, NULL);
+       d_drop(dentry);
+       dput(dentry);
+}
+
+/*
+ * destroy the dentries attached to a superblock on unmounting
+ */
+void shrink_dcache_for_umount(struct super_block *sb)
+{
+       struct dentry *dentry;
+
+       WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
+
+       dentry = sb->s_root;
+       sb->s_root = NULL;
+       do_one_tree(dentry);
+
+       while (!hlist_bl_empty(&sb->s_anon)) {
+               dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
+               do_one_tree(dentry);
+       }
+}
+
+struct detach_data {
+       struct select_data select;
+       struct dentry *mountpoint;
+};
+static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
+{
+       struct detach_data *data = _data;
+
+       if (d_mountpoint(dentry)) {
+               __dget_dlock(dentry);
+               data->mountpoint = dentry;
+               return D_WALK_QUIT;
+       }
+
+       return select_collect(&data->select, dentry);
+}
+
+static void check_and_drop(void *_data)
+{
+       struct detach_data *data = _data;
+
+       if (!data->mountpoint && !data->select.found)
+               __d_drop(data->select.start);
+}
+
+/**
+ * d_invalidate - detach submounts, prune dcache, and drop
+ * @dentry: dentry to invalidate (aka detach, prune and drop)
+ *
+ * no dcache lock.
+ *
+ * The final d_drop is done as an atomic operation relative to
+ * rename_lock ensuring there are no races with d_set_mounted.  This
+ * ensures there are no unhashed dentries on the path to a mountpoint.
+ */
+void d_invalidate(struct dentry *dentry)
+{
+       /*
+        * If it's already been dropped, return OK.
+        */
+       spin_lock(&dentry->d_lock);
+       if (d_unhashed(dentry)) {
+               spin_unlock(&dentry->d_lock);
+               return;
+       }
+       spin_unlock(&dentry->d_lock);
+
+       /* Negative dentries can be dropped without further checks */
+       if (!dentry->d_inode) {
+               d_drop(dentry);
+               return;
+       }
+
+       for (;;) {
+               struct detach_data data;
+
+               data.mountpoint = NULL;
+               INIT_LIST_HEAD(&data.select.dispose);
+               data.select.start = dentry;
+               data.select.found = 0;
+
+               d_walk(dentry, &data, detach_and_collect, check_and_drop);
+
+               if (data.select.found)
+                       shrink_dentry_list(&data.select.dispose);
+
+               if (data.mountpoint) {
+                       detach_mounts(data.mountpoint);
+                       dput(data.mountpoint);
+               }
+
+               if (!data.mountpoint && !data.select.found)
+                       break;
+
+               cond_resched();
+       }
+}
+EXPORT_SYMBOL(d_invalidate);
+
+/**
+ * __d_alloc   -       allocate a dcache entry
+ * @sb: filesystem it will belong to
+ * @name: qstr of the name
+ *
+ * Allocates a dentry. It returns %NULL if there is insufficient memory
+ * available. On a success the dentry is returned. The name passed in is
+ * copied and the copy passed in may be reused after this call.
+ */
+struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
+{
+       struct dentry *dentry;
+       char *dname;
+
+       dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
+       if (!dentry)
+               return NULL;
+
+       /*
+        * We guarantee that the inline name is always NUL-terminated.
+        * This way the memcpy() done by the name switching in rename
+        * will still always have a NUL at the end, even if we might
+        * be overwriting an internal NUL character
+        */
+       dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
+       if (name->len > DNAME_INLINE_LEN-1) {
+               size_t size = offsetof(struct external_name, name[1]);
+               struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
+               if (!p) {
+                       kmem_cache_free(dentry_cache, dentry); 
+                       return NULL;
+               }
+               atomic_set(&p->u.count, 1);
+               dname = p->name;
+               if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
+                       kasan_unpoison_shadow(dname,
+                               round_up(name->len + 1, sizeof(unsigned long)));
+       } else  {
+               dname = dentry->d_iname;
+       }       
+
+       dentry->d_name.len = name->len;
+       dentry->d_name.hash = name->hash;
+       memcpy(dname, name->name, name->len);
+       dname[name->len] = 0;
+
+       /* Make sure we always see the terminating NUL character */
+       smp_wmb();
+       dentry->d_name.name = dname;
+
+       dentry->d_lockref.count = 1;
+       dentry->d_flags = 0;
+       spin_lock_init(&dentry->d_lock);
+       seqcount_init(&dentry->d_seq);
+       dentry->d_inode = NULL;
+       dentry->d_parent = dentry;
+       dentry->d_sb = sb;
+       dentry->d_op = NULL;
+       dentry->d_fsdata = NULL;
+       INIT_HLIST_BL_NODE(&dentry->d_hash);
+       INIT_LIST_HEAD(&dentry->d_lru);
+       INIT_LIST_HEAD(&dentry->d_subdirs);
+       INIT_HLIST_NODE(&dentry->d_u.d_alias);
+       INIT_LIST_HEAD(&dentry->d_child);
+       d_set_d_op(dentry, dentry->d_sb->s_d_op);
+
+       this_cpu_inc(nr_dentry);
+
+       return dentry;
+}
+
+/**
+ * d_alloc     -       allocate a dcache entry
+ * @parent: parent of entry to allocate
+ * @name: qstr of the name
+ *
+ * Allocates a dentry. It returns %NULL if there is insufficient memory
+ * available. On a success the dentry is returned. The name passed in is
+ * copied and the copy passed in may be reused after this call.
+ */
+struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
+{
+       struct dentry *dentry = __d_alloc(parent->d_sb, name);
+       if (!dentry)
+               return NULL;
+
+       spin_lock(&parent->d_lock);
+       /*
+        * don't need child lock because it is not subject
+        * to concurrency here
+        */
+       __dget_dlock(parent);
+       dentry->d_parent = parent;
+       list_add(&dentry->d_child, &parent->d_subdirs);
+       spin_unlock(&parent->d_lock);
+
+       return dentry;
+}
+EXPORT_SYMBOL(d_alloc);
+
+/**
+ * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
+ * @sb: the superblock
+ * @name: qstr of the name
+ *
+ * For a filesystem that just pins its dentries in memory and never
+ * performs lookups at all, return an unhashed IS_ROOT dentry.
+ */
+struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
+{
+       return __d_alloc(sb, name);
+}
+EXPORT_SYMBOL(d_alloc_pseudo);
+
+struct dentry *d_alloc_name(struct dentry *parent, const char *name)
+{
+       struct qstr q;
+
+       q.name = name;
+       q.len = strlen(name);
+       q.hash = full_name_hash(q.name, q.len);
+       return d_alloc(parent, &q);
+}
+EXPORT_SYMBOL(d_alloc_name);
+
+void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
+{
+       WARN_ON_ONCE(dentry->d_op);
+       WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
+                               DCACHE_OP_COMPARE       |
+                               DCACHE_OP_REVALIDATE    |
+                               DCACHE_OP_WEAK_REVALIDATE       |
+                               DCACHE_OP_DELETE ));
+       dentry->d_op = op;
+       if (!op)
+               return;
+       if (op->d_hash)
+               dentry->d_flags |= DCACHE_OP_HASH;
+       if (op->d_compare)
+               dentry->d_flags |= DCACHE_OP_COMPARE;
+       if (op->d_revalidate)
+               dentry->d_flags |= DCACHE_OP_REVALIDATE;
+       if (op->d_weak_revalidate)
+               dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
+       if (op->d_delete)
+               dentry->d_flags |= DCACHE_OP_DELETE;
+       if (op->d_prune)
+               dentry->d_flags |= DCACHE_OP_PRUNE;
+
+}
+EXPORT_SYMBOL(d_set_d_op);
+
+
+/*
+ * d_set_fallthru - Mark a dentry as falling through to a lower layer
+ * @dentry - The dentry to mark
+ *
+ * Mark a dentry as falling through to the lower layer (as set with
+ * d_pin_lower()).  This flag may be recorded on the medium.
+ */
+void d_set_fallthru(struct dentry *dentry)
+{
+       spin_lock(&dentry->d_lock);
+       dentry->d_flags |= DCACHE_FALLTHRU;
+       spin_unlock(&dentry->d_lock);
+}
+EXPORT_SYMBOL(d_set_fallthru);
+
+static unsigned d_flags_for_inode(struct inode *inode)
+{
+       unsigned add_flags = DCACHE_REGULAR_TYPE;
+
+       if (!inode)
+               return DCACHE_MISS_TYPE;
+
+       if (S_ISDIR(inode->i_mode)) {
+               add_flags = DCACHE_DIRECTORY_TYPE;
+               if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
+                       if (unlikely(!inode->i_op->lookup))
+                               add_flags = DCACHE_AUTODIR_TYPE;
+                       else
+                               inode->i_opflags |= IOP_LOOKUP;
+               }
+               goto type_determined;
+       }
+
+       if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
+               if (unlikely(inode->i_op->follow_link)) {
+                       add_flags = DCACHE_SYMLINK_TYPE;
+                       goto type_determined;
+               }
+               inode->i_opflags |= IOP_NOFOLLOW;
+       }
+
+       if (unlikely(!S_ISREG(inode->i_mode)))
+               add_flags = DCACHE_SPECIAL_TYPE;
+
+type_determined:
+       if (unlikely(IS_AUTOMOUNT(inode)))
+               add_flags |= DCACHE_NEED_AUTOMOUNT;
+       return add_flags;
+}
+
+static void __d_instantiate(struct dentry *dentry, struct inode *inode)
+{
+       unsigned add_flags = d_flags_for_inode(inode);
+
+       spin_lock(&dentry->d_lock);
+       if (inode)
+               hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
+       __d_set_inode_and_type(dentry, inode, add_flags);
+       dentry_rcuwalk_barrier(dentry);
+       spin_unlock(&dentry->d_lock);
+       fsnotify_d_instantiate(dentry, inode);
+}
+
+/**
+ * d_instantiate - fill in inode information for a dentry
+ * @entry: dentry to complete
+ * @inode: inode to attach to this dentry
+ *
+ * Fill in inode information in the entry.
+ *
+ * This turns negative dentries into productive full members
+ * of society.
+ *
+ * NOTE! This assumes that the inode count has been incremented
+ * (or otherwise set) by the caller to indicate that it is now
+ * in use by the dcache.
+ */
+void d_instantiate(struct dentry *entry, struct inode * inode)
+{
+       BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
+       if (inode)
+               spin_lock(&inode->i_lock);
+       __d_instantiate(entry, inode);
+       if (inode)
+               spin_unlock(&inode->i_lock);
+       security_d_instantiate(entry, inode);
+}
+EXPORT_SYMBOL(d_instantiate);
+
+/**
+ * d_instantiate_unique - instantiate a non-aliased dentry
+ * @entry: dentry to instantiate
+ * @inode: inode to attach to this dentry
+ *
+ * Fill in inode information in the entry. On success, it returns NULL.
+ * If an unhashed alias of "entry" already exists, then we return the
+ * aliased dentry instead and drop one reference to inode.
+ *
+ * Note that in order to avoid conflicts with rename() etc, the caller
+ * had better be holding the parent directory semaphore.
+ *
+ * This also assumes that the inode count has been incremented
+ * (or otherwise set) by the caller to indicate that it is now
+ * in use by the dcache.
+ */
+static struct dentry *__d_instantiate_unique(struct dentry *entry,
+                                            struct inode *inode)
+{
+       struct dentry *alias;
+       int len = entry->d_name.len;
+       const char *name = entry->d_name.name;
+       unsigned int hash = entry->d_name.hash;
+
+       if (!inode) {
+               __d_instantiate(entry, NULL);
+               return NULL;
+       }
+
+       hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
+               /*
+                * Don't need alias->d_lock here, because aliases with
+                * d_parent == entry->d_parent are not subject to name or
+                * parent changes, because the parent inode i_mutex is held.
+                */
+               if (alias->d_name.hash != hash)
+                       continue;
+               if (alias->d_parent != entry->d_parent)
+                       continue;
+               if (alias->d_name.len != len)
+                       continue;
+               if (dentry_cmp(alias, name, len))
+                       continue;
+               __dget(alias);
+               return alias;
+       }
+
+       __d_instantiate(entry, inode);
+       return NULL;
+}
+
+struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
+{
+       struct dentry *result;
+
+       BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
+
+       if (inode)
+               spin_lock(&inode->i_lock);
+       result = __d_instantiate_unique(entry, inode);
+       if (inode)
+               spin_unlock(&inode->i_lock);
+
+       if (!result) {
+               security_d_instantiate(entry, inode);
+               return NULL;
+       }
+
+       BUG_ON(!d_unhashed(result));
+       iput(inode);
+       return result;
+}
+
+EXPORT_SYMBOL(d_instantiate_unique);
+
+/**
+ * d_instantiate_no_diralias - instantiate a non-aliased dentry
+ * @entry: dentry to complete
+ * @inode: inode to attach to this dentry
+ *
+ * Fill in inode information in the entry.  If a directory alias is found, then
+ * return an error (and drop inode).  Together with d_materialise_unique() this
+ * guarantees that a directory inode may never have more than one alias.
+ */
+int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
+{
+       BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
+
+       spin_lock(&inode->i_lock);
+       if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
+               spin_unlock(&inode->i_lock);
+               iput(inode);
+               return -EBUSY;
+       }
+       __d_instantiate(entry, inode);
+       spin_unlock(&inode->i_lock);
+       security_d_instantiate(entry, inode);
+
+       return 0;
+}
+EXPORT_SYMBOL(d_instantiate_no_diralias);
+
+struct dentry *d_make_root(struct inode *root_inode)
+{
+       struct dentry *res = NULL;
+
+       if (root_inode) {
+               static const struct qstr name = QSTR_INIT("/", 1);
+
+               res = __d_alloc(root_inode->i_sb, &name);
+               if (res)
+                       d_instantiate(res, root_inode);
+               else
+                       iput(root_inode);
+       }
+       return res;
+}
+EXPORT_SYMBOL(d_make_root);
+
+static struct dentry * __d_find_any_alias(struct inode *inode)
+{
+       struct dentry *alias;
+
+       if (hlist_empty(&inode->i_dentry))
+               return NULL;
+       alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
+       __dget(alias);
+       return alias;
+}
+
+/**
+ * d_find_any_alias - find any alias for a given inode
+ * @inode: inode to find an alias for
+ *
+ * If any aliases exist for the given inode, take and return a
+ * reference for one of them.  If no aliases exist, return %NULL.
+ */
+struct dentry *d_find_any_alias(struct inode *inode)
+{
+       struct dentry *de;
+
+       spin_lock(&inode->i_lock);
+       de = __d_find_any_alias(inode);
+       spin_unlock(&inode->i_lock);
+       return de;
+}
+EXPORT_SYMBOL(d_find_any_alias);
+
+static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
+{
+       static const struct qstr anonstring = QSTR_INIT("/", 1);
+       struct dentry *tmp;
+       struct dentry *res;
+       unsigned add_flags;
+
+       if (!inode)
+               return ERR_PTR(-ESTALE);
+       if (IS_ERR(inode))
+               return ERR_CAST(inode);
+
+       res = d_find_any_alias(inode);
+       if (res)
+               goto out_iput;
+
+       tmp = __d_alloc(inode->i_sb, &anonstring);
+       if (!tmp) {
+               res = ERR_PTR(-ENOMEM);
+               goto out_iput;
+       }
+
+       spin_lock(&inode->i_lock);
+       res = __d_find_any_alias(inode);
+       if (res) {
+               spin_unlock(&inode->i_lock);
+               dput(tmp);
+               goto out_iput;
+       }
+
+       /* attach a disconnected dentry */
+       add_flags = d_flags_for_inode(inode);
+
+       if (disconnected)
+               add_flags |= DCACHE_DISCONNECTED;
+
+       spin_lock(&tmp->d_lock);
+       __d_set_inode_and_type(tmp, inode, add_flags);
+       hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
+       hlist_bl_lock(&tmp->d_sb->s_anon);
+       hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
+       hlist_bl_unlock(&tmp->d_sb->s_anon);
+       spin_unlock(&tmp->d_lock);
+       spin_unlock(&inode->i_lock);
+       security_d_instantiate(tmp, inode);
+
+       return tmp;
+
+ out_iput:
+       if (res && !IS_ERR(res))
+               security_d_instantiate(res, inode);
+       iput(inode);
+       return res;
+}
+
+/**
+ * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
+ * @inode: inode to allocate the dentry for
+ *
+ * Obtain a dentry for an inode resulting from NFS filehandle conversion or
+ * similar open by handle operations.  The returned dentry may be anonymous,
+ * or may have a full name (if the inode was already in the cache).
+ *
+ * When called on a directory inode, we must ensure that the inode only ever
+ * has one dentry.  If a dentry is found, that is returned instead of
+ * allocating a new one.
+ *
+ * On successful return, the reference to the inode has been transferred
+ * to the dentry.  In case of an error the reference on the inode is released.
+ * To make it easier to use in export operations a %NULL or IS_ERR inode may
+ * be passed in and the error will be propagated to the return value,
+ * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
+ */
+struct dentry *d_obtain_alias(struct inode *inode)
+{
+       return __d_obtain_alias(inode, 1);
+}
+EXPORT_SYMBOL(d_obtain_alias);
+
+/**
+ * d_obtain_root - find or allocate a dentry for a given inode
+ * @inode: inode to allocate the dentry for
+ *
+ * Obtain an IS_ROOT dentry for the root of a filesystem.
+ *
+ * We must ensure that directory inodes only ever have one dentry.  If a
+ * dentry is found, that is returned instead of allocating a new one.
+ *
+ * On successful return, the reference to the inode has been transferred
+ * to the dentry.  In case of an error the reference on the inode is
+ * released.  A %NULL or IS_ERR inode may be passed in and will be the
+ * error will be propagate to the return value, with a %NULL @inode
+ * replaced by ERR_PTR(-ESTALE).
+ */
+struct dentry *d_obtain_root(struct inode *inode)
+{
+       return __d_obtain_alias(inode, 0);
+}
+EXPORT_SYMBOL(d_obtain_root);
+
+/**
+ * d_add_ci - lookup or allocate new dentry with case-exact name
+ * @inode:  the inode case-insensitive lookup has found
+ * @dentry: the negative dentry that was passed to the parent's lookup func
+ * @name:   the case-exact name to be associated with the returned dentry
+ *
+ * This is to avoid filling the dcache with case-insensitive names to the
+ * same inode, only the actual correct case is stored in the dcache for
+ * case-insensitive filesystems.
+ *
+ * For a case-insensitive lookup match and if the the case-exact dentry
+ * already exists in in the dcache, use it and return it.
+ *
+ * If no entry exists with the exact case name, allocate new dentry with
+ * the exact case, and return the spliced entry.
+ */
+struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
+                       struct qstr *name)
+{
+       struct dentry *found;
+       struct dentry *new;
+
+       /*
+        * First check if a dentry matching the name already exists,
+        * if not go ahead and create it now.
+        */
+       found = d_hash_and_lookup(dentry->d_parent, name);
+       if (!found) {
+               new = d_alloc(dentry->d_parent, name);
+               if (!new) {
+                       found = ERR_PTR(-ENOMEM);
+               } else {
+                       found = d_splice_alias(inode, new);
+                       if (found) {
+                               dput(new);
+                               return found;
+                       }
+                       return new;
+               }
+       }
+       iput(inode);
+       return found;
+}
+EXPORT_SYMBOL(d_add_ci);
+
+/*
+ * Do the slow-case of the dentry name compare.
+ *
+ * Unlike the dentry_cmp() function, we need to atomically
+ * load the name and length information, so that the
+ * filesystem can rely on them, and can use the 'name' and
+ * 'len' information without worrying about walking off the
+ * end of memory etc.
+ *
+ * Thus the read_seqcount_retry() and the "duplicate" info
+ * in arguments (the low-level filesystem should not look
+ * at the dentry inode or name contents directly, since
+ * rename can change them while we're in RCU mode).
+ */
+enum slow_d_compare {
+       D_COMP_OK,
+       D_COMP_NOMATCH,
+       D_COMP_SEQRETRY,
+};
+
+static noinline enum slow_d_compare slow_dentry_cmp(
+               const struct dentry *parent,
+               struct dentry *dentry,
+               unsigned int seq,
+               const struct qstr *name)
+{
+       int tlen = dentry->d_name.len;
+       const char *tname = dentry->d_name.name;
+
+       if (read_seqcount_retry(&dentry->d_seq, seq)) {
+               cpu_relax();
+               return D_COMP_SEQRETRY;
+       }
+       if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
+               return D_COMP_NOMATCH;
+       return D_COMP_OK;
+}
+
+/**
+ * __d_lookup_rcu - search for a dentry (racy, store-free)
+ * @parent: parent dentry
+ * @name: qstr of name we wish to find
+ * @seqp: returns d_seq value at the point where the dentry was found
+ * Returns: dentry, or NULL
+ *
+ * __d_lookup_rcu is the dcache lookup function for rcu-walk name
+ * resolution (store-free path walking) design described in
+ * Documentation/filesystems/path-lookup.txt.
+ *
+ * This is not to be used outside core vfs.
+ *
+ * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
+ * held, and rcu_read_lock held. The returned dentry must not be stored into
+ * without taking d_lock and checking d_seq sequence count against @seq
+ * returned here.
+ *
+ * A refcount may be taken on the found dentry with the d_rcu_to_refcount
+ * function.
+ *
+ * Alternatively, __d_lookup_rcu may be called again to look up the child of
+ * the returned dentry, so long as its parent's seqlock is checked after the
+ * child is looked up. Thus, an interlocking stepping of sequence lock checks
+ * is formed, giving integrity down the path walk.
+ *
+ * NOTE! The caller *has* to check the resulting dentry against the sequence
+ * number we've returned before using any of the resulting dentry state!
+ */
+struct dentry *__d_lookup_rcu(const struct dentry *parent,
+                               const struct qstr *name,
+                               unsigned *seqp)
+{
+       u64 hashlen = name->hash_len;
+       const unsigned char *str = name->name;
+       struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
+       struct hlist_bl_node *node;
+       struct dentry *dentry;
+
+       /*
+        * Note: There is significant duplication with __d_lookup_rcu which is
+        * required to prevent single threaded performance regressions
+        * especially on architectures where smp_rmb (in seqcounts) are costly.
+        * Keep the two functions in sync.
+        */
+
+       /*
+        * The hash list is protected using RCU.
+        *
+        * Carefully use d_seq when comparing a candidate dentry, to avoid
+        * races with d_move().
+        *
+        * It is possible that concurrent renames can mess up our list
+        * walk here and result in missing our dentry, resulting in the
+        * false-negative result. d_lookup() protects against concurrent
+        * renames using rename_lock seqlock.
+        *
+        * See Documentation/filesystems/path-lookup.txt for more details.
+        */
+       hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
+               unsigned seq;
+
+seqretry:
+               /*
+                * The dentry sequence count protects us from concurrent
+                * renames, and thus protects parent and name fields.
+                *
+                * The caller must perform a seqcount check in order
+                * to do anything useful with the returned dentry.
+                *
+                * NOTE! We do a "raw" seqcount_begin here. That means that
+                * we don't wait for the sequence count to stabilize if it
+                * is in the middle of a sequence change. If we do the slow
+                * dentry compare, we will do seqretries until it is stable,
+                * and if we end up with a successful lookup, we actually
+                * want to exit RCU lookup anyway.
+                */
+               seq = raw_seqcount_begin(&dentry->d_seq);
+               if (dentry->d_parent != parent)
+                       continue;
+               if (d_unhashed(dentry))
+                       continue;
+
+               if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
+                       if (dentry->d_name.hash != hashlen_hash(hashlen))
+                               continue;
+                       *seqp = seq;
+                       switch (slow_dentry_cmp(parent, dentry, seq, name)) {
+                       case D_COMP_OK:
+                               return dentry;
+                       case D_COMP_NOMATCH:
+                               continue;
+                       default:
+                               goto seqretry;
+                       }
+               }
+
+               if (dentry->d_name.hash_len != hashlen)
+                       continue;
+               *seqp = seq;
+               if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
+                       return dentry;
+       }
+       return NULL;
+}
+
+/**
+ * d_lookup - search for a dentry
+ * @parent: parent dentry
+ * @name: qstr of name we wish to find
+ * Returns: dentry, or NULL
+ *
+ * d_lookup searches the children of the parent dentry for the name in
+ * question. If the dentry is found its reference count is incremented and the
+ * dentry is returned. The caller must use dput to free the entry when it has
+ * finished using it. %NULL is returned if the dentry does not exist.
+ */
+struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
+{
+       struct dentry *dentry;
+       unsigned seq;
+
+       do {
+               seq = read_seqbegin(&rename_lock);
+               dentry = __d_lookup(parent, name);
+               if (dentry)
+                       break;
+       } while (read_seqretry(&rename_lock, seq));
+       return dentry;
+}
+EXPORT_SYMBOL(d_lookup);
+
+/**
+ * __d_lookup - search for a dentry (racy)
+ * @parent: parent dentry
+ * @name: qstr of name we wish to find
+ * Returns: dentry, or NULL
+ *
+ * __d_lookup is like d_lookup, however it may (rarely) return a
+ * false-negative result due to unrelated rename activity.
+ *
+ * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
+ * however it must be used carefully, eg. with a following d_lookup in
+ * the case of failure.
+ *
+ * __d_lookup callers must be commented.
+ */
+struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
+{
+       unsigned int len = name->len;
+       unsigned int hash = name->hash;
+       const unsigned char *str = name->name;
+       struct hlist_bl_head *b = d_hash(parent, hash);
+       struct hlist_bl_node *node;
+       struct dentry *found = NULL;
+       struct dentry *dentry;
+
+       /*
+        * Note: There is significant duplication with __d_lookup_rcu which is
+        * required to prevent single threaded performance regressions
+        * especially on architectures where smp_rmb (in seqcounts) are costly.
+        * Keep the two functions in sync.
+        */
+
+       /*
+        * The hash list is protected using RCU.
+        *
+        * Take d_lock when comparing a candidate dentry, to avoid races
+        * with d_move().
+        *
+        * It is possible that concurrent renames can mess up our list
+        * walk here and result in missing our dentry, resulting in the
+        * false-negative result. d_lookup() protects against concurrent
+        * renames using rename_lock seqlock.
+        *
+        * See Documentation/filesystems/path-lookup.txt for more details.
+        */
+       rcu_read_lock();
+       
+       hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
+
+               if (dentry->d_name.hash != hash)
+                       continue;
+
+               spin_lock(&dentry->d_lock);
+               if (dentry->d_parent != parent)
+                       goto next;
+               if (d_unhashed(dentry))
+                       goto next;
+
+               /*
+                * It is safe to compare names since d_move() cannot
+                * change the qstr (protected by d_lock).
+                */
+               if (parent->d_flags & DCACHE_OP_COMPARE) {
+                       int tlen = dentry->d_name.len;
+                       const char *tname = dentry->d_name.name;
+                       if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
+                               goto next;
+               } else {
+                       if (dentry->d_name.len != len)
+                               goto next;
+                       if (dentry_cmp(dentry, str, len))
+                               goto next;
+               }
+
+               dentry->d_lockref.count++;
+               found = dentry;
+               spin_unlock(&dentry->d_lock);
+               break;
+next:
+               spin_unlock(&dentry->d_lock);
+       }
+       rcu_read_unlock();
+
+       return found;
+}
+
+/**
+ * d_hash_and_lookup - hash the qstr then search for a dentry
+ * @dir: Directory to search in
+ * @name: qstr of name we wish to find
+ *
+ * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
+ */
+struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
+{
+       /*
+        * Check for a fs-specific hash function. Note that we must
+        * calculate the standard hash first, as the d_op->d_hash()
+        * routine may choose to leave the hash value unchanged.
+        */
+       name->hash = full_name_hash(name->name, name->len);
+       if (dir->d_flags & DCACHE_OP_HASH) {
+               int err = dir->d_op->d_hash(dir, name);
+               if (unlikely(err < 0))
+                       return ERR_PTR(err);
+       }
+       return d_lookup(dir, name);
+}
+EXPORT_SYMBOL(d_hash_and_lookup);
+
+/*
+ * When a file is deleted, we have two options:
+ * - turn this dentry into a negative dentry
+ * - unhash this dentry and free it.
+ *
+ * Usually, we want to just turn this into
+ * a negative dentry, but if anybody else is
+ * currently using the dentry or the inode
+ * we can't do that and we fall back on removing
+ * it from the hash queues and waiting for
+ * it to be deleted later when it has no users
+ */
+/**
+ * d_delete - delete a dentry
+ * @dentry: The dentry to delete
+ *
+ * Turn the dentry into a negative dentry if possible, otherwise
+ * remove it from the hash queues so it can be deleted later
+ */
+void d_delete(struct dentry * dentry)
+{
+       struct inode *inode;
+       int isdir = 0;
+       /*
+        * Are we the only user?
+        */
+again:
+       spin_lock(&dentry->d_lock);
+       inode = dentry->d_inode;
+       isdir = S_ISDIR(inode->i_mode);
+       if (dentry->d_lockref.count == 1) {
+               if (!spin_trylock(&inode->i_lock)) {
+                       spin_unlock(&dentry->d_lock);
+                       cpu_chill();
+                       goto again;
+               }
+               dentry->d_flags &= ~DCACHE_CANT_MOUNT;
+               dentry_unlink_inode(dentry);
+               fsnotify_nameremove(dentry, isdir);
+               return;
+       }
+
+       if (!d_unhashed(dentry))
+               __d_drop(dentry);
+
+       spin_unlock(&dentry->d_lock);
+
+       fsnotify_nameremove(dentry, isdir);
+}
+EXPORT_SYMBOL(d_delete);
+
+static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
+{
+       BUG_ON(!d_unhashed(entry));
+       hlist_bl_lock(b);
+       entry->d_flags |= DCACHE_RCUACCESS;
+       hlist_bl_add_head_rcu(&entry->d_hash, b);
+       hlist_bl_unlock(b);
+}
+
+static void _d_rehash(struct dentry * entry)
+{
+       __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
+}
+
+/**
+ * d_rehash    - add an entry back to the hash
+ * @entry: dentry to add to the hash
+ *
+ * Adds a dentry to the hash according to its name.
+ */
+void d_rehash(struct dentry * entry)
+{
+       spin_lock(&entry->d_lock);
+       _d_rehash(entry);
+       spin_unlock(&entry->d_lock);
+}
+EXPORT_SYMBOL(d_rehash);
+
+/**
+ * dentry_update_name_case - update case insensitive dentry with a new name
+ * @dentry: dentry to be updated
+ * @name: new name
+ *
+ * Update a case insensitive dentry with new case of name.
+ *
+ * dentry must have been returned by d_lookup with name @name. Old and new
+ * name lengths must match (ie. no d_compare which allows mismatched name
+ * lengths).
+ *
+ * Parent inode i_mutex must be held over d_lookup and into this call (to
+ * keep renames and concurrent inserts, and readdir(2) away).
+ */
+void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
+{
+       BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
+       BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
+
+       spin_lock(&dentry->d_lock);
+       write_seqcount_begin(&dentry->d_seq);
+       memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
+       write_seqcount_end(&dentry->d_seq);
+       spin_unlock(&dentry->d_lock);
+}
+EXPORT_SYMBOL(dentry_update_name_case);
+
+static void swap_names(struct dentry *dentry, struct dentry *target)
+{
+       if (unlikely(dname_external(target))) {
+               if (unlikely(dname_external(dentry))) {
+                       /*
+                        * Both external: swap the pointers
+                        */
+                       swap(target->d_name.name, dentry->d_name.name);
+               } else {
+                       /*
+                        * dentry:internal, target:external.  Steal target's
+                        * storage and make target internal.
+                        */
+                       memcpy(target->d_iname, dentry->d_name.name,
+                                       dentry->d_name.len + 1);
+                       dentry->d_name.name = target->d_name.name;
+                       target->d_name.name = target->d_iname;
+               }
+       } else {
+               if (unlikely(dname_external(dentry))) {
+                       /*
+                        * dentry:external, target:internal.  Give dentry's
+                        * storage to target and make dentry internal
+                        */
+                       memcpy(dentry->d_iname, target->d_name.name,
+                                       target->d_name.len + 1);
+                       target->d_name.name = dentry->d_name.name;
+                       dentry->d_name.name = dentry->d_iname;
+               } else {
+                       /*
+                        * Both are internal.
+                        */
+                       unsigned int i;
+                       BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
+                       kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
+                       kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
+                       for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
+                               swap(((long *) &dentry->d_iname)[i],
+                                    ((long *) &target->d_iname)[i]);
+                       }
+               }
+       }
+       swap(dentry->d_name.hash_len, target->d_name.hash_len);
+}
+
+static void copy_name(struct dentry *dentry, struct dentry *target)
+{
+       struct external_name *old_name = NULL;
+       if (unlikely(dname_external(dentry)))
+               old_name = external_name(dentry);
+       if (unlikely(dname_external(target))) {
+               atomic_inc(&external_name(target)->u.count);
+               dentry->d_name = target->d_name;
+       } else {
+               memcpy(dentry->d_iname, target->d_name.name,
+                               target->d_name.len + 1);
+               dentry->d_name.name = dentry->d_iname;
+               dentry->d_name.hash_len = target->d_name.hash_len;
+       }
+       if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
+               kfree_rcu(old_name, u.head);
+}
+
+static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
+{
+       /*
+        * XXXX: do we really need to take target->d_lock?
+        */
+       if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
+               spin_lock(&target->d_parent->d_lock);
+       else {
+               if (d_ancestor(dentry->d_parent, target->d_parent)) {
+                       spin_lock(&dentry->d_parent->d_lock);
+                       spin_lock_nested(&target->d_parent->d_lock,
+                                               DENTRY_D_LOCK_NESTED);
+               } else {
+                       spin_lock(&target->d_parent->d_lock);
+                       spin_lock_nested(&dentry->d_parent->d_lock,
+                                               DENTRY_D_LOCK_NESTED);
+               }
+       }
+       if (target < dentry) {
+               spin_lock_nested(&target->d_lock, 2);
+               spin_lock_nested(&dentry->d_lock, 3);
+       } else {
+               spin_lock_nested(&dentry->d_lock, 2);
+               spin_lock_nested(&target->d_lock, 3);
+       }
+}
+
+static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
+{
+       if (target->d_parent != dentry->d_parent)
+               spin_unlock(&dentry->d_parent->d_lock);
+       if (target->d_parent != target)
+               spin_unlock(&target->d_parent->d_lock);
+       spin_unlock(&target->d_lock);
+       spin_unlock(&dentry->d_lock);
+}
+
+/*
+ * When switching names, the actual string doesn't strictly have to
+ * be preserved in the target - because we're dropping the target
+ * anyway. As such, we can just do a simple memcpy() to copy over
+ * the new name before we switch, unless we are going to rehash
+ * it.  Note that if we *do* unhash the target, we are not allowed
+ * to rehash it without giving it a new name/hash key - whether
+ * we swap or overwrite the names here, resulting name won't match
+ * the reality in filesystem; it's only there for d_path() purposes.
+ * Note that all of this is happening under rename_lock, so the
+ * any hash lookup seeing it in the middle of manipulations will
+ * be discarded anyway.  So we do not care what happens to the hash
+ * key in that case.
+ */
+/*
+ * __d_move - move a dentry
+ * @dentry: entry to move
+ * @target: new dentry
+ * @exchange: exchange the two dentries
+ *
+ * Update the dcache to reflect the move of a file name. Negative
+ * dcache entries should not be moved in this way. Caller must hold
+ * rename_lock, the i_mutex of the source and target directories,
+ * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
+ */
+static void __d_move(struct dentry *dentry, struct dentry *target,
+                    bool exchange)
+{
+       if (!dentry->d_inode)
+               printk(KERN_WARNING "VFS: moving negative dcache entry\n");
+
+       BUG_ON(d_ancestor(dentry, target));
+       BUG_ON(d_ancestor(target, dentry));
+
+       dentry_lock_for_move(dentry, target);
+
+       write_seqcount_begin(&dentry->d_seq);
+       write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
+
+       /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
+
+       /*
+        * Move the dentry to the target hash queue. Don't bother checking
+        * for the same hash queue because of how unlikely it is.
+        */
+       __d_drop(dentry);
+       __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
+
+       /*
+        * Unhash the target (d_delete() is not usable here).  If exchanging
+        * the two dentries, then rehash onto the other's hash queue.
+        */
+       __d_drop(target);
+       if (exchange) {
+               __d_rehash(target,
+                          d_hash(dentry->d_parent, dentry->d_name.hash));
+       }
+
+       /* Switch the names.. */
+       if (exchange)
+               swap_names(dentry, target);
+       else
+               copy_name(dentry, target);
+
+       /* ... and switch them in the tree */
+       if (IS_ROOT(dentry)) {
+               /* splicing a tree */
+               dentry->d_parent = target->d_parent;
+               target->d_parent = target;
+               list_del_init(&target->d_child);
+               list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
+       } else {
+               /* swapping two dentries */
+               swap(dentry->d_parent, target->d_parent);
+               list_move(&target->d_child, &target->d_parent->d_subdirs);
+               list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
+               if (exchange)
+                       fsnotify_d_move(target);
+               fsnotify_d_move(dentry);
+       }
+
+       write_seqcount_end(&target->d_seq);
+       write_seqcount_end(&dentry->d_seq);
+
+       dentry_unlock_for_move(dentry, target);
+}
+
+/*
+ * d_move - move a dentry
+ * @dentry: entry to move
+ * @target: new dentry
+ *
+ * Update the dcache to reflect the move of a file name. Negative
+ * dcache entries should not be moved in this way. See the locking
+ * requirements for __d_move.
+ */
+void d_move(struct dentry *dentry, struct dentry *target)
+{
+       write_seqlock(&rename_lock);
+       __d_move(dentry, target, false);
+       write_sequnlock(&rename_lock);
+}
+EXPORT_SYMBOL(d_move);
+
+/*
+ * d_exchange - exchange two dentries
+ * @dentry1: first dentry
+ * @dentry2: second dentry
+ */
+void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
+{
+       write_seqlock(&rename_lock);
+
+       WARN_ON(!dentry1->d_inode);
+       WARN_ON(!dentry2->d_inode);
+       WARN_ON(IS_ROOT(dentry1));
+       WARN_ON(IS_ROOT(dentry2));
+
+       __d_move(dentry1, dentry2, true);
+
+       write_sequnlock(&rename_lock);
+}
+
+/**
+ * d_ancestor - search for an ancestor
+ * @p1: ancestor dentry
+ * @p2: child dentry
+ *
+ * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
+ * an ancestor of p2, else NULL.
+ */
+struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
+{
+       struct dentry *p;
+
+       for (p = p2; !IS_ROOT(p); p = p->d_parent) {
+               if (p->d_parent == p1)
+                       return p;
+       }
+       return NULL;
+}
+
+/*
+ * This helper attempts to cope with remotely renamed directories
+ *
+ * It assumes that the caller is already holding
+ * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
+ *
+ * Note: If ever the locking in lock_rename() changes, then please
+ * remember to update this too...
+ */
+static int __d_unalias(struct inode *inode,
+               struct dentry *dentry, struct dentry *alias)
+{
+       struct mutex *m1 = NULL, *m2 = NULL;
+       int ret = -ESTALE;
+
+       /* If alias and dentry share a parent, then no extra locks required */
+       if (alias->d_parent == dentry->d_parent)
+               goto out_unalias;
+
+       /* See lock_rename() */
+       if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
+               goto out_err;
+       m1 = &dentry->d_sb->s_vfs_rename_mutex;
+       if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
+               goto out_err;
+       m2 = &alias->d_parent->d_inode->i_mutex;
+out_unalias:
+       __d_move(alias, dentry, false);
+       ret = 0;
+out_err:
+       spin_unlock(&inode->i_lock);
+       if (m2)
+               mutex_unlock(m2);
+       if (m1)
+               mutex_unlock(m1);
+       return ret;
+}
+
+/**
+ * d_splice_alias - splice a disconnected dentry into the tree if one exists
+ * @inode:  the inode which may have a disconnected dentry
+ * @dentry: a negative dentry which we want to point to the inode.
+ *
+ * If inode is a directory and has an IS_ROOT alias, then d_move that in
+ * place of the given dentry and return it, else simply d_add the inode
+ * to the dentry and return NULL.
+ *
+ * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
+ * we should error out: directories can't have multiple aliases.
+ *
+ * This is needed in the lookup routine of any filesystem that is exportable
+ * (via knfsd) so that we can build dcache paths to directories effectively.
+ *
+ * If a dentry was found and moved, then it is returned.  Otherwise NULL
+ * is returned.  This matches the expected return value of ->lookup.
+ *
+ * Cluster filesystems may call this function with a negative, hashed dentry.
+ * In that case, we know that the inode will be a regular file, and also this
+ * will only occur during atomic_open. So we need to check for the dentry
+ * being already hashed only in the final case.
+ */
+struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
+{
+       if (IS_ERR(inode))
+               return ERR_CAST(inode);
+
+       BUG_ON(!d_unhashed(dentry));
+
+       if (!inode) {
+               __d_instantiate(dentry, NULL);
+               goto out;
+       }
+       spin_lock(&inode->i_lock);
+       if (S_ISDIR(inode->i_mode)) {
+               struct dentry *new = __d_find_any_alias(inode);
+               if (unlikely(new)) {
+                       write_seqlock(&rename_lock);
+                       if (unlikely(d_ancestor(new, dentry))) {
+                               write_sequnlock(&rename_lock);
+                               spin_unlock(&inode->i_lock);
+                               dput(new);
+                               new = ERR_PTR(-ELOOP);
+                               pr_warn_ratelimited(
+                                       "VFS: Lookup of '%s' in %s %s"
+                                       " would have caused loop\n",
+                                       dentry->d_name.name,
+                                       inode->i_sb->s_type->name,
+                                       inode->i_sb->s_id);
+                       } else if (!IS_ROOT(new)) {
+                               int err = __d_unalias(inode, dentry, new);
+                               write_sequnlock(&rename_lock);
+                               if (err) {
+                                       dput(new);
+                                       new = ERR_PTR(err);
+                               }
+                       } else {
+                               __d_move(new, dentry, false);
+                               write_sequnlock(&rename_lock);
+                               spin_unlock(&inode->i_lock);
+                               security_d_instantiate(new, inode);
+                       }
+                       iput(inode);
+                       return new;
+               }
+       }
+       /* already taking inode->i_lock, so d_add() by hand */
+       __d_instantiate(dentry, inode);
+       spin_unlock(&inode->i_lock);
+out:
+       security_d_instantiate(dentry, inode);
+       d_rehash(dentry);
+       return NULL;
+}
+EXPORT_SYMBOL(d_splice_alias);
+
+static int prepend(char **buffer, int *buflen, const char *str, int namelen)
+{
+       *buflen -= namelen;
+       if (*buflen < 0)
+               return -ENAMETOOLONG;
+       *buffer -= namelen;
+       memcpy(*buffer, str, namelen);
+       return 0;
+}
+
+/**
+ * prepend_name - prepend a pathname in front of current buffer pointer
+ * @buffer: buffer pointer
+ * @buflen: allocated length of the buffer
+ * @name:   name string and length qstr structure
+ *
+ * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
+ * make sure that either the old or the new name pointer and length are
+ * fetched. However, there may be mismatch between length and pointer.
+ * The length cannot be trusted, we need to copy it byte-by-byte until
+ * the length is reached or a null byte is found. It also prepends "/" at
+ * the beginning of the name. The sequence number check at the caller will
+ * retry it again when a d_move() does happen. So any garbage in the buffer
+ * due to mismatched pointer and length will be discarded.
+ *
+ * Data dependency barrier is needed to make sure that we see that terminating
+ * NUL.  Alpha strikes again, film at 11...
+ */
+static int prepend_name(char **buffer, int *buflen, struct qstr *name)
+{
+       const char *dname = ACCESS_ONCE(name->name);
+       u32 dlen = ACCESS_ONCE(name->len);
+       char *p;
+
+       smp_read_barrier_depends();
+
+       *buflen -= dlen + 1;
+       if (*buflen < 0)
+               return -ENAMETOOLONG;
+       p = *buffer -= dlen + 1;
+       *p++ = '/';
+       while (dlen--) {
+               char c = *dname++;
+               if (!c)
+                       break;
+               *p++ = c;
+       }
+       return 0;
+}
+
+/**
+ * prepend_path - Prepend path string to a buffer
+ * @path: the dentry/vfsmount to report
+ * @root: root vfsmnt/dentry
+ * @buffer: pointer to the end of the buffer
+ * @buflen: pointer to buffer length
+ *
+ * The function will first try to write out the pathname without taking any
+ * lock other than the RCU read lock to make sure that dentries won't go away.
+ * It only checks the sequence number of the global rename_lock as any change
+ * in the dentry's d_seq will be preceded by changes in the rename_lock
+ * sequence number. If the sequence number had been changed, it will restart
+ * the whole pathname back-tracing sequence again by taking the rename_lock.
+ * In this case, there is no need to take the RCU read lock as the recursive
+ * parent pointer references will keep the dentry chain alive as long as no
+ * rename operation is performed.
+ */
+static int prepend_path(const struct path *path,
+                       const struct path *root,
+                       char **buffer, int *buflen)
+{
+       struct dentry *dentry;
+       struct vfsmount *vfsmnt;
+       struct mount *mnt;
+       int error = 0;
+       unsigned seq, m_seq = 0;
+       char *bptr;
+       int blen;
+
+       rcu_read_lock();
+restart_mnt:
+       read_seqbegin_or_lock(&mount_lock, &m_seq);
+       seq = 0;
+       rcu_read_lock();
+restart:
+       bptr = *buffer;
+       blen = *buflen;
+       error = 0;
+       dentry = path->dentry;
+       vfsmnt = path->mnt;
+       mnt = real_mount(vfsmnt);
+       read_seqbegin_or_lock(&rename_lock, &seq);
+       while (dentry != root->dentry || vfsmnt != root->mnt) {
+               struct dentry * parent;
+
+               if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
+                       struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
+                       /* Global root? */
+                       if (mnt != parent) {
+                               dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
+                               mnt = parent;
+                               vfsmnt = &mnt->mnt;
+                               continue;
+                       }
+                       if (!error)
+                               error = is_mounted(vfsmnt) ? 1 : 2;
+                       break;
+               }
+               parent = dentry->d_parent;
+               prefetch(parent);
+               error = prepend_name(&bptr, &blen, &dentry->d_name);
+               if (error)
+                       break;
+
+               dentry = parent;
+       }
+       if (!(seq & 1))
+               rcu_read_unlock();
+       if (need_seqretry(&rename_lock, seq)) {
+               seq = 1;
+               goto restart;
+       }
+       done_seqretry(&rename_lock, seq);
+
+       if (!(m_seq & 1))
+               rcu_read_unlock();
+       if (need_seqretry(&mount_lock, m_seq)) {
+               m_seq = 1;
+               goto restart_mnt;
+       }
+       done_seqretry(&mount_lock, m_seq);
+
+       if (error >= 0 && bptr == *buffer) {
+               if (--blen < 0)
+                       error = -ENAMETOOLONG;
+               else
+                       *--bptr = '/';
+       }
+       *buffer = bptr;
+       *buflen = blen;
+       return error;
+}
+
+/**
+ * __d_path - return the path of a dentry
+ * @path: the dentry/vfsmount to report
+ * @root: root vfsmnt/dentry
+ * @buf: buffer to return value in
+ * @buflen: buffer length
+ *
+ * Convert a dentry into an ASCII path name.
+ *
+ * Returns a pointer into the buffer or an error code if the
+ * path was too long.
+ *
+ * "buflen" should be positive.
+ *
+ * If the path is not reachable from the supplied root, return %NULL.
+ */
+char *__d_path(const struct path *path,
+              const struct path *root,
+              char *buf, int buflen)
+{
+       char *res = buf + buflen;
+       int error;
+
+       prepend(&res, &buflen, "\0", 1);
+       error = prepend_path(path, root, &res, &buflen);
+
+       if (error < 0)
+               return ERR_PTR(error);
+       if (error > 0)
+               return NULL;
+       return res;
+}
+
+char *d_absolute_path(const struct path *path,
+              char *buf, int buflen)
+{
+       struct path root = {};
+       char *res = buf + buflen;
+       int error;
+
+       prepend(&res, &buflen, "\0", 1);
+       error = prepend_path(path, &root, &res, &buflen);
+
+       if (error > 1)
+               error = -EINVAL;
+       if (error < 0)
+               return ERR_PTR(error);
+       return res;
+}
+
+/*
+ * same as __d_path but appends "(deleted)" for unlinked files.
+ */
+static int path_with_deleted(const struct path *path,
+                            const struct path *root,
+                            char **buf, int *buflen)
+{
+       prepend(buf, buflen, "\0", 1);
+       if (d_unlinked(path->dentry)) {
+               int error = prepend(buf, buflen, " (deleted)", 10);
+               if (error)
+                       return error;
+       }
+
+       return prepend_path(path, root, buf, buflen);
+}
+
+static int prepend_unreachable(char **buffer, int *buflen)
+{
+       return prepend(buffer, buflen, "(unreachable)", 13);
+}
+
+static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
+{
+       unsigned seq;
+
+       do {
+               seq = read_seqcount_begin(&fs->seq);
+               *root = fs->root;
+       } while (read_seqcount_retry(&fs->seq, seq));
+}
+
+/**
+ * d_path - return the path of a dentry
+ * @path: path to report
+ * @buf: buffer to return value in
+ * @buflen: buffer length
+ *
+ * Convert a dentry into an ASCII path name. If the entry has been deleted
+ * the string " (deleted)" is appended. Note that this is ambiguous.
+ *
+ * Returns a pointer into the buffer or an error code if the path was
+ * too long. Note: Callers should use the returned pointer, not the passed
+ * in buffer, to use the name! The implementation often starts at an offset
+ * into the buffer, and may leave 0 bytes at the start.
+ *
+ * "buflen" should be positive.
+ */
+char *d_path(const struct path *path, char *buf, int buflen)
+{
+       char *res = buf + buflen;
+       struct path root;
+       int error;
+
+       /*
+        * We have various synthetic filesystems that never get mounted.  On
+        * these filesystems dentries are never used for lookup purposes, and
+        * thus don't need to be hashed.  They also don't need a name until a
+        * user wants to identify the object in /proc/pid/fd/.  The little hack
+        * below allows us to generate a name for these objects on demand:
+        *
+        * Some pseudo inodes are mountable.  When they are mounted
+        * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
+        * and instead have d_path return the mounted path.
+        */
+       if (path->dentry->d_op && path->dentry->d_op->d_dname &&
+           (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
+               return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
+
+       rcu_read_lock();
+       get_fs_root_rcu(current->fs, &root);
+       error = path_with_deleted(path, &root, &res, &buflen);
+       rcu_read_unlock();
+
+       if (error < 0)
+               res = ERR_PTR(error);
+       return res;
+}
+EXPORT_SYMBOL(d_path);
+
+/*
+ * Helper function for dentry_operations.d_dname() members
+ */
+char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
+                       const char *fmt, ...)
+{
+       va_list args;
+       char temp[64];
+       int sz;
+
+       va_start(args, fmt);
+       sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
+       va_end(args);
+
+       if (sz > sizeof(temp) || sz > buflen)
+               return ERR_PTR(-ENAMETOOLONG);
+
+       buffer += buflen - sz;
+       return memcpy(buffer, temp, sz);
+}
+
+char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
+{
+       char *end = buffer + buflen;
+       /* these dentries are never renamed, so d_lock is not needed */
+       if (prepend(&end, &buflen, " (deleted)", 11) ||
+           prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
+           prepend(&end, &buflen, "/", 1))  
+               end = ERR_PTR(-ENAMETOOLONG);
+       return end;
+}
+EXPORT_SYMBOL(simple_dname);
+
+/*
+ * Write full pathname from the root of the filesystem into the buffer.
+ */
+static char *__dentry_path(struct dentry *d, char *buf, int buflen)
+{
+       struct dentry *dentry;
+       char *end, *retval;
+       int len, seq = 0;
+       int error = 0;
+
+       if (buflen < 2)
+               goto Elong;
+
+       rcu_read_lock();
+restart:
+       dentry = d;
+       end = buf + buflen;
+       len = buflen;
+       prepend(&end, &len, "\0", 1);
+       /* Get '/' right */
+       retval = end-1;
+       *retval = '/';
+       read_seqbegin_or_lock(&rename_lock, &seq);
+       while (!IS_ROOT(dentry)) {
+               struct dentry *parent = dentry->d_parent;
+
+               prefetch(parent);
+               error = prepend_name(&end, &len, &dentry->d_name);
+               if (error)
+                       break;
+
+               retval = end;
+               dentry = parent;
+       }
+       if (!(seq & 1))
+               rcu_read_unlock();
+       if (need_seqretry(&rename_lock, seq)) {
+               seq = 1;
+               goto restart;
+       }
+       done_seqretry(&rename_lock, seq);
+       if (error)
+               goto Elong;
+       return retval;
+Elong:
+       return ERR_PTR(-ENAMETOOLONG);
+}
+
+char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
+{
+       return __dentry_path(dentry, buf, buflen);
+}
+EXPORT_SYMBOL(dentry_path_raw);
+
+char *dentry_path(struct dentry *dentry, char *buf, int buflen)
+{
+       char *p = NULL;
+       char *retval;
+
+       if (d_unlinked(dentry)) {
+               p = buf + buflen;
+               if (prepend(&p, &buflen, "//deleted", 10) != 0)
+                       goto Elong;
+               buflen++;
+       }
+       retval = __dentry_path(dentry, buf, buflen);
+       if (!IS_ERR(retval) && p)
+               *p = '/';       /* restore '/' overriden with '\0' */
+       return retval;
+Elong:
+       return ERR_PTR(-ENAMETOOLONG);
+}
+
+static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
+                                   struct path *pwd)
+{
+       unsigned seq;
+
+       do {
+               seq = read_seqcount_begin(&fs->seq);
+               *root = fs->root;
+               *pwd = fs->pwd;
+       } while (read_seqcount_retry(&fs->seq, seq));
+}
+
+/*
+ * NOTE! The user-level library version returns a
+ * character pointer. The kernel system call just
+ * returns the length of the buffer filled (which
+ * includes the ending '\0' character), or a negative
+ * error value. So libc would do something like
+ *
+ *     char *getcwd(char * buf, size_t size)
+ *     {
+ *             int retval;
+ *
+ *             retval = sys_getcwd(buf, size);
+ *             if (retval >= 0)
+ *                     return buf;
+ *             errno = -retval;
+ *             return NULL;
+ *     }
+ */
+SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
+{
+       int error;
+       struct path pwd, root;
+       char *page = __getname();
+
+       if (!page)
+               return -ENOMEM;
+
+       rcu_read_lock();
+       get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
+
+       error = -ENOENT;
+       if (!d_unlinked(pwd.dentry)) {
+               unsigned long len;
+               char *cwd = page + PATH_MAX;
+               int buflen = PATH_MAX;
+
+               prepend(&cwd, &buflen, "\0", 1);
+               error = prepend_path(&pwd, &root, &cwd, &buflen);
+               rcu_read_unlock();
+
+               if (error < 0)
+                       goto out;
+
+               /* Unreachable from current root */
+               if (error > 0) {
+                       error = prepend_unreachable(&cwd, &buflen);
+                       if (error)
+                               goto out;
+               }
+
+               error = -ERANGE;
+               len = PATH_MAX + page - cwd;
+               if (len <= size) {
+                       error = len;
+                       if (copy_to_user(buf, cwd, len))
+                               error = -EFAULT;
+               }
+       } else {
+               rcu_read_unlock();
+       }
+
+out:
+       __putname(page);
+       return error;
+}
+
+/*
+ * Test whether new_dentry is a subdirectory of old_dentry.
+ *
+ * Trivially implemented using the dcache structure
+ */
+
+/**
+ * is_subdir - is new dentry a subdirectory of old_dentry
+ * @new_dentry: new dentry
+ * @old_dentry: old dentry
+ *
+ * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
+ * Returns 0 otherwise.
+ * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
+ */
+  
+int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
+{
+       int result;
+       unsigned seq;
+
+       if (new_dentry == old_dentry)
+               return 1;
+
+       do {
+               /* for restarting inner loop in case of seq retry */
+               seq = read_seqbegin(&rename_lock);
+               /*
+                * Need rcu_readlock to protect against the d_parent trashing
+                * due to d_move
+                */
+               rcu_read_lock();
+               if (d_ancestor(old_dentry, new_dentry))
+                       result = 1;
+               else
+                       result = 0;
+               rcu_read_unlock();
+       } while (read_seqretry(&rename_lock, seq));
+
+       return result;
+}
+
+static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
+{
+       struct dentry *root = data;
+       if (dentry != root) {
+               if (d_unhashed(dentry) || !dentry->d_inode)
+                       return D_WALK_SKIP;
+
+               if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
+                       dentry->d_flags |= DCACHE_GENOCIDE;
+                       dentry->d_lockref.count--;
+               }
+       }
+       return D_WALK_CONTINUE;
+}
+
+void d_genocide(struct dentry *parent)
+{
+       d_walk(parent, parent, d_genocide_kill, NULL);
+}
+
+void d_tmpfile(struct dentry *dentry, struct inode *inode)
+{
+       inode_dec_link_count(inode);
+       BUG_ON(dentry->d_name.name != dentry->d_iname ||
+               !hlist_unhashed(&dentry->d_u.d_alias) ||
+               !d_unlinked(dentry));
+       spin_lock(&dentry->d_parent->d_lock);
+       spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
+       dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
+                               (unsigned long long)inode->i_ino);
+       spin_unlock(&dentry->d_lock);
+       spin_unlock(&dentry->d_parent->d_lock);
+       d_instantiate(dentry, inode);
+}
+EXPORT_SYMBOL(d_tmpfile);
+
+static __initdata unsigned long dhash_entries;
+static int __init set_dhash_entries(char *str)
+{
+       if (!str)
+               return 0;
+       dhash_entries = simple_strtoul(str, &str, 0);
+       return 1;
+}
+__setup("dhash_entries=", set_dhash_entries);
+
+static void __init dcache_init_early(void)
+{
+       unsigned int loop;
+
+       /* If hashes are distributed across NUMA nodes, defer
+        * hash allocation until vmalloc space is available.
+        */
+       if (hashdist)
+               return;
+
+       dentry_hashtable =
+               alloc_large_system_hash("Dentry cache",
+                                       sizeof(struct hlist_bl_head),
+                                       dhash_entries,
+                                       13,
+                                       HASH_EARLY,
+                                       &d_hash_shift,
+                                       &d_hash_mask,
+                                       0,
+                                       0);
+
+       for (loop = 0; loop < (1U << d_hash_shift); loop++)
+               INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
+}
+
+static void __init dcache_init(void)
+{
+       unsigned int loop;
+
+       /* 
+        * A constructor could be added for stable state like the lists,
+        * but it is probably not worth it because of the cache nature
+        * of the dcache. 
+        */
+       dentry_cache = KMEM_CACHE(dentry,
+               SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
+
+       /* Hash may have been set up in dcache_init_early */
+       if (!hashdist)
+               return;
+
+       dentry_hashtable =
+               alloc_large_system_hash("Dentry cache",
+                                       sizeof(struct hlist_bl_head),
+                                       dhash_entries,
+                                       13,
+                                       0,
+                                       &d_hash_shift,
+                                       &d_hash_mask,
+                                       0,
+                                       0);
+
+       for (loop = 0; loop < (1U << d_hash_shift); loop++)
+               INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
+}
+
+/* SLAB cache for __getname() consumers */
+struct kmem_cache *names_cachep __read_mostly;
+EXPORT_SYMBOL(names_cachep);
+
+EXPORT_SYMBOL(d_genocide);
+
+void __init vfs_caches_init_early(void)
+{
+       dcache_init_early();
+       inode_init_early();
+}
+
+void __init vfs_caches_init(unsigned long mempages)
+{
+       unsigned long reserve;
+
+       /* Base hash sizes on available memory, with a reserve equal to
+           150% of current kernel size */
+
+       reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
+       mempages -= reserve;
+
+       names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
+                       SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
+
+       dcache_init();
+       inode_init();
+       files_init(mempages);
+       mnt_init();
+       bdev_cache_init();
+       chrdev_init();
+}