Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / btrfs / extent-tree.c
diff --git a/kernel/fs/btrfs/extent-tree.c b/kernel/fs/btrfs/extent-tree.c
new file mode 100644 (file)
index 0000000..0ec3acd
--- /dev/null
@@ -0,0 +1,10174 @@
+/*
+ * Copyright (C) 2007 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/sort.h>
+#include <linux/rcupdate.h>
+#include <linux/kthread.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include <linux/percpu_counter.h>
+#include "hash.h"
+#include "tree-log.h"
+#include "disk-io.h"
+#include "print-tree.h"
+#include "volumes.h"
+#include "raid56.h"
+#include "locking.h"
+#include "free-space-cache.h"
+#include "math.h"
+#include "sysfs.h"
+#include "qgroup.h"
+
+#undef SCRAMBLE_DELAYED_REFS
+
+/*
+ * control flags for do_chunk_alloc's force field
+ * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
+ * if we really need one.
+ *
+ * CHUNK_ALLOC_LIMITED means to only try and allocate one
+ * if we have very few chunks already allocated.  This is
+ * used as part of the clustering code to help make sure
+ * we have a good pool of storage to cluster in, without
+ * filling the FS with empty chunks
+ *
+ * CHUNK_ALLOC_FORCE means it must try to allocate one
+ *
+ */
+enum {
+       CHUNK_ALLOC_NO_FORCE = 0,
+       CHUNK_ALLOC_LIMITED = 1,
+       CHUNK_ALLOC_FORCE = 2,
+};
+
+/*
+ * Control how reservations are dealt with.
+ *
+ * RESERVE_FREE - freeing a reservation.
+ * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
+ *   ENOSPC accounting
+ * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
+ *   bytes_may_use as the ENOSPC accounting is done elsewhere
+ */
+enum {
+       RESERVE_FREE = 0,
+       RESERVE_ALLOC = 1,
+       RESERVE_ALLOC_NO_ACCOUNT = 2,
+};
+
+static int update_block_group(struct btrfs_trans_handle *trans,
+                             struct btrfs_root *root, u64 bytenr,
+                             u64 num_bytes, int alloc);
+static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
+                               struct btrfs_root *root,
+                               u64 bytenr, u64 num_bytes, u64 parent,
+                               u64 root_objectid, u64 owner_objectid,
+                               u64 owner_offset, int refs_to_drop,
+                               struct btrfs_delayed_extent_op *extra_op,
+                               int no_quota);
+static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
+                                   struct extent_buffer *leaf,
+                                   struct btrfs_extent_item *ei);
+static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+                                     struct btrfs_root *root,
+                                     u64 parent, u64 root_objectid,
+                                     u64 flags, u64 owner, u64 offset,
+                                     struct btrfs_key *ins, int ref_mod);
+static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
+                                    struct btrfs_root *root,
+                                    u64 parent, u64 root_objectid,
+                                    u64 flags, struct btrfs_disk_key *key,
+                                    int level, struct btrfs_key *ins,
+                                    int no_quota);
+static int do_chunk_alloc(struct btrfs_trans_handle *trans,
+                         struct btrfs_root *extent_root, u64 flags,
+                         int force);
+static int find_next_key(struct btrfs_path *path, int level,
+                        struct btrfs_key *key);
+static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+                           int dump_block_groups);
+static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
+                                      u64 num_bytes, int reserve,
+                                      int delalloc);
+static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
+                              u64 num_bytes);
+int btrfs_pin_extent(struct btrfs_root *root,
+                    u64 bytenr, u64 num_bytes, int reserved);
+
+static noinline int
+block_group_cache_done(struct btrfs_block_group_cache *cache)
+{
+       smp_mb();
+       return cache->cached == BTRFS_CACHE_FINISHED ||
+               cache->cached == BTRFS_CACHE_ERROR;
+}
+
+static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
+{
+       return (cache->flags & bits) == bits;
+}
+
+static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
+{
+       atomic_inc(&cache->count);
+}
+
+void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
+{
+       if (atomic_dec_and_test(&cache->count)) {
+               WARN_ON(cache->pinned > 0);
+               WARN_ON(cache->reserved > 0);
+               kfree(cache->free_space_ctl);
+               kfree(cache);
+       }
+}
+
+/*
+ * this adds the block group to the fs_info rb tree for the block group
+ * cache
+ */
+static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
+                               struct btrfs_block_group_cache *block_group)
+{
+       struct rb_node **p;
+       struct rb_node *parent = NULL;
+       struct btrfs_block_group_cache *cache;
+
+       spin_lock(&info->block_group_cache_lock);
+       p = &info->block_group_cache_tree.rb_node;
+
+       while (*p) {
+               parent = *p;
+               cache = rb_entry(parent, struct btrfs_block_group_cache,
+                                cache_node);
+               if (block_group->key.objectid < cache->key.objectid) {
+                       p = &(*p)->rb_left;
+               } else if (block_group->key.objectid > cache->key.objectid) {
+                       p = &(*p)->rb_right;
+               } else {
+                       spin_unlock(&info->block_group_cache_lock);
+                       return -EEXIST;
+               }
+       }
+
+       rb_link_node(&block_group->cache_node, parent, p);
+       rb_insert_color(&block_group->cache_node,
+                       &info->block_group_cache_tree);
+
+       if (info->first_logical_byte > block_group->key.objectid)
+               info->first_logical_byte = block_group->key.objectid;
+
+       spin_unlock(&info->block_group_cache_lock);
+
+       return 0;
+}
+
+/*
+ * This will return the block group at or after bytenr if contains is 0, else
+ * it will return the block group that contains the bytenr
+ */
+static struct btrfs_block_group_cache *
+block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
+                             int contains)
+{
+       struct btrfs_block_group_cache *cache, *ret = NULL;
+       struct rb_node *n;
+       u64 end, start;
+
+       spin_lock(&info->block_group_cache_lock);
+       n = info->block_group_cache_tree.rb_node;
+
+       while (n) {
+               cache = rb_entry(n, struct btrfs_block_group_cache,
+                                cache_node);
+               end = cache->key.objectid + cache->key.offset - 1;
+               start = cache->key.objectid;
+
+               if (bytenr < start) {
+                       if (!contains && (!ret || start < ret->key.objectid))
+                               ret = cache;
+                       n = n->rb_left;
+               } else if (bytenr > start) {
+                       if (contains && bytenr <= end) {
+                               ret = cache;
+                               break;
+                       }
+                       n = n->rb_right;
+               } else {
+                       ret = cache;
+                       break;
+               }
+       }
+       if (ret) {
+               btrfs_get_block_group(ret);
+               if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
+                       info->first_logical_byte = ret->key.objectid;
+       }
+       spin_unlock(&info->block_group_cache_lock);
+
+       return ret;
+}
+
+static int add_excluded_extent(struct btrfs_root *root,
+                              u64 start, u64 num_bytes)
+{
+       u64 end = start + num_bytes - 1;
+       set_extent_bits(&root->fs_info->freed_extents[0],
+                       start, end, EXTENT_UPTODATE, GFP_NOFS);
+       set_extent_bits(&root->fs_info->freed_extents[1],
+                       start, end, EXTENT_UPTODATE, GFP_NOFS);
+       return 0;
+}
+
+static void free_excluded_extents(struct btrfs_root *root,
+                                 struct btrfs_block_group_cache *cache)
+{
+       u64 start, end;
+
+       start = cache->key.objectid;
+       end = start + cache->key.offset - 1;
+
+       clear_extent_bits(&root->fs_info->freed_extents[0],
+                         start, end, EXTENT_UPTODATE, GFP_NOFS);
+       clear_extent_bits(&root->fs_info->freed_extents[1],
+                         start, end, EXTENT_UPTODATE, GFP_NOFS);
+}
+
+static int exclude_super_stripes(struct btrfs_root *root,
+                                struct btrfs_block_group_cache *cache)
+{
+       u64 bytenr;
+       u64 *logical;
+       int stripe_len;
+       int i, nr, ret;
+
+       if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
+               stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
+               cache->bytes_super += stripe_len;
+               ret = add_excluded_extent(root, cache->key.objectid,
+                                         stripe_len);
+               if (ret)
+                       return ret;
+       }
+
+       for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
+               bytenr = btrfs_sb_offset(i);
+               ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
+                                      cache->key.objectid, bytenr,
+                                      0, &logical, &nr, &stripe_len);
+               if (ret)
+                       return ret;
+
+               while (nr--) {
+                       u64 start, len;
+
+                       if (logical[nr] > cache->key.objectid +
+                           cache->key.offset)
+                               continue;
+
+                       if (logical[nr] + stripe_len <= cache->key.objectid)
+                               continue;
+
+                       start = logical[nr];
+                       if (start < cache->key.objectid) {
+                               start = cache->key.objectid;
+                               len = (logical[nr] + stripe_len) - start;
+                       } else {
+                               len = min_t(u64, stripe_len,
+                                           cache->key.objectid +
+                                           cache->key.offset - start);
+                       }
+
+                       cache->bytes_super += len;
+                       ret = add_excluded_extent(root, start, len);
+                       if (ret) {
+                               kfree(logical);
+                               return ret;
+                       }
+               }
+
+               kfree(logical);
+       }
+       return 0;
+}
+
+static struct btrfs_caching_control *
+get_caching_control(struct btrfs_block_group_cache *cache)
+{
+       struct btrfs_caching_control *ctl;
+
+       spin_lock(&cache->lock);
+       if (!cache->caching_ctl) {
+               spin_unlock(&cache->lock);
+               return NULL;
+       }
+
+       ctl = cache->caching_ctl;
+       atomic_inc(&ctl->count);
+       spin_unlock(&cache->lock);
+       return ctl;
+}
+
+static void put_caching_control(struct btrfs_caching_control *ctl)
+{
+       if (atomic_dec_and_test(&ctl->count))
+               kfree(ctl);
+}
+
+/*
+ * this is only called by cache_block_group, since we could have freed extents
+ * we need to check the pinned_extents for any extents that can't be used yet
+ * since their free space will be released as soon as the transaction commits.
+ */
+static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
+                             struct btrfs_fs_info *info, u64 start, u64 end)
+{
+       u64 extent_start, extent_end, size, total_added = 0;
+       int ret;
+
+       while (start < end) {
+               ret = find_first_extent_bit(info->pinned_extents, start,
+                                           &extent_start, &extent_end,
+                                           EXTENT_DIRTY | EXTENT_UPTODATE,
+                                           NULL);
+               if (ret)
+                       break;
+
+               if (extent_start <= start) {
+                       start = extent_end + 1;
+               } else if (extent_start > start && extent_start < end) {
+                       size = extent_start - start;
+                       total_added += size;
+                       ret = btrfs_add_free_space(block_group, start,
+                                                  size);
+                       BUG_ON(ret); /* -ENOMEM or logic error */
+                       start = extent_end + 1;
+               } else {
+                       break;
+               }
+       }
+
+       if (start < end) {
+               size = end - start;
+               total_added += size;
+               ret = btrfs_add_free_space(block_group, start, size);
+               BUG_ON(ret); /* -ENOMEM or logic error */
+       }
+
+       return total_added;
+}
+
+static noinline void caching_thread(struct btrfs_work *work)
+{
+       struct btrfs_block_group_cache *block_group;
+       struct btrfs_fs_info *fs_info;
+       struct btrfs_caching_control *caching_ctl;
+       struct btrfs_root *extent_root;
+       struct btrfs_path *path;
+       struct extent_buffer *leaf;
+       struct btrfs_key key;
+       u64 total_found = 0;
+       u64 last = 0;
+       u32 nritems;
+       int ret = -ENOMEM;
+
+       caching_ctl = container_of(work, struct btrfs_caching_control, work);
+       block_group = caching_ctl->block_group;
+       fs_info = block_group->fs_info;
+       extent_root = fs_info->extent_root;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               goto out;
+
+       last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
+
+       /*
+        * We don't want to deadlock with somebody trying to allocate a new
+        * extent for the extent root while also trying to search the extent
+        * root to add free space.  So we skip locking and search the commit
+        * root, since its read-only
+        */
+       path->skip_locking = 1;
+       path->search_commit_root = 1;
+       path->reada = 1;
+
+       key.objectid = last;
+       key.offset = 0;
+       key.type = BTRFS_EXTENT_ITEM_KEY;
+again:
+       mutex_lock(&caching_ctl->mutex);
+       /* need to make sure the commit_root doesn't disappear */
+       down_read(&fs_info->commit_root_sem);
+
+next:
+       ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+       if (ret < 0)
+               goto err;
+
+       leaf = path->nodes[0];
+       nritems = btrfs_header_nritems(leaf);
+
+       while (1) {
+               if (btrfs_fs_closing(fs_info) > 1) {
+                       last = (u64)-1;
+                       break;
+               }
+
+               if (path->slots[0] < nritems) {
+                       btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+               } else {
+                       ret = find_next_key(path, 0, &key);
+                       if (ret)
+                               break;
+
+                       if (need_resched() ||
+                           rwsem_is_contended(&fs_info->commit_root_sem)) {
+                               caching_ctl->progress = last;
+                               btrfs_release_path(path);
+                               up_read(&fs_info->commit_root_sem);
+                               mutex_unlock(&caching_ctl->mutex);
+                               cond_resched();
+                               goto again;
+                       }
+
+                       ret = btrfs_next_leaf(extent_root, path);
+                       if (ret < 0)
+                               goto err;
+                       if (ret)
+                               break;
+                       leaf = path->nodes[0];
+                       nritems = btrfs_header_nritems(leaf);
+                       continue;
+               }
+
+               if (key.objectid < last) {
+                       key.objectid = last;
+                       key.offset = 0;
+                       key.type = BTRFS_EXTENT_ITEM_KEY;
+
+                       caching_ctl->progress = last;
+                       btrfs_release_path(path);
+                       goto next;
+               }
+
+               if (key.objectid < block_group->key.objectid) {
+                       path->slots[0]++;
+                       continue;
+               }
+
+               if (key.objectid >= block_group->key.objectid +
+                   block_group->key.offset)
+                       break;
+
+               if (key.type == BTRFS_EXTENT_ITEM_KEY ||
+                   key.type == BTRFS_METADATA_ITEM_KEY) {
+                       total_found += add_new_free_space(block_group,
+                                                         fs_info, last,
+                                                         key.objectid);
+                       if (key.type == BTRFS_METADATA_ITEM_KEY)
+                               last = key.objectid +
+                                       fs_info->tree_root->nodesize;
+                       else
+                               last = key.objectid + key.offset;
+
+                       if (total_found > (1024 * 1024 * 2)) {
+                               total_found = 0;
+                               wake_up(&caching_ctl->wait);
+                       }
+               }
+               path->slots[0]++;
+       }
+       ret = 0;
+
+       total_found += add_new_free_space(block_group, fs_info, last,
+                                         block_group->key.objectid +
+                                         block_group->key.offset);
+       caching_ctl->progress = (u64)-1;
+
+       spin_lock(&block_group->lock);
+       block_group->caching_ctl = NULL;
+       block_group->cached = BTRFS_CACHE_FINISHED;
+       spin_unlock(&block_group->lock);
+
+err:
+       btrfs_free_path(path);
+       up_read(&fs_info->commit_root_sem);
+
+       free_excluded_extents(extent_root, block_group);
+
+       mutex_unlock(&caching_ctl->mutex);
+out:
+       if (ret) {
+               spin_lock(&block_group->lock);
+               block_group->caching_ctl = NULL;
+               block_group->cached = BTRFS_CACHE_ERROR;
+               spin_unlock(&block_group->lock);
+       }
+       wake_up(&caching_ctl->wait);
+
+       put_caching_control(caching_ctl);
+       btrfs_put_block_group(block_group);
+}
+
+static int cache_block_group(struct btrfs_block_group_cache *cache,
+                            int load_cache_only)
+{
+       DEFINE_WAIT(wait);
+       struct btrfs_fs_info *fs_info = cache->fs_info;
+       struct btrfs_caching_control *caching_ctl;
+       int ret = 0;
+
+       caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
+       if (!caching_ctl)
+               return -ENOMEM;
+
+       INIT_LIST_HEAD(&caching_ctl->list);
+       mutex_init(&caching_ctl->mutex);
+       init_waitqueue_head(&caching_ctl->wait);
+       caching_ctl->block_group = cache;
+       caching_ctl->progress = cache->key.objectid;
+       atomic_set(&caching_ctl->count, 1);
+       btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
+                       caching_thread, NULL, NULL);
+
+       spin_lock(&cache->lock);
+       /*
+        * This should be a rare occasion, but this could happen I think in the
+        * case where one thread starts to load the space cache info, and then
+        * some other thread starts a transaction commit which tries to do an
+        * allocation while the other thread is still loading the space cache
+        * info.  The previous loop should have kept us from choosing this block
+        * group, but if we've moved to the state where we will wait on caching
+        * block groups we need to first check if we're doing a fast load here,
+        * so we can wait for it to finish, otherwise we could end up allocating
+        * from a block group who's cache gets evicted for one reason or
+        * another.
+        */
+       while (cache->cached == BTRFS_CACHE_FAST) {
+               struct btrfs_caching_control *ctl;
+
+               ctl = cache->caching_ctl;
+               atomic_inc(&ctl->count);
+               prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
+               spin_unlock(&cache->lock);
+
+               schedule();
+
+               finish_wait(&ctl->wait, &wait);
+               put_caching_control(ctl);
+               spin_lock(&cache->lock);
+       }
+
+       if (cache->cached != BTRFS_CACHE_NO) {
+               spin_unlock(&cache->lock);
+               kfree(caching_ctl);
+               return 0;
+       }
+       WARN_ON(cache->caching_ctl);
+       cache->caching_ctl = caching_ctl;
+       cache->cached = BTRFS_CACHE_FAST;
+       spin_unlock(&cache->lock);
+
+       if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
+               mutex_lock(&caching_ctl->mutex);
+               ret = load_free_space_cache(fs_info, cache);
+
+               spin_lock(&cache->lock);
+               if (ret == 1) {
+                       cache->caching_ctl = NULL;
+                       cache->cached = BTRFS_CACHE_FINISHED;
+                       cache->last_byte_to_unpin = (u64)-1;
+                       caching_ctl->progress = (u64)-1;
+               } else {
+                       if (load_cache_only) {
+                               cache->caching_ctl = NULL;
+                               cache->cached = BTRFS_CACHE_NO;
+                       } else {
+                               cache->cached = BTRFS_CACHE_STARTED;
+                               cache->has_caching_ctl = 1;
+                       }
+               }
+               spin_unlock(&cache->lock);
+               mutex_unlock(&caching_ctl->mutex);
+
+               wake_up(&caching_ctl->wait);
+               if (ret == 1) {
+                       put_caching_control(caching_ctl);
+                       free_excluded_extents(fs_info->extent_root, cache);
+                       return 0;
+               }
+       } else {
+               /*
+                * We are not going to do the fast caching, set cached to the
+                * appropriate value and wakeup any waiters.
+                */
+               spin_lock(&cache->lock);
+               if (load_cache_only) {
+                       cache->caching_ctl = NULL;
+                       cache->cached = BTRFS_CACHE_NO;
+               } else {
+                       cache->cached = BTRFS_CACHE_STARTED;
+                       cache->has_caching_ctl = 1;
+               }
+               spin_unlock(&cache->lock);
+               wake_up(&caching_ctl->wait);
+       }
+
+       if (load_cache_only) {
+               put_caching_control(caching_ctl);
+               return 0;
+       }
+
+       down_write(&fs_info->commit_root_sem);
+       atomic_inc(&caching_ctl->count);
+       list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
+       up_write(&fs_info->commit_root_sem);
+
+       btrfs_get_block_group(cache);
+
+       btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
+
+       return ret;
+}
+
+/*
+ * return the block group that starts at or after bytenr
+ */
+static struct btrfs_block_group_cache *
+btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
+{
+       struct btrfs_block_group_cache *cache;
+
+       cache = block_group_cache_tree_search(info, bytenr, 0);
+
+       return cache;
+}
+
+/*
+ * return the block group that contains the given bytenr
+ */
+struct btrfs_block_group_cache *btrfs_lookup_block_group(
+                                                struct btrfs_fs_info *info,
+                                                u64 bytenr)
+{
+       struct btrfs_block_group_cache *cache;
+
+       cache = block_group_cache_tree_search(info, bytenr, 1);
+
+       return cache;
+}
+
+static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
+                                                 u64 flags)
+{
+       struct list_head *head = &info->space_info;
+       struct btrfs_space_info *found;
+
+       flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
+
+       rcu_read_lock();
+       list_for_each_entry_rcu(found, head, list) {
+               if (found->flags & flags) {
+                       rcu_read_unlock();
+                       return found;
+               }
+       }
+       rcu_read_unlock();
+       return NULL;
+}
+
+/*
+ * after adding space to the filesystem, we need to clear the full flags
+ * on all the space infos.
+ */
+void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
+{
+       struct list_head *head = &info->space_info;
+       struct btrfs_space_info *found;
+
+       rcu_read_lock();
+       list_for_each_entry_rcu(found, head, list)
+               found->full = 0;
+       rcu_read_unlock();
+}
+
+/* simple helper to search for an existing data extent at a given offset */
+int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
+{
+       int ret;
+       struct btrfs_key key;
+       struct btrfs_path *path;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       key.objectid = start;
+       key.offset = len;
+       key.type = BTRFS_EXTENT_ITEM_KEY;
+       ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
+                               0, 0);
+       btrfs_free_path(path);
+       return ret;
+}
+
+/*
+ * helper function to lookup reference count and flags of a tree block.
+ *
+ * the head node for delayed ref is used to store the sum of all the
+ * reference count modifications queued up in the rbtree. the head
+ * node may also store the extent flags to set. This way you can check
+ * to see what the reference count and extent flags would be if all of
+ * the delayed refs are not processed.
+ */
+int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
+                            struct btrfs_root *root, u64 bytenr,
+                            u64 offset, int metadata, u64 *refs, u64 *flags)
+{
+       struct btrfs_delayed_ref_head *head;
+       struct btrfs_delayed_ref_root *delayed_refs;
+       struct btrfs_path *path;
+       struct btrfs_extent_item *ei;
+       struct extent_buffer *leaf;
+       struct btrfs_key key;
+       u32 item_size;
+       u64 num_refs;
+       u64 extent_flags;
+       int ret;
+
+       /*
+        * If we don't have skinny metadata, don't bother doing anything
+        * different
+        */
+       if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
+               offset = root->nodesize;
+               metadata = 0;
+       }
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       if (!trans) {
+               path->skip_locking = 1;
+               path->search_commit_root = 1;
+       }
+
+search_again:
+       key.objectid = bytenr;
+       key.offset = offset;
+       if (metadata)
+               key.type = BTRFS_METADATA_ITEM_KEY;
+       else
+               key.type = BTRFS_EXTENT_ITEM_KEY;
+
+       ret = btrfs_search_slot(trans, root->fs_info->extent_root,
+                               &key, path, 0, 0);
+       if (ret < 0)
+               goto out_free;
+
+       if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
+               if (path->slots[0]) {
+                       path->slots[0]--;
+                       btrfs_item_key_to_cpu(path->nodes[0], &key,
+                                             path->slots[0]);
+                       if (key.objectid == bytenr &&
+                           key.type == BTRFS_EXTENT_ITEM_KEY &&
+                           key.offset == root->nodesize)
+                               ret = 0;
+               }
+       }
+
+       if (ret == 0) {
+               leaf = path->nodes[0];
+               item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+               if (item_size >= sizeof(*ei)) {
+                       ei = btrfs_item_ptr(leaf, path->slots[0],
+                                           struct btrfs_extent_item);
+                       num_refs = btrfs_extent_refs(leaf, ei);
+                       extent_flags = btrfs_extent_flags(leaf, ei);
+               } else {
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+                       struct btrfs_extent_item_v0 *ei0;
+                       BUG_ON(item_size != sizeof(*ei0));
+                       ei0 = btrfs_item_ptr(leaf, path->slots[0],
+                                            struct btrfs_extent_item_v0);
+                       num_refs = btrfs_extent_refs_v0(leaf, ei0);
+                       /* FIXME: this isn't correct for data */
+                       extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+#else
+                       BUG();
+#endif
+               }
+               BUG_ON(num_refs == 0);
+       } else {
+               num_refs = 0;
+               extent_flags = 0;
+               ret = 0;
+       }
+
+       if (!trans)
+               goto out;
+
+       delayed_refs = &trans->transaction->delayed_refs;
+       spin_lock(&delayed_refs->lock);
+       head = btrfs_find_delayed_ref_head(trans, bytenr);
+       if (head) {
+               if (!mutex_trylock(&head->mutex)) {
+                       atomic_inc(&head->node.refs);
+                       spin_unlock(&delayed_refs->lock);
+
+                       btrfs_release_path(path);
+
+                       /*
+                        * Mutex was contended, block until it's released and try
+                        * again
+                        */
+                       mutex_lock(&head->mutex);
+                       mutex_unlock(&head->mutex);
+                       btrfs_put_delayed_ref(&head->node);
+                       goto search_again;
+               }
+               spin_lock(&head->lock);
+               if (head->extent_op && head->extent_op->update_flags)
+                       extent_flags |= head->extent_op->flags_to_set;
+               else
+                       BUG_ON(num_refs == 0);
+
+               num_refs += head->node.ref_mod;
+               spin_unlock(&head->lock);
+               mutex_unlock(&head->mutex);
+       }
+       spin_unlock(&delayed_refs->lock);
+out:
+       WARN_ON(num_refs == 0);
+       if (refs)
+               *refs = num_refs;
+       if (flags)
+               *flags = extent_flags;
+out_free:
+       btrfs_free_path(path);
+       return ret;
+}
+
+/*
+ * Back reference rules.  Back refs have three main goals:
+ *
+ * 1) differentiate between all holders of references to an extent so that
+ *    when a reference is dropped we can make sure it was a valid reference
+ *    before freeing the extent.
+ *
+ * 2) Provide enough information to quickly find the holders of an extent
+ *    if we notice a given block is corrupted or bad.
+ *
+ * 3) Make it easy to migrate blocks for FS shrinking or storage pool
+ *    maintenance.  This is actually the same as #2, but with a slightly
+ *    different use case.
+ *
+ * There are two kinds of back refs. The implicit back refs is optimized
+ * for pointers in non-shared tree blocks. For a given pointer in a block,
+ * back refs of this kind provide information about the block's owner tree
+ * and the pointer's key. These information allow us to find the block by
+ * b-tree searching. The full back refs is for pointers in tree blocks not
+ * referenced by their owner trees. The location of tree block is recorded
+ * in the back refs. Actually the full back refs is generic, and can be
+ * used in all cases the implicit back refs is used. The major shortcoming
+ * of the full back refs is its overhead. Every time a tree block gets
+ * COWed, we have to update back refs entry for all pointers in it.
+ *
+ * For a newly allocated tree block, we use implicit back refs for
+ * pointers in it. This means most tree related operations only involve
+ * implicit back refs. For a tree block created in old transaction, the
+ * only way to drop a reference to it is COW it. So we can detect the
+ * event that tree block loses its owner tree's reference and do the
+ * back refs conversion.
+ *
+ * When a tree block is COW'd through a tree, there are four cases:
+ *
+ * The reference count of the block is one and the tree is the block's
+ * owner tree. Nothing to do in this case.
+ *
+ * The reference count of the block is one and the tree is not the
+ * block's owner tree. In this case, full back refs is used for pointers
+ * in the block. Remove these full back refs, add implicit back refs for
+ * every pointers in the new block.
+ *
+ * The reference count of the block is greater than one and the tree is
+ * the block's owner tree. In this case, implicit back refs is used for
+ * pointers in the block. Add full back refs for every pointers in the
+ * block, increase lower level extents' reference counts. The original
+ * implicit back refs are entailed to the new block.
+ *
+ * The reference count of the block is greater than one and the tree is
+ * not the block's owner tree. Add implicit back refs for every pointer in
+ * the new block, increase lower level extents' reference count.
+ *
+ * Back Reference Key composing:
+ *
+ * The key objectid corresponds to the first byte in the extent,
+ * The key type is used to differentiate between types of back refs.
+ * There are different meanings of the key offset for different types
+ * of back refs.
+ *
+ * File extents can be referenced by:
+ *
+ * - multiple snapshots, subvolumes, or different generations in one subvol
+ * - different files inside a single subvolume
+ * - different offsets inside a file (bookend extents in file.c)
+ *
+ * The extent ref structure for the implicit back refs has fields for:
+ *
+ * - Objectid of the subvolume root
+ * - objectid of the file holding the reference
+ * - original offset in the file
+ * - how many bookend extents
+ *
+ * The key offset for the implicit back refs is hash of the first
+ * three fields.
+ *
+ * The extent ref structure for the full back refs has field for:
+ *
+ * - number of pointers in the tree leaf
+ *
+ * The key offset for the implicit back refs is the first byte of
+ * the tree leaf
+ *
+ * When a file extent is allocated, The implicit back refs is used.
+ * the fields are filled in:
+ *
+ *     (root_key.objectid, inode objectid, offset in file, 1)
+ *
+ * When a file extent is removed file truncation, we find the
+ * corresponding implicit back refs and check the following fields:
+ *
+ *     (btrfs_header_owner(leaf), inode objectid, offset in file)
+ *
+ * Btree extents can be referenced by:
+ *
+ * - Different subvolumes
+ *
+ * Both the implicit back refs and the full back refs for tree blocks
+ * only consist of key. The key offset for the implicit back refs is
+ * objectid of block's owner tree. The key offset for the full back refs
+ * is the first byte of parent block.
+ *
+ * When implicit back refs is used, information about the lowest key and
+ * level of the tree block are required. These information are stored in
+ * tree block info structure.
+ */
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
+                                 struct btrfs_root *root,
+                                 struct btrfs_path *path,
+                                 u64 owner, u32 extra_size)
+{
+       struct btrfs_extent_item *item;
+       struct btrfs_extent_item_v0 *ei0;
+       struct btrfs_extent_ref_v0 *ref0;
+       struct btrfs_tree_block_info *bi;
+       struct extent_buffer *leaf;
+       struct btrfs_key key;
+       struct btrfs_key found_key;
+       u32 new_size = sizeof(*item);
+       u64 refs;
+       int ret;
+
+       leaf = path->nodes[0];
+       BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
+
+       btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+       ei0 = btrfs_item_ptr(leaf, path->slots[0],
+                            struct btrfs_extent_item_v0);
+       refs = btrfs_extent_refs_v0(leaf, ei0);
+
+       if (owner == (u64)-1) {
+               while (1) {
+                       if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+                               ret = btrfs_next_leaf(root, path);
+                               if (ret < 0)
+                                       return ret;
+                               BUG_ON(ret > 0); /* Corruption */
+                               leaf = path->nodes[0];
+                       }
+                       btrfs_item_key_to_cpu(leaf, &found_key,
+                                             path->slots[0]);
+                       BUG_ON(key.objectid != found_key.objectid);
+                       if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
+                               path->slots[0]++;
+                               continue;
+                       }
+                       ref0 = btrfs_item_ptr(leaf, path->slots[0],
+                                             struct btrfs_extent_ref_v0);
+                       owner = btrfs_ref_objectid_v0(leaf, ref0);
+                       break;
+               }
+       }
+       btrfs_release_path(path);
+
+       if (owner < BTRFS_FIRST_FREE_OBJECTID)
+               new_size += sizeof(*bi);
+
+       new_size -= sizeof(*ei0);
+       ret = btrfs_search_slot(trans, root, &key, path,
+                               new_size + extra_size, 1);
+       if (ret < 0)
+               return ret;
+       BUG_ON(ret); /* Corruption */
+
+       btrfs_extend_item(root, path, new_size);
+
+       leaf = path->nodes[0];
+       item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+       btrfs_set_extent_refs(leaf, item, refs);
+       /* FIXME: get real generation */
+       btrfs_set_extent_generation(leaf, item, 0);
+       if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+               btrfs_set_extent_flags(leaf, item,
+                                      BTRFS_EXTENT_FLAG_TREE_BLOCK |
+                                      BTRFS_BLOCK_FLAG_FULL_BACKREF);
+               bi = (struct btrfs_tree_block_info *)(item + 1);
+               /* FIXME: get first key of the block */
+               memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
+               btrfs_set_tree_block_level(leaf, bi, (int)owner);
+       } else {
+               btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
+       }
+       btrfs_mark_buffer_dirty(leaf);
+       return 0;
+}
+#endif
+
+static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
+{
+       u32 high_crc = ~(u32)0;
+       u32 low_crc = ~(u32)0;
+       __le64 lenum;
+
+       lenum = cpu_to_le64(root_objectid);
+       high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
+       lenum = cpu_to_le64(owner);
+       low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
+       lenum = cpu_to_le64(offset);
+       low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
+
+       return ((u64)high_crc << 31) ^ (u64)low_crc;
+}
+
+static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
+                                    struct btrfs_extent_data_ref *ref)
+{
+       return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
+                                   btrfs_extent_data_ref_objectid(leaf, ref),
+                                   btrfs_extent_data_ref_offset(leaf, ref));
+}
+
+static int match_extent_data_ref(struct extent_buffer *leaf,
+                                struct btrfs_extent_data_ref *ref,
+                                u64 root_objectid, u64 owner, u64 offset)
+{
+       if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
+           btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
+           btrfs_extent_data_ref_offset(leaf, ref) != offset)
+               return 0;
+       return 1;
+}
+
+static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
+                                          struct btrfs_root *root,
+                                          struct btrfs_path *path,
+                                          u64 bytenr, u64 parent,
+                                          u64 root_objectid,
+                                          u64 owner, u64 offset)
+{
+       struct btrfs_key key;
+       struct btrfs_extent_data_ref *ref;
+       struct extent_buffer *leaf;
+       u32 nritems;
+       int ret;
+       int recow;
+       int err = -ENOENT;
+
+       key.objectid = bytenr;
+       if (parent) {
+               key.type = BTRFS_SHARED_DATA_REF_KEY;
+               key.offset = parent;
+       } else {
+               key.type = BTRFS_EXTENT_DATA_REF_KEY;
+               key.offset = hash_extent_data_ref(root_objectid,
+                                                 owner, offset);
+       }
+again:
+       recow = 0;
+       ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+       if (ret < 0) {
+               err = ret;
+               goto fail;
+       }
+
+       if (parent) {
+               if (!ret)
+                       return 0;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+               key.type = BTRFS_EXTENT_REF_V0_KEY;
+               btrfs_release_path(path);
+               ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+               if (ret < 0) {
+                       err = ret;
+                       goto fail;
+               }
+               if (!ret)
+                       return 0;
+#endif
+               goto fail;
+       }
+
+       leaf = path->nodes[0];
+       nritems = btrfs_header_nritems(leaf);
+       while (1) {
+               if (path->slots[0] >= nritems) {
+                       ret = btrfs_next_leaf(root, path);
+                       if (ret < 0)
+                               err = ret;
+                       if (ret)
+                               goto fail;
+
+                       leaf = path->nodes[0];
+                       nritems = btrfs_header_nritems(leaf);
+                       recow = 1;
+               }
+
+               btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+               if (key.objectid != bytenr ||
+                   key.type != BTRFS_EXTENT_DATA_REF_KEY)
+                       goto fail;
+
+               ref = btrfs_item_ptr(leaf, path->slots[0],
+                                    struct btrfs_extent_data_ref);
+
+               if (match_extent_data_ref(leaf, ref, root_objectid,
+                                         owner, offset)) {
+                       if (recow) {
+                               btrfs_release_path(path);
+                               goto again;
+                       }
+                       err = 0;
+                       break;
+               }
+               path->slots[0]++;
+       }
+fail:
+       return err;
+}
+
+static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
+                                          struct btrfs_root *root,
+                                          struct btrfs_path *path,
+                                          u64 bytenr, u64 parent,
+                                          u64 root_objectid, u64 owner,
+                                          u64 offset, int refs_to_add)
+{
+       struct btrfs_key key;
+       struct extent_buffer *leaf;
+       u32 size;
+       u32 num_refs;
+       int ret;
+
+       key.objectid = bytenr;
+       if (parent) {
+               key.type = BTRFS_SHARED_DATA_REF_KEY;
+               key.offset = parent;
+               size = sizeof(struct btrfs_shared_data_ref);
+       } else {
+               key.type = BTRFS_EXTENT_DATA_REF_KEY;
+               key.offset = hash_extent_data_ref(root_objectid,
+                                                 owner, offset);
+               size = sizeof(struct btrfs_extent_data_ref);
+       }
+
+       ret = btrfs_insert_empty_item(trans, root, path, &key, size);
+       if (ret && ret != -EEXIST)
+               goto fail;
+
+       leaf = path->nodes[0];
+       if (parent) {
+               struct btrfs_shared_data_ref *ref;
+               ref = btrfs_item_ptr(leaf, path->slots[0],
+                                    struct btrfs_shared_data_ref);
+               if (ret == 0) {
+                       btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
+               } else {
+                       num_refs = btrfs_shared_data_ref_count(leaf, ref);
+                       num_refs += refs_to_add;
+                       btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
+               }
+       } else {
+               struct btrfs_extent_data_ref *ref;
+               while (ret == -EEXIST) {
+                       ref = btrfs_item_ptr(leaf, path->slots[0],
+                                            struct btrfs_extent_data_ref);
+                       if (match_extent_data_ref(leaf, ref, root_objectid,
+                                                 owner, offset))
+                               break;
+                       btrfs_release_path(path);
+                       key.offset++;
+                       ret = btrfs_insert_empty_item(trans, root, path, &key,
+                                                     size);
+                       if (ret && ret != -EEXIST)
+                               goto fail;
+
+                       leaf = path->nodes[0];
+               }
+               ref = btrfs_item_ptr(leaf, path->slots[0],
+                                    struct btrfs_extent_data_ref);
+               if (ret == 0) {
+                       btrfs_set_extent_data_ref_root(leaf, ref,
+                                                      root_objectid);
+                       btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
+                       btrfs_set_extent_data_ref_offset(leaf, ref, offset);
+                       btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
+               } else {
+                       num_refs = btrfs_extent_data_ref_count(leaf, ref);
+                       num_refs += refs_to_add;
+                       btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
+               }
+       }
+       btrfs_mark_buffer_dirty(leaf);
+       ret = 0;
+fail:
+       btrfs_release_path(path);
+       return ret;
+}
+
+static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
+                                          struct btrfs_root *root,
+                                          struct btrfs_path *path,
+                                          int refs_to_drop, int *last_ref)
+{
+       struct btrfs_key key;
+       struct btrfs_extent_data_ref *ref1 = NULL;
+       struct btrfs_shared_data_ref *ref2 = NULL;
+       struct extent_buffer *leaf;
+       u32 num_refs = 0;
+       int ret = 0;
+
+       leaf = path->nodes[0];
+       btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+       if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+               ref1 = btrfs_item_ptr(leaf, path->slots[0],
+                                     struct btrfs_extent_data_ref);
+               num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+       } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+               ref2 = btrfs_item_ptr(leaf, path->slots[0],
+                                     struct btrfs_shared_data_ref);
+               num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
+               struct btrfs_extent_ref_v0 *ref0;
+               ref0 = btrfs_item_ptr(leaf, path->slots[0],
+                                     struct btrfs_extent_ref_v0);
+               num_refs = btrfs_ref_count_v0(leaf, ref0);
+#endif
+       } else {
+               BUG();
+       }
+
+       BUG_ON(num_refs < refs_to_drop);
+       num_refs -= refs_to_drop;
+
+       if (num_refs == 0) {
+               ret = btrfs_del_item(trans, root, path);
+               *last_ref = 1;
+       } else {
+               if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
+                       btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
+               else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
+                       btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+               else {
+                       struct btrfs_extent_ref_v0 *ref0;
+                       ref0 = btrfs_item_ptr(leaf, path->slots[0],
+                                       struct btrfs_extent_ref_v0);
+                       btrfs_set_ref_count_v0(leaf, ref0, num_refs);
+               }
+#endif
+               btrfs_mark_buffer_dirty(leaf);
+       }
+       return ret;
+}
+
+static noinline u32 extent_data_ref_count(struct btrfs_root *root,
+                                         struct btrfs_path *path,
+                                         struct btrfs_extent_inline_ref *iref)
+{
+       struct btrfs_key key;
+       struct extent_buffer *leaf;
+       struct btrfs_extent_data_ref *ref1;
+       struct btrfs_shared_data_ref *ref2;
+       u32 num_refs = 0;
+
+       leaf = path->nodes[0];
+       btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+       if (iref) {
+               if (btrfs_extent_inline_ref_type(leaf, iref) ==
+                   BTRFS_EXTENT_DATA_REF_KEY) {
+                       ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
+                       num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+               } else {
+                       ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
+                       num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+               }
+       } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+               ref1 = btrfs_item_ptr(leaf, path->slots[0],
+                                     struct btrfs_extent_data_ref);
+               num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+       } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+               ref2 = btrfs_item_ptr(leaf, path->slots[0],
+                                     struct btrfs_shared_data_ref);
+               num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
+               struct btrfs_extent_ref_v0 *ref0;
+               ref0 = btrfs_item_ptr(leaf, path->slots[0],
+                                     struct btrfs_extent_ref_v0);
+               num_refs = btrfs_ref_count_v0(leaf, ref0);
+#endif
+       } else {
+               WARN_ON(1);
+       }
+       return num_refs;
+}
+
+static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
+                                         struct btrfs_root *root,
+                                         struct btrfs_path *path,
+                                         u64 bytenr, u64 parent,
+                                         u64 root_objectid)
+{
+       struct btrfs_key key;
+       int ret;
+
+       key.objectid = bytenr;
+       if (parent) {
+               key.type = BTRFS_SHARED_BLOCK_REF_KEY;
+               key.offset = parent;
+       } else {
+               key.type = BTRFS_TREE_BLOCK_REF_KEY;
+               key.offset = root_objectid;
+       }
+
+       ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+       if (ret > 0)
+               ret = -ENOENT;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       if (ret == -ENOENT && parent) {
+               btrfs_release_path(path);
+               key.type = BTRFS_EXTENT_REF_V0_KEY;
+               ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+               if (ret > 0)
+                       ret = -ENOENT;
+       }
+#endif
+       return ret;
+}
+
+static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
+                                         struct btrfs_root *root,
+                                         struct btrfs_path *path,
+                                         u64 bytenr, u64 parent,
+                                         u64 root_objectid)
+{
+       struct btrfs_key key;
+       int ret;
+
+       key.objectid = bytenr;
+       if (parent) {
+               key.type = BTRFS_SHARED_BLOCK_REF_KEY;
+               key.offset = parent;
+       } else {
+               key.type = BTRFS_TREE_BLOCK_REF_KEY;
+               key.offset = root_objectid;
+       }
+
+       ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
+       btrfs_release_path(path);
+       return ret;
+}
+
+static inline int extent_ref_type(u64 parent, u64 owner)
+{
+       int type;
+       if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+               if (parent > 0)
+                       type = BTRFS_SHARED_BLOCK_REF_KEY;
+               else
+                       type = BTRFS_TREE_BLOCK_REF_KEY;
+       } else {
+               if (parent > 0)
+                       type = BTRFS_SHARED_DATA_REF_KEY;
+               else
+                       type = BTRFS_EXTENT_DATA_REF_KEY;
+       }
+       return type;
+}
+
+static int find_next_key(struct btrfs_path *path, int level,
+                        struct btrfs_key *key)
+
+{
+       for (; level < BTRFS_MAX_LEVEL; level++) {
+               if (!path->nodes[level])
+                       break;
+               if (path->slots[level] + 1 >=
+                   btrfs_header_nritems(path->nodes[level]))
+                       continue;
+               if (level == 0)
+                       btrfs_item_key_to_cpu(path->nodes[level], key,
+                                             path->slots[level] + 1);
+               else
+                       btrfs_node_key_to_cpu(path->nodes[level], key,
+                                             path->slots[level] + 1);
+               return 0;
+       }
+       return 1;
+}
+
+/*
+ * look for inline back ref. if back ref is found, *ref_ret is set
+ * to the address of inline back ref, and 0 is returned.
+ *
+ * if back ref isn't found, *ref_ret is set to the address where it
+ * should be inserted, and -ENOENT is returned.
+ *
+ * if insert is true and there are too many inline back refs, the path
+ * points to the extent item, and -EAGAIN is returned.
+ *
+ * NOTE: inline back refs are ordered in the same way that back ref
+ *      items in the tree are ordered.
+ */
+static noinline_for_stack
+int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct btrfs_extent_inline_ref **ref_ret,
+                                u64 bytenr, u64 num_bytes,
+                                u64 parent, u64 root_objectid,
+                                u64 owner, u64 offset, int insert)
+{
+       struct btrfs_key key;
+       struct extent_buffer *leaf;
+       struct btrfs_extent_item *ei;
+       struct btrfs_extent_inline_ref *iref;
+       u64 flags;
+       u64 item_size;
+       unsigned long ptr;
+       unsigned long end;
+       int extra_size;
+       int type;
+       int want;
+       int ret;
+       int err = 0;
+       bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
+                                                SKINNY_METADATA);
+
+       key.objectid = bytenr;
+       key.type = BTRFS_EXTENT_ITEM_KEY;
+       key.offset = num_bytes;
+
+       want = extent_ref_type(parent, owner);
+       if (insert) {
+               extra_size = btrfs_extent_inline_ref_size(want);
+               path->keep_locks = 1;
+       } else
+               extra_size = -1;
+
+       /*
+        * Owner is our parent level, so we can just add one to get the level
+        * for the block we are interested in.
+        */
+       if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
+               key.type = BTRFS_METADATA_ITEM_KEY;
+               key.offset = owner;
+       }
+
+again:
+       ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
+       if (ret < 0) {
+               err = ret;
+               goto out;
+       }
+
+       /*
+        * We may be a newly converted file system which still has the old fat
+        * extent entries for metadata, so try and see if we have one of those.
+        */
+       if (ret > 0 && skinny_metadata) {
+               skinny_metadata = false;
+               if (path->slots[0]) {
+                       path->slots[0]--;
+                       btrfs_item_key_to_cpu(path->nodes[0], &key,
+                                             path->slots[0]);
+                       if (key.objectid == bytenr &&
+                           key.type == BTRFS_EXTENT_ITEM_KEY &&
+                           key.offset == num_bytes)
+                               ret = 0;
+               }
+               if (ret) {
+                       key.objectid = bytenr;
+                       key.type = BTRFS_EXTENT_ITEM_KEY;
+                       key.offset = num_bytes;
+                       btrfs_release_path(path);
+                       goto again;
+               }
+       }
+
+       if (ret && !insert) {
+               err = -ENOENT;
+               goto out;
+       } else if (WARN_ON(ret)) {
+               err = -EIO;
+               goto out;
+       }
+
+       leaf = path->nodes[0];
+       item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       if (item_size < sizeof(*ei)) {
+               if (!insert) {
+                       err = -ENOENT;
+                       goto out;
+               }
+               ret = convert_extent_item_v0(trans, root, path, owner,
+                                            extra_size);
+               if (ret < 0) {
+                       err = ret;
+                       goto out;
+               }
+               leaf = path->nodes[0];
+               item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+       }
+#endif
+       BUG_ON(item_size < sizeof(*ei));
+
+       ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+       flags = btrfs_extent_flags(leaf, ei);
+
+       ptr = (unsigned long)(ei + 1);
+       end = (unsigned long)ei + item_size;
+
+       if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
+               ptr += sizeof(struct btrfs_tree_block_info);
+               BUG_ON(ptr > end);
+       }
+
+       err = -ENOENT;
+       while (1) {
+               if (ptr >= end) {
+                       WARN_ON(ptr > end);
+                       break;
+               }
+               iref = (struct btrfs_extent_inline_ref *)ptr;
+               type = btrfs_extent_inline_ref_type(leaf, iref);
+               if (want < type)
+                       break;
+               if (want > type) {
+                       ptr += btrfs_extent_inline_ref_size(type);
+                       continue;
+               }
+
+               if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+                       struct btrfs_extent_data_ref *dref;
+                       dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+                       if (match_extent_data_ref(leaf, dref, root_objectid,
+                                                 owner, offset)) {
+                               err = 0;
+                               break;
+                       }
+                       if (hash_extent_data_ref_item(leaf, dref) <
+                           hash_extent_data_ref(root_objectid, owner, offset))
+                               break;
+               } else {
+                       u64 ref_offset;
+                       ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
+                       if (parent > 0) {
+                               if (parent == ref_offset) {
+                                       err = 0;
+                                       break;
+                               }
+                               if (ref_offset < parent)
+                                       break;
+                       } else {
+                               if (root_objectid == ref_offset) {
+                                       err = 0;
+                                       break;
+                               }
+                               if (ref_offset < root_objectid)
+                                       break;
+                       }
+               }
+               ptr += btrfs_extent_inline_ref_size(type);
+       }
+       if (err == -ENOENT && insert) {
+               if (item_size + extra_size >=
+                   BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
+                       err = -EAGAIN;
+                       goto out;
+               }
+               /*
+                * To add new inline back ref, we have to make sure
+                * there is no corresponding back ref item.
+                * For simplicity, we just do not add new inline back
+                * ref if there is any kind of item for this block
+                */
+               if (find_next_key(path, 0, &key) == 0 &&
+                   key.objectid == bytenr &&
+                   key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
+                       err = -EAGAIN;
+                       goto out;
+               }
+       }
+       *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
+out:
+       if (insert) {
+               path->keep_locks = 0;
+               btrfs_unlock_up_safe(path, 1);
+       }
+       return err;
+}
+
+/*
+ * helper to add new inline back ref
+ */
+static noinline_for_stack
+void setup_inline_extent_backref(struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct btrfs_extent_inline_ref *iref,
+                                u64 parent, u64 root_objectid,
+                                u64 owner, u64 offset, int refs_to_add,
+                                struct btrfs_delayed_extent_op *extent_op)
+{
+       struct extent_buffer *leaf;
+       struct btrfs_extent_item *ei;
+       unsigned long ptr;
+       unsigned long end;
+       unsigned long item_offset;
+       u64 refs;
+       int size;
+       int type;
+
+       leaf = path->nodes[0];
+       ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+       item_offset = (unsigned long)iref - (unsigned long)ei;
+
+       type = extent_ref_type(parent, owner);
+       size = btrfs_extent_inline_ref_size(type);
+
+       btrfs_extend_item(root, path, size);
+
+       ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+       refs = btrfs_extent_refs(leaf, ei);
+       refs += refs_to_add;
+       btrfs_set_extent_refs(leaf, ei, refs);
+       if (extent_op)
+               __run_delayed_extent_op(extent_op, leaf, ei);
+
+       ptr = (unsigned long)ei + item_offset;
+       end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
+       if (ptr < end - size)
+               memmove_extent_buffer(leaf, ptr + size, ptr,
+                                     end - size - ptr);
+
+       iref = (struct btrfs_extent_inline_ref *)ptr;
+       btrfs_set_extent_inline_ref_type(leaf, iref, type);
+       if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+               struct btrfs_extent_data_ref *dref;
+               dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+               btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
+               btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
+               btrfs_set_extent_data_ref_offset(leaf, dref, offset);
+               btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
+       } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
+               struct btrfs_shared_data_ref *sref;
+               sref = (struct btrfs_shared_data_ref *)(iref + 1);
+               btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
+               btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+       } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
+               btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+       } else {
+               btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
+       }
+       btrfs_mark_buffer_dirty(leaf);
+}
+
+static int lookup_extent_backref(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct btrfs_extent_inline_ref **ref_ret,
+                                u64 bytenr, u64 num_bytes, u64 parent,
+                                u64 root_objectid, u64 owner, u64 offset)
+{
+       int ret;
+
+       ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
+                                          bytenr, num_bytes, parent,
+                                          root_objectid, owner, offset, 0);
+       if (ret != -ENOENT)
+               return ret;
+
+       btrfs_release_path(path);
+       *ref_ret = NULL;
+
+       if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+               ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
+                                           root_objectid);
+       } else {
+               ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
+                                            root_objectid, owner, offset);
+       }
+       return ret;
+}
+
+/*
+ * helper to update/remove inline back ref
+ */
+static noinline_for_stack
+void update_inline_extent_backref(struct btrfs_root *root,
+                                 struct btrfs_path *path,
+                                 struct btrfs_extent_inline_ref *iref,
+                                 int refs_to_mod,
+                                 struct btrfs_delayed_extent_op *extent_op,
+                                 int *last_ref)
+{
+       struct extent_buffer *leaf;
+       struct btrfs_extent_item *ei;
+       struct btrfs_extent_data_ref *dref = NULL;
+       struct btrfs_shared_data_ref *sref = NULL;
+       unsigned long ptr;
+       unsigned long end;
+       u32 item_size;
+       int size;
+       int type;
+       u64 refs;
+
+       leaf = path->nodes[0];
+       ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+       refs = btrfs_extent_refs(leaf, ei);
+       WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
+       refs += refs_to_mod;
+       btrfs_set_extent_refs(leaf, ei, refs);
+       if (extent_op)
+               __run_delayed_extent_op(extent_op, leaf, ei);
+
+       type = btrfs_extent_inline_ref_type(leaf, iref);
+
+       if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+               dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+               refs = btrfs_extent_data_ref_count(leaf, dref);
+       } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
+               sref = (struct btrfs_shared_data_ref *)(iref + 1);
+               refs = btrfs_shared_data_ref_count(leaf, sref);
+       } else {
+               refs = 1;
+               BUG_ON(refs_to_mod != -1);
+       }
+
+       BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
+       refs += refs_to_mod;
+
+       if (refs > 0) {
+               if (type == BTRFS_EXTENT_DATA_REF_KEY)
+                       btrfs_set_extent_data_ref_count(leaf, dref, refs);
+               else
+                       btrfs_set_shared_data_ref_count(leaf, sref, refs);
+       } else {
+               *last_ref = 1;
+               size =  btrfs_extent_inline_ref_size(type);
+               item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+               ptr = (unsigned long)iref;
+               end = (unsigned long)ei + item_size;
+               if (ptr + size < end)
+                       memmove_extent_buffer(leaf, ptr, ptr + size,
+                                             end - ptr - size);
+               item_size -= size;
+               btrfs_truncate_item(root, path, item_size, 1);
+       }
+       btrfs_mark_buffer_dirty(leaf);
+}
+
+static noinline_for_stack
+int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                u64 bytenr, u64 num_bytes, u64 parent,
+                                u64 root_objectid, u64 owner,
+                                u64 offset, int refs_to_add,
+                                struct btrfs_delayed_extent_op *extent_op)
+{
+       struct btrfs_extent_inline_ref *iref;
+       int ret;
+
+       ret = lookup_inline_extent_backref(trans, root, path, &iref,
+                                          bytenr, num_bytes, parent,
+                                          root_objectid, owner, offset, 1);
+       if (ret == 0) {
+               BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
+               update_inline_extent_backref(root, path, iref,
+                                            refs_to_add, extent_op, NULL);
+       } else if (ret == -ENOENT) {
+               setup_inline_extent_backref(root, path, iref, parent,
+                                           root_objectid, owner, offset,
+                                           refs_to_add, extent_op);
+               ret = 0;
+       }
+       return ret;
+}
+
+static int insert_extent_backref(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                u64 bytenr, u64 parent, u64 root_objectid,
+                                u64 owner, u64 offset, int refs_to_add)
+{
+       int ret;
+       if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+               BUG_ON(refs_to_add != 1);
+               ret = insert_tree_block_ref(trans, root, path, bytenr,
+                                           parent, root_objectid);
+       } else {
+               ret = insert_extent_data_ref(trans, root, path, bytenr,
+                                            parent, root_objectid,
+                                            owner, offset, refs_to_add);
+       }
+       return ret;
+}
+
+static int remove_extent_backref(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct btrfs_extent_inline_ref *iref,
+                                int refs_to_drop, int is_data, int *last_ref)
+{
+       int ret = 0;
+
+       BUG_ON(!is_data && refs_to_drop != 1);
+       if (iref) {
+               update_inline_extent_backref(root, path, iref,
+                                            -refs_to_drop, NULL, last_ref);
+       } else if (is_data) {
+               ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
+                                            last_ref);
+       } else {
+               *last_ref = 1;
+               ret = btrfs_del_item(trans, root, path);
+       }
+       return ret;
+}
+
+static int btrfs_issue_discard(struct block_device *bdev,
+                               u64 start, u64 len)
+{
+       return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
+}
+
+int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
+                        u64 num_bytes, u64 *actual_bytes)
+{
+       int ret;
+       u64 discarded_bytes = 0;
+       struct btrfs_bio *bbio = NULL;
+
+
+       /* Tell the block device(s) that the sectors can be discarded */
+       ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
+                             bytenr, &num_bytes, &bbio, 0);
+       /* Error condition is -ENOMEM */
+       if (!ret) {
+               struct btrfs_bio_stripe *stripe = bbio->stripes;
+               int i;
+
+
+               for (i = 0; i < bbio->num_stripes; i++, stripe++) {
+                       if (!stripe->dev->can_discard)
+                               continue;
+
+                       ret = btrfs_issue_discard(stripe->dev->bdev,
+                                                 stripe->physical,
+                                                 stripe->length);
+                       if (!ret)
+                               discarded_bytes += stripe->length;
+                       else if (ret != -EOPNOTSUPP)
+                               break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
+
+                       /*
+                        * Just in case we get back EOPNOTSUPP for some reason,
+                        * just ignore the return value so we don't screw up
+                        * people calling discard_extent.
+                        */
+                       ret = 0;
+               }
+               btrfs_put_bbio(bbio);
+       }
+
+       if (actual_bytes)
+               *actual_bytes = discarded_bytes;
+
+
+       if (ret == -EOPNOTSUPP)
+               ret = 0;
+       return ret;
+}
+
+/* Can return -ENOMEM */
+int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
+                        struct btrfs_root *root,
+                        u64 bytenr, u64 num_bytes, u64 parent,
+                        u64 root_objectid, u64 owner, u64 offset,
+                        int no_quota)
+{
+       int ret;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+
+       BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
+              root_objectid == BTRFS_TREE_LOG_OBJECTID);
+
+       if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+               ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
+                                       num_bytes,
+                                       parent, root_objectid, (int)owner,
+                                       BTRFS_ADD_DELAYED_REF, NULL, no_quota);
+       } else {
+               ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
+                                       num_bytes,
+                                       parent, root_objectid, owner, offset,
+                                       BTRFS_ADD_DELAYED_REF, NULL, no_quota);
+       }
+       return ret;
+}
+
+static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
+                                 struct btrfs_root *root,
+                                 u64 bytenr, u64 num_bytes,
+                                 u64 parent, u64 root_objectid,
+                                 u64 owner, u64 offset, int refs_to_add,
+                                 int no_quota,
+                                 struct btrfs_delayed_extent_op *extent_op)
+{
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       struct btrfs_path *path;
+       struct extent_buffer *leaf;
+       struct btrfs_extent_item *item;
+       struct btrfs_key key;
+       u64 refs;
+       int ret;
+       enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
+               no_quota = 1;
+
+       path->reada = 1;
+       path->leave_spinning = 1;
+       /* this will setup the path even if it fails to insert the back ref */
+       ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
+                                          bytenr, num_bytes, parent,
+                                          root_objectid, owner, offset,
+                                          refs_to_add, extent_op);
+       if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
+               goto out;
+       /*
+        * Ok we were able to insert an inline extent and it appears to be a new
+        * reference, deal with the qgroup accounting.
+        */
+       if (!ret && !no_quota) {
+               ASSERT(root->fs_info->quota_enabled);
+               leaf = path->nodes[0];
+               btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+               item = btrfs_item_ptr(leaf, path->slots[0],
+                                     struct btrfs_extent_item);
+               if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
+                       type = BTRFS_QGROUP_OPER_ADD_SHARED;
+               btrfs_release_path(path);
+
+               ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
+                                             bytenr, num_bytes, type, 0);
+               goto out;
+       }
+
+       /*
+        * Ok we had -EAGAIN which means we didn't have space to insert and
+        * inline extent ref, so just update the reference count and add a
+        * normal backref.
+        */
+       leaf = path->nodes[0];
+       btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+       item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+       refs = btrfs_extent_refs(leaf, item);
+       if (refs)
+               type = BTRFS_QGROUP_OPER_ADD_SHARED;
+       btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
+       if (extent_op)
+               __run_delayed_extent_op(extent_op, leaf, item);
+
+       btrfs_mark_buffer_dirty(leaf);
+       btrfs_release_path(path);
+
+       if (!no_quota) {
+               ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
+                                             bytenr, num_bytes, type, 0);
+               if (ret)
+                       goto out;
+       }
+
+       path->reada = 1;
+       path->leave_spinning = 1;
+       /* now insert the actual backref */
+       ret = insert_extent_backref(trans, root->fs_info->extent_root,
+                                   path, bytenr, parent, root_objectid,
+                                   owner, offset, refs_to_add);
+       if (ret)
+               btrfs_abort_transaction(trans, root, ret);
+out:
+       btrfs_free_path(path);
+       return ret;
+}
+
+static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
+                               struct btrfs_root *root,
+                               struct btrfs_delayed_ref_node *node,
+                               struct btrfs_delayed_extent_op *extent_op,
+                               int insert_reserved)
+{
+       int ret = 0;
+       struct btrfs_delayed_data_ref *ref;
+       struct btrfs_key ins;
+       u64 parent = 0;
+       u64 ref_root = 0;
+       u64 flags = 0;
+
+       ins.objectid = node->bytenr;
+       ins.offset = node->num_bytes;
+       ins.type = BTRFS_EXTENT_ITEM_KEY;
+
+       ref = btrfs_delayed_node_to_data_ref(node);
+       trace_run_delayed_data_ref(node, ref, node->action);
+
+       if (node->type == BTRFS_SHARED_DATA_REF_KEY)
+               parent = ref->parent;
+       ref_root = ref->root;
+
+       if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
+               if (extent_op)
+                       flags |= extent_op->flags_to_set;
+               ret = alloc_reserved_file_extent(trans, root,
+                                                parent, ref_root, flags,
+                                                ref->objectid, ref->offset,
+                                                &ins, node->ref_mod);
+       } else if (node->action == BTRFS_ADD_DELAYED_REF) {
+               ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
+                                            node->num_bytes, parent,
+                                            ref_root, ref->objectid,
+                                            ref->offset, node->ref_mod,
+                                            node->no_quota, extent_op);
+       } else if (node->action == BTRFS_DROP_DELAYED_REF) {
+               ret = __btrfs_free_extent(trans, root, node->bytenr,
+                                         node->num_bytes, parent,
+                                         ref_root, ref->objectid,
+                                         ref->offset, node->ref_mod,
+                                         extent_op, node->no_quota);
+       } else {
+               BUG();
+       }
+       return ret;
+}
+
+static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
+                                   struct extent_buffer *leaf,
+                                   struct btrfs_extent_item *ei)
+{
+       u64 flags = btrfs_extent_flags(leaf, ei);
+       if (extent_op->update_flags) {
+               flags |= extent_op->flags_to_set;
+               btrfs_set_extent_flags(leaf, ei, flags);
+       }
+
+       if (extent_op->update_key) {
+               struct btrfs_tree_block_info *bi;
+               BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
+               bi = (struct btrfs_tree_block_info *)(ei + 1);
+               btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
+       }
+}
+
+static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_delayed_ref_node *node,
+                                struct btrfs_delayed_extent_op *extent_op)
+{
+       struct btrfs_key key;
+       struct btrfs_path *path;
+       struct btrfs_extent_item *ei;
+       struct extent_buffer *leaf;
+       u32 item_size;
+       int ret;
+       int err = 0;
+       int metadata = !extent_op->is_data;
+
+       if (trans->aborted)
+               return 0;
+
+       if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
+               metadata = 0;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       key.objectid = node->bytenr;
+
+       if (metadata) {
+               key.type = BTRFS_METADATA_ITEM_KEY;
+               key.offset = extent_op->level;
+       } else {
+               key.type = BTRFS_EXTENT_ITEM_KEY;
+               key.offset = node->num_bytes;
+       }
+
+again:
+       path->reada = 1;
+       path->leave_spinning = 1;
+       ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
+                               path, 0, 1);
+       if (ret < 0) {
+               err = ret;
+               goto out;
+       }
+       if (ret > 0) {
+               if (metadata) {
+                       if (path->slots[0] > 0) {
+                               path->slots[0]--;
+                               btrfs_item_key_to_cpu(path->nodes[0], &key,
+                                                     path->slots[0]);
+                               if (key.objectid == node->bytenr &&
+                                   key.type == BTRFS_EXTENT_ITEM_KEY &&
+                                   key.offset == node->num_bytes)
+                                       ret = 0;
+                       }
+                       if (ret > 0) {
+                               btrfs_release_path(path);
+                               metadata = 0;
+
+                               key.objectid = node->bytenr;
+                               key.offset = node->num_bytes;
+                               key.type = BTRFS_EXTENT_ITEM_KEY;
+                               goto again;
+                       }
+               } else {
+                       err = -EIO;
+                       goto out;
+               }
+       }
+
+       leaf = path->nodes[0];
+       item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       if (item_size < sizeof(*ei)) {
+               ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
+                                            path, (u64)-1, 0);
+               if (ret < 0) {
+                       err = ret;
+                       goto out;
+               }
+               leaf = path->nodes[0];
+               item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+       }
+#endif
+       BUG_ON(item_size < sizeof(*ei));
+       ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+       __run_delayed_extent_op(extent_op, leaf, ei);
+
+       btrfs_mark_buffer_dirty(leaf);
+out:
+       btrfs_free_path(path);
+       return err;
+}
+
+static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
+                               struct btrfs_root *root,
+                               struct btrfs_delayed_ref_node *node,
+                               struct btrfs_delayed_extent_op *extent_op,
+                               int insert_reserved)
+{
+       int ret = 0;
+       struct btrfs_delayed_tree_ref *ref;
+       struct btrfs_key ins;
+       u64 parent = 0;
+       u64 ref_root = 0;
+       bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
+                                                SKINNY_METADATA);
+
+       ref = btrfs_delayed_node_to_tree_ref(node);
+       trace_run_delayed_tree_ref(node, ref, node->action);
+
+       if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
+               parent = ref->parent;
+       ref_root = ref->root;
+
+       ins.objectid = node->bytenr;
+       if (skinny_metadata) {
+               ins.offset = ref->level;
+               ins.type = BTRFS_METADATA_ITEM_KEY;
+       } else {
+               ins.offset = node->num_bytes;
+               ins.type = BTRFS_EXTENT_ITEM_KEY;
+       }
+
+       BUG_ON(node->ref_mod != 1);
+       if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
+               BUG_ON(!extent_op || !extent_op->update_flags);
+               ret = alloc_reserved_tree_block(trans, root,
+                                               parent, ref_root,
+                                               extent_op->flags_to_set,
+                                               &extent_op->key,
+                                               ref->level, &ins,
+                                               node->no_quota);
+       } else if (node->action == BTRFS_ADD_DELAYED_REF) {
+               ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
+                                            node->num_bytes, parent, ref_root,
+                                            ref->level, 0, 1, node->no_quota,
+                                            extent_op);
+       } else if (node->action == BTRFS_DROP_DELAYED_REF) {
+               ret = __btrfs_free_extent(trans, root, node->bytenr,
+                                         node->num_bytes, parent, ref_root,
+                                         ref->level, 0, 1, extent_op,
+                                         node->no_quota);
+       } else {
+               BUG();
+       }
+       return ret;
+}
+
+/* helper function to actually process a single delayed ref entry */
+static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
+                              struct btrfs_root *root,
+                              struct btrfs_delayed_ref_node *node,
+                              struct btrfs_delayed_extent_op *extent_op,
+                              int insert_reserved)
+{
+       int ret = 0;
+
+       if (trans->aborted) {
+               if (insert_reserved)
+                       btrfs_pin_extent(root, node->bytenr,
+                                        node->num_bytes, 1);
+               return 0;
+       }
+
+       if (btrfs_delayed_ref_is_head(node)) {
+               struct btrfs_delayed_ref_head *head;
+               /*
+                * we've hit the end of the chain and we were supposed
+                * to insert this extent into the tree.  But, it got
+                * deleted before we ever needed to insert it, so all
+                * we have to do is clean up the accounting
+                */
+               BUG_ON(extent_op);
+               head = btrfs_delayed_node_to_head(node);
+               trace_run_delayed_ref_head(node, head, node->action);
+
+               if (insert_reserved) {
+                       btrfs_pin_extent(root, node->bytenr,
+                                        node->num_bytes, 1);
+                       if (head->is_data) {
+                               ret = btrfs_del_csums(trans, root,
+                                                     node->bytenr,
+                                                     node->num_bytes);
+                       }
+               }
+               return ret;
+       }
+
+       if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
+           node->type == BTRFS_SHARED_BLOCK_REF_KEY)
+               ret = run_delayed_tree_ref(trans, root, node, extent_op,
+                                          insert_reserved);
+       else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
+                node->type == BTRFS_SHARED_DATA_REF_KEY)
+               ret = run_delayed_data_ref(trans, root, node, extent_op,
+                                          insert_reserved);
+       else
+               BUG();
+       return ret;
+}
+
+static noinline struct btrfs_delayed_ref_node *
+select_delayed_ref(struct btrfs_delayed_ref_head *head)
+{
+       struct rb_node *node;
+       struct btrfs_delayed_ref_node *ref, *last = NULL;;
+
+       /*
+        * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
+        * this prevents ref count from going down to zero when
+        * there still are pending delayed ref.
+        */
+       node = rb_first(&head->ref_root);
+       while (node) {
+               ref = rb_entry(node, struct btrfs_delayed_ref_node,
+                               rb_node);
+               if (ref->action == BTRFS_ADD_DELAYED_REF)
+                       return ref;
+               else if (last == NULL)
+                       last = ref;
+               node = rb_next(node);
+       }
+       return last;
+}
+
+/*
+ * Returns 0 on success or if called with an already aborted transaction.
+ * Returns -ENOMEM or -EIO on failure and will abort the transaction.
+ */
+static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
+                                            struct btrfs_root *root,
+                                            unsigned long nr)
+{
+       struct btrfs_delayed_ref_root *delayed_refs;
+       struct btrfs_delayed_ref_node *ref;
+       struct btrfs_delayed_ref_head *locked_ref = NULL;
+       struct btrfs_delayed_extent_op *extent_op;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       ktime_t start = ktime_get();
+       int ret;
+       unsigned long count = 0;
+       unsigned long actual_count = 0;
+       int must_insert_reserved = 0;
+
+       delayed_refs = &trans->transaction->delayed_refs;
+       while (1) {
+               if (!locked_ref) {
+                       if (count >= nr)
+                               break;
+
+                       spin_lock(&delayed_refs->lock);
+                       locked_ref = btrfs_select_ref_head(trans);
+                       if (!locked_ref) {
+                               spin_unlock(&delayed_refs->lock);
+                               break;
+                       }
+
+                       /* grab the lock that says we are going to process
+                        * all the refs for this head */
+                       ret = btrfs_delayed_ref_lock(trans, locked_ref);
+                       spin_unlock(&delayed_refs->lock);
+                       /*
+                        * we may have dropped the spin lock to get the head
+                        * mutex lock, and that might have given someone else
+                        * time to free the head.  If that's true, it has been
+                        * removed from our list and we can move on.
+                        */
+                       if (ret == -EAGAIN) {
+                               locked_ref = NULL;
+                               count++;
+                               continue;
+                       }
+               }
+
+               /*
+                * We need to try and merge add/drops of the same ref since we
+                * can run into issues with relocate dropping the implicit ref
+                * and then it being added back again before the drop can
+                * finish.  If we merged anything we need to re-loop so we can
+                * get a good ref.
+                */
+               spin_lock(&locked_ref->lock);
+               btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
+                                        locked_ref);
+
+               /*
+                * locked_ref is the head node, so we have to go one
+                * node back for any delayed ref updates
+                */
+               ref = select_delayed_ref(locked_ref);
+
+               if (ref && ref->seq &&
+                   btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
+                       spin_unlock(&locked_ref->lock);
+                       btrfs_delayed_ref_unlock(locked_ref);
+                       spin_lock(&delayed_refs->lock);
+                       locked_ref->processing = 0;
+                       delayed_refs->num_heads_ready++;
+                       spin_unlock(&delayed_refs->lock);
+                       locked_ref = NULL;
+                       cond_resched();
+                       count++;
+                       continue;
+               }
+
+               /*
+                * record the must insert reserved flag before we
+                * drop the spin lock.
+                */
+               must_insert_reserved = locked_ref->must_insert_reserved;
+               locked_ref->must_insert_reserved = 0;
+
+               extent_op = locked_ref->extent_op;
+               locked_ref->extent_op = NULL;
+
+               if (!ref) {
+
+
+                       /* All delayed refs have been processed, Go ahead
+                        * and send the head node to run_one_delayed_ref,
+                        * so that any accounting fixes can happen
+                        */
+                       ref = &locked_ref->node;
+
+                       if (extent_op && must_insert_reserved) {
+                               btrfs_free_delayed_extent_op(extent_op);
+                               extent_op = NULL;
+                       }
+
+                       if (extent_op) {
+                               spin_unlock(&locked_ref->lock);
+                               ret = run_delayed_extent_op(trans, root,
+                                                           ref, extent_op);
+                               btrfs_free_delayed_extent_op(extent_op);
+
+                               if (ret) {
+                                       /*
+                                        * Need to reset must_insert_reserved if
+                                        * there was an error so the abort stuff
+                                        * can cleanup the reserved space
+                                        * properly.
+                                        */
+                                       if (must_insert_reserved)
+                                               locked_ref->must_insert_reserved = 1;
+                                       locked_ref->processing = 0;
+                                       btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
+                                       btrfs_delayed_ref_unlock(locked_ref);
+                                       return ret;
+                               }
+                               continue;
+                       }
+
+                       /*
+                        * Need to drop our head ref lock and re-aqcuire the
+                        * delayed ref lock and then re-check to make sure
+                        * nobody got added.
+                        */
+                       spin_unlock(&locked_ref->lock);
+                       spin_lock(&delayed_refs->lock);
+                       spin_lock(&locked_ref->lock);
+                       if (rb_first(&locked_ref->ref_root) ||
+                           locked_ref->extent_op) {
+                               spin_unlock(&locked_ref->lock);
+                               spin_unlock(&delayed_refs->lock);
+                               continue;
+                       }
+                       ref->in_tree = 0;
+                       delayed_refs->num_heads--;
+                       rb_erase(&locked_ref->href_node,
+                                &delayed_refs->href_root);
+                       spin_unlock(&delayed_refs->lock);
+               } else {
+                       actual_count++;
+                       ref->in_tree = 0;
+                       rb_erase(&ref->rb_node, &locked_ref->ref_root);
+               }
+               atomic_dec(&delayed_refs->num_entries);
+
+               if (!btrfs_delayed_ref_is_head(ref)) {
+                       /*
+                        * when we play the delayed ref, also correct the
+                        * ref_mod on head
+                        */
+                       switch (ref->action) {
+                       case BTRFS_ADD_DELAYED_REF:
+                       case BTRFS_ADD_DELAYED_EXTENT:
+                               locked_ref->node.ref_mod -= ref->ref_mod;
+                               break;
+                       case BTRFS_DROP_DELAYED_REF:
+                               locked_ref->node.ref_mod += ref->ref_mod;
+                               break;
+                       default:
+                               WARN_ON(1);
+                       }
+               }
+               spin_unlock(&locked_ref->lock);
+
+               ret = run_one_delayed_ref(trans, root, ref, extent_op,
+                                         must_insert_reserved);
+
+               btrfs_free_delayed_extent_op(extent_op);
+               if (ret) {
+                       locked_ref->processing = 0;
+                       btrfs_delayed_ref_unlock(locked_ref);
+                       btrfs_put_delayed_ref(ref);
+                       btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
+                       return ret;
+               }
+
+               /*
+                * If this node is a head, that means all the refs in this head
+                * have been dealt with, and we will pick the next head to deal
+                * with, so we must unlock the head and drop it from the cluster
+                * list before we release it.
+                */
+               if (btrfs_delayed_ref_is_head(ref)) {
+                       if (locked_ref->is_data &&
+                           locked_ref->total_ref_mod < 0) {
+                               spin_lock(&delayed_refs->lock);
+                               delayed_refs->pending_csums -= ref->num_bytes;
+                               spin_unlock(&delayed_refs->lock);
+                       }
+                       btrfs_delayed_ref_unlock(locked_ref);
+                       locked_ref = NULL;
+               }
+               btrfs_put_delayed_ref(ref);
+               count++;
+               cond_resched();
+       }
+
+       /*
+        * We don't want to include ref heads since we can have empty ref heads
+        * and those will drastically skew our runtime down since we just do
+        * accounting, no actual extent tree updates.
+        */
+       if (actual_count > 0) {
+               u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
+               u64 avg;
+
+               /*
+                * We weigh the current average higher than our current runtime
+                * to avoid large swings in the average.
+                */
+               spin_lock(&delayed_refs->lock);
+               avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
+               fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
+               spin_unlock(&delayed_refs->lock);
+       }
+       return 0;
+}
+
+#ifdef SCRAMBLE_DELAYED_REFS
+/*
+ * Normally delayed refs get processed in ascending bytenr order. This
+ * correlates in most cases to the order added. To expose dependencies on this
+ * order, we start to process the tree in the middle instead of the beginning
+ */
+static u64 find_middle(struct rb_root *root)
+{
+       struct rb_node *n = root->rb_node;
+       struct btrfs_delayed_ref_node *entry;
+       int alt = 1;
+       u64 middle;
+       u64 first = 0, last = 0;
+
+       n = rb_first(root);
+       if (n) {
+               entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
+               first = entry->bytenr;
+       }
+       n = rb_last(root);
+       if (n) {
+               entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
+               last = entry->bytenr;
+       }
+       n = root->rb_node;
+
+       while (n) {
+               entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
+               WARN_ON(!entry->in_tree);
+
+               middle = entry->bytenr;
+
+               if (alt)
+                       n = n->rb_left;
+               else
+                       n = n->rb_right;
+
+               alt = 1 - alt;
+       }
+       return middle;
+}
+#endif
+
+static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
+{
+       u64 num_bytes;
+
+       num_bytes = heads * (sizeof(struct btrfs_extent_item) +
+                            sizeof(struct btrfs_extent_inline_ref));
+       if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
+               num_bytes += heads * sizeof(struct btrfs_tree_block_info);
+
+       /*
+        * We don't ever fill up leaves all the way so multiply by 2 just to be
+        * closer to what we're really going to want to ouse.
+        */
+       return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
+}
+
+/*
+ * Takes the number of bytes to be csumm'ed and figures out how many leaves it
+ * would require to store the csums for that many bytes.
+ */
+u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
+{
+       u64 csum_size;
+       u64 num_csums_per_leaf;
+       u64 num_csums;
+
+       csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
+       num_csums_per_leaf = div64_u64(csum_size,
+                       (u64)btrfs_super_csum_size(root->fs_info->super_copy));
+       num_csums = div64_u64(csum_bytes, root->sectorsize);
+       num_csums += num_csums_per_leaf - 1;
+       num_csums = div64_u64(num_csums, num_csums_per_leaf);
+       return num_csums;
+}
+
+int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
+                                      struct btrfs_root *root)
+{
+       struct btrfs_block_rsv *global_rsv;
+       u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
+       u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
+       u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
+       u64 num_bytes, num_dirty_bgs_bytes;
+       int ret = 0;
+
+       num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+       num_heads = heads_to_leaves(root, num_heads);
+       if (num_heads > 1)
+               num_bytes += (num_heads - 1) * root->nodesize;
+       num_bytes <<= 1;
+       num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
+       num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
+                                                            num_dirty_bgs);
+       global_rsv = &root->fs_info->global_block_rsv;
+
+       /*
+        * If we can't allocate any more chunks lets make sure we have _lots_ of
+        * wiggle room since running delayed refs can create more delayed refs.
+        */
+       if (global_rsv->space_info->full) {
+               num_dirty_bgs_bytes <<= 1;
+               num_bytes <<= 1;
+       }
+
+       spin_lock(&global_rsv->lock);
+       if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
+               ret = 1;
+       spin_unlock(&global_rsv->lock);
+       return ret;
+}
+
+int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
+                                      struct btrfs_root *root)
+{
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       u64 num_entries =
+               atomic_read(&trans->transaction->delayed_refs.num_entries);
+       u64 avg_runtime;
+       u64 val;
+
+       smp_mb();
+       avg_runtime = fs_info->avg_delayed_ref_runtime;
+       val = num_entries * avg_runtime;
+       if (num_entries * avg_runtime >= NSEC_PER_SEC)
+               return 1;
+       if (val >= NSEC_PER_SEC / 2)
+               return 2;
+
+       return btrfs_check_space_for_delayed_refs(trans, root);
+}
+
+struct async_delayed_refs {
+       struct btrfs_root *root;
+       int count;
+       int error;
+       int sync;
+       struct completion wait;
+       struct btrfs_work work;
+};
+
+static void delayed_ref_async_start(struct btrfs_work *work)
+{
+       struct async_delayed_refs *async;
+       struct btrfs_trans_handle *trans;
+       int ret;
+
+       async = container_of(work, struct async_delayed_refs, work);
+
+       trans = btrfs_join_transaction(async->root);
+       if (IS_ERR(trans)) {
+               async->error = PTR_ERR(trans);
+               goto done;
+       }
+
+       /*
+        * trans->sync means that when we call end_transaciton, we won't
+        * wait on delayed refs
+        */
+       trans->sync = true;
+       ret = btrfs_run_delayed_refs(trans, async->root, async->count);
+       if (ret)
+               async->error = ret;
+
+       ret = btrfs_end_transaction(trans, async->root);
+       if (ret && !async->error)
+               async->error = ret;
+done:
+       if (async->sync)
+               complete(&async->wait);
+       else
+               kfree(async);
+}
+
+int btrfs_async_run_delayed_refs(struct btrfs_root *root,
+                                unsigned long count, int wait)
+{
+       struct async_delayed_refs *async;
+       int ret;
+
+       async = kmalloc(sizeof(*async), GFP_NOFS);
+       if (!async)
+               return -ENOMEM;
+
+       async->root = root->fs_info->tree_root;
+       async->count = count;
+       async->error = 0;
+       if (wait)
+               async->sync = 1;
+       else
+               async->sync = 0;
+       init_completion(&async->wait);
+
+       btrfs_init_work(&async->work, btrfs_extent_refs_helper,
+                       delayed_ref_async_start, NULL, NULL);
+
+       btrfs_queue_work(root->fs_info->extent_workers, &async->work);
+
+       if (wait) {
+               wait_for_completion(&async->wait);
+               ret = async->error;
+               kfree(async);
+               return ret;
+       }
+       return 0;
+}
+
+/*
+ * this starts processing the delayed reference count updates and
+ * extent insertions we have queued up so far.  count can be
+ * 0, which means to process everything in the tree at the start
+ * of the run (but not newly added entries), or it can be some target
+ * number you'd like to process.
+ *
+ * Returns 0 on success or if called with an aborted transaction
+ * Returns <0 on error and aborts the transaction
+ */
+int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
+                          struct btrfs_root *root, unsigned long count)
+{
+       struct rb_node *node;
+       struct btrfs_delayed_ref_root *delayed_refs;
+       struct btrfs_delayed_ref_head *head;
+       int ret;
+       int run_all = count == (unsigned long)-1;
+
+       /* We'll clean this up in btrfs_cleanup_transaction */
+       if (trans->aborted)
+               return 0;
+
+       if (root == root->fs_info->extent_root)
+               root = root->fs_info->tree_root;
+
+       delayed_refs = &trans->transaction->delayed_refs;
+       if (count == 0)
+               count = atomic_read(&delayed_refs->num_entries) * 2;
+
+again:
+#ifdef SCRAMBLE_DELAYED_REFS
+       delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
+#endif
+       ret = __btrfs_run_delayed_refs(trans, root, count);
+       if (ret < 0) {
+               btrfs_abort_transaction(trans, root, ret);
+               return ret;
+       }
+
+       if (run_all) {
+               if (!list_empty(&trans->new_bgs))
+                       btrfs_create_pending_block_groups(trans, root);
+
+               spin_lock(&delayed_refs->lock);
+               node = rb_first(&delayed_refs->href_root);
+               if (!node) {
+                       spin_unlock(&delayed_refs->lock);
+                       goto out;
+               }
+               count = (unsigned long)-1;
+
+               while (node) {
+                       head = rb_entry(node, struct btrfs_delayed_ref_head,
+                                       href_node);
+                       if (btrfs_delayed_ref_is_head(&head->node)) {
+                               struct btrfs_delayed_ref_node *ref;
+
+                               ref = &head->node;
+                               atomic_inc(&ref->refs);
+
+                               spin_unlock(&delayed_refs->lock);
+                               /*
+                                * Mutex was contended, block until it's
+                                * released and try again
+                                */
+                               mutex_lock(&head->mutex);
+                               mutex_unlock(&head->mutex);
+
+                               btrfs_put_delayed_ref(ref);
+                               cond_resched();
+                               goto again;
+                       } else {
+                               WARN_ON(1);
+                       }
+                       node = rb_next(node);
+               }
+               spin_unlock(&delayed_refs->lock);
+               cond_resched();
+               goto again;
+       }
+out:
+       ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
+       if (ret)
+               return ret;
+       assert_qgroups_uptodate(trans);
+       return 0;
+}
+
+int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
+                               struct btrfs_root *root,
+                               u64 bytenr, u64 num_bytes, u64 flags,
+                               int level, int is_data)
+{
+       struct btrfs_delayed_extent_op *extent_op;
+       int ret;
+
+       extent_op = btrfs_alloc_delayed_extent_op();
+       if (!extent_op)
+               return -ENOMEM;
+
+       extent_op->flags_to_set = flags;
+       extent_op->update_flags = 1;
+       extent_op->update_key = 0;
+       extent_op->is_data = is_data ? 1 : 0;
+       extent_op->level = level;
+
+       ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
+                                         num_bytes, extent_op);
+       if (ret)
+               btrfs_free_delayed_extent_op(extent_op);
+       return ret;
+}
+
+static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
+                                     struct btrfs_root *root,
+                                     struct btrfs_path *path,
+                                     u64 objectid, u64 offset, u64 bytenr)
+{
+       struct btrfs_delayed_ref_head *head;
+       struct btrfs_delayed_ref_node *ref;
+       struct btrfs_delayed_data_ref *data_ref;
+       struct btrfs_delayed_ref_root *delayed_refs;
+       struct rb_node *node;
+       int ret = 0;
+
+       delayed_refs = &trans->transaction->delayed_refs;
+       spin_lock(&delayed_refs->lock);
+       head = btrfs_find_delayed_ref_head(trans, bytenr);
+       if (!head) {
+               spin_unlock(&delayed_refs->lock);
+               return 0;
+       }
+
+       if (!mutex_trylock(&head->mutex)) {
+               atomic_inc(&head->node.refs);
+               spin_unlock(&delayed_refs->lock);
+
+               btrfs_release_path(path);
+
+               /*
+                * Mutex was contended, block until it's released and let
+                * caller try again
+                */
+               mutex_lock(&head->mutex);
+               mutex_unlock(&head->mutex);
+               btrfs_put_delayed_ref(&head->node);
+               return -EAGAIN;
+       }
+       spin_unlock(&delayed_refs->lock);
+
+       spin_lock(&head->lock);
+       node = rb_first(&head->ref_root);
+       while (node) {
+               ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+               node = rb_next(node);
+
+               /* If it's a shared ref we know a cross reference exists */
+               if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
+                       ret = 1;
+                       break;
+               }
+
+               data_ref = btrfs_delayed_node_to_data_ref(ref);
+
+               /*
+                * If our ref doesn't match the one we're currently looking at
+                * then we have a cross reference.
+                */
+               if (data_ref->root != root->root_key.objectid ||
+                   data_ref->objectid != objectid ||
+                   data_ref->offset != offset) {
+                       ret = 1;
+                       break;
+               }
+       }
+       spin_unlock(&head->lock);
+       mutex_unlock(&head->mutex);
+       return ret;
+}
+
+static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
+                                       struct btrfs_root *root,
+                                       struct btrfs_path *path,
+                                       u64 objectid, u64 offset, u64 bytenr)
+{
+       struct btrfs_root *extent_root = root->fs_info->extent_root;
+       struct extent_buffer *leaf;
+       struct btrfs_extent_data_ref *ref;
+       struct btrfs_extent_inline_ref *iref;
+       struct btrfs_extent_item *ei;
+       struct btrfs_key key;
+       u32 item_size;
+       int ret;
+
+       key.objectid = bytenr;
+       key.offset = (u64)-1;
+       key.type = BTRFS_EXTENT_ITEM_KEY;
+
+       ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+       if (ret < 0)
+               goto out;
+       BUG_ON(ret == 0); /* Corruption */
+
+       ret = -ENOENT;
+       if (path->slots[0] == 0)
+               goto out;
+
+       path->slots[0]--;
+       leaf = path->nodes[0];
+       btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+       if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
+               goto out;
+
+       ret = 1;
+       item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       if (item_size < sizeof(*ei)) {
+               WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
+               goto out;
+       }
+#endif
+       ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+
+       if (item_size != sizeof(*ei) +
+           btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
+               goto out;
+
+       if (btrfs_extent_generation(leaf, ei) <=
+           btrfs_root_last_snapshot(&root->root_item))
+               goto out;
+
+       iref = (struct btrfs_extent_inline_ref *)(ei + 1);
+       if (btrfs_extent_inline_ref_type(leaf, iref) !=
+           BTRFS_EXTENT_DATA_REF_KEY)
+               goto out;
+
+       ref = (struct btrfs_extent_data_ref *)(&iref->offset);
+       if (btrfs_extent_refs(leaf, ei) !=
+           btrfs_extent_data_ref_count(leaf, ref) ||
+           btrfs_extent_data_ref_root(leaf, ref) !=
+           root->root_key.objectid ||
+           btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
+           btrfs_extent_data_ref_offset(leaf, ref) != offset)
+               goto out;
+
+       ret = 0;
+out:
+       return ret;
+}
+
+int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
+                         struct btrfs_root *root,
+                         u64 objectid, u64 offset, u64 bytenr)
+{
+       struct btrfs_path *path;
+       int ret;
+       int ret2;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOENT;
+
+       do {
+               ret = check_committed_ref(trans, root, path, objectid,
+                                         offset, bytenr);
+               if (ret && ret != -ENOENT)
+                       goto out;
+
+               ret2 = check_delayed_ref(trans, root, path, objectid,
+                                        offset, bytenr);
+       } while (ret2 == -EAGAIN);
+
+       if (ret2 && ret2 != -ENOENT) {
+               ret = ret2;
+               goto out;
+       }
+
+       if (ret != -ENOENT || ret2 != -ENOENT)
+               ret = 0;
+out:
+       btrfs_free_path(path);
+       if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
+               WARN_ON(ret > 0);
+       return ret;
+}
+
+static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
+                          struct btrfs_root *root,
+                          struct extent_buffer *buf,
+                          int full_backref, int inc)
+{
+       u64 bytenr;
+       u64 num_bytes;
+       u64 parent;
+       u64 ref_root;
+       u32 nritems;
+       struct btrfs_key key;
+       struct btrfs_file_extent_item *fi;
+       int i;
+       int level;
+       int ret = 0;
+       int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
+                           u64, u64, u64, u64, u64, u64, int);
+
+
+       if (btrfs_test_is_dummy_root(root))
+               return 0;
+
+       ref_root = btrfs_header_owner(buf);
+       nritems = btrfs_header_nritems(buf);
+       level = btrfs_header_level(buf);
+
+       if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
+               return 0;
+
+       if (inc)
+               process_func = btrfs_inc_extent_ref;
+       else
+               process_func = btrfs_free_extent;
+
+       if (full_backref)
+               parent = buf->start;
+       else
+               parent = 0;
+
+       for (i = 0; i < nritems; i++) {
+               if (level == 0) {
+                       btrfs_item_key_to_cpu(buf, &key, i);
+                       if (key.type != BTRFS_EXTENT_DATA_KEY)
+                               continue;
+                       fi = btrfs_item_ptr(buf, i,
+                                           struct btrfs_file_extent_item);
+                       if (btrfs_file_extent_type(buf, fi) ==
+                           BTRFS_FILE_EXTENT_INLINE)
+                               continue;
+                       bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
+                       if (bytenr == 0)
+                               continue;
+
+                       num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
+                       key.offset -= btrfs_file_extent_offset(buf, fi);
+                       ret = process_func(trans, root, bytenr, num_bytes,
+                                          parent, ref_root, key.objectid,
+                                          key.offset, 1);
+                       if (ret)
+                               goto fail;
+               } else {
+                       bytenr = btrfs_node_blockptr(buf, i);
+                       num_bytes = root->nodesize;
+                       ret = process_func(trans, root, bytenr, num_bytes,
+                                          parent, ref_root, level - 1, 0,
+                                          1);
+                       if (ret)
+                               goto fail;
+               }
+       }
+       return 0;
+fail:
+       return ret;
+}
+
+int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+                 struct extent_buffer *buf, int full_backref)
+{
+       return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
+}
+
+int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+                 struct extent_buffer *buf, int full_backref)
+{
+       return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
+}
+
+static int write_one_cache_group(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct btrfs_block_group_cache *cache)
+{
+       int ret;
+       struct btrfs_root *extent_root = root->fs_info->extent_root;
+       unsigned long bi;
+       struct extent_buffer *leaf;
+
+       ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
+       if (ret) {
+               if (ret > 0)
+                       ret = -ENOENT;
+               goto fail;
+       }
+
+       leaf = path->nodes[0];
+       bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
+       write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
+       btrfs_mark_buffer_dirty(leaf);
+fail:
+       btrfs_release_path(path);
+       return ret;
+
+}
+
+static struct btrfs_block_group_cache *
+next_block_group(struct btrfs_root *root,
+                struct btrfs_block_group_cache *cache)
+{
+       struct rb_node *node;
+
+       spin_lock(&root->fs_info->block_group_cache_lock);
+
+       /* If our block group was removed, we need a full search. */
+       if (RB_EMPTY_NODE(&cache->cache_node)) {
+               const u64 next_bytenr = cache->key.objectid + cache->key.offset;
+
+               spin_unlock(&root->fs_info->block_group_cache_lock);
+               btrfs_put_block_group(cache);
+               cache = btrfs_lookup_first_block_group(root->fs_info,
+                                                      next_bytenr);
+               return cache;
+       }
+       node = rb_next(&cache->cache_node);
+       btrfs_put_block_group(cache);
+       if (node) {
+               cache = rb_entry(node, struct btrfs_block_group_cache,
+                                cache_node);
+               btrfs_get_block_group(cache);
+       } else
+               cache = NULL;
+       spin_unlock(&root->fs_info->block_group_cache_lock);
+       return cache;
+}
+
+static int cache_save_setup(struct btrfs_block_group_cache *block_group,
+                           struct btrfs_trans_handle *trans,
+                           struct btrfs_path *path)
+{
+       struct btrfs_root *root = block_group->fs_info->tree_root;
+       struct inode *inode = NULL;
+       u64 alloc_hint = 0;
+       int dcs = BTRFS_DC_ERROR;
+       u64 num_pages = 0;
+       int retries = 0;
+       int ret = 0;
+
+       /*
+        * If this block group is smaller than 100 megs don't bother caching the
+        * block group.
+        */
+       if (block_group->key.offset < (100 * 1024 * 1024)) {
+               spin_lock(&block_group->lock);
+               block_group->disk_cache_state = BTRFS_DC_WRITTEN;
+               spin_unlock(&block_group->lock);
+               return 0;
+       }
+
+       if (trans->aborted)
+               return 0;
+again:
+       inode = lookup_free_space_inode(root, block_group, path);
+       if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
+               ret = PTR_ERR(inode);
+               btrfs_release_path(path);
+               goto out;
+       }
+
+       if (IS_ERR(inode)) {
+               BUG_ON(retries);
+               retries++;
+
+               if (block_group->ro)
+                       goto out_free;
+
+               ret = create_free_space_inode(root, trans, block_group, path);
+               if (ret)
+                       goto out_free;
+               goto again;
+       }
+
+       /* We've already setup this transaction, go ahead and exit */
+       if (block_group->cache_generation == trans->transid &&
+           i_size_read(inode)) {
+               dcs = BTRFS_DC_SETUP;
+               goto out_put;
+       }
+
+       /*
+        * We want to set the generation to 0, that way if anything goes wrong
+        * from here on out we know not to trust this cache when we load up next
+        * time.
+        */
+       BTRFS_I(inode)->generation = 0;
+       ret = btrfs_update_inode(trans, root, inode);
+       if (ret) {
+               /*
+                * So theoretically we could recover from this, simply set the
+                * super cache generation to 0 so we know to invalidate the
+                * cache, but then we'd have to keep track of the block groups
+                * that fail this way so we know we _have_ to reset this cache
+                * before the next commit or risk reading stale cache.  So to
+                * limit our exposure to horrible edge cases lets just abort the
+                * transaction, this only happens in really bad situations
+                * anyway.
+                */
+               btrfs_abort_transaction(trans, root, ret);
+               goto out_put;
+       }
+       WARN_ON(ret);
+
+       if (i_size_read(inode) > 0) {
+               ret = btrfs_check_trunc_cache_free_space(root,
+                                       &root->fs_info->global_block_rsv);
+               if (ret)
+                       goto out_put;
+
+               ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
+               if (ret)
+                       goto out_put;
+       }
+
+       spin_lock(&block_group->lock);
+       if (block_group->cached != BTRFS_CACHE_FINISHED ||
+           !btrfs_test_opt(root, SPACE_CACHE)) {
+               /*
+                * don't bother trying to write stuff out _if_
+                * a) we're not cached,
+                * b) we're with nospace_cache mount option.
+                */
+               dcs = BTRFS_DC_WRITTEN;
+               spin_unlock(&block_group->lock);
+               goto out_put;
+       }
+       spin_unlock(&block_group->lock);
+
+       /*
+        * Try to preallocate enough space based on how big the block group is.
+        * Keep in mind this has to include any pinned space which could end up
+        * taking up quite a bit since it's not folded into the other space
+        * cache.
+        */
+       num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
+       if (!num_pages)
+               num_pages = 1;
+
+       num_pages *= 16;
+       num_pages *= PAGE_CACHE_SIZE;
+
+       ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
+       if (ret)
+               goto out_put;
+
+       ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
+                                             num_pages, num_pages,
+                                             &alloc_hint);
+       if (!ret)
+               dcs = BTRFS_DC_SETUP;
+       btrfs_free_reserved_data_space(inode, num_pages);
+
+out_put:
+       iput(inode);
+out_free:
+       btrfs_release_path(path);
+out:
+       spin_lock(&block_group->lock);
+       if (!ret && dcs == BTRFS_DC_SETUP)
+               block_group->cache_generation = trans->transid;
+       block_group->disk_cache_state = dcs;
+       spin_unlock(&block_group->lock);
+
+       return ret;
+}
+
+int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
+                           struct btrfs_root *root)
+{
+       struct btrfs_block_group_cache *cache, *tmp;
+       struct btrfs_transaction *cur_trans = trans->transaction;
+       struct btrfs_path *path;
+
+       if (list_empty(&cur_trans->dirty_bgs) ||
+           !btrfs_test_opt(root, SPACE_CACHE))
+               return 0;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       /* Could add new block groups, use _safe just in case */
+       list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
+                                dirty_list) {
+               if (cache->disk_cache_state == BTRFS_DC_CLEAR)
+                       cache_save_setup(cache, trans, path);
+       }
+
+       btrfs_free_path(path);
+       return 0;
+}
+
+/*
+ * transaction commit does final block group cache writeback during a
+ * critical section where nothing is allowed to change the FS.  This is
+ * required in order for the cache to actually match the block group,
+ * but can introduce a lot of latency into the commit.
+ *
+ * So, btrfs_start_dirty_block_groups is here to kick off block group
+ * cache IO.  There's a chance we'll have to redo some of it if the
+ * block group changes again during the commit, but it greatly reduces
+ * the commit latency by getting rid of the easy block groups while
+ * we're still allowing others to join the commit.
+ */
+int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
+                                  struct btrfs_root *root)
+{
+       struct btrfs_block_group_cache *cache;
+       struct btrfs_transaction *cur_trans = trans->transaction;
+       int ret = 0;
+       int should_put;
+       struct btrfs_path *path = NULL;
+       LIST_HEAD(dirty);
+       struct list_head *io = &cur_trans->io_bgs;
+       int num_started = 0;
+       int loops = 0;
+
+       spin_lock(&cur_trans->dirty_bgs_lock);
+       if (list_empty(&cur_trans->dirty_bgs)) {
+               spin_unlock(&cur_trans->dirty_bgs_lock);
+               return 0;
+       }
+       list_splice_init(&cur_trans->dirty_bgs, &dirty);
+       spin_unlock(&cur_trans->dirty_bgs_lock);
+
+again:
+       /*
+        * make sure all the block groups on our dirty list actually
+        * exist
+        */
+       btrfs_create_pending_block_groups(trans, root);
+
+       if (!path) {
+               path = btrfs_alloc_path();
+               if (!path)
+                       return -ENOMEM;
+       }
+
+       /*
+        * cache_write_mutex is here only to save us from balance or automatic
+        * removal of empty block groups deleting this block group while we are
+        * writing out the cache
+        */
+       mutex_lock(&trans->transaction->cache_write_mutex);
+       while (!list_empty(&dirty)) {
+               cache = list_first_entry(&dirty,
+                                        struct btrfs_block_group_cache,
+                                        dirty_list);
+               /*
+                * this can happen if something re-dirties a block
+                * group that is already under IO.  Just wait for it to
+                * finish and then do it all again
+                */
+               if (!list_empty(&cache->io_list)) {
+                       list_del_init(&cache->io_list);
+                       btrfs_wait_cache_io(root, trans, cache,
+                                           &cache->io_ctl, path,
+                                           cache->key.objectid);
+                       btrfs_put_block_group(cache);
+               }
+
+
+               /*
+                * btrfs_wait_cache_io uses the cache->dirty_list to decide
+                * if it should update the cache_state.  Don't delete
+                * until after we wait.
+                *
+                * Since we're not running in the commit critical section
+                * we need the dirty_bgs_lock to protect from update_block_group
+                */
+               spin_lock(&cur_trans->dirty_bgs_lock);
+               list_del_init(&cache->dirty_list);
+               spin_unlock(&cur_trans->dirty_bgs_lock);
+
+               should_put = 1;
+
+               cache_save_setup(cache, trans, path);
+
+               if (cache->disk_cache_state == BTRFS_DC_SETUP) {
+                       cache->io_ctl.inode = NULL;
+                       ret = btrfs_write_out_cache(root, trans, cache, path);
+                       if (ret == 0 && cache->io_ctl.inode) {
+                               num_started++;
+                               should_put = 0;
+
+                               /*
+                                * the cache_write_mutex is protecting
+                                * the io_list
+                                */
+                               list_add_tail(&cache->io_list, io);
+                       } else {
+                               /*
+                                * if we failed to write the cache, the
+                                * generation will be bad and life goes on
+                                */
+                               ret = 0;
+                       }
+               }
+               if (!ret) {
+                       ret = write_one_cache_group(trans, root, path, cache);
+                       /*
+                        * Our block group might still be attached to the list
+                        * of new block groups in the transaction handle of some
+                        * other task (struct btrfs_trans_handle->new_bgs). This
+                        * means its block group item isn't yet in the extent
+                        * tree. If this happens ignore the error, as we will
+                        * try again later in the critical section of the
+                        * transaction commit.
+                        */
+                       if (ret == -ENOENT) {
+                               ret = 0;
+                               spin_lock(&cur_trans->dirty_bgs_lock);
+                               if (list_empty(&cache->dirty_list)) {
+                                       list_add_tail(&cache->dirty_list,
+                                                     &cur_trans->dirty_bgs);
+                                       btrfs_get_block_group(cache);
+                               }
+                               spin_unlock(&cur_trans->dirty_bgs_lock);
+                       } else if (ret) {
+                               btrfs_abort_transaction(trans, root, ret);
+                       }
+               }
+
+               /* if its not on the io list, we need to put the block group */
+               if (should_put)
+                       btrfs_put_block_group(cache);
+
+               if (ret)
+                       break;
+
+               /*
+                * Avoid blocking other tasks for too long. It might even save
+                * us from writing caches for block groups that are going to be
+                * removed.
+                */
+               mutex_unlock(&trans->transaction->cache_write_mutex);
+               mutex_lock(&trans->transaction->cache_write_mutex);
+       }
+       mutex_unlock(&trans->transaction->cache_write_mutex);
+
+       /*
+        * go through delayed refs for all the stuff we've just kicked off
+        * and then loop back (just once)
+        */
+       ret = btrfs_run_delayed_refs(trans, root, 0);
+       if (!ret && loops == 0) {
+               loops++;
+               spin_lock(&cur_trans->dirty_bgs_lock);
+               list_splice_init(&cur_trans->dirty_bgs, &dirty);
+               /*
+                * dirty_bgs_lock protects us from concurrent block group
+                * deletes too (not just cache_write_mutex).
+                */
+               if (!list_empty(&dirty)) {
+                       spin_unlock(&cur_trans->dirty_bgs_lock);
+                       goto again;
+               }
+               spin_unlock(&cur_trans->dirty_bgs_lock);
+       }
+
+       btrfs_free_path(path);
+       return ret;
+}
+
+int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
+                                  struct btrfs_root *root)
+{
+       struct btrfs_block_group_cache *cache;
+       struct btrfs_transaction *cur_trans = trans->transaction;
+       int ret = 0;
+       int should_put;
+       struct btrfs_path *path;
+       struct list_head *io = &cur_trans->io_bgs;
+       int num_started = 0;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       /*
+        * We don't need the lock here since we are protected by the transaction
+        * commit.  We want to do the cache_save_setup first and then run the
+        * delayed refs to make sure we have the best chance at doing this all
+        * in one shot.
+        */
+       while (!list_empty(&cur_trans->dirty_bgs)) {
+               cache = list_first_entry(&cur_trans->dirty_bgs,
+                                        struct btrfs_block_group_cache,
+                                        dirty_list);
+
+               /*
+                * this can happen if cache_save_setup re-dirties a block
+                * group that is already under IO.  Just wait for it to
+                * finish and then do it all again
+                */
+               if (!list_empty(&cache->io_list)) {
+                       list_del_init(&cache->io_list);
+                       btrfs_wait_cache_io(root, trans, cache,
+                                           &cache->io_ctl, path,
+                                           cache->key.objectid);
+                       btrfs_put_block_group(cache);
+               }
+
+               /*
+                * don't remove from the dirty list until after we've waited
+                * on any pending IO
+                */
+               list_del_init(&cache->dirty_list);
+               should_put = 1;
+
+               cache_save_setup(cache, trans, path);
+
+               if (!ret)
+                       ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
+
+               if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
+                       cache->io_ctl.inode = NULL;
+                       ret = btrfs_write_out_cache(root, trans, cache, path);
+                       if (ret == 0 && cache->io_ctl.inode) {
+                               num_started++;
+                               should_put = 0;
+                               list_add_tail(&cache->io_list, io);
+                       } else {
+                               /*
+                                * if we failed to write the cache, the
+                                * generation will be bad and life goes on
+                                */
+                               ret = 0;
+                       }
+               }
+               if (!ret) {
+                       ret = write_one_cache_group(trans, root, path, cache);
+                       if (ret)
+                               btrfs_abort_transaction(trans, root, ret);
+               }
+
+               /* if its not on the io list, we need to put the block group */
+               if (should_put)
+                       btrfs_put_block_group(cache);
+       }
+
+       while (!list_empty(io)) {
+               cache = list_first_entry(io, struct btrfs_block_group_cache,
+                                        io_list);
+               list_del_init(&cache->io_list);
+               btrfs_wait_cache_io(root, trans, cache,
+                                   &cache->io_ctl, path, cache->key.objectid);
+               btrfs_put_block_group(cache);
+       }
+
+       btrfs_free_path(path);
+       return ret;
+}
+
+int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
+{
+       struct btrfs_block_group_cache *block_group;
+       int readonly = 0;
+
+       block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
+       if (!block_group || block_group->ro)
+               readonly = 1;
+       if (block_group)
+               btrfs_put_block_group(block_group);
+       return readonly;
+}
+
+static const char *alloc_name(u64 flags)
+{
+       switch (flags) {
+       case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
+               return "mixed";
+       case BTRFS_BLOCK_GROUP_METADATA:
+               return "metadata";
+       case BTRFS_BLOCK_GROUP_DATA:
+               return "data";
+       case BTRFS_BLOCK_GROUP_SYSTEM:
+               return "system";
+       default:
+               WARN_ON(1);
+               return "invalid-combination";
+       };
+}
+
+static int update_space_info(struct btrfs_fs_info *info, u64 flags,
+                            u64 total_bytes, u64 bytes_used,
+                            struct btrfs_space_info **space_info)
+{
+       struct btrfs_space_info *found;
+       int i;
+       int factor;
+       int ret;
+
+       if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
+                    BTRFS_BLOCK_GROUP_RAID10))
+               factor = 2;
+       else
+               factor = 1;
+
+       found = __find_space_info(info, flags);
+       if (found) {
+               spin_lock(&found->lock);
+               found->total_bytes += total_bytes;
+               found->disk_total += total_bytes * factor;
+               found->bytes_used += bytes_used;
+               found->disk_used += bytes_used * factor;
+               found->full = 0;
+               spin_unlock(&found->lock);
+               *space_info = found;
+               return 0;
+       }
+       found = kzalloc(sizeof(*found), GFP_NOFS);
+       if (!found)
+               return -ENOMEM;
+
+       ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
+       if (ret) {
+               kfree(found);
+               return ret;
+       }
+
+       for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
+               INIT_LIST_HEAD(&found->block_groups[i]);
+       init_rwsem(&found->groups_sem);
+       spin_lock_init(&found->lock);
+       found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
+       found->total_bytes = total_bytes;
+       found->disk_total = total_bytes * factor;
+       found->bytes_used = bytes_used;
+       found->disk_used = bytes_used * factor;
+       found->bytes_pinned = 0;
+       found->bytes_reserved = 0;
+       found->bytes_readonly = 0;
+       found->bytes_may_use = 0;
+       found->full = 0;
+       found->force_alloc = CHUNK_ALLOC_NO_FORCE;
+       found->chunk_alloc = 0;
+       found->flush = 0;
+       init_waitqueue_head(&found->wait);
+       INIT_LIST_HEAD(&found->ro_bgs);
+
+       ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
+                                   info->space_info_kobj, "%s",
+                                   alloc_name(found->flags));
+       if (ret) {
+               kfree(found);
+               return ret;
+       }
+
+       *space_info = found;
+       list_add_rcu(&found->list, &info->space_info);
+       if (flags & BTRFS_BLOCK_GROUP_DATA)
+               info->data_sinfo = found;
+
+       return ret;
+}
+
+static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
+{
+       u64 extra_flags = chunk_to_extended(flags) &
+                               BTRFS_EXTENDED_PROFILE_MASK;
+
+       write_seqlock(&fs_info->profiles_lock);
+       if (flags & BTRFS_BLOCK_GROUP_DATA)
+               fs_info->avail_data_alloc_bits |= extra_flags;
+       if (flags & BTRFS_BLOCK_GROUP_METADATA)
+               fs_info->avail_metadata_alloc_bits |= extra_flags;
+       if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+               fs_info->avail_system_alloc_bits |= extra_flags;
+       write_sequnlock(&fs_info->profiles_lock);
+}
+
+/*
+ * returns target flags in extended format or 0 if restripe for this
+ * chunk_type is not in progress
+ *
+ * should be called with either volume_mutex or balance_lock held
+ */
+static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
+{
+       struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+       u64 target = 0;
+
+       if (!bctl)
+               return 0;
+
+       if (flags & BTRFS_BLOCK_GROUP_DATA &&
+           bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+               target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
+       } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
+                  bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+               target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
+       } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
+                  bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+               target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
+       }
+
+       return target;
+}
+
+/*
+ * @flags: available profiles in extended format (see ctree.h)
+ *
+ * Returns reduced profile in chunk format.  If profile changing is in
+ * progress (either running or paused) picks the target profile (if it's
+ * already available), otherwise falls back to plain reducing.
+ */
+static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
+{
+       u64 num_devices = root->fs_info->fs_devices->rw_devices;
+       u64 target;
+       u64 tmp;
+
+       /*
+        * see if restripe for this chunk_type is in progress, if so
+        * try to reduce to the target profile
+        */
+       spin_lock(&root->fs_info->balance_lock);
+       target = get_restripe_target(root->fs_info, flags);
+       if (target) {
+               /* pick target profile only if it's already available */
+               if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
+                       spin_unlock(&root->fs_info->balance_lock);
+                       return extended_to_chunk(target);
+               }
+       }
+       spin_unlock(&root->fs_info->balance_lock);
+
+       /* First, mask out the RAID levels which aren't possible */
+       if (num_devices == 1)
+               flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
+                          BTRFS_BLOCK_GROUP_RAID5);
+       if (num_devices < 3)
+               flags &= ~BTRFS_BLOCK_GROUP_RAID6;
+       if (num_devices < 4)
+               flags &= ~BTRFS_BLOCK_GROUP_RAID10;
+
+       tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
+                      BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
+                      BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
+       flags &= ~tmp;
+
+       if (tmp & BTRFS_BLOCK_GROUP_RAID6)
+               tmp = BTRFS_BLOCK_GROUP_RAID6;
+       else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
+               tmp = BTRFS_BLOCK_GROUP_RAID5;
+       else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
+               tmp = BTRFS_BLOCK_GROUP_RAID10;
+       else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
+               tmp = BTRFS_BLOCK_GROUP_RAID1;
+       else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
+               tmp = BTRFS_BLOCK_GROUP_RAID0;
+
+       return extended_to_chunk(flags | tmp);
+}
+
+static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
+{
+       unsigned seq;
+       u64 flags;
+
+       do {
+               flags = orig_flags;
+               seq = read_seqbegin(&root->fs_info->profiles_lock);
+
+               if (flags & BTRFS_BLOCK_GROUP_DATA)
+                       flags |= root->fs_info->avail_data_alloc_bits;
+               else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+                       flags |= root->fs_info->avail_system_alloc_bits;
+               else if (flags & BTRFS_BLOCK_GROUP_METADATA)
+                       flags |= root->fs_info->avail_metadata_alloc_bits;
+       } while (read_seqretry(&root->fs_info->profiles_lock, seq));
+
+       return btrfs_reduce_alloc_profile(root, flags);
+}
+
+u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
+{
+       u64 flags;
+       u64 ret;
+
+       if (data)
+               flags = BTRFS_BLOCK_GROUP_DATA;
+       else if (root == root->fs_info->chunk_root)
+               flags = BTRFS_BLOCK_GROUP_SYSTEM;
+       else
+               flags = BTRFS_BLOCK_GROUP_METADATA;
+
+       ret = get_alloc_profile(root, flags);
+       return ret;
+}
+
+/*
+ * This will check the space that the inode allocates from to make sure we have
+ * enough space for bytes.
+ */
+int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
+{
+       struct btrfs_space_info *data_sinfo;
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       u64 used;
+       int ret = 0;
+       int need_commit = 2;
+       int have_pinned_space;
+
+       /* make sure bytes are sectorsize aligned */
+       bytes = ALIGN(bytes, root->sectorsize);
+
+       if (btrfs_is_free_space_inode(inode)) {
+               need_commit = 0;
+               ASSERT(current->journal_info);
+       }
+
+       data_sinfo = fs_info->data_sinfo;
+       if (!data_sinfo)
+               goto alloc;
+
+again:
+       /* make sure we have enough space to handle the data first */
+       spin_lock(&data_sinfo->lock);
+       used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
+               data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
+               data_sinfo->bytes_may_use;
+
+       if (used + bytes > data_sinfo->total_bytes) {
+               struct btrfs_trans_handle *trans;
+
+               /*
+                * if we don't have enough free bytes in this space then we need
+                * to alloc a new chunk.
+                */
+               if (!data_sinfo->full) {
+                       u64 alloc_target;
+
+                       data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
+                       spin_unlock(&data_sinfo->lock);
+alloc:
+                       alloc_target = btrfs_get_alloc_profile(root, 1);
+                       /*
+                        * It is ugly that we don't call nolock join
+                        * transaction for the free space inode case here.
+                        * But it is safe because we only do the data space
+                        * reservation for the free space cache in the
+                        * transaction context, the common join transaction
+                        * just increase the counter of the current transaction
+                        * handler, doesn't try to acquire the trans_lock of
+                        * the fs.
+                        */
+                       trans = btrfs_join_transaction(root);
+                       if (IS_ERR(trans))
+                               return PTR_ERR(trans);
+
+                       ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+                                            alloc_target,
+                                            CHUNK_ALLOC_NO_FORCE);
+                       btrfs_end_transaction(trans, root);
+                       if (ret < 0) {
+                               if (ret != -ENOSPC)
+                                       return ret;
+                               else {
+                                       have_pinned_space = 1;
+                                       goto commit_trans;
+                               }
+                       }
+
+                       if (!data_sinfo)
+                               data_sinfo = fs_info->data_sinfo;
+
+                       goto again;
+               }
+
+               /*
+                * If we don't have enough pinned space to deal with this
+                * allocation, and no removed chunk in current transaction,
+                * don't bother committing the transaction.
+                */
+               have_pinned_space = percpu_counter_compare(
+                       &data_sinfo->total_bytes_pinned,
+                       used + bytes - data_sinfo->total_bytes);
+               spin_unlock(&data_sinfo->lock);
+
+               /* commit the current transaction and try again */
+commit_trans:
+               if (need_commit &&
+                   !atomic_read(&root->fs_info->open_ioctl_trans)) {
+                       need_commit--;
+
+                       trans = btrfs_join_transaction(root);
+                       if (IS_ERR(trans))
+                               return PTR_ERR(trans);
+                       if (have_pinned_space >= 0 ||
+                           trans->transaction->have_free_bgs ||
+                           need_commit > 0) {
+                               ret = btrfs_commit_transaction(trans, root);
+                               if (ret)
+                                       return ret;
+                               /*
+                                * make sure that all running delayed iput are
+                                * done
+                                */
+                               down_write(&root->fs_info->delayed_iput_sem);
+                               up_write(&root->fs_info->delayed_iput_sem);
+                               goto again;
+                       } else {
+                               btrfs_end_transaction(trans, root);
+                       }
+               }
+
+               trace_btrfs_space_reservation(root->fs_info,
+                                             "space_info:enospc",
+                                             data_sinfo->flags, bytes, 1);
+               return -ENOSPC;
+       }
+       ret = btrfs_qgroup_reserve(root, write_bytes);
+       if (ret)
+               goto out;
+       data_sinfo->bytes_may_use += bytes;
+       trace_btrfs_space_reservation(root->fs_info, "space_info",
+                                     data_sinfo->flags, bytes, 1);
+out:
+       spin_unlock(&data_sinfo->lock);
+
+       return ret;
+}
+
+/*
+ * Called if we need to clear a data reservation for this inode.
+ */
+void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
+{
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       struct btrfs_space_info *data_sinfo;
+
+       /* make sure bytes are sectorsize aligned */
+       bytes = ALIGN(bytes, root->sectorsize);
+
+       data_sinfo = root->fs_info->data_sinfo;
+       spin_lock(&data_sinfo->lock);
+       WARN_ON(data_sinfo->bytes_may_use < bytes);
+       data_sinfo->bytes_may_use -= bytes;
+       trace_btrfs_space_reservation(root->fs_info, "space_info",
+                                     data_sinfo->flags, bytes, 0);
+       spin_unlock(&data_sinfo->lock);
+}
+
+static void force_metadata_allocation(struct btrfs_fs_info *info)
+{
+       struct list_head *head = &info->space_info;
+       struct btrfs_space_info *found;
+
+       rcu_read_lock();
+       list_for_each_entry_rcu(found, head, list) {
+               if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
+                       found->force_alloc = CHUNK_ALLOC_FORCE;
+       }
+       rcu_read_unlock();
+}
+
+static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
+{
+       return (global->size << 1);
+}
+
+static int should_alloc_chunk(struct btrfs_root *root,
+                             struct btrfs_space_info *sinfo, int force)
+{
+       struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+       u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
+       u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
+       u64 thresh;
+
+       if (force == CHUNK_ALLOC_FORCE)
+               return 1;
+
+       /*
+        * We need to take into account the global rsv because for all intents
+        * and purposes it's used space.  Don't worry about locking the
+        * global_rsv, it doesn't change except when the transaction commits.
+        */
+       if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
+               num_allocated += calc_global_rsv_need_space(global_rsv);
+
+       /*
+        * in limited mode, we want to have some free space up to
+        * about 1% of the FS size.
+        */
+       if (force == CHUNK_ALLOC_LIMITED) {
+               thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
+               thresh = max_t(u64, 64 * 1024 * 1024,
+                              div_factor_fine(thresh, 1));
+
+               if (num_bytes - num_allocated < thresh)
+                       return 1;
+       }
+
+       if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
+               return 0;
+       return 1;
+}
+
+static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
+{
+       u64 num_dev;
+
+       if (type & (BTRFS_BLOCK_GROUP_RAID10 |
+                   BTRFS_BLOCK_GROUP_RAID0 |
+                   BTRFS_BLOCK_GROUP_RAID5 |
+                   BTRFS_BLOCK_GROUP_RAID6))
+               num_dev = root->fs_info->fs_devices->rw_devices;
+       else if (type & BTRFS_BLOCK_GROUP_RAID1)
+               num_dev = 2;
+       else
+               num_dev = 1;    /* DUP or single */
+
+       /* metadata for updaing devices and chunk tree */
+       return btrfs_calc_trans_metadata_size(root, num_dev + 1);
+}
+
+static void check_system_chunk(struct btrfs_trans_handle *trans,
+                              struct btrfs_root *root, u64 type)
+{
+       struct btrfs_space_info *info;
+       u64 left;
+       u64 thresh;
+
+       info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
+       spin_lock(&info->lock);
+       left = info->total_bytes - info->bytes_used - info->bytes_pinned -
+               info->bytes_reserved - info->bytes_readonly;
+       spin_unlock(&info->lock);
+
+       thresh = get_system_chunk_thresh(root, type);
+       if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
+               btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
+                       left, thresh, type);
+               dump_space_info(info, 0, 0);
+       }
+
+       if (left < thresh) {
+               u64 flags;
+
+               flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
+               btrfs_alloc_chunk(trans, root, flags);
+       }
+}
+
+static int do_chunk_alloc(struct btrfs_trans_handle *trans,
+                         struct btrfs_root *extent_root, u64 flags, int force)
+{
+       struct btrfs_space_info *space_info;
+       struct btrfs_fs_info *fs_info = extent_root->fs_info;
+       int wait_for_alloc = 0;
+       int ret = 0;
+
+       /* Don't re-enter if we're already allocating a chunk */
+       if (trans->allocating_chunk)
+               return -ENOSPC;
+
+       space_info = __find_space_info(extent_root->fs_info, flags);
+       if (!space_info) {
+               ret = update_space_info(extent_root->fs_info, flags,
+                                       0, 0, &space_info);
+               BUG_ON(ret); /* -ENOMEM */
+       }
+       BUG_ON(!space_info); /* Logic error */
+
+again:
+       spin_lock(&space_info->lock);
+       if (force < space_info->force_alloc)
+               force = space_info->force_alloc;
+       if (space_info->full) {
+               if (should_alloc_chunk(extent_root, space_info, force))
+                       ret = -ENOSPC;
+               else
+                       ret = 0;
+               spin_unlock(&space_info->lock);
+               return ret;
+       }
+
+       if (!should_alloc_chunk(extent_root, space_info, force)) {
+               spin_unlock(&space_info->lock);
+               return 0;
+       } else if (space_info->chunk_alloc) {
+               wait_for_alloc = 1;
+       } else {
+               space_info->chunk_alloc = 1;
+       }
+
+       spin_unlock(&space_info->lock);
+
+       mutex_lock(&fs_info->chunk_mutex);
+
+       /*
+        * The chunk_mutex is held throughout the entirety of a chunk
+        * allocation, so once we've acquired the chunk_mutex we know that the
+        * other guy is done and we need to recheck and see if we should
+        * allocate.
+        */
+       if (wait_for_alloc) {
+               mutex_unlock(&fs_info->chunk_mutex);
+               wait_for_alloc = 0;
+               goto again;
+       }
+
+       trans->allocating_chunk = true;
+
+       /*
+        * If we have mixed data/metadata chunks we want to make sure we keep
+        * allocating mixed chunks instead of individual chunks.
+        */
+       if (btrfs_mixed_space_info(space_info))
+               flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
+
+       /*
+        * if we're doing a data chunk, go ahead and make sure that
+        * we keep a reasonable number of metadata chunks allocated in the
+        * FS as well.
+        */
+       if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
+               fs_info->data_chunk_allocations++;
+               if (!(fs_info->data_chunk_allocations %
+                     fs_info->metadata_ratio))
+                       force_metadata_allocation(fs_info);
+       }
+
+       /*
+        * Check if we have enough space in SYSTEM chunk because we may need
+        * to update devices.
+        */
+       check_system_chunk(trans, extent_root, flags);
+
+       ret = btrfs_alloc_chunk(trans, extent_root, flags);
+       trans->allocating_chunk = false;
+
+       spin_lock(&space_info->lock);
+       if (ret < 0 && ret != -ENOSPC)
+               goto out;
+       if (ret)
+               space_info->full = 1;
+       else
+               ret = 1;
+
+       space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
+out:
+       space_info->chunk_alloc = 0;
+       spin_unlock(&space_info->lock);
+       mutex_unlock(&fs_info->chunk_mutex);
+       return ret;
+}
+
+static int can_overcommit(struct btrfs_root *root,
+                         struct btrfs_space_info *space_info, u64 bytes,
+                         enum btrfs_reserve_flush_enum flush)
+{
+       struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+       u64 profile = btrfs_get_alloc_profile(root, 0);
+       u64 space_size;
+       u64 avail;
+       u64 used;
+
+       used = space_info->bytes_used + space_info->bytes_reserved +
+               space_info->bytes_pinned + space_info->bytes_readonly;
+
+       /*
+        * We only want to allow over committing if we have lots of actual space
+        * free, but if we don't have enough space to handle the global reserve
+        * space then we could end up having a real enospc problem when trying
+        * to allocate a chunk or some other such important allocation.
+        */
+       spin_lock(&global_rsv->lock);
+       space_size = calc_global_rsv_need_space(global_rsv);
+       spin_unlock(&global_rsv->lock);
+       if (used + space_size >= space_info->total_bytes)
+               return 0;
+
+       used += space_info->bytes_may_use;
+
+       spin_lock(&root->fs_info->free_chunk_lock);
+       avail = root->fs_info->free_chunk_space;
+       spin_unlock(&root->fs_info->free_chunk_lock);
+
+       /*
+        * If we have dup, raid1 or raid10 then only half of the free
+        * space is actually useable.  For raid56, the space info used
+        * doesn't include the parity drive, so we don't have to
+        * change the math
+        */
+       if (profile & (BTRFS_BLOCK_GROUP_DUP |
+                      BTRFS_BLOCK_GROUP_RAID1 |
+                      BTRFS_BLOCK_GROUP_RAID10))
+               avail >>= 1;
+
+       /*
+        * If we aren't flushing all things, let us overcommit up to
+        * 1/2th of the space. If we can flush, don't let us overcommit
+        * too much, let it overcommit up to 1/8 of the space.
+        */
+       if (flush == BTRFS_RESERVE_FLUSH_ALL)
+               avail >>= 3;
+       else
+               avail >>= 1;
+
+       if (used + bytes < space_info->total_bytes + avail)
+               return 1;
+       return 0;
+}
+
+static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
+                                        unsigned long nr_pages, int nr_items)
+{
+       struct super_block *sb = root->fs_info->sb;
+
+       if (down_read_trylock(&sb->s_umount)) {
+               writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
+               up_read(&sb->s_umount);
+       } else {
+               /*
+                * We needn't worry the filesystem going from r/w to r/o though
+                * we don't acquire ->s_umount mutex, because the filesystem
+                * should guarantee the delalloc inodes list be empty after
+                * the filesystem is readonly(all dirty pages are written to
+                * the disk).
+                */
+               btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
+               if (!current->journal_info)
+                       btrfs_wait_ordered_roots(root->fs_info, nr_items);
+       }
+}
+
+static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
+{
+       u64 bytes;
+       int nr;
+
+       bytes = btrfs_calc_trans_metadata_size(root, 1);
+       nr = (int)div64_u64(to_reclaim, bytes);
+       if (!nr)
+               nr = 1;
+       return nr;
+}
+
+#define EXTENT_SIZE_PER_ITEM   (256 * 1024)
+
+/*
+ * shrink metadata reservation for delalloc
+ */
+static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
+                           bool wait_ordered)
+{
+       struct btrfs_block_rsv *block_rsv;
+       struct btrfs_space_info *space_info;
+       struct btrfs_trans_handle *trans;
+       u64 delalloc_bytes;
+       u64 max_reclaim;
+       long time_left;
+       unsigned long nr_pages;
+       int loops;
+       int items;
+       enum btrfs_reserve_flush_enum flush;
+
+       /* Calc the number of the pages we need flush for space reservation */
+       items = calc_reclaim_items_nr(root, to_reclaim);
+       to_reclaim = items * EXTENT_SIZE_PER_ITEM;
+
+       trans = (struct btrfs_trans_handle *)current->journal_info;
+       block_rsv = &root->fs_info->delalloc_block_rsv;
+       space_info = block_rsv->space_info;
+
+       delalloc_bytes = percpu_counter_sum_positive(
+                                               &root->fs_info->delalloc_bytes);
+       if (delalloc_bytes == 0) {
+               if (trans)
+                       return;
+               if (wait_ordered)
+                       btrfs_wait_ordered_roots(root->fs_info, items);
+               return;
+       }
+
+       loops = 0;
+       while (delalloc_bytes && loops < 3) {
+               max_reclaim = min(delalloc_bytes, to_reclaim);
+               nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
+               btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
+               /*
+                * We need to wait for the async pages to actually start before
+                * we do anything.
+                */
+               max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
+               if (!max_reclaim)
+                       goto skip_async;
+
+               if (max_reclaim <= nr_pages)
+                       max_reclaim = 0;
+               else
+                       max_reclaim -= nr_pages;
+
+               wait_event(root->fs_info->async_submit_wait,
+                          atomic_read(&root->fs_info->async_delalloc_pages) <=
+                          (int)max_reclaim);
+skip_async:
+               if (!trans)
+                       flush = BTRFS_RESERVE_FLUSH_ALL;
+               else
+                       flush = BTRFS_RESERVE_NO_FLUSH;
+               spin_lock(&space_info->lock);
+               if (can_overcommit(root, space_info, orig, flush)) {
+                       spin_unlock(&space_info->lock);
+                       break;
+               }
+               spin_unlock(&space_info->lock);
+
+               loops++;
+               if (wait_ordered && !trans) {
+                       btrfs_wait_ordered_roots(root->fs_info, items);
+               } else {
+                       time_left = schedule_timeout_killable(1);
+                       if (time_left)
+                               break;
+               }
+               delalloc_bytes = percpu_counter_sum_positive(
+                                               &root->fs_info->delalloc_bytes);
+       }
+}
+
+/**
+ * maybe_commit_transaction - possibly commit the transaction if its ok to
+ * @root - the root we're allocating for
+ * @bytes - the number of bytes we want to reserve
+ * @force - force the commit
+ *
+ * This will check to make sure that committing the transaction will actually
+ * get us somewhere and then commit the transaction if it does.  Otherwise it
+ * will return -ENOSPC.
+ */
+static int may_commit_transaction(struct btrfs_root *root,
+                                 struct btrfs_space_info *space_info,
+                                 u64 bytes, int force)
+{
+       struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
+       struct btrfs_trans_handle *trans;
+
+       trans = (struct btrfs_trans_handle *)current->journal_info;
+       if (trans)
+               return -EAGAIN;
+
+       if (force)
+               goto commit;
+
+       /* See if there is enough pinned space to make this reservation */
+       if (percpu_counter_compare(&space_info->total_bytes_pinned,
+                                  bytes) >= 0)
+               goto commit;
+
+       /*
+        * See if there is some space in the delayed insertion reservation for
+        * this reservation.
+        */
+       if (space_info != delayed_rsv->space_info)
+               return -ENOSPC;
+
+       spin_lock(&delayed_rsv->lock);
+       if (percpu_counter_compare(&space_info->total_bytes_pinned,
+                                  bytes - delayed_rsv->size) >= 0) {
+               spin_unlock(&delayed_rsv->lock);
+               return -ENOSPC;
+       }
+       spin_unlock(&delayed_rsv->lock);
+
+commit:
+       trans = btrfs_join_transaction(root);
+       if (IS_ERR(trans))
+               return -ENOSPC;
+
+       return btrfs_commit_transaction(trans, root);
+}
+
+enum flush_state {
+       FLUSH_DELAYED_ITEMS_NR  =       1,
+       FLUSH_DELAYED_ITEMS     =       2,
+       FLUSH_DELALLOC          =       3,
+       FLUSH_DELALLOC_WAIT     =       4,
+       ALLOC_CHUNK             =       5,
+       COMMIT_TRANS            =       6,
+};
+
+static int flush_space(struct btrfs_root *root,
+                      struct btrfs_space_info *space_info, u64 num_bytes,
+                      u64 orig_bytes, int state)
+{
+       struct btrfs_trans_handle *trans;
+       int nr;
+       int ret = 0;
+
+       switch (state) {
+       case FLUSH_DELAYED_ITEMS_NR:
+       case FLUSH_DELAYED_ITEMS:
+               if (state == FLUSH_DELAYED_ITEMS_NR)
+                       nr = calc_reclaim_items_nr(root, num_bytes) * 2;
+               else
+                       nr = -1;
+
+               trans = btrfs_join_transaction(root);
+               if (IS_ERR(trans)) {
+                       ret = PTR_ERR(trans);
+                       break;
+               }
+               ret = btrfs_run_delayed_items_nr(trans, root, nr);
+               btrfs_end_transaction(trans, root);
+               break;
+       case FLUSH_DELALLOC:
+       case FLUSH_DELALLOC_WAIT:
+               shrink_delalloc(root, num_bytes * 2, orig_bytes,
+                               state == FLUSH_DELALLOC_WAIT);
+               break;
+       case ALLOC_CHUNK:
+               trans = btrfs_join_transaction(root);
+               if (IS_ERR(trans)) {
+                       ret = PTR_ERR(trans);
+                       break;
+               }
+               ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+                                    btrfs_get_alloc_profile(root, 0),
+                                    CHUNK_ALLOC_NO_FORCE);
+               btrfs_end_transaction(trans, root);
+               if (ret == -ENOSPC)
+                       ret = 0;
+               break;
+       case COMMIT_TRANS:
+               ret = may_commit_transaction(root, space_info, orig_bytes, 0);
+               break;
+       default:
+               ret = -ENOSPC;
+               break;
+       }
+
+       return ret;
+}
+
+static inline u64
+btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
+                                struct btrfs_space_info *space_info)
+{
+       u64 used;
+       u64 expected;
+       u64 to_reclaim;
+
+       to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
+                               16 * 1024 * 1024);
+       spin_lock(&space_info->lock);
+       if (can_overcommit(root, space_info, to_reclaim,
+                          BTRFS_RESERVE_FLUSH_ALL)) {
+               to_reclaim = 0;
+               goto out;
+       }
+
+       used = space_info->bytes_used + space_info->bytes_reserved +
+              space_info->bytes_pinned + space_info->bytes_readonly +
+              space_info->bytes_may_use;
+       if (can_overcommit(root, space_info, 1024 * 1024,
+                          BTRFS_RESERVE_FLUSH_ALL))
+               expected = div_factor_fine(space_info->total_bytes, 95);
+       else
+               expected = div_factor_fine(space_info->total_bytes, 90);
+
+       if (used > expected)
+               to_reclaim = used - expected;
+       else
+               to_reclaim = 0;
+       to_reclaim = min(to_reclaim, space_info->bytes_may_use +
+                                    space_info->bytes_reserved);
+out:
+       spin_unlock(&space_info->lock);
+
+       return to_reclaim;
+}
+
+static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
+                                       struct btrfs_fs_info *fs_info, u64 used)
+{
+       u64 thresh = div_factor_fine(space_info->total_bytes, 98);
+
+       /* If we're just plain full then async reclaim just slows us down. */
+       if (space_info->bytes_used >= thresh)
+               return 0;
+
+       return (used >= thresh && !btrfs_fs_closing(fs_info) &&
+               !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
+}
+
+static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
+                                      struct btrfs_fs_info *fs_info,
+                                      int flush_state)
+{
+       u64 used;
+
+       spin_lock(&space_info->lock);
+       /*
+        * We run out of space and have not got any free space via flush_space,
+        * so don't bother doing async reclaim.
+        */
+       if (flush_state > COMMIT_TRANS && space_info->full) {
+               spin_unlock(&space_info->lock);
+               return 0;
+       }
+
+       used = space_info->bytes_used + space_info->bytes_reserved +
+              space_info->bytes_pinned + space_info->bytes_readonly +
+              space_info->bytes_may_use;
+       if (need_do_async_reclaim(space_info, fs_info, used)) {
+               spin_unlock(&space_info->lock);
+               return 1;
+       }
+       spin_unlock(&space_info->lock);
+
+       return 0;
+}
+
+static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
+{
+       struct btrfs_fs_info *fs_info;
+       struct btrfs_space_info *space_info;
+       u64 to_reclaim;
+       int flush_state;
+
+       fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
+       space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+
+       to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
+                                                     space_info);
+       if (!to_reclaim)
+               return;
+
+       flush_state = FLUSH_DELAYED_ITEMS_NR;
+       do {
+               flush_space(fs_info->fs_root, space_info, to_reclaim,
+                           to_reclaim, flush_state);
+               flush_state++;
+               if (!btrfs_need_do_async_reclaim(space_info, fs_info,
+                                                flush_state))
+                       return;
+       } while (flush_state < COMMIT_TRANS);
+}
+
+void btrfs_init_async_reclaim_work(struct work_struct *work)
+{
+       INIT_WORK(work, btrfs_async_reclaim_metadata_space);
+}
+
+/**
+ * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
+ * @root - the root we're allocating for
+ * @block_rsv - the block_rsv we're allocating for
+ * @orig_bytes - the number of bytes we want
+ * @flush - whether or not we can flush to make our reservation
+ *
+ * This will reserve orgi_bytes number of bytes from the space info associated
+ * with the block_rsv.  If there is not enough space it will make an attempt to
+ * flush out space to make room.  It will do this by flushing delalloc if
+ * possible or committing the transaction.  If flush is 0 then no attempts to
+ * regain reservations will be made and this will fail if there is not enough
+ * space already.
+ */
+static int reserve_metadata_bytes(struct btrfs_root *root,
+                                 struct btrfs_block_rsv *block_rsv,
+                                 u64 orig_bytes,
+                                 enum btrfs_reserve_flush_enum flush)
+{
+       struct btrfs_space_info *space_info = block_rsv->space_info;
+       u64 used;
+       u64 num_bytes = orig_bytes;
+       int flush_state = FLUSH_DELAYED_ITEMS_NR;
+       int ret = 0;
+       bool flushing = false;
+
+again:
+       ret = 0;
+       spin_lock(&space_info->lock);
+       /*
+        * We only want to wait if somebody other than us is flushing and we
+        * are actually allowed to flush all things.
+        */
+       while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
+              space_info->flush) {
+               spin_unlock(&space_info->lock);
+               /*
+                * If we have a trans handle we can't wait because the flusher
+                * may have to commit the transaction, which would mean we would
+                * deadlock since we are waiting for the flusher to finish, but
+                * hold the current transaction open.
+                */
+               if (current->journal_info)
+                       return -EAGAIN;
+               ret = wait_event_killable(space_info->wait, !space_info->flush);
+               /* Must have been killed, return */
+               if (ret)
+                       return -EINTR;
+
+               spin_lock(&space_info->lock);
+       }
+
+       ret = -ENOSPC;
+       used = space_info->bytes_used + space_info->bytes_reserved +
+               space_info->bytes_pinned + space_info->bytes_readonly +
+               space_info->bytes_may_use;
+
+       /*
+        * The idea here is that we've not already over-reserved the block group
+        * then we can go ahead and save our reservation first and then start
+        * flushing if we need to.  Otherwise if we've already overcommitted
+        * lets start flushing stuff first and then come back and try to make
+        * our reservation.
+        */
+       if (used <= space_info->total_bytes) {
+               if (used + orig_bytes <= space_info->total_bytes) {
+                       space_info->bytes_may_use += orig_bytes;
+                       trace_btrfs_space_reservation(root->fs_info,
+                               "space_info", space_info->flags, orig_bytes, 1);
+                       ret = 0;
+               } else {
+                       /*
+                        * Ok set num_bytes to orig_bytes since we aren't
+                        * overocmmitted, this way we only try and reclaim what
+                        * we need.
+                        */
+                       num_bytes = orig_bytes;
+               }
+       } else {
+               /*
+                * Ok we're over committed, set num_bytes to the overcommitted
+                * amount plus the amount of bytes that we need for this
+                * reservation.
+                */
+               num_bytes = used - space_info->total_bytes +
+                       (orig_bytes * 2);
+       }
+
+       if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
+               space_info->bytes_may_use += orig_bytes;
+               trace_btrfs_space_reservation(root->fs_info, "space_info",
+                                             space_info->flags, orig_bytes,
+                                             1);
+               ret = 0;
+       }
+
+       /*
+        * Couldn't make our reservation, save our place so while we're trying
+        * to reclaim space we can actually use it instead of somebody else
+        * stealing it from us.
+        *
+        * We make the other tasks wait for the flush only when we can flush
+        * all things.
+        */
+       if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
+               flushing = true;
+               space_info->flush = 1;
+       } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
+               used += orig_bytes;
+               /*
+                * We will do the space reservation dance during log replay,
+                * which means we won't have fs_info->fs_root set, so don't do
+                * the async reclaim as we will panic.
+                */
+               if (!root->fs_info->log_root_recovering &&
+                   need_do_async_reclaim(space_info, root->fs_info, used) &&
+                   !work_busy(&root->fs_info->async_reclaim_work))
+                       queue_work(system_unbound_wq,
+                                  &root->fs_info->async_reclaim_work);
+       }
+       spin_unlock(&space_info->lock);
+
+       if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
+               goto out;
+
+       ret = flush_space(root, space_info, num_bytes, orig_bytes,
+                         flush_state);
+       flush_state++;
+
+       /*
+        * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
+        * would happen. So skip delalloc flush.
+        */
+       if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
+           (flush_state == FLUSH_DELALLOC ||
+            flush_state == FLUSH_DELALLOC_WAIT))
+               flush_state = ALLOC_CHUNK;
+
+       if (!ret)
+               goto again;
+       else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
+                flush_state < COMMIT_TRANS)
+               goto again;
+       else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
+                flush_state <= COMMIT_TRANS)
+               goto again;
+
+out:
+       if (ret == -ENOSPC &&
+           unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
+               struct btrfs_block_rsv *global_rsv =
+                       &root->fs_info->global_block_rsv;
+
+               if (block_rsv != global_rsv &&
+                   !block_rsv_use_bytes(global_rsv, orig_bytes))
+                       ret = 0;
+       }
+       if (ret == -ENOSPC)
+               trace_btrfs_space_reservation(root->fs_info,
+                                             "space_info:enospc",
+                                             space_info->flags, orig_bytes, 1);
+       if (flushing) {
+               spin_lock(&space_info->lock);
+               space_info->flush = 0;
+               wake_up_all(&space_info->wait);
+               spin_unlock(&space_info->lock);
+       }
+       return ret;
+}
+
+static struct btrfs_block_rsv *get_block_rsv(
+                                       const struct btrfs_trans_handle *trans,
+                                       const struct btrfs_root *root)
+{
+       struct btrfs_block_rsv *block_rsv = NULL;
+
+       if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
+               block_rsv = trans->block_rsv;
+
+       if (root == root->fs_info->csum_root && trans->adding_csums)
+               block_rsv = trans->block_rsv;
+
+       if (root == root->fs_info->uuid_root)
+               block_rsv = trans->block_rsv;
+
+       if (!block_rsv)
+               block_rsv = root->block_rsv;
+
+       if (!block_rsv)
+               block_rsv = &root->fs_info->empty_block_rsv;
+
+       return block_rsv;
+}
+
+static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
+                              u64 num_bytes)
+{
+       int ret = -ENOSPC;
+       spin_lock(&block_rsv->lock);
+       if (block_rsv->reserved >= num_bytes) {
+               block_rsv->reserved -= num_bytes;
+               if (block_rsv->reserved < block_rsv->size)
+                       block_rsv->full = 0;
+               ret = 0;
+       }
+       spin_unlock(&block_rsv->lock);
+       return ret;
+}
+
+static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
+                               u64 num_bytes, int update_size)
+{
+       spin_lock(&block_rsv->lock);
+       block_rsv->reserved += num_bytes;
+       if (update_size)
+               block_rsv->size += num_bytes;
+       else if (block_rsv->reserved >= block_rsv->size)
+               block_rsv->full = 1;
+       spin_unlock(&block_rsv->lock);
+}
+
+int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
+                            struct btrfs_block_rsv *dest, u64 num_bytes,
+                            int min_factor)
+{
+       struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
+       u64 min_bytes;
+
+       if (global_rsv->space_info != dest->space_info)
+               return -ENOSPC;
+
+       spin_lock(&global_rsv->lock);
+       min_bytes = div_factor(global_rsv->size, min_factor);
+       if (global_rsv->reserved < min_bytes + num_bytes) {
+               spin_unlock(&global_rsv->lock);
+               return -ENOSPC;
+       }
+       global_rsv->reserved -= num_bytes;
+       if (global_rsv->reserved < global_rsv->size)
+               global_rsv->full = 0;
+       spin_unlock(&global_rsv->lock);
+
+       block_rsv_add_bytes(dest, num_bytes, 1);
+       return 0;
+}
+
+static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
+                                   struct btrfs_block_rsv *block_rsv,
+                                   struct btrfs_block_rsv *dest, u64 num_bytes)
+{
+       struct btrfs_space_info *space_info = block_rsv->space_info;
+
+       spin_lock(&block_rsv->lock);
+       if (num_bytes == (u64)-1)
+               num_bytes = block_rsv->size;
+       block_rsv->size -= num_bytes;
+       if (block_rsv->reserved >= block_rsv->size) {
+               num_bytes = block_rsv->reserved - block_rsv->size;
+               block_rsv->reserved = block_rsv->size;
+               block_rsv->full = 1;
+       } else {
+               num_bytes = 0;
+       }
+       spin_unlock(&block_rsv->lock);
+
+       if (num_bytes > 0) {
+               if (dest) {
+                       spin_lock(&dest->lock);
+                       if (!dest->full) {
+                               u64 bytes_to_add;
+
+                               bytes_to_add = dest->size - dest->reserved;
+                               bytes_to_add = min(num_bytes, bytes_to_add);
+                               dest->reserved += bytes_to_add;
+                               if (dest->reserved >= dest->size)
+                                       dest->full = 1;
+                               num_bytes -= bytes_to_add;
+                       }
+                       spin_unlock(&dest->lock);
+               }
+               if (num_bytes) {
+                       spin_lock(&space_info->lock);
+                       space_info->bytes_may_use -= num_bytes;
+                       trace_btrfs_space_reservation(fs_info, "space_info",
+                                       space_info->flags, num_bytes, 0);
+                       spin_unlock(&space_info->lock);
+               }
+       }
+}
+
+static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
+                                  struct btrfs_block_rsv *dst, u64 num_bytes)
+{
+       int ret;
+
+       ret = block_rsv_use_bytes(src, num_bytes);
+       if (ret)
+               return ret;
+
+       block_rsv_add_bytes(dst, num_bytes, 1);
+       return 0;
+}
+
+void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
+{
+       memset(rsv, 0, sizeof(*rsv));
+       spin_lock_init(&rsv->lock);
+       rsv->type = type;
+}
+
+struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
+                                             unsigned short type)
+{
+       struct btrfs_block_rsv *block_rsv;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+
+       block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
+       if (!block_rsv)
+               return NULL;
+
+       btrfs_init_block_rsv(block_rsv, type);
+       block_rsv->space_info = __find_space_info(fs_info,
+                                                 BTRFS_BLOCK_GROUP_METADATA);
+       return block_rsv;
+}
+
+void btrfs_free_block_rsv(struct btrfs_root *root,
+                         struct btrfs_block_rsv *rsv)
+{
+       if (!rsv)
+               return;
+       btrfs_block_rsv_release(root, rsv, (u64)-1);
+       kfree(rsv);
+}
+
+void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
+{
+       kfree(rsv);
+}
+
+int btrfs_block_rsv_add(struct btrfs_root *root,
+                       struct btrfs_block_rsv *block_rsv, u64 num_bytes,
+                       enum btrfs_reserve_flush_enum flush)
+{
+       int ret;
+
+       if (num_bytes == 0)
+               return 0;
+
+       ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
+       if (!ret) {
+               block_rsv_add_bytes(block_rsv, num_bytes, 1);
+               return 0;
+       }
+
+       return ret;
+}
+
+int btrfs_block_rsv_check(struct btrfs_root *root,
+                         struct btrfs_block_rsv *block_rsv, int min_factor)
+{
+       u64 num_bytes = 0;
+       int ret = -ENOSPC;
+
+       if (!block_rsv)
+               return 0;
+
+       spin_lock(&block_rsv->lock);
+       num_bytes = div_factor(block_rsv->size, min_factor);
+       if (block_rsv->reserved >= num_bytes)
+               ret = 0;
+       spin_unlock(&block_rsv->lock);
+
+       return ret;
+}
+
+int btrfs_block_rsv_refill(struct btrfs_root *root,
+                          struct btrfs_block_rsv *block_rsv, u64 min_reserved,
+                          enum btrfs_reserve_flush_enum flush)
+{
+       u64 num_bytes = 0;
+       int ret = -ENOSPC;
+
+       if (!block_rsv)
+               return 0;
+
+       spin_lock(&block_rsv->lock);
+       num_bytes = min_reserved;
+       if (block_rsv->reserved >= num_bytes)
+               ret = 0;
+       else
+               num_bytes -= block_rsv->reserved;
+       spin_unlock(&block_rsv->lock);
+
+       if (!ret)
+               return 0;
+
+       ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
+       if (!ret) {
+               block_rsv_add_bytes(block_rsv, num_bytes, 0);
+               return 0;
+       }
+
+       return ret;
+}
+
+int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
+                           struct btrfs_block_rsv *dst_rsv,
+                           u64 num_bytes)
+{
+       return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+void btrfs_block_rsv_release(struct btrfs_root *root,
+                            struct btrfs_block_rsv *block_rsv,
+                            u64 num_bytes)
+{
+       struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+       if (global_rsv == block_rsv ||
+           block_rsv->space_info != global_rsv->space_info)
+               global_rsv = NULL;
+       block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
+                               num_bytes);
+}
+
+/*
+ * helper to calculate size of global block reservation.
+ * the desired value is sum of space used by extent tree,
+ * checksum tree and root tree
+ */
+static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
+{
+       struct btrfs_space_info *sinfo;
+       u64 num_bytes;
+       u64 meta_used;
+       u64 data_used;
+       int csum_size = btrfs_super_csum_size(fs_info->super_copy);
+
+       sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
+       spin_lock(&sinfo->lock);
+       data_used = sinfo->bytes_used;
+       spin_unlock(&sinfo->lock);
+
+       sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+       spin_lock(&sinfo->lock);
+       if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
+               data_used = 0;
+       meta_used = sinfo->bytes_used;
+       spin_unlock(&sinfo->lock);
+
+       num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
+                   csum_size * 2;
+       num_bytes += div_u64(data_used + meta_used, 50);
+
+       if (num_bytes * 3 > meta_used)
+               num_bytes = div_u64(meta_used, 3);
+
+       return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
+}
+
+static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+       struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
+       struct btrfs_space_info *sinfo = block_rsv->space_info;
+       u64 num_bytes;
+
+       num_bytes = calc_global_metadata_size(fs_info);
+
+       spin_lock(&sinfo->lock);
+       spin_lock(&block_rsv->lock);
+
+       block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
+
+       num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
+                   sinfo->bytes_reserved + sinfo->bytes_readonly +
+                   sinfo->bytes_may_use;
+
+       if (sinfo->total_bytes > num_bytes) {
+               num_bytes = sinfo->total_bytes - num_bytes;
+               block_rsv->reserved += num_bytes;
+               sinfo->bytes_may_use += num_bytes;
+               trace_btrfs_space_reservation(fs_info, "space_info",
+                                     sinfo->flags, num_bytes, 1);
+       }
+
+       if (block_rsv->reserved >= block_rsv->size) {
+               num_bytes = block_rsv->reserved - block_rsv->size;
+               sinfo->bytes_may_use -= num_bytes;
+               trace_btrfs_space_reservation(fs_info, "space_info",
+                                     sinfo->flags, num_bytes, 0);
+               block_rsv->reserved = block_rsv->size;
+               block_rsv->full = 1;
+       }
+
+       spin_unlock(&block_rsv->lock);
+       spin_unlock(&sinfo->lock);
+}
+
+static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+       struct btrfs_space_info *space_info;
+
+       space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
+       fs_info->chunk_block_rsv.space_info = space_info;
+
+       space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+       fs_info->global_block_rsv.space_info = space_info;
+       fs_info->delalloc_block_rsv.space_info = space_info;
+       fs_info->trans_block_rsv.space_info = space_info;
+       fs_info->empty_block_rsv.space_info = space_info;
+       fs_info->delayed_block_rsv.space_info = space_info;
+
+       fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
+       fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
+       fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
+       fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
+       if (fs_info->quota_root)
+               fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
+       fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
+
+       update_global_block_rsv(fs_info);
+}
+
+static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+       block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
+                               (u64)-1);
+       WARN_ON(fs_info->delalloc_block_rsv.size > 0);
+       WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
+       WARN_ON(fs_info->trans_block_rsv.size > 0);
+       WARN_ON(fs_info->trans_block_rsv.reserved > 0);
+       WARN_ON(fs_info->chunk_block_rsv.size > 0);
+       WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
+       WARN_ON(fs_info->delayed_block_rsv.size > 0);
+       WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
+}
+
+void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
+                                 struct btrfs_root *root)
+{
+       if (!trans->block_rsv)
+               return;
+
+       if (!trans->bytes_reserved)
+               return;
+
+       trace_btrfs_space_reservation(root->fs_info, "transaction",
+                                     trans->transid, trans->bytes_reserved, 0);
+       btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
+       trans->bytes_reserved = 0;
+}
+
+/* Can only return 0 or -ENOSPC */
+int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
+                                 struct inode *inode)
+{
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
+       struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
+
+       /*
+        * We need to hold space in order to delete our orphan item once we've
+        * added it, so this takes the reservation so we can release it later
+        * when we are truly done with the orphan item.
+        */
+       u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+       trace_btrfs_space_reservation(root->fs_info, "orphan",
+                                     btrfs_ino(inode), num_bytes, 1);
+       return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+void btrfs_orphan_release_metadata(struct inode *inode)
+{
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+       trace_btrfs_space_reservation(root->fs_info, "orphan",
+                                     btrfs_ino(inode), num_bytes, 0);
+       btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
+}
+
+/*
+ * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
+ * root: the root of the parent directory
+ * rsv: block reservation
+ * items: the number of items that we need do reservation
+ * qgroup_reserved: used to return the reserved size in qgroup
+ *
+ * This function is used to reserve the space for snapshot/subvolume
+ * creation and deletion. Those operations are different with the
+ * common file/directory operations, they change two fs/file trees
+ * and root tree, the number of items that the qgroup reserves is
+ * different with the free space reservation. So we can not use
+ * the space reseravtion mechanism in start_transaction().
+ */
+int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
+                                    struct btrfs_block_rsv *rsv,
+                                    int items,
+                                    u64 *qgroup_reserved,
+                                    bool use_global_rsv)
+{
+       u64 num_bytes;
+       int ret;
+       struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+
+       if (root->fs_info->quota_enabled) {
+               /* One for parent inode, two for dir entries */
+               num_bytes = 3 * root->nodesize;
+               ret = btrfs_qgroup_reserve(root, num_bytes);
+               if (ret)
+                       return ret;
+       } else {
+               num_bytes = 0;
+       }
+
+       *qgroup_reserved = num_bytes;
+
+       num_bytes = btrfs_calc_trans_metadata_size(root, items);
+       rsv->space_info = __find_space_info(root->fs_info,
+                                           BTRFS_BLOCK_GROUP_METADATA);
+       ret = btrfs_block_rsv_add(root, rsv, num_bytes,
+                                 BTRFS_RESERVE_FLUSH_ALL);
+
+       if (ret == -ENOSPC && use_global_rsv)
+               ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
+
+       if (ret) {
+               if (*qgroup_reserved)
+                       btrfs_qgroup_free(root, *qgroup_reserved);
+       }
+
+       return ret;
+}
+
+void btrfs_subvolume_release_metadata(struct btrfs_root *root,
+                                     struct btrfs_block_rsv *rsv,
+                                     u64 qgroup_reserved)
+{
+       btrfs_block_rsv_release(root, rsv, (u64)-1);
+}
+
+/**
+ * drop_outstanding_extent - drop an outstanding extent
+ * @inode: the inode we're dropping the extent for
+ * @num_bytes: the number of bytes we're relaseing.
+ *
+ * This is called when we are freeing up an outstanding extent, either called
+ * after an error or after an extent is written.  This will return the number of
+ * reserved extents that need to be freed.  This must be called with
+ * BTRFS_I(inode)->lock held.
+ */
+static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
+{
+       unsigned drop_inode_space = 0;
+       unsigned dropped_extents = 0;
+       unsigned num_extents = 0;
+
+       num_extents = (unsigned)div64_u64(num_bytes +
+                                         BTRFS_MAX_EXTENT_SIZE - 1,
+                                         BTRFS_MAX_EXTENT_SIZE);
+       ASSERT(num_extents);
+       ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
+       BTRFS_I(inode)->outstanding_extents -= num_extents;
+
+       if (BTRFS_I(inode)->outstanding_extents == 0 &&
+           test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
+                              &BTRFS_I(inode)->runtime_flags))
+               drop_inode_space = 1;
+
+       /*
+        * If we have more or the same amount of outsanding extents than we have
+        * reserved then we need to leave the reserved extents count alone.
+        */
+       if (BTRFS_I(inode)->outstanding_extents >=
+           BTRFS_I(inode)->reserved_extents)
+               return drop_inode_space;
+
+       dropped_extents = BTRFS_I(inode)->reserved_extents -
+               BTRFS_I(inode)->outstanding_extents;
+       BTRFS_I(inode)->reserved_extents -= dropped_extents;
+       return dropped_extents + drop_inode_space;
+}
+
+/**
+ * calc_csum_metadata_size - return the amount of metada space that must be
+ *     reserved/free'd for the given bytes.
+ * @inode: the inode we're manipulating
+ * @num_bytes: the number of bytes in question
+ * @reserve: 1 if we are reserving space, 0 if we are freeing space
+ *
+ * This adjusts the number of csum_bytes in the inode and then returns the
+ * correct amount of metadata that must either be reserved or freed.  We
+ * calculate how many checksums we can fit into one leaf and then divide the
+ * number of bytes that will need to be checksumed by this value to figure out
+ * how many checksums will be required.  If we are adding bytes then the number
+ * may go up and we will return the number of additional bytes that must be
+ * reserved.  If it is going down we will return the number of bytes that must
+ * be freed.
+ *
+ * This must be called with BTRFS_I(inode)->lock held.
+ */
+static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
+                                  int reserve)
+{
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       u64 old_csums, num_csums;
+
+       if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
+           BTRFS_I(inode)->csum_bytes == 0)
+               return 0;
+
+       old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
+       if (reserve)
+               BTRFS_I(inode)->csum_bytes += num_bytes;
+       else
+               BTRFS_I(inode)->csum_bytes -= num_bytes;
+       num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
+
+       /* No change, no need to reserve more */
+       if (old_csums == num_csums)
+               return 0;
+
+       if (reserve)
+               return btrfs_calc_trans_metadata_size(root,
+                                                     num_csums - old_csums);
+
+       return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
+}
+
+int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
+{
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
+       u64 to_reserve = 0;
+       u64 csum_bytes;
+       unsigned nr_extents = 0;
+       int extra_reserve = 0;
+       enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
+       int ret = 0;
+       bool delalloc_lock = true;
+       u64 to_free = 0;
+       unsigned dropped;
+
+       /* If we are a free space inode we need to not flush since we will be in
+        * the middle of a transaction commit.  We also don't need the delalloc
+        * mutex since we won't race with anybody.  We need this mostly to make
+        * lockdep shut its filthy mouth.
+        */
+       if (btrfs_is_free_space_inode(inode)) {
+               flush = BTRFS_RESERVE_NO_FLUSH;
+               delalloc_lock = false;
+       }
+
+       if (flush != BTRFS_RESERVE_NO_FLUSH &&
+           btrfs_transaction_in_commit(root->fs_info))
+               schedule_timeout(1);
+
+       if (delalloc_lock)
+               mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
+
+       num_bytes = ALIGN(num_bytes, root->sectorsize);
+
+       spin_lock(&BTRFS_I(inode)->lock);
+       nr_extents = (unsigned)div64_u64(num_bytes +
+                                        BTRFS_MAX_EXTENT_SIZE - 1,
+                                        BTRFS_MAX_EXTENT_SIZE);
+       BTRFS_I(inode)->outstanding_extents += nr_extents;
+       nr_extents = 0;
+
+       if (BTRFS_I(inode)->outstanding_extents >
+           BTRFS_I(inode)->reserved_extents)
+               nr_extents = BTRFS_I(inode)->outstanding_extents -
+                       BTRFS_I(inode)->reserved_extents;
+
+       /*
+        * Add an item to reserve for updating the inode when we complete the
+        * delalloc io.
+        */
+       if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
+                     &BTRFS_I(inode)->runtime_flags)) {
+               nr_extents++;
+               extra_reserve = 1;
+       }
+
+       to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
+       to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
+       csum_bytes = BTRFS_I(inode)->csum_bytes;
+       spin_unlock(&BTRFS_I(inode)->lock);
+
+       if (root->fs_info->quota_enabled) {
+               ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
+               if (ret)
+                       goto out_fail;
+       }
+
+       ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
+       if (unlikely(ret)) {
+               if (root->fs_info->quota_enabled)
+                       btrfs_qgroup_free(root, nr_extents * root->nodesize);
+               goto out_fail;
+       }
+
+       spin_lock(&BTRFS_I(inode)->lock);
+       if (extra_reserve) {
+               set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
+                       &BTRFS_I(inode)->runtime_flags);
+               nr_extents--;
+       }
+       BTRFS_I(inode)->reserved_extents += nr_extents;
+       spin_unlock(&BTRFS_I(inode)->lock);
+
+       if (delalloc_lock)
+               mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
+
+       if (to_reserve)
+               trace_btrfs_space_reservation(root->fs_info, "delalloc",
+                                             btrfs_ino(inode), to_reserve, 1);
+       block_rsv_add_bytes(block_rsv, to_reserve, 1);
+
+       return 0;
+
+out_fail:
+       spin_lock(&BTRFS_I(inode)->lock);
+       dropped = drop_outstanding_extent(inode, num_bytes);
+       /*
+        * If the inodes csum_bytes is the same as the original
+        * csum_bytes then we know we haven't raced with any free()ers
+        * so we can just reduce our inodes csum bytes and carry on.
+        */
+       if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
+               calc_csum_metadata_size(inode, num_bytes, 0);
+       } else {
+               u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
+               u64 bytes;
+
+               /*
+                * This is tricky, but first we need to figure out how much we
+                * free'd from any free-ers that occured during this
+                * reservation, so we reset ->csum_bytes to the csum_bytes
+                * before we dropped our lock, and then call the free for the
+                * number of bytes that were freed while we were trying our
+                * reservation.
+                */
+               bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
+               BTRFS_I(inode)->csum_bytes = csum_bytes;
+               to_free = calc_csum_metadata_size(inode, bytes, 0);
+
+
+               /*
+                * Now we need to see how much we would have freed had we not
+                * been making this reservation and our ->csum_bytes were not
+                * artificially inflated.
+                */
+               BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
+               bytes = csum_bytes - orig_csum_bytes;
+               bytes = calc_csum_metadata_size(inode, bytes, 0);
+
+               /*
+                * Now reset ->csum_bytes to what it should be.  If bytes is
+                * more than to_free then we would have free'd more space had we
+                * not had an artificially high ->csum_bytes, so we need to free
+                * the remainder.  If bytes is the same or less then we don't
+                * need to do anything, the other free-ers did the correct
+                * thing.
+                */
+               BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
+               if (bytes > to_free)
+                       to_free = bytes - to_free;
+               else
+                       to_free = 0;
+       }
+       spin_unlock(&BTRFS_I(inode)->lock);
+       if (dropped)
+               to_free += btrfs_calc_trans_metadata_size(root, dropped);
+
+       if (to_free) {
+               btrfs_block_rsv_release(root, block_rsv, to_free);
+               trace_btrfs_space_reservation(root->fs_info, "delalloc",
+                                             btrfs_ino(inode), to_free, 0);
+       }
+       if (delalloc_lock)
+               mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
+       return ret;
+}
+
+/**
+ * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
+ * @inode: the inode to release the reservation for
+ * @num_bytes: the number of bytes we're releasing
+ *
+ * This will release the metadata reservation for an inode.  This can be called
+ * once we complete IO for a given set of bytes to release their metadata
+ * reservations.
+ */
+void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
+{
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       u64 to_free = 0;
+       unsigned dropped;
+
+       num_bytes = ALIGN(num_bytes, root->sectorsize);
+       spin_lock(&BTRFS_I(inode)->lock);
+       dropped = drop_outstanding_extent(inode, num_bytes);
+
+       if (num_bytes)
+               to_free = calc_csum_metadata_size(inode, num_bytes, 0);
+       spin_unlock(&BTRFS_I(inode)->lock);
+       if (dropped > 0)
+               to_free += btrfs_calc_trans_metadata_size(root, dropped);
+
+       if (btrfs_test_is_dummy_root(root))
+               return;
+
+       trace_btrfs_space_reservation(root->fs_info, "delalloc",
+                                     btrfs_ino(inode), to_free, 0);
+
+       btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
+                               to_free);
+}
+
+/**
+ * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
+ * @inode: inode we're writing to
+ * @num_bytes: the number of bytes we want to allocate
+ *
+ * This will do the following things
+ *
+ * o reserve space in the data space info for num_bytes
+ * o reserve space in the metadata space info based on number of outstanding
+ *   extents and how much csums will be needed
+ * o add to the inodes ->delalloc_bytes
+ * o add it to the fs_info's delalloc inodes list.
+ *
+ * This will return 0 for success and -ENOSPC if there is no space left.
+ */
+int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
+{
+       int ret;
+
+       ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
+       if (ret)
+               return ret;
+
+       ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
+       if (ret) {
+               btrfs_free_reserved_data_space(inode, num_bytes);
+               return ret;
+       }
+
+       return 0;
+}
+
+/**
+ * btrfs_delalloc_release_space - release data and metadata space for delalloc
+ * @inode: inode we're releasing space for
+ * @num_bytes: the number of bytes we want to free up
+ *
+ * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
+ * called in the case that we don't need the metadata AND data reservations
+ * anymore.  So if there is an error or we insert an inline extent.
+ *
+ * This function will release the metadata space that was not used and will
+ * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
+ * list if there are no delalloc bytes left.
+ */
+void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
+{
+       btrfs_delalloc_release_metadata(inode, num_bytes);
+       btrfs_free_reserved_data_space(inode, num_bytes);
+}
+
+static int update_block_group(struct btrfs_trans_handle *trans,
+                             struct btrfs_root *root, u64 bytenr,
+                             u64 num_bytes, int alloc)
+{
+       struct btrfs_block_group_cache *cache = NULL;
+       struct btrfs_fs_info *info = root->fs_info;
+       u64 total = num_bytes;
+       u64 old_val;
+       u64 byte_in_group;
+       int factor;
+
+       /* block accounting for super block */
+       spin_lock(&info->delalloc_root_lock);
+       old_val = btrfs_super_bytes_used(info->super_copy);
+       if (alloc)
+               old_val += num_bytes;
+       else
+               old_val -= num_bytes;
+       btrfs_set_super_bytes_used(info->super_copy, old_val);
+       spin_unlock(&info->delalloc_root_lock);
+
+       while (total) {
+               cache = btrfs_lookup_block_group(info, bytenr);
+               if (!cache)
+                       return -ENOENT;
+               if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
+                                   BTRFS_BLOCK_GROUP_RAID1 |
+                                   BTRFS_BLOCK_GROUP_RAID10))
+                       factor = 2;
+               else
+                       factor = 1;
+               /*
+                * If this block group has free space cache written out, we
+                * need to make sure to load it if we are removing space.  This
+                * is because we need the unpinning stage to actually add the
+                * space back to the block group, otherwise we will leak space.
+                */
+               if (!alloc && cache->cached == BTRFS_CACHE_NO)
+                       cache_block_group(cache, 1);
+
+               byte_in_group = bytenr - cache->key.objectid;
+               WARN_ON(byte_in_group > cache->key.offset);
+
+               spin_lock(&cache->space_info->lock);
+               spin_lock(&cache->lock);
+
+               if (btrfs_test_opt(root, SPACE_CACHE) &&
+                   cache->disk_cache_state < BTRFS_DC_CLEAR)
+                       cache->disk_cache_state = BTRFS_DC_CLEAR;
+
+               old_val = btrfs_block_group_used(&cache->item);
+               num_bytes = min(total, cache->key.offset - byte_in_group);
+               if (alloc) {
+                       old_val += num_bytes;
+                       btrfs_set_block_group_used(&cache->item, old_val);
+                       cache->reserved -= num_bytes;
+                       cache->space_info->bytes_reserved -= num_bytes;
+                       cache->space_info->bytes_used += num_bytes;
+                       cache->space_info->disk_used += num_bytes * factor;
+                       spin_unlock(&cache->lock);
+                       spin_unlock(&cache->space_info->lock);
+               } else {
+                       old_val -= num_bytes;
+                       btrfs_set_block_group_used(&cache->item, old_val);
+                       cache->pinned += num_bytes;
+                       cache->space_info->bytes_pinned += num_bytes;
+                       cache->space_info->bytes_used -= num_bytes;
+                       cache->space_info->disk_used -= num_bytes * factor;
+                       spin_unlock(&cache->lock);
+                       spin_unlock(&cache->space_info->lock);
+
+                       set_extent_dirty(info->pinned_extents,
+                                        bytenr, bytenr + num_bytes - 1,
+                                        GFP_NOFS | __GFP_NOFAIL);
+                       /*
+                        * No longer have used bytes in this block group, queue
+                        * it for deletion.
+                        */
+                       if (old_val == 0) {
+                               spin_lock(&info->unused_bgs_lock);
+                               if (list_empty(&cache->bg_list)) {
+                                       btrfs_get_block_group(cache);
+                                       list_add_tail(&cache->bg_list,
+                                                     &info->unused_bgs);
+                               }
+                               spin_unlock(&info->unused_bgs_lock);
+                       }
+               }
+
+               spin_lock(&trans->transaction->dirty_bgs_lock);
+               if (list_empty(&cache->dirty_list)) {
+                       list_add_tail(&cache->dirty_list,
+                                     &trans->transaction->dirty_bgs);
+                               trans->transaction->num_dirty_bgs++;
+                       btrfs_get_block_group(cache);
+               }
+               spin_unlock(&trans->transaction->dirty_bgs_lock);
+
+               btrfs_put_block_group(cache);
+               total -= num_bytes;
+               bytenr += num_bytes;
+       }
+       return 0;
+}
+
+static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
+{
+       struct btrfs_block_group_cache *cache;
+       u64 bytenr;
+
+       spin_lock(&root->fs_info->block_group_cache_lock);
+       bytenr = root->fs_info->first_logical_byte;
+       spin_unlock(&root->fs_info->block_group_cache_lock);
+
+       if (bytenr < (u64)-1)
+               return bytenr;
+
+       cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
+       if (!cache)
+               return 0;
+
+       bytenr = cache->key.objectid;
+       btrfs_put_block_group(cache);
+
+       return bytenr;
+}
+
+static int pin_down_extent(struct btrfs_root *root,
+                          struct btrfs_block_group_cache *cache,
+                          u64 bytenr, u64 num_bytes, int reserved)
+{
+       spin_lock(&cache->space_info->lock);
+       spin_lock(&cache->lock);
+       cache->pinned += num_bytes;
+       cache->space_info->bytes_pinned += num_bytes;
+       if (reserved) {
+               cache->reserved -= num_bytes;
+               cache->space_info->bytes_reserved -= num_bytes;
+       }
+       spin_unlock(&cache->lock);
+       spin_unlock(&cache->space_info->lock);
+
+       set_extent_dirty(root->fs_info->pinned_extents, bytenr,
+                        bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
+       if (reserved)
+               trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
+       return 0;
+}
+
+/*
+ * this function must be called within transaction
+ */
+int btrfs_pin_extent(struct btrfs_root *root,
+                    u64 bytenr, u64 num_bytes, int reserved)
+{
+       struct btrfs_block_group_cache *cache;
+
+       cache = btrfs_lookup_block_group(root->fs_info, bytenr);
+       BUG_ON(!cache); /* Logic error */
+
+       pin_down_extent(root, cache, bytenr, num_bytes, reserved);
+
+       btrfs_put_block_group(cache);
+       return 0;
+}
+
+/*
+ * this function must be called within transaction
+ */
+int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
+                                   u64 bytenr, u64 num_bytes)
+{
+       struct btrfs_block_group_cache *cache;
+       int ret;
+
+       cache = btrfs_lookup_block_group(root->fs_info, bytenr);
+       if (!cache)
+               return -EINVAL;
+
+       /*
+        * pull in the free space cache (if any) so that our pin
+        * removes the free space from the cache.  We have load_only set
+        * to one because the slow code to read in the free extents does check
+        * the pinned extents.
+        */
+       cache_block_group(cache, 1);
+
+       pin_down_extent(root, cache, bytenr, num_bytes, 0);
+
+       /* remove us from the free space cache (if we're there at all) */
+       ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
+       btrfs_put_block_group(cache);
+       return ret;
+}
+
+static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
+{
+       int ret;
+       struct btrfs_block_group_cache *block_group;
+       struct btrfs_caching_control *caching_ctl;
+
+       block_group = btrfs_lookup_block_group(root->fs_info, start);
+       if (!block_group)
+               return -EINVAL;
+
+       cache_block_group(block_group, 0);
+       caching_ctl = get_caching_control(block_group);
+
+       if (!caching_ctl) {
+               /* Logic error */
+               BUG_ON(!block_group_cache_done(block_group));
+               ret = btrfs_remove_free_space(block_group, start, num_bytes);
+       } else {
+               mutex_lock(&caching_ctl->mutex);
+
+               if (start >= caching_ctl->progress) {
+                       ret = add_excluded_extent(root, start, num_bytes);
+               } else if (start + num_bytes <= caching_ctl->progress) {
+                       ret = btrfs_remove_free_space(block_group,
+                                                     start, num_bytes);
+               } else {
+                       num_bytes = caching_ctl->progress - start;
+                       ret = btrfs_remove_free_space(block_group,
+                                                     start, num_bytes);
+                       if (ret)
+                               goto out_lock;
+
+                       num_bytes = (start + num_bytes) -
+                               caching_ctl->progress;
+                       start = caching_ctl->progress;
+                       ret = add_excluded_extent(root, start, num_bytes);
+               }
+out_lock:
+               mutex_unlock(&caching_ctl->mutex);
+               put_caching_control(caching_ctl);
+       }
+       btrfs_put_block_group(block_group);
+       return ret;
+}
+
+int btrfs_exclude_logged_extents(struct btrfs_root *log,
+                                struct extent_buffer *eb)
+{
+       struct btrfs_file_extent_item *item;
+       struct btrfs_key key;
+       int found_type;
+       int i;
+
+       if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
+               return 0;
+
+       for (i = 0; i < btrfs_header_nritems(eb); i++) {
+               btrfs_item_key_to_cpu(eb, &key, i);
+               if (key.type != BTRFS_EXTENT_DATA_KEY)
+                       continue;
+               item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
+               found_type = btrfs_file_extent_type(eb, item);
+               if (found_type == BTRFS_FILE_EXTENT_INLINE)
+                       continue;
+               if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
+                       continue;
+               key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
+               key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
+               __exclude_logged_extent(log, key.objectid, key.offset);
+       }
+
+       return 0;
+}
+
+/**
+ * btrfs_update_reserved_bytes - update the block_group and space info counters
+ * @cache:     The cache we are manipulating
+ * @num_bytes: The number of bytes in question
+ * @reserve:   One of the reservation enums
+ * @delalloc:   The blocks are allocated for the delalloc write
+ *
+ * This is called by the allocator when it reserves space, or by somebody who is
+ * freeing space that was never actually used on disk.  For example if you
+ * reserve some space for a new leaf in transaction A and before transaction A
+ * commits you free that leaf, you call this with reserve set to 0 in order to
+ * clear the reservation.
+ *
+ * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
+ * ENOSPC accounting.  For data we handle the reservation through clearing the
+ * delalloc bits in the io_tree.  We have to do this since we could end up
+ * allocating less disk space for the amount of data we have reserved in the
+ * case of compression.
+ *
+ * If this is a reservation and the block group has become read only we cannot
+ * make the reservation and return -EAGAIN, otherwise this function always
+ * succeeds.
+ */
+static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
+                                      u64 num_bytes, int reserve, int delalloc)
+{
+       struct btrfs_space_info *space_info = cache->space_info;
+       int ret = 0;
+
+       spin_lock(&space_info->lock);
+       spin_lock(&cache->lock);
+       if (reserve != RESERVE_FREE) {
+               if (cache->ro) {
+                       ret = -EAGAIN;
+               } else {
+                       cache->reserved += num_bytes;
+                       space_info->bytes_reserved += num_bytes;
+                       if (reserve == RESERVE_ALLOC) {
+                               trace_btrfs_space_reservation(cache->fs_info,
+                                               "space_info", space_info->flags,
+                                               num_bytes, 0);
+                               space_info->bytes_may_use -= num_bytes;
+                       }
+
+                       if (delalloc)
+                               cache->delalloc_bytes += num_bytes;
+               }
+       } else {
+               if (cache->ro)
+                       space_info->bytes_readonly += num_bytes;
+               cache->reserved -= num_bytes;
+               space_info->bytes_reserved -= num_bytes;
+
+               if (delalloc)
+                       cache->delalloc_bytes -= num_bytes;
+       }
+       spin_unlock(&cache->lock);
+       spin_unlock(&space_info->lock);
+       return ret;
+}
+
+void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
+                               struct btrfs_root *root)
+{
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       struct btrfs_caching_control *next;
+       struct btrfs_caching_control *caching_ctl;
+       struct btrfs_block_group_cache *cache;
+
+       down_write(&fs_info->commit_root_sem);
+
+       list_for_each_entry_safe(caching_ctl, next,
+                                &fs_info->caching_block_groups, list) {
+               cache = caching_ctl->block_group;
+               if (block_group_cache_done(cache)) {
+                       cache->last_byte_to_unpin = (u64)-1;
+                       list_del_init(&caching_ctl->list);
+                       put_caching_control(caching_ctl);
+               } else {
+                       cache->last_byte_to_unpin = caching_ctl->progress;
+               }
+       }
+
+       if (fs_info->pinned_extents == &fs_info->freed_extents[0])
+               fs_info->pinned_extents = &fs_info->freed_extents[1];
+       else
+               fs_info->pinned_extents = &fs_info->freed_extents[0];
+
+       up_write(&fs_info->commit_root_sem);
+
+       update_global_block_rsv(fs_info);
+}
+
+static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
+                             const bool return_free_space)
+{
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       struct btrfs_block_group_cache *cache = NULL;
+       struct btrfs_space_info *space_info;
+       struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
+       u64 len;
+       bool readonly;
+
+       while (start <= end) {
+               readonly = false;
+               if (!cache ||
+                   start >= cache->key.objectid + cache->key.offset) {
+                       if (cache)
+                               btrfs_put_block_group(cache);
+                       cache = btrfs_lookup_block_group(fs_info, start);
+                       BUG_ON(!cache); /* Logic error */
+               }
+
+               len = cache->key.objectid + cache->key.offset - start;
+               len = min(len, end + 1 - start);
+
+               if (start < cache->last_byte_to_unpin) {
+                       len = min(len, cache->last_byte_to_unpin - start);
+                       if (return_free_space)
+                               btrfs_add_free_space(cache, start, len);
+               }
+
+               start += len;
+               space_info = cache->space_info;
+
+               spin_lock(&space_info->lock);
+               spin_lock(&cache->lock);
+               cache->pinned -= len;
+               space_info->bytes_pinned -= len;
+               percpu_counter_add(&space_info->total_bytes_pinned, -len);
+               if (cache->ro) {
+                       space_info->bytes_readonly += len;
+                       readonly = true;
+               }
+               spin_unlock(&cache->lock);
+               if (!readonly && global_rsv->space_info == space_info) {
+                       spin_lock(&global_rsv->lock);
+                       if (!global_rsv->full) {
+                               len = min(len, global_rsv->size -
+                                         global_rsv->reserved);
+                               global_rsv->reserved += len;
+                               space_info->bytes_may_use += len;
+                               if (global_rsv->reserved >= global_rsv->size)
+                                       global_rsv->full = 1;
+                       }
+                       spin_unlock(&global_rsv->lock);
+               }
+               spin_unlock(&space_info->lock);
+       }
+
+       if (cache)
+               btrfs_put_block_group(cache);
+       return 0;
+}
+
+int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
+                              struct btrfs_root *root)
+{
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       struct extent_io_tree *unpin;
+       u64 start;
+       u64 end;
+       int ret;
+
+       if (trans->aborted)
+               return 0;
+
+       if (fs_info->pinned_extents == &fs_info->freed_extents[0])
+               unpin = &fs_info->freed_extents[1];
+       else
+               unpin = &fs_info->freed_extents[0];
+
+       while (1) {
+               mutex_lock(&fs_info->unused_bg_unpin_mutex);
+               ret = find_first_extent_bit(unpin, 0, &start, &end,
+                                           EXTENT_DIRTY, NULL);
+               if (ret) {
+                       mutex_unlock(&fs_info->unused_bg_unpin_mutex);
+                       break;
+               }
+
+               if (btrfs_test_opt(root, DISCARD))
+                       ret = btrfs_discard_extent(root, start,
+                                                  end + 1 - start, NULL);
+
+               clear_extent_dirty(unpin, start, end, GFP_NOFS);
+               unpin_extent_range(root, start, end, true);
+               mutex_unlock(&fs_info->unused_bg_unpin_mutex);
+               cond_resched();
+       }
+
+       return 0;
+}
+
+static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
+                            u64 owner, u64 root_objectid)
+{
+       struct btrfs_space_info *space_info;
+       u64 flags;
+
+       if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+               if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
+                       flags = BTRFS_BLOCK_GROUP_SYSTEM;
+               else
+                       flags = BTRFS_BLOCK_GROUP_METADATA;
+       } else {
+               flags = BTRFS_BLOCK_GROUP_DATA;
+       }
+
+       space_info = __find_space_info(fs_info, flags);
+       BUG_ON(!space_info); /* Logic bug */
+       percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
+}
+
+
+static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
+                               struct btrfs_root *root,
+                               u64 bytenr, u64 num_bytes, u64 parent,
+                               u64 root_objectid, u64 owner_objectid,
+                               u64 owner_offset, int refs_to_drop,
+                               struct btrfs_delayed_extent_op *extent_op,
+                               int no_quota)
+{
+       struct btrfs_key key;
+       struct btrfs_path *path;
+       struct btrfs_fs_info *info = root->fs_info;
+       struct btrfs_root *extent_root = info->extent_root;
+       struct extent_buffer *leaf;
+       struct btrfs_extent_item *ei;
+       struct btrfs_extent_inline_ref *iref;
+       int ret;
+       int is_data;
+       int extent_slot = 0;
+       int found_extent = 0;
+       int num_to_del = 1;
+       u32 item_size;
+       u64 refs;
+       int last_ref = 0;
+       enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
+       bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
+                                                SKINNY_METADATA);
+
+       if (!info->quota_enabled || !is_fstree(root_objectid))
+               no_quota = 1;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       path->reada = 1;
+       path->leave_spinning = 1;
+
+       is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
+       BUG_ON(!is_data && refs_to_drop != 1);
+
+       if (is_data)
+               skinny_metadata = 0;
+
+       ret = lookup_extent_backref(trans, extent_root, path, &iref,
+                                   bytenr, num_bytes, parent,
+                                   root_objectid, owner_objectid,
+                                   owner_offset);
+       if (ret == 0) {
+               extent_slot = path->slots[0];
+               while (extent_slot >= 0) {
+                       btrfs_item_key_to_cpu(path->nodes[0], &key,
+                                             extent_slot);
+                       if (key.objectid != bytenr)
+                               break;
+                       if (key.type == BTRFS_EXTENT_ITEM_KEY &&
+                           key.offset == num_bytes) {
+                               found_extent = 1;
+                               break;
+                       }
+                       if (key.type == BTRFS_METADATA_ITEM_KEY &&
+                           key.offset == owner_objectid) {
+                               found_extent = 1;
+                               break;
+                       }
+                       if (path->slots[0] - extent_slot > 5)
+                               break;
+                       extent_slot--;
+               }
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+               item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
+               if (found_extent && item_size < sizeof(*ei))
+                       found_extent = 0;
+#endif
+               if (!found_extent) {
+                       BUG_ON(iref);
+                       ret = remove_extent_backref(trans, extent_root, path,
+                                                   NULL, refs_to_drop,
+                                                   is_data, &last_ref);
+                       if (ret) {
+                               btrfs_abort_transaction(trans, extent_root, ret);
+                               goto out;
+                       }
+                       btrfs_release_path(path);
+                       path->leave_spinning = 1;
+
+                       key.objectid = bytenr;
+                       key.type = BTRFS_EXTENT_ITEM_KEY;
+                       key.offset = num_bytes;
+
+                       if (!is_data && skinny_metadata) {
+                               key.type = BTRFS_METADATA_ITEM_KEY;
+                               key.offset = owner_objectid;
+                       }
+
+                       ret = btrfs_search_slot(trans, extent_root,
+                                               &key, path, -1, 1);
+                       if (ret > 0 && skinny_metadata && path->slots[0]) {
+                               /*
+                                * Couldn't find our skinny metadata item,
+                                * see if we have ye olde extent item.
+                                */
+                               path->slots[0]--;
+                               btrfs_item_key_to_cpu(path->nodes[0], &key,
+                                                     path->slots[0]);
+                               if (key.objectid == bytenr &&
+                                   key.type == BTRFS_EXTENT_ITEM_KEY &&
+                                   key.offset == num_bytes)
+                                       ret = 0;
+                       }
+
+                       if (ret > 0 && skinny_metadata) {
+                               skinny_metadata = false;
+                               key.objectid = bytenr;
+                               key.type = BTRFS_EXTENT_ITEM_KEY;
+                               key.offset = num_bytes;
+                               btrfs_release_path(path);
+                               ret = btrfs_search_slot(trans, extent_root,
+                                                       &key, path, -1, 1);
+                       }
+
+                       if (ret) {
+                               btrfs_err(info, "umm, got %d back from search, was looking for %llu",
+                                       ret, bytenr);
+                               if (ret > 0)
+                                       btrfs_print_leaf(extent_root,
+                                                        path->nodes[0]);
+                       }
+                       if (ret < 0) {
+                               btrfs_abort_transaction(trans, extent_root, ret);
+                               goto out;
+                       }
+                       extent_slot = path->slots[0];
+               }
+       } else if (WARN_ON(ret == -ENOENT)) {
+               btrfs_print_leaf(extent_root, path->nodes[0]);
+               btrfs_err(info,
+                       "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
+                       bytenr, parent, root_objectid, owner_objectid,
+                       owner_offset);
+               btrfs_abort_transaction(trans, extent_root, ret);
+               goto out;
+       } else {
+               btrfs_abort_transaction(trans, extent_root, ret);
+               goto out;
+       }
+
+       leaf = path->nodes[0];
+       item_size = btrfs_item_size_nr(leaf, extent_slot);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       if (item_size < sizeof(*ei)) {
+               BUG_ON(found_extent || extent_slot != path->slots[0]);
+               ret = convert_extent_item_v0(trans, extent_root, path,
+                                            owner_objectid, 0);
+               if (ret < 0) {
+                       btrfs_abort_transaction(trans, extent_root, ret);
+                       goto out;
+               }
+
+               btrfs_release_path(path);
+               path->leave_spinning = 1;
+
+               key.objectid = bytenr;
+               key.type = BTRFS_EXTENT_ITEM_KEY;
+               key.offset = num_bytes;
+
+               ret = btrfs_search_slot(trans, extent_root, &key, path,
+                                       -1, 1);
+               if (ret) {
+                       btrfs_err(info, "umm, got %d back from search, was looking for %llu",
+                               ret, bytenr);
+                       btrfs_print_leaf(extent_root, path->nodes[0]);
+               }
+               if (ret < 0) {
+                       btrfs_abort_transaction(trans, extent_root, ret);
+                       goto out;
+               }
+
+               extent_slot = path->slots[0];
+               leaf = path->nodes[0];
+               item_size = btrfs_item_size_nr(leaf, extent_slot);
+       }
+#endif
+       BUG_ON(item_size < sizeof(*ei));
+       ei = btrfs_item_ptr(leaf, extent_slot,
+                           struct btrfs_extent_item);
+       if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
+           key.type == BTRFS_EXTENT_ITEM_KEY) {
+               struct btrfs_tree_block_info *bi;
+               BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
+               bi = (struct btrfs_tree_block_info *)(ei + 1);
+               WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
+       }
+
+       refs = btrfs_extent_refs(leaf, ei);
+       if (refs < refs_to_drop) {
+               btrfs_err(info, "trying to drop %d refs but we only have %Lu "
+                         "for bytenr %Lu", refs_to_drop, refs, bytenr);
+               ret = -EINVAL;
+               btrfs_abort_transaction(trans, extent_root, ret);
+               goto out;
+       }
+       refs -= refs_to_drop;
+
+       if (refs > 0) {
+               type = BTRFS_QGROUP_OPER_SUB_SHARED;
+               if (extent_op)
+                       __run_delayed_extent_op(extent_op, leaf, ei);
+               /*
+                * In the case of inline back ref, reference count will
+                * be updated by remove_extent_backref
+                */
+               if (iref) {
+                       BUG_ON(!found_extent);
+               } else {
+                       btrfs_set_extent_refs(leaf, ei, refs);
+                       btrfs_mark_buffer_dirty(leaf);
+               }
+               if (found_extent) {
+                       ret = remove_extent_backref(trans, extent_root, path,
+                                                   iref, refs_to_drop,
+                                                   is_data, &last_ref);
+                       if (ret) {
+                               btrfs_abort_transaction(trans, extent_root, ret);
+                               goto out;
+                       }
+               }
+               add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
+                                root_objectid);
+       } else {
+               if (found_extent) {
+                       BUG_ON(is_data && refs_to_drop !=
+                              extent_data_ref_count(root, path, iref));
+                       if (iref) {
+                               BUG_ON(path->slots[0] != extent_slot);
+                       } else {
+                               BUG_ON(path->slots[0] != extent_slot + 1);
+                               path->slots[0] = extent_slot;
+                               num_to_del = 2;
+                       }
+               }
+
+               last_ref = 1;
+               ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
+                                     num_to_del);
+               if (ret) {
+                       btrfs_abort_transaction(trans, extent_root, ret);
+                       goto out;
+               }
+               btrfs_release_path(path);
+
+               if (is_data) {
+                       ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
+                       if (ret) {
+                               btrfs_abort_transaction(trans, extent_root, ret);
+                               goto out;
+                       }
+               }
+
+               ret = update_block_group(trans, root, bytenr, num_bytes, 0);
+               if (ret) {
+                       btrfs_abort_transaction(trans, extent_root, ret);
+                       goto out;
+               }
+       }
+       btrfs_release_path(path);
+
+       /* Deal with the quota accounting */
+       if (!ret && last_ref && !no_quota) {
+               int mod_seq = 0;
+
+               if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
+                   type == BTRFS_QGROUP_OPER_SUB_SHARED)
+                       mod_seq = 1;
+
+               ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
+                                             bytenr, num_bytes, type,
+                                             mod_seq);
+       }
+out:
+       btrfs_free_path(path);
+       return ret;
+}
+
+/*
+ * when we free an block, it is possible (and likely) that we free the last
+ * delayed ref for that extent as well.  This searches the delayed ref tree for
+ * a given extent, and if there are no other delayed refs to be processed, it
+ * removes it from the tree.
+ */
+static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
+                                     struct btrfs_root *root, u64 bytenr)
+{
+       struct btrfs_delayed_ref_head *head;
+       struct btrfs_delayed_ref_root *delayed_refs;
+       int ret = 0;
+
+       delayed_refs = &trans->transaction->delayed_refs;
+       spin_lock(&delayed_refs->lock);
+       head = btrfs_find_delayed_ref_head(trans, bytenr);
+       if (!head)
+               goto out_delayed_unlock;
+
+       spin_lock(&head->lock);
+       if (rb_first(&head->ref_root))
+               goto out;
+
+       if (head->extent_op) {
+               if (!head->must_insert_reserved)
+                       goto out;
+               btrfs_free_delayed_extent_op(head->extent_op);
+               head->extent_op = NULL;
+       }
+
+       /*
+        * waiting for the lock here would deadlock.  If someone else has it
+        * locked they are already in the process of dropping it anyway
+        */
+       if (!mutex_trylock(&head->mutex))
+               goto out;
+
+       /*
+        * at this point we have a head with no other entries.  Go
+        * ahead and process it.
+        */
+       head->node.in_tree = 0;
+       rb_erase(&head->href_node, &delayed_refs->href_root);
+
+       atomic_dec(&delayed_refs->num_entries);
+
+       /*
+        * we don't take a ref on the node because we're removing it from the
+        * tree, so we just steal the ref the tree was holding.
+        */
+       delayed_refs->num_heads--;
+       if (head->processing == 0)
+               delayed_refs->num_heads_ready--;
+       head->processing = 0;
+       spin_unlock(&head->lock);
+       spin_unlock(&delayed_refs->lock);
+
+       BUG_ON(head->extent_op);
+       if (head->must_insert_reserved)
+               ret = 1;
+
+       mutex_unlock(&head->mutex);
+       btrfs_put_delayed_ref(&head->node);
+       return ret;
+out:
+       spin_unlock(&head->lock);
+
+out_delayed_unlock:
+       spin_unlock(&delayed_refs->lock);
+       return 0;
+}
+
+void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
+                          struct btrfs_root *root,
+                          struct extent_buffer *buf,
+                          u64 parent, int last_ref)
+{
+       int pin = 1;
+       int ret;
+
+       if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
+               ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
+                                       buf->start, buf->len,
+                                       parent, root->root_key.objectid,
+                                       btrfs_header_level(buf),
+                                       BTRFS_DROP_DELAYED_REF, NULL, 0);
+               BUG_ON(ret); /* -ENOMEM */
+       }
+
+       if (!last_ref)
+               return;
+
+       if (btrfs_header_generation(buf) == trans->transid) {
+               struct btrfs_block_group_cache *cache;
+
+               if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
+                       ret = check_ref_cleanup(trans, root, buf->start);
+                       if (!ret)
+                               goto out;
+               }
+
+               cache = btrfs_lookup_block_group(root->fs_info, buf->start);
+
+               if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
+                       pin_down_extent(root, cache, buf->start, buf->len, 1);
+                       btrfs_put_block_group(cache);
+                       goto out;
+               }
+
+               WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
+
+               btrfs_add_free_space(cache, buf->start, buf->len);
+               btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
+               btrfs_put_block_group(cache);
+               trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
+               pin = 0;
+       }
+out:
+       if (pin)
+               add_pinned_bytes(root->fs_info, buf->len,
+                                btrfs_header_level(buf),
+                                root->root_key.objectid);
+
+       /*
+        * Deleting the buffer, clear the corrupt flag since it doesn't matter
+        * anymore.
+        */
+       clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
+}
+
+/* Can return -ENOMEM */
+int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+                     u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
+                     u64 owner, u64 offset, int no_quota)
+{
+       int ret;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+
+       if (btrfs_test_is_dummy_root(root))
+               return 0;
+
+       add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
+
+       /*
+        * tree log blocks never actually go into the extent allocation
+        * tree, just update pinning info and exit early.
+        */
+       if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
+               WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
+               /* unlocks the pinned mutex */
+               btrfs_pin_extent(root, bytenr, num_bytes, 1);
+               ret = 0;
+       } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+               ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
+                                       num_bytes,
+                                       parent, root_objectid, (int)owner,
+                                       BTRFS_DROP_DELAYED_REF, NULL, no_quota);
+       } else {
+               ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
+                                               num_bytes,
+                                               parent, root_objectid, owner,
+                                               offset, BTRFS_DROP_DELAYED_REF,
+                                               NULL, no_quota);
+       }
+       return ret;
+}
+
+/*
+ * when we wait for progress in the block group caching, its because
+ * our allocation attempt failed at least once.  So, we must sleep
+ * and let some progress happen before we try again.
+ *
+ * This function will sleep at least once waiting for new free space to
+ * show up, and then it will check the block group free space numbers
+ * for our min num_bytes.  Another option is to have it go ahead
+ * and look in the rbtree for a free extent of a given size, but this
+ * is a good start.
+ *
+ * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
+ * any of the information in this block group.
+ */
+static noinline void
+wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
+                               u64 num_bytes)
+{
+       struct btrfs_caching_control *caching_ctl;
+
+       caching_ctl = get_caching_control(cache);
+       if (!caching_ctl)
+               return;
+
+       wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
+                  (cache->free_space_ctl->free_space >= num_bytes));
+
+       put_caching_control(caching_ctl);
+}
+
+static noinline int
+wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
+{
+       struct btrfs_caching_control *caching_ctl;
+       int ret = 0;
+
+       caching_ctl = get_caching_control(cache);
+       if (!caching_ctl)
+               return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
+
+       wait_event(caching_ctl->wait, block_group_cache_done(cache));
+       if (cache->cached == BTRFS_CACHE_ERROR)
+               ret = -EIO;
+       put_caching_control(caching_ctl);
+       return ret;
+}
+
+int __get_raid_index(u64 flags)
+{
+       if (flags & BTRFS_BLOCK_GROUP_RAID10)
+               return BTRFS_RAID_RAID10;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID1)
+               return BTRFS_RAID_RAID1;
+       else if (flags & BTRFS_BLOCK_GROUP_DUP)
+               return BTRFS_RAID_DUP;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID0)
+               return BTRFS_RAID_RAID0;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID5)
+               return BTRFS_RAID_RAID5;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID6)
+               return BTRFS_RAID_RAID6;
+
+       return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
+}
+
+int get_block_group_index(struct btrfs_block_group_cache *cache)
+{
+       return __get_raid_index(cache->flags);
+}
+
+static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
+       [BTRFS_RAID_RAID10]     = "raid10",
+       [BTRFS_RAID_RAID1]      = "raid1",
+       [BTRFS_RAID_DUP]        = "dup",
+       [BTRFS_RAID_RAID0]      = "raid0",
+       [BTRFS_RAID_SINGLE]     = "single",
+       [BTRFS_RAID_RAID5]      = "raid5",
+       [BTRFS_RAID_RAID6]      = "raid6",
+};
+
+static const char *get_raid_name(enum btrfs_raid_types type)
+{
+       if (type >= BTRFS_NR_RAID_TYPES)
+               return NULL;
+
+       return btrfs_raid_type_names[type];
+}
+
+enum btrfs_loop_type {
+       LOOP_CACHING_NOWAIT = 0,
+       LOOP_CACHING_WAIT = 1,
+       LOOP_ALLOC_CHUNK = 2,
+       LOOP_NO_EMPTY_SIZE = 3,
+};
+
+static inline void
+btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
+                      int delalloc)
+{
+       if (delalloc)
+               down_read(&cache->data_rwsem);
+}
+
+static inline void
+btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
+                      int delalloc)
+{
+       btrfs_get_block_group(cache);
+       if (delalloc)
+               down_read(&cache->data_rwsem);
+}
+
+static struct btrfs_block_group_cache *
+btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
+                  struct btrfs_free_cluster *cluster,
+                  int delalloc)
+{
+       struct btrfs_block_group_cache *used_bg;
+       bool locked = false;
+again:
+       spin_lock(&cluster->refill_lock);
+       if (locked) {
+               if (used_bg == cluster->block_group)
+                       return used_bg;
+
+               up_read(&used_bg->data_rwsem);
+               btrfs_put_block_group(used_bg);
+       }
+
+       used_bg = cluster->block_group;
+       if (!used_bg)
+               return NULL;
+
+       if (used_bg == block_group)
+               return used_bg;
+
+       btrfs_get_block_group(used_bg);
+
+       if (!delalloc)
+               return used_bg;
+
+       if (down_read_trylock(&used_bg->data_rwsem))
+               return used_bg;
+
+       spin_unlock(&cluster->refill_lock);
+       down_read(&used_bg->data_rwsem);
+       locked = true;
+       goto again;
+}
+
+static inline void
+btrfs_release_block_group(struct btrfs_block_group_cache *cache,
+                        int delalloc)
+{
+       if (delalloc)
+               up_read(&cache->data_rwsem);
+       btrfs_put_block_group(cache);
+}
+
+/*
+ * walks the btree of allocated extents and find a hole of a given size.
+ * The key ins is changed to record the hole:
+ * ins->objectid == start position
+ * ins->flags = BTRFS_EXTENT_ITEM_KEY
+ * ins->offset == the size of the hole.
+ * Any available blocks before search_start are skipped.
+ *
+ * If there is no suitable free space, we will record the max size of
+ * the free space extent currently.
+ */
+static noinline int find_free_extent(struct btrfs_root *orig_root,
+                                    u64 num_bytes, u64 empty_size,
+                                    u64 hint_byte, struct btrfs_key *ins,
+                                    u64 flags, int delalloc)
+{
+       int ret = 0;
+       struct btrfs_root *root = orig_root->fs_info->extent_root;
+       struct btrfs_free_cluster *last_ptr = NULL;
+       struct btrfs_block_group_cache *block_group = NULL;
+       u64 search_start = 0;
+       u64 max_extent_size = 0;
+       int empty_cluster = 2 * 1024 * 1024;
+       struct btrfs_space_info *space_info;
+       int loop = 0;
+       int index = __get_raid_index(flags);
+       int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
+               RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
+       bool failed_cluster_refill = false;
+       bool failed_alloc = false;
+       bool use_cluster = true;
+       bool have_caching_bg = false;
+
+       WARN_ON(num_bytes < root->sectorsize);
+       ins->type = BTRFS_EXTENT_ITEM_KEY;
+       ins->objectid = 0;
+       ins->offset = 0;
+
+       trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
+
+       space_info = __find_space_info(root->fs_info, flags);
+       if (!space_info) {
+               btrfs_err(root->fs_info, "No space info for %llu", flags);
+               return -ENOSPC;
+       }
+
+       /*
+        * If the space info is for both data and metadata it means we have a
+        * small filesystem and we can't use the clustering stuff.
+        */
+       if (btrfs_mixed_space_info(space_info))
+               use_cluster = false;
+
+       if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
+               last_ptr = &root->fs_info->meta_alloc_cluster;
+               if (!btrfs_test_opt(root, SSD))
+                       empty_cluster = 64 * 1024;
+       }
+
+       if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
+           btrfs_test_opt(root, SSD)) {
+               last_ptr = &root->fs_info->data_alloc_cluster;
+       }
+
+       if (last_ptr) {
+               spin_lock(&last_ptr->lock);
+               if (last_ptr->block_group)
+                       hint_byte = last_ptr->window_start;
+               spin_unlock(&last_ptr->lock);
+       }
+
+       search_start = max(search_start, first_logical_byte(root, 0));
+       search_start = max(search_start, hint_byte);
+
+       if (!last_ptr)
+               empty_cluster = 0;
+
+       if (search_start == hint_byte) {
+               block_group = btrfs_lookup_block_group(root->fs_info,
+                                                      search_start);
+               /*
+                * we don't want to use the block group if it doesn't match our
+                * allocation bits, or if its not cached.
+                *
+                * However if we are re-searching with an ideal block group
+                * picked out then we don't care that the block group is cached.
+                */
+               if (block_group && block_group_bits(block_group, flags) &&
+                   block_group->cached != BTRFS_CACHE_NO) {
+                       down_read(&space_info->groups_sem);
+                       if (list_empty(&block_group->list) ||
+                           block_group->ro) {
+                               /*
+                                * someone is removing this block group,
+                                * we can't jump into the have_block_group
+                                * target because our list pointers are not
+                                * valid
+                                */
+                               btrfs_put_block_group(block_group);
+                               up_read(&space_info->groups_sem);
+                       } else {
+                               index = get_block_group_index(block_group);
+                               btrfs_lock_block_group(block_group, delalloc);
+                               goto have_block_group;
+                       }
+               } else if (block_group) {
+                       btrfs_put_block_group(block_group);
+               }
+       }
+search:
+       have_caching_bg = false;
+       down_read(&space_info->groups_sem);
+       list_for_each_entry(block_group, &space_info->block_groups[index],
+                           list) {
+               u64 offset;
+               int cached;
+
+               btrfs_grab_block_group(block_group, delalloc);
+               search_start = block_group->key.objectid;
+
+               /*
+                * this can happen if we end up cycling through all the
+                * raid types, but we want to make sure we only allocate
+                * for the proper type.
+                */
+               if (!block_group_bits(block_group, flags)) {
+                   u64 extra = BTRFS_BLOCK_GROUP_DUP |
+                               BTRFS_BLOCK_GROUP_RAID1 |
+                               BTRFS_BLOCK_GROUP_RAID5 |
+                               BTRFS_BLOCK_GROUP_RAID6 |
+                               BTRFS_BLOCK_GROUP_RAID10;
+
+                       /*
+                        * if they asked for extra copies and this block group
+                        * doesn't provide them, bail.  This does allow us to
+                        * fill raid0 from raid1.
+                        */
+                       if ((flags & extra) && !(block_group->flags & extra))
+                               goto loop;
+               }
+
+have_block_group:
+               cached = block_group_cache_done(block_group);
+               if (unlikely(!cached)) {
+                       ret = cache_block_group(block_group, 0);
+                       BUG_ON(ret < 0);
+                       ret = 0;
+               }
+
+               if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
+                       goto loop;
+               if (unlikely(block_group->ro))
+                       goto loop;
+
+               /*
+                * Ok we want to try and use the cluster allocator, so
+                * lets look there
+                */
+               if (last_ptr) {
+                       struct btrfs_block_group_cache *used_block_group;
+                       unsigned long aligned_cluster;
+                       /*
+                        * the refill lock keeps out other
+                        * people trying to start a new cluster
+                        */
+                       used_block_group = btrfs_lock_cluster(block_group,
+                                                             last_ptr,
+                                                             delalloc);
+                       if (!used_block_group)
+                               goto refill_cluster;
+
+                       if (used_block_group != block_group &&
+                           (used_block_group->ro ||
+                            !block_group_bits(used_block_group, flags)))
+                               goto release_cluster;
+
+                       offset = btrfs_alloc_from_cluster(used_block_group,
+                                               last_ptr,
+                                               num_bytes,
+                                               used_block_group->key.objectid,
+                                               &max_extent_size);
+                       if (offset) {
+                               /* we have a block, we're done */
+                               spin_unlock(&last_ptr->refill_lock);
+                               trace_btrfs_reserve_extent_cluster(root,
+                                               used_block_group,
+                                               search_start, num_bytes);
+                               if (used_block_group != block_group) {
+                                       btrfs_release_block_group(block_group,
+                                                                 delalloc);
+                                       block_group = used_block_group;
+                               }
+                               goto checks;
+                       }
+
+                       WARN_ON(last_ptr->block_group != used_block_group);
+release_cluster:
+                       /* If we are on LOOP_NO_EMPTY_SIZE, we can't
+                        * set up a new clusters, so lets just skip it
+                        * and let the allocator find whatever block
+                        * it can find.  If we reach this point, we
+                        * will have tried the cluster allocator
+                        * plenty of times and not have found
+                        * anything, so we are likely way too
+                        * fragmented for the clustering stuff to find
+                        * anything.
+                        *
+                        * However, if the cluster is taken from the
+                        * current block group, release the cluster
+                        * first, so that we stand a better chance of
+                        * succeeding in the unclustered
+                        * allocation.  */
+                       if (loop >= LOOP_NO_EMPTY_SIZE &&
+                           used_block_group != block_group) {
+                               spin_unlock(&last_ptr->refill_lock);
+                               btrfs_release_block_group(used_block_group,
+                                                         delalloc);
+                               goto unclustered_alloc;
+                       }
+
+                       /*
+                        * this cluster didn't work out, free it and
+                        * start over
+                        */
+                       btrfs_return_cluster_to_free_space(NULL, last_ptr);
+
+                       if (used_block_group != block_group)
+                               btrfs_release_block_group(used_block_group,
+                                                         delalloc);
+refill_cluster:
+                       if (loop >= LOOP_NO_EMPTY_SIZE) {
+                               spin_unlock(&last_ptr->refill_lock);
+                               goto unclustered_alloc;
+                       }
+
+                       aligned_cluster = max_t(unsigned long,
+                                               empty_cluster + empty_size,
+                                             block_group->full_stripe_len);
+
+                       /* allocate a cluster in this block group */
+                       ret = btrfs_find_space_cluster(root, block_group,
+                                                      last_ptr, search_start,
+                                                      num_bytes,
+                                                      aligned_cluster);
+                       if (ret == 0) {
+                               /*
+                                * now pull our allocation out of this
+                                * cluster
+                                */
+                               offset = btrfs_alloc_from_cluster(block_group,
+                                                       last_ptr,
+                                                       num_bytes,
+                                                       search_start,
+                                                       &max_extent_size);
+                               if (offset) {
+                                       /* we found one, proceed */
+                                       spin_unlock(&last_ptr->refill_lock);
+                                       trace_btrfs_reserve_extent_cluster(root,
+                                               block_group, search_start,
+                                               num_bytes);
+                                       goto checks;
+                               }
+                       } else if (!cached && loop > LOOP_CACHING_NOWAIT
+                                  && !failed_cluster_refill) {
+                               spin_unlock(&last_ptr->refill_lock);
+
+                               failed_cluster_refill = true;
+                               wait_block_group_cache_progress(block_group,
+                                      num_bytes + empty_cluster + empty_size);
+                               goto have_block_group;
+                       }
+
+                       /*
+                        * at this point we either didn't find a cluster
+                        * or we weren't able to allocate a block from our
+                        * cluster.  Free the cluster we've been trying
+                        * to use, and go to the next block group
+                        */
+                       btrfs_return_cluster_to_free_space(NULL, last_ptr);
+                       spin_unlock(&last_ptr->refill_lock);
+                       goto loop;
+               }
+
+unclustered_alloc:
+               spin_lock(&block_group->free_space_ctl->tree_lock);
+               if (cached &&
+                   block_group->free_space_ctl->free_space <
+                   num_bytes + empty_cluster + empty_size) {
+                       if (block_group->free_space_ctl->free_space >
+                           max_extent_size)
+                               max_extent_size =
+                                       block_group->free_space_ctl->free_space;
+                       spin_unlock(&block_group->free_space_ctl->tree_lock);
+                       goto loop;
+               }
+               spin_unlock(&block_group->free_space_ctl->tree_lock);
+
+               offset = btrfs_find_space_for_alloc(block_group, search_start,
+                                                   num_bytes, empty_size,
+                                                   &max_extent_size);
+               /*
+                * If we didn't find a chunk, and we haven't failed on this
+                * block group before, and this block group is in the middle of
+                * caching and we are ok with waiting, then go ahead and wait
+                * for progress to be made, and set failed_alloc to true.
+                *
+                * If failed_alloc is true then we've already waited on this
+                * block group once and should move on to the next block group.
+                */
+               if (!offset && !failed_alloc && !cached &&
+                   loop > LOOP_CACHING_NOWAIT) {
+                       wait_block_group_cache_progress(block_group,
+                                               num_bytes + empty_size);
+                       failed_alloc = true;
+                       goto have_block_group;
+               } else if (!offset) {
+                       if (!cached)
+                               have_caching_bg = true;
+                       goto loop;
+               }
+checks:
+               search_start = ALIGN(offset, root->stripesize);
+
+               /* move on to the next group */
+               if (search_start + num_bytes >
+                   block_group->key.objectid + block_group->key.offset) {
+                       btrfs_add_free_space(block_group, offset, num_bytes);
+                       goto loop;
+               }
+
+               if (offset < search_start)
+                       btrfs_add_free_space(block_group, offset,
+                                            search_start - offset);
+               BUG_ON(offset > search_start);
+
+               ret = btrfs_update_reserved_bytes(block_group, num_bytes,
+                                                 alloc_type, delalloc);
+               if (ret == -EAGAIN) {
+                       btrfs_add_free_space(block_group, offset, num_bytes);
+                       goto loop;
+               }
+
+               /* we are all good, lets return */
+               ins->objectid = search_start;
+               ins->offset = num_bytes;
+
+               trace_btrfs_reserve_extent(orig_root, block_group,
+                                          search_start, num_bytes);
+               btrfs_release_block_group(block_group, delalloc);
+               break;
+loop:
+               failed_cluster_refill = false;
+               failed_alloc = false;
+               BUG_ON(index != get_block_group_index(block_group));
+               btrfs_release_block_group(block_group, delalloc);
+       }
+       up_read(&space_info->groups_sem);
+
+       if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
+               goto search;
+
+       if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
+               goto search;
+
+       /*
+        * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
+        *                      caching kthreads as we move along
+        * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
+        * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
+        * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
+        *                      again
+        */
+       if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
+               index = 0;
+               loop++;
+               if (loop == LOOP_ALLOC_CHUNK) {
+                       struct btrfs_trans_handle *trans;
+                       int exist = 0;
+
+                       trans = current->journal_info;
+                       if (trans)
+                               exist = 1;
+                       else
+                               trans = btrfs_join_transaction(root);
+
+                       if (IS_ERR(trans)) {
+                               ret = PTR_ERR(trans);
+                               goto out;
+                       }
+
+                       ret = do_chunk_alloc(trans, root, flags,
+                                            CHUNK_ALLOC_FORCE);
+                       /*
+                        * Do not bail out on ENOSPC since we
+                        * can do more things.
+                        */
+                       if (ret < 0 && ret != -ENOSPC)
+                               btrfs_abort_transaction(trans,
+                                                       root, ret);
+                       else
+                               ret = 0;
+                       if (!exist)
+                               btrfs_end_transaction(trans, root);
+                       if (ret)
+                               goto out;
+               }
+
+               if (loop == LOOP_NO_EMPTY_SIZE) {
+                       empty_size = 0;
+                       empty_cluster = 0;
+               }
+
+               goto search;
+       } else if (!ins->objectid) {
+               ret = -ENOSPC;
+       } else if (ins->objectid) {
+               ret = 0;
+       }
+out:
+       if (ret == -ENOSPC)
+               ins->offset = max_extent_size;
+       return ret;
+}
+
+static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+                           int dump_block_groups)
+{
+       struct btrfs_block_group_cache *cache;
+       int index = 0;
+
+       spin_lock(&info->lock);
+       printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
+              info->flags,
+              info->total_bytes - info->bytes_used - info->bytes_pinned -
+              info->bytes_reserved - info->bytes_readonly,
+              (info->full) ? "" : "not ");
+       printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
+              "reserved=%llu, may_use=%llu, readonly=%llu\n",
+              info->total_bytes, info->bytes_used, info->bytes_pinned,
+              info->bytes_reserved, info->bytes_may_use,
+              info->bytes_readonly);
+       spin_unlock(&info->lock);
+
+       if (!dump_block_groups)
+               return;
+
+       down_read(&info->groups_sem);
+again:
+       list_for_each_entry(cache, &info->block_groups[index], list) {
+               spin_lock(&cache->lock);
+               printk(KERN_INFO "BTRFS: "
+                          "block group %llu has %llu bytes, "
+                          "%llu used %llu pinned %llu reserved %s\n",
+                      cache->key.objectid, cache->key.offset,
+                      btrfs_block_group_used(&cache->item), cache->pinned,
+                      cache->reserved, cache->ro ? "[readonly]" : "");
+               btrfs_dump_free_space(cache, bytes);
+               spin_unlock(&cache->lock);
+       }
+       if (++index < BTRFS_NR_RAID_TYPES)
+               goto again;
+       up_read(&info->groups_sem);
+}
+
+int btrfs_reserve_extent(struct btrfs_root *root,
+                        u64 num_bytes, u64 min_alloc_size,
+                        u64 empty_size, u64 hint_byte,
+                        struct btrfs_key *ins, int is_data, int delalloc)
+{
+       bool final_tried = false;
+       u64 flags;
+       int ret;
+
+       flags = btrfs_get_alloc_profile(root, is_data);
+again:
+       WARN_ON(num_bytes < root->sectorsize);
+       ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
+                              flags, delalloc);
+
+       if (ret == -ENOSPC) {
+               if (!final_tried && ins->offset) {
+                       num_bytes = min(num_bytes >> 1, ins->offset);
+                       num_bytes = round_down(num_bytes, root->sectorsize);
+                       num_bytes = max(num_bytes, min_alloc_size);
+                       if (num_bytes == min_alloc_size)
+                               final_tried = true;
+                       goto again;
+               } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
+                       struct btrfs_space_info *sinfo;
+
+                       sinfo = __find_space_info(root->fs_info, flags);
+                       btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
+                               flags, num_bytes);
+                       if (sinfo)
+                               dump_space_info(sinfo, num_bytes, 1);
+               }
+       }
+
+       return ret;
+}
+
+static int __btrfs_free_reserved_extent(struct btrfs_root *root,
+                                       u64 start, u64 len,
+                                       int pin, int delalloc)
+{
+       struct btrfs_block_group_cache *cache;
+       int ret = 0;
+
+       cache = btrfs_lookup_block_group(root->fs_info, start);
+       if (!cache) {
+               btrfs_err(root->fs_info, "Unable to find block group for %llu",
+                       start);
+               return -ENOSPC;
+       }
+
+       if (pin)
+               pin_down_extent(root, cache, start, len, 1);
+       else {
+               if (btrfs_test_opt(root, DISCARD))
+                       ret = btrfs_discard_extent(root, start, len, NULL);
+               btrfs_add_free_space(cache, start, len);
+               btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
+       }
+
+       btrfs_put_block_group(cache);
+
+       trace_btrfs_reserved_extent_free(root, start, len);
+
+       return ret;
+}
+
+int btrfs_free_reserved_extent(struct btrfs_root *root,
+                              u64 start, u64 len, int delalloc)
+{
+       return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
+}
+
+int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
+                                      u64 start, u64 len)
+{
+       return __btrfs_free_reserved_extent(root, start, len, 1, 0);
+}
+
+static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+                                     struct btrfs_root *root,
+                                     u64 parent, u64 root_objectid,
+                                     u64 flags, u64 owner, u64 offset,
+                                     struct btrfs_key *ins, int ref_mod)
+{
+       int ret;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       struct btrfs_extent_item *extent_item;
+       struct btrfs_extent_inline_ref *iref;
+       struct btrfs_path *path;
+       struct extent_buffer *leaf;
+       int type;
+       u32 size;
+
+       if (parent > 0)
+               type = BTRFS_SHARED_DATA_REF_KEY;
+       else
+               type = BTRFS_EXTENT_DATA_REF_KEY;
+
+       size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       path->leave_spinning = 1;
+       ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
+                                     ins, size);
+       if (ret) {
+               btrfs_free_path(path);
+               return ret;
+       }
+
+       leaf = path->nodes[0];
+       extent_item = btrfs_item_ptr(leaf, path->slots[0],
+                                    struct btrfs_extent_item);
+       btrfs_set_extent_refs(leaf, extent_item, ref_mod);
+       btrfs_set_extent_generation(leaf, extent_item, trans->transid);
+       btrfs_set_extent_flags(leaf, extent_item,
+                              flags | BTRFS_EXTENT_FLAG_DATA);
+
+       iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
+       btrfs_set_extent_inline_ref_type(leaf, iref, type);
+       if (parent > 0) {
+               struct btrfs_shared_data_ref *ref;
+               ref = (struct btrfs_shared_data_ref *)(iref + 1);
+               btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+               btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
+       } else {
+               struct btrfs_extent_data_ref *ref;
+               ref = (struct btrfs_extent_data_ref *)(&iref->offset);
+               btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
+               btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
+               btrfs_set_extent_data_ref_offset(leaf, ref, offset);
+               btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
+       }
+
+       btrfs_mark_buffer_dirty(path->nodes[0]);
+       btrfs_free_path(path);
+
+       /* Always set parent to 0 here since its exclusive anyway. */
+       ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
+                                     ins->objectid, ins->offset,
+                                     BTRFS_QGROUP_OPER_ADD_EXCL, 0);
+       if (ret)
+               return ret;
+
+       ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
+       if (ret) { /* -ENOENT, logic error */
+               btrfs_err(fs_info, "update block group failed for %llu %llu",
+                       ins->objectid, ins->offset);
+               BUG();
+       }
+       trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
+       return ret;
+}
+
+static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
+                                    struct btrfs_root *root,
+                                    u64 parent, u64 root_objectid,
+                                    u64 flags, struct btrfs_disk_key *key,
+                                    int level, struct btrfs_key *ins,
+                                    int no_quota)
+{
+       int ret;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       struct btrfs_extent_item *extent_item;
+       struct btrfs_tree_block_info *block_info;
+       struct btrfs_extent_inline_ref *iref;
+       struct btrfs_path *path;
+       struct extent_buffer *leaf;
+       u32 size = sizeof(*extent_item) + sizeof(*iref);
+       u64 num_bytes = ins->offset;
+       bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
+                                                SKINNY_METADATA);
+
+       if (!skinny_metadata)
+               size += sizeof(*block_info);
+
+       path = btrfs_alloc_path();
+       if (!path) {
+               btrfs_free_and_pin_reserved_extent(root, ins->objectid,
+                                                  root->nodesize);
+               return -ENOMEM;
+       }
+
+       path->leave_spinning = 1;
+       ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
+                                     ins, size);
+       if (ret) {
+               btrfs_free_path(path);
+               btrfs_free_and_pin_reserved_extent(root, ins->objectid,
+                                                  root->nodesize);
+               return ret;
+       }
+
+       leaf = path->nodes[0];
+       extent_item = btrfs_item_ptr(leaf, path->slots[0],
+                                    struct btrfs_extent_item);
+       btrfs_set_extent_refs(leaf, extent_item, 1);
+       btrfs_set_extent_generation(leaf, extent_item, trans->transid);
+       btrfs_set_extent_flags(leaf, extent_item,
+                              flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
+
+       if (skinny_metadata) {
+               iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
+               num_bytes = root->nodesize;
+       } else {
+               block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
+               btrfs_set_tree_block_key(leaf, block_info, key);
+               btrfs_set_tree_block_level(leaf, block_info, level);
+               iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
+       }
+
+       if (parent > 0) {
+               BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
+               btrfs_set_extent_inline_ref_type(leaf, iref,
+                                                BTRFS_SHARED_BLOCK_REF_KEY);
+               btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+       } else {
+               btrfs_set_extent_inline_ref_type(leaf, iref,
+                                                BTRFS_TREE_BLOCK_REF_KEY);
+               btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
+       }
+
+       btrfs_mark_buffer_dirty(leaf);
+       btrfs_free_path(path);
+
+       if (!no_quota) {
+               ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
+                                             ins->objectid, num_bytes,
+                                             BTRFS_QGROUP_OPER_ADD_EXCL, 0);
+               if (ret)
+                       return ret;
+       }
+
+       ret = update_block_group(trans, root, ins->objectid, root->nodesize,
+                                1);
+       if (ret) { /* -ENOENT, logic error */
+               btrfs_err(fs_info, "update block group failed for %llu %llu",
+                       ins->objectid, ins->offset);
+               BUG();
+       }
+
+       trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
+       return ret;
+}
+
+int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+                                    struct btrfs_root *root,
+                                    u64 root_objectid, u64 owner,
+                                    u64 offset, struct btrfs_key *ins)
+{
+       int ret;
+
+       BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
+
+       ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
+                                        ins->offset, 0,
+                                        root_objectid, owner, offset,
+                                        BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
+       return ret;
+}
+
+/*
+ * this is used by the tree logging recovery code.  It records that
+ * an extent has been allocated and makes sure to clear the free
+ * space cache bits as well
+ */
+int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
+                                  struct btrfs_root *root,
+                                  u64 root_objectid, u64 owner, u64 offset,
+                                  struct btrfs_key *ins)
+{
+       int ret;
+       struct btrfs_block_group_cache *block_group;
+
+       /*
+        * Mixed block groups will exclude before processing the log so we only
+        * need to do the exlude dance if this fs isn't mixed.
+        */
+       if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
+               ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
+               if (ret)
+                       return ret;
+       }
+
+       block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
+       if (!block_group)
+               return -EINVAL;
+
+       ret = btrfs_update_reserved_bytes(block_group, ins->offset,
+                                         RESERVE_ALLOC_NO_ACCOUNT, 0);
+       BUG_ON(ret); /* logic error */
+       ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
+                                        0, owner, offset, ins, 1);
+       btrfs_put_block_group(block_group);
+       return ret;
+}
+
+static struct extent_buffer *
+btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+                     u64 bytenr, int level)
+{
+       struct extent_buffer *buf;
+
+       buf = btrfs_find_create_tree_block(root, bytenr);
+       if (!buf)
+               return ERR_PTR(-ENOMEM);
+       btrfs_set_header_generation(buf, trans->transid);
+       btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
+       btrfs_tree_lock(buf);
+       clean_tree_block(trans, root->fs_info, buf);
+       clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
+
+       btrfs_set_lock_blocking(buf);
+       btrfs_set_buffer_uptodate(buf);
+
+       if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
+               buf->log_index = root->log_transid % 2;
+               /*
+                * we allow two log transactions at a time, use different
+                * EXENT bit to differentiate dirty pages.
+                */
+               if (buf->log_index == 0)
+                       set_extent_dirty(&root->dirty_log_pages, buf->start,
+                                       buf->start + buf->len - 1, GFP_NOFS);
+               else
+                       set_extent_new(&root->dirty_log_pages, buf->start,
+                                       buf->start + buf->len - 1, GFP_NOFS);
+       } else {
+               buf->log_index = -1;
+               set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
+                        buf->start + buf->len - 1, GFP_NOFS);
+       }
+       trans->blocks_used++;
+       /* this returns a buffer locked for blocking */
+       return buf;
+}
+
+static struct btrfs_block_rsv *
+use_block_rsv(struct btrfs_trans_handle *trans,
+             struct btrfs_root *root, u32 blocksize)
+{
+       struct btrfs_block_rsv *block_rsv;
+       struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+       int ret;
+       bool global_updated = false;
+
+       block_rsv = get_block_rsv(trans, root);
+
+       if (unlikely(block_rsv->size == 0))
+               goto try_reserve;
+again:
+       ret = block_rsv_use_bytes(block_rsv, blocksize);
+       if (!ret)
+               return block_rsv;
+
+       if (block_rsv->failfast)
+               return ERR_PTR(ret);
+
+       if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
+               global_updated = true;
+               update_global_block_rsv(root->fs_info);
+               goto again;
+       }
+
+       if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
+               static DEFINE_RATELIMIT_STATE(_rs,
+                               DEFAULT_RATELIMIT_INTERVAL * 10,
+                               /*DEFAULT_RATELIMIT_BURST*/ 1);
+               if (__ratelimit(&_rs))
+                       WARN(1, KERN_DEBUG
+                               "BTRFS: block rsv returned %d\n", ret);
+       }
+try_reserve:
+       ret = reserve_metadata_bytes(root, block_rsv, blocksize,
+                                    BTRFS_RESERVE_NO_FLUSH);
+       if (!ret)
+               return block_rsv;
+       /*
+        * If we couldn't reserve metadata bytes try and use some from
+        * the global reserve if its space type is the same as the global
+        * reservation.
+        */
+       if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
+           block_rsv->space_info == global_rsv->space_info) {
+               ret = block_rsv_use_bytes(global_rsv, blocksize);
+               if (!ret)
+                       return global_rsv;
+       }
+       return ERR_PTR(ret);
+}
+
+static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
+                           struct btrfs_block_rsv *block_rsv, u32 blocksize)
+{
+       block_rsv_add_bytes(block_rsv, blocksize, 0);
+       block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
+}
+
+/*
+ * finds a free extent and does all the dirty work required for allocation
+ * returns the key for the extent through ins, and a tree buffer for
+ * the first block of the extent through buf.
+ *
+ * returns the tree buffer or an ERR_PTR on error.
+ */
+struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
+                                       struct btrfs_root *root,
+                                       u64 parent, u64 root_objectid,
+                                       struct btrfs_disk_key *key, int level,
+                                       u64 hint, u64 empty_size)
+{
+       struct btrfs_key ins;
+       struct btrfs_block_rsv *block_rsv;
+       struct extent_buffer *buf;
+       struct btrfs_delayed_extent_op *extent_op;
+       u64 flags = 0;
+       int ret;
+       u32 blocksize = root->nodesize;
+       bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
+                                                SKINNY_METADATA);
+
+       if (btrfs_test_is_dummy_root(root)) {
+               buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
+                                           level);
+               if (!IS_ERR(buf))
+                       root->alloc_bytenr += blocksize;
+               return buf;
+       }
+
+       block_rsv = use_block_rsv(trans, root, blocksize);
+       if (IS_ERR(block_rsv))
+               return ERR_CAST(block_rsv);
+
+       ret = btrfs_reserve_extent(root, blocksize, blocksize,
+                                  empty_size, hint, &ins, 0, 0);
+       if (ret)
+               goto out_unuse;
+
+       buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
+       if (IS_ERR(buf)) {
+               ret = PTR_ERR(buf);
+               goto out_free_reserved;
+       }
+
+       if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
+               if (parent == 0)
+                       parent = ins.objectid;
+               flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
+       } else
+               BUG_ON(parent > 0);
+
+       if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
+               extent_op = btrfs_alloc_delayed_extent_op();
+               if (!extent_op) {
+                       ret = -ENOMEM;
+                       goto out_free_buf;
+               }
+               if (key)
+                       memcpy(&extent_op->key, key, sizeof(extent_op->key));
+               else
+                       memset(&extent_op->key, 0, sizeof(extent_op->key));
+               extent_op->flags_to_set = flags;
+               if (skinny_metadata)
+                       extent_op->update_key = 0;
+               else
+                       extent_op->update_key = 1;
+               extent_op->update_flags = 1;
+               extent_op->is_data = 0;
+               extent_op->level = level;
+
+               ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
+                                                ins.objectid, ins.offset,
+                                                parent, root_objectid, level,
+                                                BTRFS_ADD_DELAYED_EXTENT,
+                                                extent_op, 0);
+               if (ret)
+                       goto out_free_delayed;
+       }
+       return buf;
+
+out_free_delayed:
+       btrfs_free_delayed_extent_op(extent_op);
+out_free_buf:
+       free_extent_buffer(buf);
+out_free_reserved:
+       btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
+out_unuse:
+       unuse_block_rsv(root->fs_info, block_rsv, blocksize);
+       return ERR_PTR(ret);
+}
+
+struct walk_control {
+       u64 refs[BTRFS_MAX_LEVEL];
+       u64 flags[BTRFS_MAX_LEVEL];
+       struct btrfs_key update_progress;
+       int stage;
+       int level;
+       int shared_level;
+       int update_ref;
+       int keep_locks;
+       int reada_slot;
+       int reada_count;
+       int for_reloc;
+};
+
+#define DROP_REFERENCE 1
+#define UPDATE_BACKREF 2
+
+static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
+                                    struct btrfs_root *root,
+                                    struct walk_control *wc,
+                                    struct btrfs_path *path)
+{
+       u64 bytenr;
+       u64 generation;
+       u64 refs;
+       u64 flags;
+       u32 nritems;
+       u32 blocksize;
+       struct btrfs_key key;
+       struct extent_buffer *eb;
+       int ret;
+       int slot;
+       int nread = 0;
+
+       if (path->slots[wc->level] < wc->reada_slot) {
+               wc->reada_count = wc->reada_count * 2 / 3;
+               wc->reada_count = max(wc->reada_count, 2);
+       } else {
+               wc->reada_count = wc->reada_count * 3 / 2;
+               wc->reada_count = min_t(int, wc->reada_count,
+                                       BTRFS_NODEPTRS_PER_BLOCK(root));
+       }
+
+       eb = path->nodes[wc->level];
+       nritems = btrfs_header_nritems(eb);
+       blocksize = root->nodesize;
+
+       for (slot = path->slots[wc->level]; slot < nritems; slot++) {
+               if (nread >= wc->reada_count)
+                       break;
+
+               cond_resched();
+               bytenr = btrfs_node_blockptr(eb, slot);
+               generation = btrfs_node_ptr_generation(eb, slot);
+
+               if (slot == path->slots[wc->level])
+                       goto reada;
+
+               if (wc->stage == UPDATE_BACKREF &&
+                   generation <= root->root_key.offset)
+                       continue;
+
+               /* We don't lock the tree block, it's OK to be racy here */
+               ret = btrfs_lookup_extent_info(trans, root, bytenr,
+                                              wc->level - 1, 1, &refs,
+                                              &flags);
+               /* We don't care about errors in readahead. */
+               if (ret < 0)
+                       continue;
+               BUG_ON(refs == 0);
+
+               if (wc->stage == DROP_REFERENCE) {
+                       if (refs == 1)
+                               goto reada;
+
+                       if (wc->level == 1 &&
+                           (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+                               continue;
+                       if (!wc->update_ref ||
+                           generation <= root->root_key.offset)
+                               continue;
+                       btrfs_node_key_to_cpu(eb, &key, slot);
+                       ret = btrfs_comp_cpu_keys(&key,
+                                                 &wc->update_progress);
+                       if (ret < 0)
+                               continue;
+               } else {
+                       if (wc->level == 1 &&
+                           (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+                               continue;
+               }
+reada:
+               readahead_tree_block(root, bytenr);
+               nread++;
+       }
+       wc->reada_slot = slot;
+}
+
+static int account_leaf_items(struct btrfs_trans_handle *trans,
+                             struct btrfs_root *root,
+                             struct extent_buffer *eb)
+{
+       int nr = btrfs_header_nritems(eb);
+       int i, extent_type, ret;
+       struct btrfs_key key;
+       struct btrfs_file_extent_item *fi;
+       u64 bytenr, num_bytes;
+
+       for (i = 0; i < nr; i++) {
+               btrfs_item_key_to_cpu(eb, &key, i);
+
+               if (key.type != BTRFS_EXTENT_DATA_KEY)
+                       continue;
+
+               fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
+               /* filter out non qgroup-accountable extents  */
+               extent_type = btrfs_file_extent_type(eb, fi);
+
+               if (extent_type == BTRFS_FILE_EXTENT_INLINE)
+                       continue;
+
+               bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
+               if (!bytenr)
+                       continue;
+
+               num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
+
+               ret = btrfs_qgroup_record_ref(trans, root->fs_info,
+                                             root->objectid,
+                                             bytenr, num_bytes,
+                                             BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
+               if (ret)
+                       return ret;
+       }
+       return 0;
+}
+
+/*
+ * Walk up the tree from the bottom, freeing leaves and any interior
+ * nodes which have had all slots visited. If a node (leaf or
+ * interior) is freed, the node above it will have it's slot
+ * incremented. The root node will never be freed.
+ *
+ * At the end of this function, we should have a path which has all
+ * slots incremented to the next position for a search. If we need to
+ * read a new node it will be NULL and the node above it will have the
+ * correct slot selected for a later read.
+ *
+ * If we increment the root nodes slot counter past the number of
+ * elements, 1 is returned to signal completion of the search.
+ */
+static int adjust_slots_upwards(struct btrfs_root *root,
+                               struct btrfs_path *path, int root_level)
+{
+       int level = 0;
+       int nr, slot;
+       struct extent_buffer *eb;
+
+       if (root_level == 0)
+               return 1;
+
+       while (level <= root_level) {
+               eb = path->nodes[level];
+               nr = btrfs_header_nritems(eb);
+               path->slots[level]++;
+               slot = path->slots[level];
+               if (slot >= nr || level == 0) {
+                       /*
+                        * Don't free the root -  we will detect this
+                        * condition after our loop and return a
+                        * positive value for caller to stop walking the tree.
+                        */
+                       if (level != root_level) {
+                               btrfs_tree_unlock_rw(eb, path->locks[level]);
+                               path->locks[level] = 0;
+
+                               free_extent_buffer(eb);
+                               path->nodes[level] = NULL;
+                               path->slots[level] = 0;
+                       }
+               } else {
+                       /*
+                        * We have a valid slot to walk back down
+                        * from. Stop here so caller can process these
+                        * new nodes.
+                        */
+                       break;
+               }
+
+               level++;
+       }
+
+       eb = path->nodes[root_level];
+       if (path->slots[root_level] >= btrfs_header_nritems(eb))
+               return 1;
+
+       return 0;
+}
+
+/*
+ * root_eb is the subtree root and is locked before this function is called.
+ */
+static int account_shared_subtree(struct btrfs_trans_handle *trans,
+                                 struct btrfs_root *root,
+                                 struct extent_buffer *root_eb,
+                                 u64 root_gen,
+                                 int root_level)
+{
+       int ret = 0;
+       int level;
+       struct extent_buffer *eb = root_eb;
+       struct btrfs_path *path = NULL;
+
+       BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
+       BUG_ON(root_eb == NULL);
+
+       if (!root->fs_info->quota_enabled)
+               return 0;
+
+       if (!extent_buffer_uptodate(root_eb)) {
+               ret = btrfs_read_buffer(root_eb, root_gen);
+               if (ret)
+                       goto out;
+       }
+
+       if (root_level == 0) {
+               ret = account_leaf_items(trans, root, root_eb);
+               goto out;
+       }
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       /*
+        * Walk down the tree.  Missing extent blocks are filled in as
+        * we go. Metadata is accounted every time we read a new
+        * extent block.
+        *
+        * When we reach a leaf, we account for file extent items in it,
+        * walk back up the tree (adjusting slot pointers as we go)
+        * and restart the search process.
+        */
+       extent_buffer_get(root_eb); /* For path */
+       path->nodes[root_level] = root_eb;
+       path->slots[root_level] = 0;
+       path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
+walk_down:
+       level = root_level;
+       while (level >= 0) {
+               if (path->nodes[level] == NULL) {
+                       int parent_slot;
+                       u64 child_gen;
+                       u64 child_bytenr;
+
+                       /* We need to get child blockptr/gen from
+                        * parent before we can read it. */
+                       eb = path->nodes[level + 1];
+                       parent_slot = path->slots[level + 1];
+                       child_bytenr = btrfs_node_blockptr(eb, parent_slot);
+                       child_gen = btrfs_node_ptr_generation(eb, parent_slot);
+
+                       eb = read_tree_block(root, child_bytenr, child_gen);
+                       if (!eb || !extent_buffer_uptodate(eb)) {
+                               ret = -EIO;
+                               goto out;
+                       }
+
+                       path->nodes[level] = eb;
+                       path->slots[level] = 0;
+
+                       btrfs_tree_read_lock(eb);
+                       btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
+                       path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
+
+                       ret = btrfs_qgroup_record_ref(trans, root->fs_info,
+                                               root->objectid,
+                                               child_bytenr,
+                                               root->nodesize,
+                                               BTRFS_QGROUP_OPER_SUB_SUBTREE,
+                                               0);
+                       if (ret)
+                               goto out;
+
+               }
+
+               if (level == 0) {
+                       ret = account_leaf_items(trans, root, path->nodes[level]);
+                       if (ret)
+                               goto out;
+
+                       /* Nonzero return here means we completed our search */
+                       ret = adjust_slots_upwards(root, path, root_level);
+                       if (ret)
+                               break;
+
+                       /* Restart search with new slots */
+                       goto walk_down;
+               }
+
+               level--;
+       }
+
+       ret = 0;
+out:
+       btrfs_free_path(path);
+
+       return ret;
+}
+
+/*
+ * helper to process tree block while walking down the tree.
+ *
+ * when wc->stage == UPDATE_BACKREF, this function updates
+ * back refs for pointers in the block.
+ *
+ * NOTE: return value 1 means we should stop walking down.
+ */
+static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
+                                  struct btrfs_root *root,
+                                  struct btrfs_path *path,
+                                  struct walk_control *wc, int lookup_info)
+{
+       int level = wc->level;
+       struct extent_buffer *eb = path->nodes[level];
+       u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+       int ret;
+
+       if (wc->stage == UPDATE_BACKREF &&
+           btrfs_header_owner(eb) != root->root_key.objectid)
+               return 1;
+
+       /*
+        * when reference count of tree block is 1, it won't increase
+        * again. once full backref flag is set, we never clear it.
+        */
+       if (lookup_info &&
+           ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
+            (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
+               BUG_ON(!path->locks[level]);
+               ret = btrfs_lookup_extent_info(trans, root,
+                                              eb->start, level, 1,
+                                              &wc->refs[level],
+                                              &wc->flags[level]);
+               BUG_ON(ret == -ENOMEM);
+               if (ret)
+                       return ret;
+               BUG_ON(wc->refs[level] == 0);
+       }
+
+       if (wc->stage == DROP_REFERENCE) {
+               if (wc->refs[level] > 1)
+                       return 1;
+
+               if (path->locks[level] && !wc->keep_locks) {
+                       btrfs_tree_unlock_rw(eb, path->locks[level]);
+                       path->locks[level] = 0;
+               }
+               return 0;
+       }
+
+       /* wc->stage == UPDATE_BACKREF */
+       if (!(wc->flags[level] & flag)) {
+               BUG_ON(!path->locks[level]);
+               ret = btrfs_inc_ref(trans, root, eb, 1);
+               BUG_ON(ret); /* -ENOMEM */
+               ret = btrfs_dec_ref(trans, root, eb, 0);
+               BUG_ON(ret); /* -ENOMEM */
+               ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
+                                                 eb->len, flag,
+                                                 btrfs_header_level(eb), 0);
+               BUG_ON(ret); /* -ENOMEM */
+               wc->flags[level] |= flag;
+       }
+
+       /*
+        * the block is shared by multiple trees, so it's not good to
+        * keep the tree lock
+        */
+       if (path->locks[level] && level > 0) {
+               btrfs_tree_unlock_rw(eb, path->locks[level]);
+               path->locks[level] = 0;
+       }
+       return 0;
+}
+
+/*
+ * helper to process tree block pointer.
+ *
+ * when wc->stage == DROP_REFERENCE, this function checks
+ * reference count of the block pointed to. if the block
+ * is shared and we need update back refs for the subtree
+ * rooted at the block, this function changes wc->stage to
+ * UPDATE_BACKREF. if the block is shared and there is no
+ * need to update back, this function drops the reference
+ * to the block.
+ *
+ * NOTE: return value 1 means we should stop walking down.
+ */
+static noinline int do_walk_down(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct walk_control *wc, int *lookup_info)
+{
+       u64 bytenr;
+       u64 generation;
+       u64 parent;
+       u32 blocksize;
+       struct btrfs_key key;
+       struct extent_buffer *next;
+       int level = wc->level;
+       int reada = 0;
+       int ret = 0;
+       bool need_account = false;
+
+       generation = btrfs_node_ptr_generation(path->nodes[level],
+                                              path->slots[level]);
+       /*
+        * if the lower level block was created before the snapshot
+        * was created, we know there is no need to update back refs
+        * for the subtree
+        */
+       if (wc->stage == UPDATE_BACKREF &&
+           generation <= root->root_key.offset) {
+               *lookup_info = 1;
+               return 1;
+       }
+
+       bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
+       blocksize = root->nodesize;
+
+       next = btrfs_find_tree_block(root->fs_info, bytenr);
+       if (!next) {
+               next = btrfs_find_create_tree_block(root, bytenr);
+               if (!next)
+                       return -ENOMEM;
+               btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
+                                              level - 1);
+               reada = 1;
+       }
+       btrfs_tree_lock(next);
+       btrfs_set_lock_blocking(next);
+
+       ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
+                                      &wc->refs[level - 1],
+                                      &wc->flags[level - 1]);
+       if (ret < 0) {
+               btrfs_tree_unlock(next);
+               return ret;
+       }
+
+       if (unlikely(wc->refs[level - 1] == 0)) {
+               btrfs_err(root->fs_info, "Missing references.");
+               BUG();
+       }
+       *lookup_info = 0;
+
+       if (wc->stage == DROP_REFERENCE) {
+               if (wc->refs[level - 1] > 1) {
+                       need_account = true;
+                       if (level == 1 &&
+                           (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+                               goto skip;
+
+                       if (!wc->update_ref ||
+                           generation <= root->root_key.offset)
+                               goto skip;
+
+                       btrfs_node_key_to_cpu(path->nodes[level], &key,
+                                             path->slots[level]);
+                       ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
+                       if (ret < 0)
+                               goto skip;
+
+                       wc->stage = UPDATE_BACKREF;
+                       wc->shared_level = level - 1;
+               }
+       } else {
+               if (level == 1 &&
+                   (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+                       goto skip;
+       }
+
+       if (!btrfs_buffer_uptodate(next, generation, 0)) {
+               btrfs_tree_unlock(next);
+               free_extent_buffer(next);
+               next = NULL;
+               *lookup_info = 1;
+       }
+
+       if (!next) {
+               if (reada && level == 1)
+                       reada_walk_down(trans, root, wc, path);
+               next = read_tree_block(root, bytenr, generation);
+               if (!next || !extent_buffer_uptodate(next)) {
+                       free_extent_buffer(next);
+                       return -EIO;
+               }
+               btrfs_tree_lock(next);
+               btrfs_set_lock_blocking(next);
+       }
+
+       level--;
+       BUG_ON(level != btrfs_header_level(next));
+       path->nodes[level] = next;
+       path->slots[level] = 0;
+       path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+       wc->level = level;
+       if (wc->level == 1)
+               wc->reada_slot = 0;
+       return 0;
+skip:
+       wc->refs[level - 1] = 0;
+       wc->flags[level - 1] = 0;
+       if (wc->stage == DROP_REFERENCE) {
+               if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
+                       parent = path->nodes[level]->start;
+               } else {
+                       BUG_ON(root->root_key.objectid !=
+                              btrfs_header_owner(path->nodes[level]));
+                       parent = 0;
+               }
+
+               if (need_account) {
+                       ret = account_shared_subtree(trans, root, next,
+                                                    generation, level - 1);
+                       if (ret) {
+                               printk_ratelimited(KERN_ERR "BTRFS: %s Error "
+                                       "%d accounting shared subtree. Quota "
+                                       "is out of sync, rescan required.\n",
+                                       root->fs_info->sb->s_id, ret);
+                       }
+               }
+               ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
+                               root->root_key.objectid, level - 1, 0, 0);
+               BUG_ON(ret); /* -ENOMEM */
+       }
+       btrfs_tree_unlock(next);
+       free_extent_buffer(next);
+       *lookup_info = 1;
+       return 1;
+}
+
+/*
+ * helper to process tree block while walking up the tree.
+ *
+ * when wc->stage == DROP_REFERENCE, this function drops
+ * reference count on the block.
+ *
+ * when wc->stage == UPDATE_BACKREF, this function changes
+ * wc->stage back to DROP_REFERENCE if we changed wc->stage
+ * to UPDATE_BACKREF previously while processing the block.
+ *
+ * NOTE: return value 1 means we should stop walking up.
+ */
+static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct walk_control *wc)
+{
+       int ret;
+       int level = wc->level;
+       struct extent_buffer *eb = path->nodes[level];
+       u64 parent = 0;
+
+       if (wc->stage == UPDATE_BACKREF) {
+               BUG_ON(wc->shared_level < level);
+               if (level < wc->shared_level)
+                       goto out;
+
+               ret = find_next_key(path, level + 1, &wc->update_progress);
+               if (ret > 0)
+                       wc->update_ref = 0;
+
+               wc->stage = DROP_REFERENCE;
+               wc->shared_level = -1;
+               path->slots[level] = 0;
+
+               /*
+                * check reference count again if the block isn't locked.
+                * we should start walking down the tree again if reference
+                * count is one.
+                */
+               if (!path->locks[level]) {
+                       BUG_ON(level == 0);
+                       btrfs_tree_lock(eb);
+                       btrfs_set_lock_blocking(eb);
+                       path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+                       ret = btrfs_lookup_extent_info(trans, root,
+                                                      eb->start, level, 1,
+                                                      &wc->refs[level],
+                                                      &wc->flags[level]);
+                       if (ret < 0) {
+                               btrfs_tree_unlock_rw(eb, path->locks[level]);
+                               path->locks[level] = 0;
+                               return ret;
+                       }
+                       BUG_ON(wc->refs[level] == 0);
+                       if (wc->refs[level] == 1) {
+                               btrfs_tree_unlock_rw(eb, path->locks[level]);
+                               path->locks[level] = 0;
+                               return 1;
+                       }
+               }
+       }
+
+       /* wc->stage == DROP_REFERENCE */
+       BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
+
+       if (wc->refs[level] == 1) {
+               if (level == 0) {
+                       if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+                               ret = btrfs_dec_ref(trans, root, eb, 1);
+                       else
+                               ret = btrfs_dec_ref(trans, root, eb, 0);
+                       BUG_ON(ret); /* -ENOMEM */
+                       ret = account_leaf_items(trans, root, eb);
+                       if (ret) {
+                               printk_ratelimited(KERN_ERR "BTRFS: %s Error "
+                                       "%d accounting leaf items. Quota "
+                                       "is out of sync, rescan required.\n",
+                                       root->fs_info->sb->s_id, ret);
+                       }
+               }
+               /* make block locked assertion in clean_tree_block happy */
+               if (!path->locks[level] &&
+                   btrfs_header_generation(eb) == trans->transid) {
+                       btrfs_tree_lock(eb);
+                       btrfs_set_lock_blocking(eb);
+                       path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+               }
+               clean_tree_block(trans, root->fs_info, eb);
+       }
+
+       if (eb == root->node) {
+               if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+                       parent = eb->start;
+               else
+                       BUG_ON(root->root_key.objectid !=
+                              btrfs_header_owner(eb));
+       } else {
+               if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+                       parent = path->nodes[level + 1]->start;
+               else
+                       BUG_ON(root->root_key.objectid !=
+                              btrfs_header_owner(path->nodes[level + 1]));
+       }
+
+       btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
+out:
+       wc->refs[level] = 0;
+       wc->flags[level] = 0;
+       return 0;
+}
+
+static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
+                                  struct btrfs_root *root,
+                                  struct btrfs_path *path,
+                                  struct walk_control *wc)
+{
+       int level = wc->level;
+       int lookup_info = 1;
+       int ret;
+
+       while (level >= 0) {
+               ret = walk_down_proc(trans, root, path, wc, lookup_info);
+               if (ret > 0)
+                       break;
+
+               if (level == 0)
+                       break;
+
+               if (path->slots[level] >=
+                   btrfs_header_nritems(path->nodes[level]))
+                       break;
+
+               ret = do_walk_down(trans, root, path, wc, &lookup_info);
+               if (ret > 0) {
+                       path->slots[level]++;
+                       continue;
+               } else if (ret < 0)
+                       return ret;
+               level = wc->level;
+       }
+       return 0;
+}
+
+static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
+                                struct btrfs_root *root,
+                                struct btrfs_path *path,
+                                struct walk_control *wc, int max_level)
+{
+       int level = wc->level;
+       int ret;
+
+       path->slots[level] = btrfs_header_nritems(path->nodes[level]);
+       while (level < max_level && path->nodes[level]) {
+               wc->level = level;
+               if (path->slots[level] + 1 <
+                   btrfs_header_nritems(path->nodes[level])) {
+                       path->slots[level]++;
+                       return 0;
+               } else {
+                       ret = walk_up_proc(trans, root, path, wc);
+                       if (ret > 0)
+                               return 0;
+
+                       if (path->locks[level]) {
+                               btrfs_tree_unlock_rw(path->nodes[level],
+                                                    path->locks[level]);
+                               path->locks[level] = 0;
+                       }
+                       free_extent_buffer(path->nodes[level]);
+                       path->nodes[level] = NULL;
+                       level++;
+               }
+       }
+       return 1;
+}
+
+/*
+ * drop a subvolume tree.
+ *
+ * this function traverses the tree freeing any blocks that only
+ * referenced by the tree.
+ *
+ * when a shared tree block is found. this function decreases its
+ * reference count by one. if update_ref is true, this function
+ * also make sure backrefs for the shared block and all lower level
+ * blocks are properly updated.
+ *
+ * If called with for_reloc == 0, may exit early with -EAGAIN
+ */
+int btrfs_drop_snapshot(struct btrfs_root *root,
+                        struct btrfs_block_rsv *block_rsv, int update_ref,
+                        int for_reloc)
+{
+       struct btrfs_path *path;
+       struct btrfs_trans_handle *trans;
+       struct btrfs_root *tree_root = root->fs_info->tree_root;
+       struct btrfs_root_item *root_item = &root->root_item;
+       struct walk_control *wc;
+       struct btrfs_key key;
+       int err = 0;
+       int ret;
+       int level;
+       bool root_dropped = false;
+
+       btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
+
+       path = btrfs_alloc_path();
+       if (!path) {
+               err = -ENOMEM;
+               goto out;
+       }
+
+       wc = kzalloc(sizeof(*wc), GFP_NOFS);
+       if (!wc) {
+               btrfs_free_path(path);
+               err = -ENOMEM;
+               goto out;
+       }
+
+       trans = btrfs_start_transaction(tree_root, 0);
+       if (IS_ERR(trans)) {
+               err = PTR_ERR(trans);
+               goto out_free;
+       }
+
+       if (block_rsv)
+               trans->block_rsv = block_rsv;
+
+       if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
+               level = btrfs_header_level(root->node);
+               path->nodes[level] = btrfs_lock_root_node(root);
+               btrfs_set_lock_blocking(path->nodes[level]);
+               path->slots[level] = 0;
+               path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+               memset(&wc->update_progress, 0,
+                      sizeof(wc->update_progress));
+       } else {
+               btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
+               memcpy(&wc->update_progress, &key,
+                      sizeof(wc->update_progress));
+
+               level = root_item->drop_level;
+               BUG_ON(level == 0);
+               path->lowest_level = level;
+               ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+               path->lowest_level = 0;
+               if (ret < 0) {
+                       err = ret;
+                       goto out_end_trans;
+               }
+               WARN_ON(ret > 0);
+
+               /*
+                * unlock our path, this is safe because only this
+                * function is allowed to delete this snapshot
+                */
+               btrfs_unlock_up_safe(path, 0);
+
+               level = btrfs_header_level(root->node);
+               while (1) {
+                       btrfs_tree_lock(path->nodes[level]);
+                       btrfs_set_lock_blocking(path->nodes[level]);
+                       path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+                       ret = btrfs_lookup_extent_info(trans, root,
+                                               path->nodes[level]->start,
+                                               level, 1, &wc->refs[level],
+                                               &wc->flags[level]);
+                       if (ret < 0) {
+                               err = ret;
+                               goto out_end_trans;
+                       }
+                       BUG_ON(wc->refs[level] == 0);
+
+                       if (level == root_item->drop_level)
+                               break;
+
+                       btrfs_tree_unlock(path->nodes[level]);
+                       path->locks[level] = 0;
+                       WARN_ON(wc->refs[level] != 1);
+                       level--;
+               }
+       }
+
+       wc->level = level;
+       wc->shared_level = -1;
+       wc->stage = DROP_REFERENCE;
+       wc->update_ref = update_ref;
+       wc->keep_locks = 0;
+       wc->for_reloc = for_reloc;
+       wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
+
+       while (1) {
+
+               ret = walk_down_tree(trans, root, path, wc);
+               if (ret < 0) {
+                       err = ret;
+                       break;
+               }
+
+               ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
+               if (ret < 0) {
+                       err = ret;
+                       break;
+               }
+
+               if (ret > 0) {
+                       BUG_ON(wc->stage != DROP_REFERENCE);
+                       break;
+               }
+
+               if (wc->stage == DROP_REFERENCE) {
+                       level = wc->level;
+                       btrfs_node_key(path->nodes[level],
+                                      &root_item->drop_progress,
+                                      path->slots[level]);
+                       root_item->drop_level = level;
+               }
+
+               BUG_ON(wc->level == 0);
+               if (btrfs_should_end_transaction(trans, tree_root) ||
+                   (!for_reloc && btrfs_need_cleaner_sleep(root))) {
+                       ret = btrfs_update_root(trans, tree_root,
+                                               &root->root_key,
+                                               root_item);
+                       if (ret) {
+                               btrfs_abort_transaction(trans, tree_root, ret);
+                               err = ret;
+                               goto out_end_trans;
+                       }
+
+                       /*
+                        * Qgroup update accounting is run from
+                        * delayed ref handling. This usually works
+                        * out because delayed refs are normally the
+                        * only way qgroup updates are added. However,
+                        * we may have added updates during our tree
+                        * walk so run qgroups here to make sure we
+                        * don't lose any updates.
+                        */
+                       ret = btrfs_delayed_qgroup_accounting(trans,
+                                                             root->fs_info);
+                       if (ret)
+                               printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
+                                                  "running qgroup updates "
+                                                  "during snapshot delete. "
+                                                  "Quota is out of sync, "
+                                                  "rescan required.\n", ret);
+
+                       btrfs_end_transaction_throttle(trans, tree_root);
+                       if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
+                               pr_debug("BTRFS: drop snapshot early exit\n");
+                               err = -EAGAIN;
+                               goto out_free;
+                       }
+
+                       trans = btrfs_start_transaction(tree_root, 0);
+                       if (IS_ERR(trans)) {
+                               err = PTR_ERR(trans);
+                               goto out_free;
+                       }
+                       if (block_rsv)
+                               trans->block_rsv = block_rsv;
+               }
+       }
+       btrfs_release_path(path);
+       if (err)
+               goto out_end_trans;
+
+       ret = btrfs_del_root(trans, tree_root, &root->root_key);
+       if (ret) {
+               btrfs_abort_transaction(trans, tree_root, ret);
+               goto out_end_trans;
+       }
+
+       if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
+               ret = btrfs_find_root(tree_root, &root->root_key, path,
+                                     NULL, NULL);
+               if (ret < 0) {
+                       btrfs_abort_transaction(trans, tree_root, ret);
+                       err = ret;
+                       goto out_end_trans;
+               } else if (ret > 0) {
+                       /* if we fail to delete the orphan item this time
+                        * around, it'll get picked up the next time.
+                        *
+                        * The most common failure here is just -ENOENT.
+                        */
+                       btrfs_del_orphan_item(trans, tree_root,
+                                             root->root_key.objectid);
+               }
+       }
+
+       if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
+               btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
+       } else {
+               free_extent_buffer(root->node);
+               free_extent_buffer(root->commit_root);
+               btrfs_put_fs_root(root);
+       }
+       root_dropped = true;
+out_end_trans:
+       ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
+       if (ret)
+               printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
+                                  "running qgroup updates "
+                                  "during snapshot delete. "
+                                  "Quota is out of sync, "
+                                  "rescan required.\n", ret);
+
+       btrfs_end_transaction_throttle(trans, tree_root);
+out_free:
+       kfree(wc);
+       btrfs_free_path(path);
+out:
+       /*
+        * So if we need to stop dropping the snapshot for whatever reason we
+        * need to make sure to add it back to the dead root list so that we
+        * keep trying to do the work later.  This also cleans up roots if we
+        * don't have it in the radix (like when we recover after a power fail
+        * or unmount) so we don't leak memory.
+        */
+       if (!for_reloc && root_dropped == false)
+               btrfs_add_dead_root(root);
+       if (err && err != -EAGAIN)
+               btrfs_std_error(root->fs_info, err);
+       return err;
+}
+
+/*
+ * drop subtree rooted at tree block 'node'.
+ *
+ * NOTE: this function will unlock and release tree block 'node'
+ * only used by relocation code
+ */
+int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
+                       struct btrfs_root *root,
+                       struct extent_buffer *node,
+                       struct extent_buffer *parent)
+{
+       struct btrfs_path *path;
+       struct walk_control *wc;
+       int level;
+       int parent_level;
+       int ret = 0;
+       int wret;
+
+       BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+
+       wc = kzalloc(sizeof(*wc), GFP_NOFS);
+       if (!wc) {
+               btrfs_free_path(path);
+               return -ENOMEM;
+       }
+
+       btrfs_assert_tree_locked(parent);
+       parent_level = btrfs_header_level(parent);
+       extent_buffer_get(parent);
+       path->nodes[parent_level] = parent;
+       path->slots[parent_level] = btrfs_header_nritems(parent);
+
+       btrfs_assert_tree_locked(node);
+       level = btrfs_header_level(node);
+       path->nodes[level] = node;
+       path->slots[level] = 0;
+       path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+       wc->refs[parent_level] = 1;
+       wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+       wc->level = level;
+       wc->shared_level = -1;
+       wc->stage = DROP_REFERENCE;
+       wc->update_ref = 0;
+       wc->keep_locks = 1;
+       wc->for_reloc = 1;
+       wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
+
+       while (1) {
+               wret = walk_down_tree(trans, root, path, wc);
+               if (wret < 0) {
+                       ret = wret;
+                       break;
+               }
+
+               wret = walk_up_tree(trans, root, path, wc, parent_level);
+               if (wret < 0)
+                       ret = wret;
+               if (wret != 0)
+                       break;
+       }
+
+       kfree(wc);
+       btrfs_free_path(path);
+       return ret;
+}
+
+static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
+{
+       u64 num_devices;
+       u64 stripped;
+
+       /*
+        * if restripe for this chunk_type is on pick target profile and
+        * return, otherwise do the usual balance
+        */
+       stripped = get_restripe_target(root->fs_info, flags);
+       if (stripped)
+               return extended_to_chunk(stripped);
+
+       num_devices = root->fs_info->fs_devices->rw_devices;
+
+       stripped = BTRFS_BLOCK_GROUP_RAID0 |
+               BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
+               BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
+
+       if (num_devices == 1) {
+               stripped |= BTRFS_BLOCK_GROUP_DUP;
+               stripped = flags & ~stripped;
+
+               /* turn raid0 into single device chunks */
+               if (flags & BTRFS_BLOCK_GROUP_RAID0)
+                       return stripped;
+
+               /* turn mirroring into duplication */
+               if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
+                            BTRFS_BLOCK_GROUP_RAID10))
+                       return stripped | BTRFS_BLOCK_GROUP_DUP;
+       } else {
+               /* they already had raid on here, just return */
+               if (flags & stripped)
+                       return flags;
+
+               stripped |= BTRFS_BLOCK_GROUP_DUP;
+               stripped = flags & ~stripped;
+
+               /* switch duplicated blocks with raid1 */
+               if (flags & BTRFS_BLOCK_GROUP_DUP)
+                       return stripped | BTRFS_BLOCK_GROUP_RAID1;
+
+               /* this is drive concat, leave it alone */
+       }
+
+       return flags;
+}
+
+static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
+{
+       struct btrfs_space_info *sinfo = cache->space_info;
+       u64 num_bytes;
+       u64 min_allocable_bytes;
+       int ret = -ENOSPC;
+
+
+       /*
+        * We need some metadata space and system metadata space for
+        * allocating chunks in some corner cases until we force to set
+        * it to be readonly.
+        */
+       if ((sinfo->flags &
+            (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
+           !force)
+               min_allocable_bytes = 1 * 1024 * 1024;
+       else
+               min_allocable_bytes = 0;
+
+       spin_lock(&sinfo->lock);
+       spin_lock(&cache->lock);
+
+       if (cache->ro) {
+               ret = 0;
+               goto out;
+       }
+
+       num_bytes = cache->key.offset - cache->reserved - cache->pinned -
+                   cache->bytes_super - btrfs_block_group_used(&cache->item);
+
+       if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
+           sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
+           min_allocable_bytes <= sinfo->total_bytes) {
+               sinfo->bytes_readonly += num_bytes;
+               cache->ro = 1;
+               list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
+               ret = 0;
+       }
+out:
+       spin_unlock(&cache->lock);
+       spin_unlock(&sinfo->lock);
+       return ret;
+}
+
+int btrfs_set_block_group_ro(struct btrfs_root *root,
+                            struct btrfs_block_group_cache *cache)
+
+{
+       struct btrfs_trans_handle *trans;
+       u64 alloc_flags;
+       int ret;
+
+       BUG_ON(cache->ro);
+
+again:
+       trans = btrfs_join_transaction(root);
+       if (IS_ERR(trans))
+               return PTR_ERR(trans);
+
+       /*
+        * we're not allowed to set block groups readonly after the dirty
+        * block groups cache has started writing.  If it already started,
+        * back off and let this transaction commit
+        */
+       mutex_lock(&root->fs_info->ro_block_group_mutex);
+       if (trans->transaction->dirty_bg_run) {
+               u64 transid = trans->transid;
+
+               mutex_unlock(&root->fs_info->ro_block_group_mutex);
+               btrfs_end_transaction(trans, root);
+
+               ret = btrfs_wait_for_commit(root, transid);
+               if (ret)
+                       return ret;
+               goto again;
+       }
+
+       /*
+        * if we are changing raid levels, try to allocate a corresponding
+        * block group with the new raid level.
+        */
+       alloc_flags = update_block_group_flags(root, cache->flags);
+       if (alloc_flags != cache->flags) {
+               ret = do_chunk_alloc(trans, root, alloc_flags,
+                                    CHUNK_ALLOC_FORCE);
+               /*
+                * ENOSPC is allowed here, we may have enough space
+                * already allocated at the new raid level to
+                * carry on
+                */
+               if (ret == -ENOSPC)
+                       ret = 0;
+               if (ret < 0)
+                       goto out;
+       }
+
+       ret = set_block_group_ro(cache, 0);
+       if (!ret)
+               goto out;
+       alloc_flags = get_alloc_profile(root, cache->space_info->flags);
+       ret = do_chunk_alloc(trans, root, alloc_flags,
+                            CHUNK_ALLOC_FORCE);
+       if (ret < 0)
+               goto out;
+       ret = set_block_group_ro(cache, 0);
+out:
+       if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
+               alloc_flags = update_block_group_flags(root, cache->flags);
+               lock_chunks(root->fs_info->chunk_root);
+               check_system_chunk(trans, root, alloc_flags);
+               unlock_chunks(root->fs_info->chunk_root);
+       }
+       mutex_unlock(&root->fs_info->ro_block_group_mutex);
+
+       btrfs_end_transaction(trans, root);
+       return ret;
+}
+
+int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
+                           struct btrfs_root *root, u64 type)
+{
+       u64 alloc_flags = get_alloc_profile(root, type);
+       return do_chunk_alloc(trans, root, alloc_flags,
+                             CHUNK_ALLOC_FORCE);
+}
+
+/*
+ * helper to account the unused space of all the readonly block group in the
+ * space_info. takes mirrors into account.
+ */
+u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
+{
+       struct btrfs_block_group_cache *block_group;
+       u64 free_bytes = 0;
+       int factor;
+
+       /* It's df, we don't care if it's racey */
+       if (list_empty(&sinfo->ro_bgs))
+               return 0;
+
+       spin_lock(&sinfo->lock);
+       list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
+               spin_lock(&block_group->lock);
+
+               if (!block_group->ro) {
+                       spin_unlock(&block_group->lock);
+                       continue;
+               }
+
+               if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
+                                         BTRFS_BLOCK_GROUP_RAID10 |
+                                         BTRFS_BLOCK_GROUP_DUP))
+                       factor = 2;
+               else
+                       factor = 1;
+
+               free_bytes += (block_group->key.offset -
+                              btrfs_block_group_used(&block_group->item)) *
+                              factor;
+
+               spin_unlock(&block_group->lock);
+       }
+       spin_unlock(&sinfo->lock);
+
+       return free_bytes;
+}
+
+void btrfs_set_block_group_rw(struct btrfs_root *root,
+                             struct btrfs_block_group_cache *cache)
+{
+       struct btrfs_space_info *sinfo = cache->space_info;
+       u64 num_bytes;
+
+       BUG_ON(!cache->ro);
+
+       spin_lock(&sinfo->lock);
+       spin_lock(&cache->lock);
+       num_bytes = cache->key.offset - cache->reserved - cache->pinned -
+                   cache->bytes_super - btrfs_block_group_used(&cache->item);
+       sinfo->bytes_readonly -= num_bytes;
+       cache->ro = 0;
+       list_del_init(&cache->ro_list);
+       spin_unlock(&cache->lock);
+       spin_unlock(&sinfo->lock);
+}
+
+/*
+ * checks to see if its even possible to relocate this block group.
+ *
+ * @return - -1 if it's not a good idea to relocate this block group, 0 if its
+ * ok to go ahead and try.
+ */
+int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
+{
+       struct btrfs_block_group_cache *block_group;
+       struct btrfs_space_info *space_info;
+       struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+       struct btrfs_device *device;
+       struct btrfs_trans_handle *trans;
+       u64 min_free;
+       u64 dev_min = 1;
+       u64 dev_nr = 0;
+       u64 target;
+       int index;
+       int full = 0;
+       int ret = 0;
+
+       block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
+
+       /* odd, couldn't find the block group, leave it alone */
+       if (!block_group)
+               return -1;
+
+       min_free = btrfs_block_group_used(&block_group->item);
+
+       /* no bytes used, we're good */
+       if (!min_free)
+               goto out;
+
+       space_info = block_group->space_info;
+       spin_lock(&space_info->lock);
+
+       full = space_info->full;
+
+       /*
+        * if this is the last block group we have in this space, we can't
+        * relocate it unless we're able to allocate a new chunk below.
+        *
+        * Otherwise, we need to make sure we have room in the space to handle
+        * all of the extents from this block group.  If we can, we're good
+        */
+       if ((space_info->total_bytes != block_group->key.offset) &&
+           (space_info->bytes_used + space_info->bytes_reserved +
+            space_info->bytes_pinned + space_info->bytes_readonly +
+            min_free < space_info->total_bytes)) {
+               spin_unlock(&space_info->lock);
+               goto out;
+       }
+       spin_unlock(&space_info->lock);
+
+       /*
+        * ok we don't have enough space, but maybe we have free space on our
+        * devices to allocate new chunks for relocation, so loop through our
+        * alloc devices and guess if we have enough space.  if this block
+        * group is going to be restriped, run checks against the target
+        * profile instead of the current one.
+        */
+       ret = -1;
+
+       /*
+        * index:
+        *      0: raid10
+        *      1: raid1
+        *      2: dup
+        *      3: raid0
+        *      4: single
+        */
+       target = get_restripe_target(root->fs_info, block_group->flags);
+       if (target) {
+               index = __get_raid_index(extended_to_chunk(target));
+       } else {
+               /*
+                * this is just a balance, so if we were marked as full
+                * we know there is no space for a new chunk
+                */
+               if (full)
+                       goto out;
+
+               index = get_block_group_index(block_group);
+       }
+
+       if (index == BTRFS_RAID_RAID10) {
+               dev_min = 4;
+               /* Divide by 2 */
+               min_free >>= 1;
+       } else if (index == BTRFS_RAID_RAID1) {
+               dev_min = 2;
+       } else if (index == BTRFS_RAID_DUP) {
+               /* Multiply by 2 */
+               min_free <<= 1;
+       } else if (index == BTRFS_RAID_RAID0) {
+               dev_min = fs_devices->rw_devices;
+               min_free = div64_u64(min_free, dev_min);
+       }
+
+       /* We need to do this so that we can look at pending chunks */
+       trans = btrfs_join_transaction(root);
+       if (IS_ERR(trans)) {
+               ret = PTR_ERR(trans);
+               goto out;
+       }
+
+       mutex_lock(&root->fs_info->chunk_mutex);
+       list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
+               u64 dev_offset;
+
+               /*
+                * check to make sure we can actually find a chunk with enough
+                * space to fit our block group in.
+                */
+               if (device->total_bytes > device->bytes_used + min_free &&
+                   !device->is_tgtdev_for_dev_replace) {
+                       ret = find_free_dev_extent(trans, device, min_free,
+                                                  &dev_offset, NULL);
+                       if (!ret)
+                               dev_nr++;
+
+                       if (dev_nr >= dev_min)
+                               break;
+
+                       ret = -1;
+               }
+       }
+       mutex_unlock(&root->fs_info->chunk_mutex);
+       btrfs_end_transaction(trans, root);
+out:
+       btrfs_put_block_group(block_group);
+       return ret;
+}
+
+static int find_first_block_group(struct btrfs_root *root,
+               struct btrfs_path *path, struct btrfs_key *key)
+{
+       int ret = 0;
+       struct btrfs_key found_key;
+       struct extent_buffer *leaf;
+       int slot;
+
+       ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
+       if (ret < 0)
+               goto out;
+
+       while (1) {
+               slot = path->slots[0];
+               leaf = path->nodes[0];
+               if (slot >= btrfs_header_nritems(leaf)) {
+                       ret = btrfs_next_leaf(root, path);
+                       if (ret == 0)
+                               continue;
+                       if (ret < 0)
+                               goto out;
+                       break;
+               }
+               btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+               if (found_key.objectid >= key->objectid &&
+                   found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
+                       ret = 0;
+                       goto out;
+               }
+               path->slots[0]++;
+       }
+out:
+       return ret;
+}
+
+void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
+{
+       struct btrfs_block_group_cache *block_group;
+       u64 last = 0;
+
+       while (1) {
+               struct inode *inode;
+
+               block_group = btrfs_lookup_first_block_group(info, last);
+               while (block_group) {
+                       spin_lock(&block_group->lock);
+                       if (block_group->iref)
+                               break;
+                       spin_unlock(&block_group->lock);
+                       block_group = next_block_group(info->tree_root,
+                                                      block_group);
+               }
+               if (!block_group) {
+                       if (last == 0)
+                               break;
+                       last = 0;
+                       continue;
+               }
+
+               inode = block_group->inode;
+               block_group->iref = 0;
+               block_group->inode = NULL;
+               spin_unlock(&block_group->lock);
+               iput(inode);
+               last = block_group->key.objectid + block_group->key.offset;
+               btrfs_put_block_group(block_group);
+       }
+}
+
+int btrfs_free_block_groups(struct btrfs_fs_info *info)
+{
+       struct btrfs_block_group_cache *block_group;
+       struct btrfs_space_info *space_info;
+       struct btrfs_caching_control *caching_ctl;
+       struct rb_node *n;
+
+       down_write(&info->commit_root_sem);
+       while (!list_empty(&info->caching_block_groups)) {
+               caching_ctl = list_entry(info->caching_block_groups.next,
+                                        struct btrfs_caching_control, list);
+               list_del(&caching_ctl->list);
+               put_caching_control(caching_ctl);
+       }
+       up_write(&info->commit_root_sem);
+
+       spin_lock(&info->unused_bgs_lock);
+       while (!list_empty(&info->unused_bgs)) {
+               block_group = list_first_entry(&info->unused_bgs,
+                                              struct btrfs_block_group_cache,
+                                              bg_list);
+               list_del_init(&block_group->bg_list);
+               btrfs_put_block_group(block_group);
+       }
+       spin_unlock(&info->unused_bgs_lock);
+
+       spin_lock(&info->block_group_cache_lock);
+       while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
+               block_group = rb_entry(n, struct btrfs_block_group_cache,
+                                      cache_node);
+               rb_erase(&block_group->cache_node,
+                        &info->block_group_cache_tree);
+               RB_CLEAR_NODE(&block_group->cache_node);
+               spin_unlock(&info->block_group_cache_lock);
+
+               down_write(&block_group->space_info->groups_sem);
+               list_del(&block_group->list);
+               up_write(&block_group->space_info->groups_sem);
+
+               if (block_group->cached == BTRFS_CACHE_STARTED)
+                       wait_block_group_cache_done(block_group);
+
+               /*
+                * We haven't cached this block group, which means we could
+                * possibly have excluded extents on this block group.
+                */
+               if (block_group->cached == BTRFS_CACHE_NO ||
+                   block_group->cached == BTRFS_CACHE_ERROR)
+                       free_excluded_extents(info->extent_root, block_group);
+
+               btrfs_remove_free_space_cache(block_group);
+               btrfs_put_block_group(block_group);
+
+               spin_lock(&info->block_group_cache_lock);
+       }
+       spin_unlock(&info->block_group_cache_lock);
+
+       /* now that all the block groups are freed, go through and
+        * free all the space_info structs.  This is only called during
+        * the final stages of unmount, and so we know nobody is
+        * using them.  We call synchronize_rcu() once before we start,
+        * just to be on the safe side.
+        */
+       synchronize_rcu();
+
+       release_global_block_rsv(info);
+
+       while (!list_empty(&info->space_info)) {
+               int i;
+
+               space_info = list_entry(info->space_info.next,
+                                       struct btrfs_space_info,
+                                       list);
+               if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
+                       if (WARN_ON(space_info->bytes_pinned > 0 ||
+                           space_info->bytes_reserved > 0 ||
+                           space_info->bytes_may_use > 0)) {
+                               dump_space_info(space_info, 0, 0);
+                       }
+               }
+               list_del(&space_info->list);
+               for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
+                       struct kobject *kobj;
+                       kobj = space_info->block_group_kobjs[i];
+                       space_info->block_group_kobjs[i] = NULL;
+                       if (kobj) {
+                               kobject_del(kobj);
+                               kobject_put(kobj);
+                       }
+               }
+               kobject_del(&space_info->kobj);
+               kobject_put(&space_info->kobj);
+       }
+       return 0;
+}
+
+static void __link_block_group(struct btrfs_space_info *space_info,
+                              struct btrfs_block_group_cache *cache)
+{
+       int index = get_block_group_index(cache);
+       bool first = false;
+
+       down_write(&space_info->groups_sem);
+       if (list_empty(&space_info->block_groups[index]))
+               first = true;
+       list_add_tail(&cache->list, &space_info->block_groups[index]);
+       up_write(&space_info->groups_sem);
+
+       if (first) {
+               struct raid_kobject *rkobj;
+               int ret;
+
+               rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
+               if (!rkobj)
+                       goto out_err;
+               rkobj->raid_type = index;
+               kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
+               ret = kobject_add(&rkobj->kobj, &space_info->kobj,
+                                 "%s", get_raid_name(index));
+               if (ret) {
+                       kobject_put(&rkobj->kobj);
+                       goto out_err;
+               }
+               space_info->block_group_kobjs[index] = &rkobj->kobj;
+       }
+
+       return;
+out_err:
+       pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
+}
+
+static struct btrfs_block_group_cache *
+btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
+{
+       struct btrfs_block_group_cache *cache;
+
+       cache = kzalloc(sizeof(*cache), GFP_NOFS);
+       if (!cache)
+               return NULL;
+
+       cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
+                                       GFP_NOFS);
+       if (!cache->free_space_ctl) {
+               kfree(cache);
+               return NULL;
+       }
+
+       cache->key.objectid = start;
+       cache->key.offset = size;
+       cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
+
+       cache->sectorsize = root->sectorsize;
+       cache->fs_info = root->fs_info;
+       cache->full_stripe_len = btrfs_full_stripe_len(root,
+                                              &root->fs_info->mapping_tree,
+                                              start);
+       atomic_set(&cache->count, 1);
+       spin_lock_init(&cache->lock);
+       init_rwsem(&cache->data_rwsem);
+       INIT_LIST_HEAD(&cache->list);
+       INIT_LIST_HEAD(&cache->cluster_list);
+       INIT_LIST_HEAD(&cache->bg_list);
+       INIT_LIST_HEAD(&cache->ro_list);
+       INIT_LIST_HEAD(&cache->dirty_list);
+       INIT_LIST_HEAD(&cache->io_list);
+       btrfs_init_free_space_ctl(cache);
+       atomic_set(&cache->trimming, 0);
+
+       return cache;
+}
+
+int btrfs_read_block_groups(struct btrfs_root *root)
+{
+       struct btrfs_path *path;
+       int ret;
+       struct btrfs_block_group_cache *cache;
+       struct btrfs_fs_info *info = root->fs_info;
+       struct btrfs_space_info *space_info;
+       struct btrfs_key key;
+       struct btrfs_key found_key;
+       struct extent_buffer *leaf;
+       int need_clear = 0;
+       u64 cache_gen;
+
+       root = info->extent_root;
+       key.objectid = 0;
+       key.offset = 0;
+       key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+       path->reada = 1;
+
+       cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
+       if (btrfs_test_opt(root, SPACE_CACHE) &&
+           btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
+               need_clear = 1;
+       if (btrfs_test_opt(root, CLEAR_CACHE))
+               need_clear = 1;
+
+       while (1) {
+               ret = find_first_block_group(root, path, &key);
+               if (ret > 0)
+                       break;
+               if (ret != 0)
+                       goto error;
+
+               leaf = path->nodes[0];
+               btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+               cache = btrfs_create_block_group_cache(root, found_key.objectid,
+                                                      found_key.offset);
+               if (!cache) {
+                       ret = -ENOMEM;
+                       goto error;
+               }
+
+               if (need_clear) {
+                       /*
+                        * When we mount with old space cache, we need to
+                        * set BTRFS_DC_CLEAR and set dirty flag.
+                        *
+                        * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
+                        *    truncate the old free space cache inode and
+                        *    setup a new one.
+                        * b) Setting 'dirty flag' makes sure that we flush
+                        *    the new space cache info onto disk.
+                        */
+                       if (btrfs_test_opt(root, SPACE_CACHE))
+                               cache->disk_cache_state = BTRFS_DC_CLEAR;
+               }
+
+               read_extent_buffer(leaf, &cache->item,
+                                  btrfs_item_ptr_offset(leaf, path->slots[0]),
+                                  sizeof(cache->item));
+               cache->flags = btrfs_block_group_flags(&cache->item);
+
+               key.objectid = found_key.objectid + found_key.offset;
+               btrfs_release_path(path);
+
+               /*
+                * We need to exclude the super stripes now so that the space
+                * info has super bytes accounted for, otherwise we'll think
+                * we have more space than we actually do.
+                */
+               ret = exclude_super_stripes(root, cache);
+               if (ret) {
+                       /*
+                        * We may have excluded something, so call this just in
+                        * case.
+                        */
+                       free_excluded_extents(root, cache);
+                       btrfs_put_block_group(cache);
+                       goto error;
+               }
+
+               /*
+                * check for two cases, either we are full, and therefore
+                * don't need to bother with the caching work since we won't
+                * find any space, or we are empty, and we can just add all
+                * the space in and be done with it.  This saves us _alot_ of
+                * time, particularly in the full case.
+                */
+               if (found_key.offset == btrfs_block_group_used(&cache->item)) {
+                       cache->last_byte_to_unpin = (u64)-1;
+                       cache->cached = BTRFS_CACHE_FINISHED;
+                       free_excluded_extents(root, cache);
+               } else if (btrfs_block_group_used(&cache->item) == 0) {
+                       cache->last_byte_to_unpin = (u64)-1;
+                       cache->cached = BTRFS_CACHE_FINISHED;
+                       add_new_free_space(cache, root->fs_info,
+                                          found_key.objectid,
+                                          found_key.objectid +
+                                          found_key.offset);
+                       free_excluded_extents(root, cache);
+               }
+
+               ret = btrfs_add_block_group_cache(root->fs_info, cache);
+               if (ret) {
+                       btrfs_remove_free_space_cache(cache);
+                       btrfs_put_block_group(cache);
+                       goto error;
+               }
+
+               ret = update_space_info(info, cache->flags, found_key.offset,
+                                       btrfs_block_group_used(&cache->item),
+                                       &space_info);
+               if (ret) {
+                       btrfs_remove_free_space_cache(cache);
+                       spin_lock(&info->block_group_cache_lock);
+                       rb_erase(&cache->cache_node,
+                                &info->block_group_cache_tree);
+                       RB_CLEAR_NODE(&cache->cache_node);
+                       spin_unlock(&info->block_group_cache_lock);
+                       btrfs_put_block_group(cache);
+                       goto error;
+               }
+
+               cache->space_info = space_info;
+               spin_lock(&cache->space_info->lock);
+               cache->space_info->bytes_readonly += cache->bytes_super;
+               spin_unlock(&cache->space_info->lock);
+
+               __link_block_group(space_info, cache);
+
+               set_avail_alloc_bits(root->fs_info, cache->flags);
+               if (btrfs_chunk_readonly(root, cache->key.objectid)) {
+                       set_block_group_ro(cache, 1);
+               } else if (btrfs_block_group_used(&cache->item) == 0) {
+                       spin_lock(&info->unused_bgs_lock);
+                       /* Should always be true but just in case. */
+                       if (list_empty(&cache->bg_list)) {
+                               btrfs_get_block_group(cache);
+                               list_add_tail(&cache->bg_list,
+                                             &info->unused_bgs);
+                       }
+                       spin_unlock(&info->unused_bgs_lock);
+               }
+       }
+
+       list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
+               if (!(get_alloc_profile(root, space_info->flags) &
+                     (BTRFS_BLOCK_GROUP_RAID10 |
+                      BTRFS_BLOCK_GROUP_RAID1 |
+                      BTRFS_BLOCK_GROUP_RAID5 |
+                      BTRFS_BLOCK_GROUP_RAID6 |
+                      BTRFS_BLOCK_GROUP_DUP)))
+                       continue;
+               /*
+                * avoid allocating from un-mirrored block group if there are
+                * mirrored block groups.
+                */
+               list_for_each_entry(cache,
+                               &space_info->block_groups[BTRFS_RAID_RAID0],
+                               list)
+                       set_block_group_ro(cache, 1);
+               list_for_each_entry(cache,
+                               &space_info->block_groups[BTRFS_RAID_SINGLE],
+                               list)
+                       set_block_group_ro(cache, 1);
+       }
+
+       init_global_block_rsv(info);
+       ret = 0;
+error:
+       btrfs_free_path(path);
+       return ret;
+}
+
+void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
+                                      struct btrfs_root *root)
+{
+       struct btrfs_block_group_cache *block_group, *tmp;
+       struct btrfs_root *extent_root = root->fs_info->extent_root;
+       struct btrfs_block_group_item item;
+       struct btrfs_key key;
+       int ret = 0;
+
+       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
+               if (ret)
+                       goto next;
+
+               spin_lock(&block_group->lock);
+               memcpy(&item, &block_group->item, sizeof(item));
+               memcpy(&key, &block_group->key, sizeof(key));
+               spin_unlock(&block_group->lock);
+
+               ret = btrfs_insert_item(trans, extent_root, &key, &item,
+                                       sizeof(item));
+               if (ret)
+                       btrfs_abort_transaction(trans, extent_root, ret);
+               ret = btrfs_finish_chunk_alloc(trans, extent_root,
+                                              key.objectid, key.offset);
+               if (ret)
+                       btrfs_abort_transaction(trans, extent_root, ret);
+next:
+               list_del_init(&block_group->bg_list);
+       }
+}
+
+int btrfs_make_block_group(struct btrfs_trans_handle *trans,
+                          struct btrfs_root *root, u64 bytes_used,
+                          u64 type, u64 chunk_objectid, u64 chunk_offset,
+                          u64 size)
+{
+       int ret;
+       struct btrfs_root *extent_root;
+       struct btrfs_block_group_cache *cache;
+
+       extent_root = root->fs_info->extent_root;
+
+       btrfs_set_log_full_commit(root->fs_info, trans);
+
+       cache = btrfs_create_block_group_cache(root, chunk_offset, size);
+       if (!cache)
+               return -ENOMEM;
+
+       btrfs_set_block_group_used(&cache->item, bytes_used);
+       btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
+       btrfs_set_block_group_flags(&cache->item, type);
+
+       cache->flags = type;
+       cache->last_byte_to_unpin = (u64)-1;
+       cache->cached = BTRFS_CACHE_FINISHED;
+       ret = exclude_super_stripes(root, cache);
+       if (ret) {
+               /*
+                * We may have excluded something, so call this just in
+                * case.
+                */
+               free_excluded_extents(root, cache);
+               btrfs_put_block_group(cache);
+               return ret;
+       }
+
+       add_new_free_space(cache, root->fs_info, chunk_offset,
+                          chunk_offset + size);
+
+       free_excluded_extents(root, cache);
+
+       ret = btrfs_add_block_group_cache(root->fs_info, cache);
+       if (ret) {
+               btrfs_remove_free_space_cache(cache);
+               btrfs_put_block_group(cache);
+               return ret;
+       }
+
+       ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
+                               &cache->space_info);
+       if (ret) {
+               btrfs_remove_free_space_cache(cache);
+               spin_lock(&root->fs_info->block_group_cache_lock);
+               rb_erase(&cache->cache_node,
+                        &root->fs_info->block_group_cache_tree);
+               RB_CLEAR_NODE(&cache->cache_node);
+               spin_unlock(&root->fs_info->block_group_cache_lock);
+               btrfs_put_block_group(cache);
+               return ret;
+       }
+       update_global_block_rsv(root->fs_info);
+
+       spin_lock(&cache->space_info->lock);
+       cache->space_info->bytes_readonly += cache->bytes_super;
+       spin_unlock(&cache->space_info->lock);
+
+       __link_block_group(cache->space_info, cache);
+
+       list_add_tail(&cache->bg_list, &trans->new_bgs);
+
+       set_avail_alloc_bits(extent_root->fs_info, type);
+
+       return 0;
+}
+
+static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
+{
+       u64 extra_flags = chunk_to_extended(flags) &
+                               BTRFS_EXTENDED_PROFILE_MASK;
+
+       write_seqlock(&fs_info->profiles_lock);
+       if (flags & BTRFS_BLOCK_GROUP_DATA)
+               fs_info->avail_data_alloc_bits &= ~extra_flags;
+       if (flags & BTRFS_BLOCK_GROUP_METADATA)
+               fs_info->avail_metadata_alloc_bits &= ~extra_flags;
+       if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+               fs_info->avail_system_alloc_bits &= ~extra_flags;
+       write_sequnlock(&fs_info->profiles_lock);
+}
+
+int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
+                            struct btrfs_root *root, u64 group_start,
+                            struct extent_map *em)
+{
+       struct btrfs_path *path;
+       struct btrfs_block_group_cache *block_group;
+       struct btrfs_free_cluster *cluster;
+       struct btrfs_root *tree_root = root->fs_info->tree_root;
+       struct btrfs_key key;
+       struct inode *inode;
+       struct kobject *kobj = NULL;
+       int ret;
+       int index;
+       int factor;
+       struct btrfs_caching_control *caching_ctl = NULL;
+       bool remove_em;
+
+       root = root->fs_info->extent_root;
+
+       block_group = btrfs_lookup_block_group(root->fs_info, group_start);
+       BUG_ON(!block_group);
+       BUG_ON(!block_group->ro);
+
+       /*
+        * Free the reserved super bytes from this block group before
+        * remove it.
+        */
+       free_excluded_extents(root, block_group);
+
+       memcpy(&key, &block_group->key, sizeof(key));
+       index = get_block_group_index(block_group);
+       if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
+                                 BTRFS_BLOCK_GROUP_RAID1 |
+                                 BTRFS_BLOCK_GROUP_RAID10))
+               factor = 2;
+       else
+               factor = 1;
+
+       /* make sure this block group isn't part of an allocation cluster */
+       cluster = &root->fs_info->data_alloc_cluster;
+       spin_lock(&cluster->refill_lock);
+       btrfs_return_cluster_to_free_space(block_group, cluster);
+       spin_unlock(&cluster->refill_lock);
+
+       /*
+        * make sure this block group isn't part of a metadata
+        * allocation cluster
+        */
+       cluster = &root->fs_info->meta_alloc_cluster;
+       spin_lock(&cluster->refill_lock);
+       btrfs_return_cluster_to_free_space(block_group, cluster);
+       spin_unlock(&cluster->refill_lock);
+
+       path = btrfs_alloc_path();
+       if (!path) {
+               ret = -ENOMEM;
+               goto out;
+       }
+
+       /*
+        * get the inode first so any iput calls done for the io_list
+        * aren't the final iput (no unlinks allowed now)
+        */
+       inode = lookup_free_space_inode(tree_root, block_group, path);
+
+       mutex_lock(&trans->transaction->cache_write_mutex);
+       /*
+        * make sure our free spache cache IO is done before remove the
+        * free space inode
+        */
+       spin_lock(&trans->transaction->dirty_bgs_lock);
+       if (!list_empty(&block_group->io_list)) {
+               list_del_init(&block_group->io_list);
+
+               WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
+
+               spin_unlock(&trans->transaction->dirty_bgs_lock);
+               btrfs_wait_cache_io(root, trans, block_group,
+                                   &block_group->io_ctl, path,
+                                   block_group->key.objectid);
+               btrfs_put_block_group(block_group);
+               spin_lock(&trans->transaction->dirty_bgs_lock);
+       }
+
+       if (!list_empty(&block_group->dirty_list)) {
+               list_del_init(&block_group->dirty_list);
+               btrfs_put_block_group(block_group);
+       }
+       spin_unlock(&trans->transaction->dirty_bgs_lock);
+       mutex_unlock(&trans->transaction->cache_write_mutex);
+
+       if (!IS_ERR(inode)) {
+               ret = btrfs_orphan_add(trans, inode);
+               if (ret) {
+                       btrfs_add_delayed_iput(inode);
+                       goto out;
+               }
+               clear_nlink(inode);
+               /* One for the block groups ref */
+               spin_lock(&block_group->lock);
+               if (block_group->iref) {
+                       block_group->iref = 0;
+                       block_group->inode = NULL;
+                       spin_unlock(&block_group->lock);
+                       iput(inode);
+               } else {
+                       spin_unlock(&block_group->lock);
+               }
+               /* One for our lookup ref */
+               btrfs_add_delayed_iput(inode);
+       }
+
+       key.objectid = BTRFS_FREE_SPACE_OBJECTID;
+       key.offset = block_group->key.objectid;
+       key.type = 0;
+
+       ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
+       if (ret < 0)
+               goto out;
+       if (ret > 0)
+               btrfs_release_path(path);
+       if (ret == 0) {
+               ret = btrfs_del_item(trans, tree_root, path);
+               if (ret)
+                       goto out;
+               btrfs_release_path(path);
+       }
+
+       spin_lock(&root->fs_info->block_group_cache_lock);
+       rb_erase(&block_group->cache_node,
+                &root->fs_info->block_group_cache_tree);
+       RB_CLEAR_NODE(&block_group->cache_node);
+
+       if (root->fs_info->first_logical_byte == block_group->key.objectid)
+               root->fs_info->first_logical_byte = (u64)-1;
+       spin_unlock(&root->fs_info->block_group_cache_lock);
+
+       down_write(&block_group->space_info->groups_sem);
+       /*
+        * we must use list_del_init so people can check to see if they
+        * are still on the list after taking the semaphore
+        */
+       list_del_init(&block_group->list);
+       if (list_empty(&block_group->space_info->block_groups[index])) {
+               kobj = block_group->space_info->block_group_kobjs[index];
+               block_group->space_info->block_group_kobjs[index] = NULL;
+               clear_avail_alloc_bits(root->fs_info, block_group->flags);
+       }
+       up_write(&block_group->space_info->groups_sem);
+       if (kobj) {
+               kobject_del(kobj);
+               kobject_put(kobj);
+       }
+
+       if (block_group->has_caching_ctl)
+               caching_ctl = get_caching_control(block_group);
+       if (block_group->cached == BTRFS_CACHE_STARTED)
+               wait_block_group_cache_done(block_group);
+       if (block_group->has_caching_ctl) {
+               down_write(&root->fs_info->commit_root_sem);
+               if (!caching_ctl) {
+                       struct btrfs_caching_control *ctl;
+
+                       list_for_each_entry(ctl,
+                                   &root->fs_info->caching_block_groups, list)
+                               if (ctl->block_group == block_group) {
+                                       caching_ctl = ctl;
+                                       atomic_inc(&caching_ctl->count);
+                                       break;
+                               }
+               }
+               if (caching_ctl)
+                       list_del_init(&caching_ctl->list);
+               up_write(&root->fs_info->commit_root_sem);
+               if (caching_ctl) {
+                       /* Once for the caching bgs list and once for us. */
+                       put_caching_control(caching_ctl);
+                       put_caching_control(caching_ctl);
+               }
+       }
+
+       spin_lock(&trans->transaction->dirty_bgs_lock);
+       if (!list_empty(&block_group->dirty_list)) {
+               WARN_ON(1);
+       }
+       if (!list_empty(&block_group->io_list)) {
+               WARN_ON(1);
+       }
+       spin_unlock(&trans->transaction->dirty_bgs_lock);
+       btrfs_remove_free_space_cache(block_group);
+
+       spin_lock(&block_group->space_info->lock);
+       list_del_init(&block_group->ro_list);
+
+       if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
+               WARN_ON(block_group->space_info->total_bytes
+                       < block_group->key.offset);
+               WARN_ON(block_group->space_info->bytes_readonly
+                       < block_group->key.offset);
+               WARN_ON(block_group->space_info->disk_total
+                       < block_group->key.offset * factor);
+       }
+       block_group->space_info->total_bytes -= block_group->key.offset;
+       block_group->space_info->bytes_readonly -= block_group->key.offset;
+       block_group->space_info->disk_total -= block_group->key.offset * factor;
+
+       spin_unlock(&block_group->space_info->lock);
+
+       memcpy(&key, &block_group->key, sizeof(key));
+
+       lock_chunks(root);
+       if (!list_empty(&em->list)) {
+               /* We're in the transaction->pending_chunks list. */
+               free_extent_map(em);
+       }
+       spin_lock(&block_group->lock);
+       block_group->removed = 1;
+       /*
+        * At this point trimming can't start on this block group, because we
+        * removed the block group from the tree fs_info->block_group_cache_tree
+        * so no one can't find it anymore and even if someone already got this
+        * block group before we removed it from the rbtree, they have already
+        * incremented block_group->trimming - if they didn't, they won't find
+        * any free space entries because we already removed them all when we
+        * called btrfs_remove_free_space_cache().
+        *
+        * And we must not remove the extent map from the fs_info->mapping_tree
+        * to prevent the same logical address range and physical device space
+        * ranges from being reused for a new block group. This is because our
+        * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
+        * completely transactionless, so while it is trimming a range the
+        * currently running transaction might finish and a new one start,
+        * allowing for new block groups to be created that can reuse the same
+        * physical device locations unless we take this special care.
+        */
+       remove_em = (atomic_read(&block_group->trimming) == 0);
+       /*
+        * Make sure a trimmer task always sees the em in the pinned_chunks list
+        * if it sees block_group->removed == 1 (needs to lock block_group->lock
+        * before checking block_group->removed).
+        */
+       if (!remove_em) {
+               /*
+                * Our em might be in trans->transaction->pending_chunks which
+                * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
+                * and so is the fs_info->pinned_chunks list.
+                *
+                * So at this point we must be holding the chunk_mutex to avoid
+                * any races with chunk allocation (more specifically at
+                * volumes.c:contains_pending_extent()), to ensure it always
+                * sees the em, either in the pending_chunks list or in the
+                * pinned_chunks list.
+                */
+               list_move_tail(&em->list, &root->fs_info->pinned_chunks);
+       }
+       spin_unlock(&block_group->lock);
+
+       if (remove_em) {
+               struct extent_map_tree *em_tree;
+
+               em_tree = &root->fs_info->mapping_tree.map_tree;
+               write_lock(&em_tree->lock);
+               /*
+                * The em might be in the pending_chunks list, so make sure the
+                * chunk mutex is locked, since remove_extent_mapping() will
+                * delete us from that list.
+                */
+               remove_extent_mapping(em_tree, em);
+               write_unlock(&em_tree->lock);
+               /* once for the tree */
+               free_extent_map(em);
+       }
+
+       unlock_chunks(root);
+
+       btrfs_put_block_group(block_group);
+       btrfs_put_block_group(block_group);
+
+       ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+       if (ret > 0)
+               ret = -EIO;
+       if (ret < 0)
+               goto out;
+
+       ret = btrfs_del_item(trans, root, path);
+out:
+       btrfs_free_path(path);
+       return ret;
+}
+
+/*
+ * Process the unused_bgs list and remove any that don't have any allocated
+ * space inside of them.
+ */
+void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
+{
+       struct btrfs_block_group_cache *block_group;
+       struct btrfs_space_info *space_info;
+       struct btrfs_root *root = fs_info->extent_root;
+       struct btrfs_trans_handle *trans;
+       int ret = 0;
+
+       if (!fs_info->open)
+               return;
+
+       spin_lock(&fs_info->unused_bgs_lock);
+       while (!list_empty(&fs_info->unused_bgs)) {
+               u64 start, end;
+
+               block_group = list_first_entry(&fs_info->unused_bgs,
+                                              struct btrfs_block_group_cache,
+                                              bg_list);
+               space_info = block_group->space_info;
+               list_del_init(&block_group->bg_list);
+               if (ret || btrfs_mixed_space_info(space_info)) {
+                       btrfs_put_block_group(block_group);
+                       continue;
+               }
+               spin_unlock(&fs_info->unused_bgs_lock);
+
+               /* Don't want to race with allocators so take the groups_sem */
+               down_write(&space_info->groups_sem);
+               spin_lock(&block_group->lock);
+               if (block_group->reserved ||
+                   btrfs_block_group_used(&block_group->item) ||
+                   block_group->ro) {
+                       /*
+                        * We want to bail if we made new allocations or have
+                        * outstanding allocations in this block group.  We do
+                        * the ro check in case balance is currently acting on
+                        * this block group.
+                        */
+                       spin_unlock(&block_group->lock);
+                       up_write(&space_info->groups_sem);
+                       goto next;
+               }
+               spin_unlock(&block_group->lock);
+
+               /* We don't want to force the issue, only flip if it's ok. */
+               ret = set_block_group_ro(block_group, 0);
+               up_write(&space_info->groups_sem);
+               if (ret < 0) {
+                       ret = 0;
+                       goto next;
+               }
+
+               /*
+                * Want to do this before we do anything else so we can recover
+                * properly if we fail to join the transaction.
+                */
+               /* 1 for btrfs_orphan_reserve_metadata() */
+               trans = btrfs_start_transaction(root, 1);
+               if (IS_ERR(trans)) {
+                       btrfs_set_block_group_rw(root, block_group);
+                       ret = PTR_ERR(trans);
+                       goto next;
+               }
+
+               /*
+                * We could have pending pinned extents for this block group,
+                * just delete them, we don't care about them anymore.
+                */
+               start = block_group->key.objectid;
+               end = start + block_group->key.offset - 1;
+               /*
+                * Hold the unused_bg_unpin_mutex lock to avoid racing with
+                * btrfs_finish_extent_commit(). If we are at transaction N,
+                * another task might be running finish_extent_commit() for the
+                * previous transaction N - 1, and have seen a range belonging
+                * to the block group in freed_extents[] before we were able to
+                * clear the whole block group range from freed_extents[]. This
+                * means that task can lookup for the block group after we
+                * unpinned it from freed_extents[] and removed it, leading to
+                * a BUG_ON() at btrfs_unpin_extent_range().
+                */
+               mutex_lock(&fs_info->unused_bg_unpin_mutex);
+               ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
+                                 EXTENT_DIRTY, GFP_NOFS);
+               if (ret) {
+                       mutex_unlock(&fs_info->unused_bg_unpin_mutex);
+                       btrfs_set_block_group_rw(root, block_group);
+                       goto end_trans;
+               }
+               ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
+                                 EXTENT_DIRTY, GFP_NOFS);
+               if (ret) {
+                       mutex_unlock(&fs_info->unused_bg_unpin_mutex);
+                       btrfs_set_block_group_rw(root, block_group);
+                       goto end_trans;
+               }
+               mutex_unlock(&fs_info->unused_bg_unpin_mutex);
+
+               /* Reset pinned so btrfs_put_block_group doesn't complain */
+               spin_lock(&space_info->lock);
+               spin_lock(&block_group->lock);
+
+               space_info->bytes_pinned -= block_group->pinned;
+               space_info->bytes_readonly += block_group->pinned;
+               percpu_counter_add(&space_info->total_bytes_pinned,
+                                  -block_group->pinned);
+               block_group->pinned = 0;
+
+               spin_unlock(&block_group->lock);
+               spin_unlock(&space_info->lock);
+
+               /*
+                * Btrfs_remove_chunk will abort the transaction if things go
+                * horribly wrong.
+                */
+               ret = btrfs_remove_chunk(trans, root,
+                                        block_group->key.objectid);
+end_trans:
+               btrfs_end_transaction(trans, root);
+next:
+               btrfs_put_block_group(block_group);
+               spin_lock(&fs_info->unused_bgs_lock);
+       }
+       spin_unlock(&fs_info->unused_bgs_lock);
+}
+
+int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
+{
+       struct btrfs_space_info *space_info;
+       struct btrfs_super_block *disk_super;
+       u64 features;
+       u64 flags;
+       int mixed = 0;
+       int ret;
+
+       disk_super = fs_info->super_copy;
+       if (!btrfs_super_root(disk_super))
+               return 1;
+
+       features = btrfs_super_incompat_flags(disk_super);
+       if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
+               mixed = 1;
+
+       flags = BTRFS_BLOCK_GROUP_SYSTEM;
+       ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+       if (ret)
+               goto out;
+
+       if (mixed) {
+               flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
+               ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+       } else {
+               flags = BTRFS_BLOCK_GROUP_METADATA;
+               ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+               if (ret)
+                       goto out;
+
+               flags = BTRFS_BLOCK_GROUP_DATA;
+               ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+       }
+out:
+       return ret;
+}
+
+int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
+{
+       return unpin_extent_range(root, start, end, false);
+}
+
+int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
+{
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       struct btrfs_block_group_cache *cache = NULL;
+       u64 group_trimmed;
+       u64 start;
+       u64 end;
+       u64 trimmed = 0;
+       u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
+       int ret = 0;
+
+       /*
+        * try to trim all FS space, our block group may start from non-zero.
+        */
+       if (range->len == total_bytes)
+               cache = btrfs_lookup_first_block_group(fs_info, range->start);
+       else
+               cache = btrfs_lookup_block_group(fs_info, range->start);
+
+       while (cache) {
+               if (cache->key.objectid >= (range->start + range->len)) {
+                       btrfs_put_block_group(cache);
+                       break;
+               }
+
+               start = max(range->start, cache->key.objectid);
+               end = min(range->start + range->len,
+                               cache->key.objectid + cache->key.offset);
+
+               if (end - start >= range->minlen) {
+                       if (!block_group_cache_done(cache)) {
+                               ret = cache_block_group(cache, 0);
+                               if (ret) {
+                                       btrfs_put_block_group(cache);
+                                       break;
+                               }
+                               ret = wait_block_group_cache_done(cache);
+                               if (ret) {
+                                       btrfs_put_block_group(cache);
+                                       break;
+                               }
+                       }
+                       ret = btrfs_trim_block_group(cache,
+                                                    &group_trimmed,
+                                                    start,
+                                                    end,
+                                                    range->minlen);
+
+                       trimmed += group_trimmed;
+                       if (ret) {
+                               btrfs_put_block_group(cache);
+                               break;
+                       }
+               }
+
+               cache = next_block_group(fs_info->tree_root, cache);
+       }
+
+       range->len = trimmed;
+       return ret;
+}
+
+/*
+ * btrfs_{start,end}_write_no_snapshoting() are similar to
+ * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
+ * data into the page cache through nocow before the subvolume is snapshoted,
+ * but flush the data into disk after the snapshot creation, or to prevent
+ * operations while snapshoting is ongoing and that cause the snapshot to be
+ * inconsistent (writes followed by expanding truncates for example).
+ */
+void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
+{
+       percpu_counter_dec(&root->subv_writers->counter);
+       /*
+        * Make sure counter is updated before we wake up
+        * waiters.
+        */
+       smp_mb();
+       if (waitqueue_active(&root->subv_writers->wait))
+               wake_up(&root->subv_writers->wait);
+}
+
+int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
+{
+       if (atomic_read(&root->will_be_snapshoted))
+               return 0;
+
+       percpu_counter_inc(&root->subv_writers->counter);
+       /*
+        * Make sure counter is updated before we check for snapshot creation.
+        */
+       smp_mb();
+       if (atomic_read(&root->will_be_snapshoted)) {
+               btrfs_end_write_no_snapshoting(root);
+               return 0;
+       }
+       return 1;
+}