Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / btrfs / ctree.c
diff --git a/kernel/fs/btrfs/ctree.c b/kernel/fs/btrfs/ctree.c
new file mode 100644 (file)
index 0000000..0f11ebc
--- /dev/null
@@ -0,0 +1,5910 @@
+/*
+ * Copyright (C) 2007,2008 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/rbtree.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+#include "locking.h"
+
+static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
+                     *root, struct btrfs_path *path, int level);
+static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
+                     *root, struct btrfs_key *ins_key,
+                     struct btrfs_path *path, int data_size, int extend);
+static int push_node_left(struct btrfs_trans_handle *trans,
+                         struct btrfs_root *root, struct extent_buffer *dst,
+                         struct extent_buffer *src, int empty);
+static int balance_node_right(struct btrfs_trans_handle *trans,
+                             struct btrfs_root *root,
+                             struct extent_buffer *dst_buf,
+                             struct extent_buffer *src_buf);
+static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
+                   int level, int slot);
+static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
+                                struct extent_buffer *eb);
+
+struct btrfs_path *btrfs_alloc_path(void)
+{
+       struct btrfs_path *path;
+       path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
+       return path;
+}
+
+/*
+ * set all locked nodes in the path to blocking locks.  This should
+ * be done before scheduling
+ */
+noinline void btrfs_set_path_blocking(struct btrfs_path *p)
+{
+       int i;
+       for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
+               if (!p->nodes[i] || !p->locks[i])
+                       continue;
+               btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
+               if (p->locks[i] == BTRFS_READ_LOCK)
+                       p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
+               else if (p->locks[i] == BTRFS_WRITE_LOCK)
+                       p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
+       }
+}
+
+/*
+ * reset all the locked nodes in the patch to spinning locks.
+ *
+ * held is used to keep lockdep happy, when lockdep is enabled
+ * we set held to a blocking lock before we go around and
+ * retake all the spinlocks in the path.  You can safely use NULL
+ * for held
+ */
+noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
+                                       struct extent_buffer *held, int held_rw)
+{
+       int i;
+
+       if (held) {
+               btrfs_set_lock_blocking_rw(held, held_rw);
+               if (held_rw == BTRFS_WRITE_LOCK)
+                       held_rw = BTRFS_WRITE_LOCK_BLOCKING;
+               else if (held_rw == BTRFS_READ_LOCK)
+                       held_rw = BTRFS_READ_LOCK_BLOCKING;
+       }
+       btrfs_set_path_blocking(p);
+
+       for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
+               if (p->nodes[i] && p->locks[i]) {
+                       btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
+                       if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
+                               p->locks[i] = BTRFS_WRITE_LOCK;
+                       else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
+                               p->locks[i] = BTRFS_READ_LOCK;
+               }
+       }
+
+       if (held)
+               btrfs_clear_lock_blocking_rw(held, held_rw);
+}
+
+/* this also releases the path */
+void btrfs_free_path(struct btrfs_path *p)
+{
+       if (!p)
+               return;
+       btrfs_release_path(p);
+       kmem_cache_free(btrfs_path_cachep, p);
+}
+
+/*
+ * path release drops references on the extent buffers in the path
+ * and it drops any locks held by this path
+ *
+ * It is safe to call this on paths that no locks or extent buffers held.
+ */
+noinline void btrfs_release_path(struct btrfs_path *p)
+{
+       int i;
+
+       for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
+               p->slots[i] = 0;
+               if (!p->nodes[i])
+                       continue;
+               if (p->locks[i]) {
+                       btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
+                       p->locks[i] = 0;
+               }
+               free_extent_buffer(p->nodes[i]);
+               p->nodes[i] = NULL;
+       }
+}
+
+/*
+ * safely gets a reference on the root node of a tree.  A lock
+ * is not taken, so a concurrent writer may put a different node
+ * at the root of the tree.  See btrfs_lock_root_node for the
+ * looping required.
+ *
+ * The extent buffer returned by this has a reference taken, so
+ * it won't disappear.  It may stop being the root of the tree
+ * at any time because there are no locks held.
+ */
+struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
+{
+       struct extent_buffer *eb;
+
+       while (1) {
+               rcu_read_lock();
+               eb = rcu_dereference(root->node);
+
+               /*
+                * RCU really hurts here, we could free up the root node because
+                * it was cow'ed but we may not get the new root node yet so do
+                * the inc_not_zero dance and if it doesn't work then
+                * synchronize_rcu and try again.
+                */
+               if (atomic_inc_not_zero(&eb->refs)) {
+                       rcu_read_unlock();
+                       break;
+               }
+               rcu_read_unlock();
+               synchronize_rcu();
+       }
+       return eb;
+}
+
+/* loop around taking references on and locking the root node of the
+ * tree until you end up with a lock on the root.  A locked buffer
+ * is returned, with a reference held.
+ */
+struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
+{
+       struct extent_buffer *eb;
+
+       while (1) {
+               eb = btrfs_root_node(root);
+               btrfs_tree_lock(eb);
+               if (eb == root->node)
+                       break;
+               btrfs_tree_unlock(eb);
+               free_extent_buffer(eb);
+       }
+       return eb;
+}
+
+/* loop around taking references on and locking the root node of the
+ * tree until you end up with a lock on the root.  A locked buffer
+ * is returned, with a reference held.
+ */
+static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
+{
+       struct extent_buffer *eb;
+
+       while (1) {
+               eb = btrfs_root_node(root);
+               btrfs_tree_read_lock(eb);
+               if (eb == root->node)
+                       break;
+               btrfs_tree_read_unlock(eb);
+               free_extent_buffer(eb);
+       }
+       return eb;
+}
+
+/* cowonly root (everything not a reference counted cow subvolume), just get
+ * put onto a simple dirty list.  transaction.c walks this to make sure they
+ * get properly updated on disk.
+ */
+static void add_root_to_dirty_list(struct btrfs_root *root)
+{
+       if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
+           !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
+               return;
+
+       spin_lock(&root->fs_info->trans_lock);
+       if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
+               /* Want the extent tree to be the last on the list */
+               if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
+                       list_move_tail(&root->dirty_list,
+                                      &root->fs_info->dirty_cowonly_roots);
+               else
+                       list_move(&root->dirty_list,
+                                 &root->fs_info->dirty_cowonly_roots);
+       }
+       spin_unlock(&root->fs_info->trans_lock);
+}
+
+/*
+ * used by snapshot creation to make a copy of a root for a tree with
+ * a given objectid.  The buffer with the new root node is returned in
+ * cow_ret, and this func returns zero on success or a negative error code.
+ */
+int btrfs_copy_root(struct btrfs_trans_handle *trans,
+                     struct btrfs_root *root,
+                     struct extent_buffer *buf,
+                     struct extent_buffer **cow_ret, u64 new_root_objectid)
+{
+       struct extent_buffer *cow;
+       int ret = 0;
+       int level;
+       struct btrfs_disk_key disk_key;
+
+       WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
+               trans->transid != root->fs_info->running_transaction->transid);
+       WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
+               trans->transid != root->last_trans);
+
+       level = btrfs_header_level(buf);
+       if (level == 0)
+               btrfs_item_key(buf, &disk_key, 0);
+       else
+               btrfs_node_key(buf, &disk_key, 0);
+
+       cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
+                       &disk_key, level, buf->start, 0);
+       if (IS_ERR(cow))
+               return PTR_ERR(cow);
+
+       copy_extent_buffer(cow, buf, 0, 0, cow->len);
+       btrfs_set_header_bytenr(cow, cow->start);
+       btrfs_set_header_generation(cow, trans->transid);
+       btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
+       btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
+                                    BTRFS_HEADER_FLAG_RELOC);
+       if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
+               btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
+       else
+               btrfs_set_header_owner(cow, new_root_objectid);
+
+       write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
+                           BTRFS_FSID_SIZE);
+
+       WARN_ON(btrfs_header_generation(buf) > trans->transid);
+       if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
+               ret = btrfs_inc_ref(trans, root, cow, 1);
+       else
+               ret = btrfs_inc_ref(trans, root, cow, 0);
+
+       if (ret)
+               return ret;
+
+       btrfs_mark_buffer_dirty(cow);
+       *cow_ret = cow;
+       return 0;
+}
+
+enum mod_log_op {
+       MOD_LOG_KEY_REPLACE,
+       MOD_LOG_KEY_ADD,
+       MOD_LOG_KEY_REMOVE,
+       MOD_LOG_KEY_REMOVE_WHILE_FREEING,
+       MOD_LOG_KEY_REMOVE_WHILE_MOVING,
+       MOD_LOG_MOVE_KEYS,
+       MOD_LOG_ROOT_REPLACE,
+};
+
+struct tree_mod_move {
+       int dst_slot;
+       int nr_items;
+};
+
+struct tree_mod_root {
+       u64 logical;
+       u8 level;
+};
+
+struct tree_mod_elem {
+       struct rb_node node;
+       u64 index;              /* shifted logical */
+       u64 seq;
+       enum mod_log_op op;
+
+       /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
+       int slot;
+
+       /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
+       u64 generation;
+
+       /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
+       struct btrfs_disk_key key;
+       u64 blockptr;
+
+       /* this is used for op == MOD_LOG_MOVE_KEYS */
+       struct tree_mod_move move;
+
+       /* this is used for op == MOD_LOG_ROOT_REPLACE */
+       struct tree_mod_root old_root;
+};
+
+static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
+{
+       read_lock(&fs_info->tree_mod_log_lock);
+}
+
+static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
+{
+       read_unlock(&fs_info->tree_mod_log_lock);
+}
+
+static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
+{
+       write_lock(&fs_info->tree_mod_log_lock);
+}
+
+static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
+{
+       write_unlock(&fs_info->tree_mod_log_lock);
+}
+
+/*
+ * Pull a new tree mod seq number for our operation.
+ */
+static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
+{
+       return atomic64_inc_return(&fs_info->tree_mod_seq);
+}
+
+/*
+ * This adds a new blocker to the tree mod log's blocker list if the @elem
+ * passed does not already have a sequence number set. So when a caller expects
+ * to record tree modifications, it should ensure to set elem->seq to zero
+ * before calling btrfs_get_tree_mod_seq.
+ * Returns a fresh, unused tree log modification sequence number, even if no new
+ * blocker was added.
+ */
+u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
+                          struct seq_list *elem)
+{
+       tree_mod_log_write_lock(fs_info);
+       spin_lock(&fs_info->tree_mod_seq_lock);
+       if (!elem->seq) {
+               elem->seq = btrfs_inc_tree_mod_seq(fs_info);
+               list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
+       }
+       spin_unlock(&fs_info->tree_mod_seq_lock);
+       tree_mod_log_write_unlock(fs_info);
+
+       return elem->seq;
+}
+
+void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
+                           struct seq_list *elem)
+{
+       struct rb_root *tm_root;
+       struct rb_node *node;
+       struct rb_node *next;
+       struct seq_list *cur_elem;
+       struct tree_mod_elem *tm;
+       u64 min_seq = (u64)-1;
+       u64 seq_putting = elem->seq;
+
+       if (!seq_putting)
+               return;
+
+       spin_lock(&fs_info->tree_mod_seq_lock);
+       list_del(&elem->list);
+       elem->seq = 0;
+
+       list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
+               if (cur_elem->seq < min_seq) {
+                       if (seq_putting > cur_elem->seq) {
+                               /*
+                                * blocker with lower sequence number exists, we
+                                * cannot remove anything from the log
+                                */
+                               spin_unlock(&fs_info->tree_mod_seq_lock);
+                               return;
+                       }
+                       min_seq = cur_elem->seq;
+               }
+       }
+       spin_unlock(&fs_info->tree_mod_seq_lock);
+
+       /*
+        * anything that's lower than the lowest existing (read: blocked)
+        * sequence number can be removed from the tree.
+        */
+       tree_mod_log_write_lock(fs_info);
+       tm_root = &fs_info->tree_mod_log;
+       for (node = rb_first(tm_root); node; node = next) {
+               next = rb_next(node);
+               tm = container_of(node, struct tree_mod_elem, node);
+               if (tm->seq > min_seq)
+                       continue;
+               rb_erase(node, tm_root);
+               kfree(tm);
+       }
+       tree_mod_log_write_unlock(fs_info);
+}
+
+/*
+ * key order of the log:
+ *       index -> sequence
+ *
+ * the index is the shifted logical of the *new* root node for root replace
+ * operations, or the shifted logical of the affected block for all other
+ * operations.
+ *
+ * Note: must be called with write lock (tree_mod_log_write_lock).
+ */
+static noinline int
+__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
+{
+       struct rb_root *tm_root;
+       struct rb_node **new;
+       struct rb_node *parent = NULL;
+       struct tree_mod_elem *cur;
+
+       BUG_ON(!tm);
+
+       tm->seq = btrfs_inc_tree_mod_seq(fs_info);
+
+       tm_root = &fs_info->tree_mod_log;
+       new = &tm_root->rb_node;
+       while (*new) {
+               cur = container_of(*new, struct tree_mod_elem, node);
+               parent = *new;
+               if (cur->index < tm->index)
+                       new = &((*new)->rb_left);
+               else if (cur->index > tm->index)
+                       new = &((*new)->rb_right);
+               else if (cur->seq < tm->seq)
+                       new = &((*new)->rb_left);
+               else if (cur->seq > tm->seq)
+                       new = &((*new)->rb_right);
+               else
+                       return -EEXIST;
+       }
+
+       rb_link_node(&tm->node, parent, new);
+       rb_insert_color(&tm->node, tm_root);
+       return 0;
+}
+
+/*
+ * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
+ * returns zero with the tree_mod_log_lock acquired. The caller must hold
+ * this until all tree mod log insertions are recorded in the rb tree and then
+ * call tree_mod_log_write_unlock() to release.
+ */
+static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
+                                   struct extent_buffer *eb) {
+       smp_mb();
+       if (list_empty(&(fs_info)->tree_mod_seq_list))
+               return 1;
+       if (eb && btrfs_header_level(eb) == 0)
+               return 1;
+
+       tree_mod_log_write_lock(fs_info);
+       if (list_empty(&(fs_info)->tree_mod_seq_list)) {
+               tree_mod_log_write_unlock(fs_info);
+               return 1;
+       }
+
+       return 0;
+}
+
+/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
+static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
+                                   struct extent_buffer *eb)
+{
+       smp_mb();
+       if (list_empty(&(fs_info)->tree_mod_seq_list))
+               return 0;
+       if (eb && btrfs_header_level(eb) == 0)
+               return 0;
+
+       return 1;
+}
+
+static struct tree_mod_elem *
+alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
+                   enum mod_log_op op, gfp_t flags)
+{
+       struct tree_mod_elem *tm;
+
+       tm = kzalloc(sizeof(*tm), flags);
+       if (!tm)
+               return NULL;
+
+       tm->index = eb->start >> PAGE_CACHE_SHIFT;
+       if (op != MOD_LOG_KEY_ADD) {
+               btrfs_node_key(eb, &tm->key, slot);
+               tm->blockptr = btrfs_node_blockptr(eb, slot);
+       }
+       tm->op = op;
+       tm->slot = slot;
+       tm->generation = btrfs_node_ptr_generation(eb, slot);
+       RB_CLEAR_NODE(&tm->node);
+
+       return tm;
+}
+
+static noinline int
+tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
+                       struct extent_buffer *eb, int slot,
+                       enum mod_log_op op, gfp_t flags)
+{
+       struct tree_mod_elem *tm;
+       int ret;
+
+       if (!tree_mod_need_log(fs_info, eb))
+               return 0;
+
+       tm = alloc_tree_mod_elem(eb, slot, op, flags);
+       if (!tm)
+               return -ENOMEM;
+
+       if (tree_mod_dont_log(fs_info, eb)) {
+               kfree(tm);
+               return 0;
+       }
+
+       ret = __tree_mod_log_insert(fs_info, tm);
+       tree_mod_log_write_unlock(fs_info);
+       if (ret)
+               kfree(tm);
+
+       return ret;
+}
+
+static noinline int
+tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
+                        struct extent_buffer *eb, int dst_slot, int src_slot,
+                        int nr_items, gfp_t flags)
+{
+       struct tree_mod_elem *tm = NULL;
+       struct tree_mod_elem **tm_list = NULL;
+       int ret = 0;
+       int i;
+       int locked = 0;
+
+       if (!tree_mod_need_log(fs_info, eb))
+               return 0;
+
+       tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
+       if (!tm_list)
+               return -ENOMEM;
+
+       tm = kzalloc(sizeof(*tm), flags);
+       if (!tm) {
+               ret = -ENOMEM;
+               goto free_tms;
+       }
+
+       tm->index = eb->start >> PAGE_CACHE_SHIFT;
+       tm->slot = src_slot;
+       tm->move.dst_slot = dst_slot;
+       tm->move.nr_items = nr_items;
+       tm->op = MOD_LOG_MOVE_KEYS;
+
+       for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
+               tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
+                   MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
+               if (!tm_list[i]) {
+                       ret = -ENOMEM;
+                       goto free_tms;
+               }
+       }
+
+       if (tree_mod_dont_log(fs_info, eb))
+               goto free_tms;
+       locked = 1;
+
+       /*
+        * When we override something during the move, we log these removals.
+        * This can only happen when we move towards the beginning of the
+        * buffer, i.e. dst_slot < src_slot.
+        */
+       for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
+               ret = __tree_mod_log_insert(fs_info, tm_list[i]);
+               if (ret)
+                       goto free_tms;
+       }
+
+       ret = __tree_mod_log_insert(fs_info, tm);
+       if (ret)
+               goto free_tms;
+       tree_mod_log_write_unlock(fs_info);
+       kfree(tm_list);
+
+       return 0;
+free_tms:
+       for (i = 0; i < nr_items; i++) {
+               if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
+                       rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
+               kfree(tm_list[i]);
+       }
+       if (locked)
+               tree_mod_log_write_unlock(fs_info);
+       kfree(tm_list);
+       kfree(tm);
+
+       return ret;
+}
+
+static inline int
+__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
+                      struct tree_mod_elem **tm_list,
+                      int nritems)
+{
+       int i, j;
+       int ret;
+
+       for (i = nritems - 1; i >= 0; i--) {
+               ret = __tree_mod_log_insert(fs_info, tm_list[i]);
+               if (ret) {
+                       for (j = nritems - 1; j > i; j--)
+                               rb_erase(&tm_list[j]->node,
+                                        &fs_info->tree_mod_log);
+                       return ret;
+               }
+       }
+
+       return 0;
+}
+
+static noinline int
+tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
+                        struct extent_buffer *old_root,
+                        struct extent_buffer *new_root, gfp_t flags,
+                        int log_removal)
+{
+       struct tree_mod_elem *tm = NULL;
+       struct tree_mod_elem **tm_list = NULL;
+       int nritems = 0;
+       int ret = 0;
+       int i;
+
+       if (!tree_mod_need_log(fs_info, NULL))
+               return 0;
+
+       if (log_removal && btrfs_header_level(old_root) > 0) {
+               nritems = btrfs_header_nritems(old_root);
+               tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
+                                 flags);
+               if (!tm_list) {
+                       ret = -ENOMEM;
+                       goto free_tms;
+               }
+               for (i = 0; i < nritems; i++) {
+                       tm_list[i] = alloc_tree_mod_elem(old_root, i,
+                           MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
+                       if (!tm_list[i]) {
+                               ret = -ENOMEM;
+                               goto free_tms;
+                       }
+               }
+       }
+
+       tm = kzalloc(sizeof(*tm), flags);
+       if (!tm) {
+               ret = -ENOMEM;
+               goto free_tms;
+       }
+
+       tm->index = new_root->start >> PAGE_CACHE_SHIFT;
+       tm->old_root.logical = old_root->start;
+       tm->old_root.level = btrfs_header_level(old_root);
+       tm->generation = btrfs_header_generation(old_root);
+       tm->op = MOD_LOG_ROOT_REPLACE;
+
+       if (tree_mod_dont_log(fs_info, NULL))
+               goto free_tms;
+
+       if (tm_list)
+               ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
+       if (!ret)
+               ret = __tree_mod_log_insert(fs_info, tm);
+
+       tree_mod_log_write_unlock(fs_info);
+       if (ret)
+               goto free_tms;
+       kfree(tm_list);
+
+       return ret;
+
+free_tms:
+       if (tm_list) {
+               for (i = 0; i < nritems; i++)
+                       kfree(tm_list[i]);
+               kfree(tm_list);
+       }
+       kfree(tm);
+
+       return ret;
+}
+
+static struct tree_mod_elem *
+__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
+                     int smallest)
+{
+       struct rb_root *tm_root;
+       struct rb_node *node;
+       struct tree_mod_elem *cur = NULL;
+       struct tree_mod_elem *found = NULL;
+       u64 index = start >> PAGE_CACHE_SHIFT;
+
+       tree_mod_log_read_lock(fs_info);
+       tm_root = &fs_info->tree_mod_log;
+       node = tm_root->rb_node;
+       while (node) {
+               cur = container_of(node, struct tree_mod_elem, node);
+               if (cur->index < index) {
+                       node = node->rb_left;
+               } else if (cur->index > index) {
+                       node = node->rb_right;
+               } else if (cur->seq < min_seq) {
+                       node = node->rb_left;
+               } else if (!smallest) {
+                       /* we want the node with the highest seq */
+                       if (found)
+                               BUG_ON(found->seq > cur->seq);
+                       found = cur;
+                       node = node->rb_left;
+               } else if (cur->seq > min_seq) {
+                       /* we want the node with the smallest seq */
+                       if (found)
+                               BUG_ON(found->seq < cur->seq);
+                       found = cur;
+                       node = node->rb_right;
+               } else {
+                       found = cur;
+                       break;
+               }
+       }
+       tree_mod_log_read_unlock(fs_info);
+
+       return found;
+}
+
+/*
+ * this returns the element from the log with the smallest time sequence
+ * value that's in the log (the oldest log item). any element with a time
+ * sequence lower than min_seq will be ignored.
+ */
+static struct tree_mod_elem *
+tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
+                          u64 min_seq)
+{
+       return __tree_mod_log_search(fs_info, start, min_seq, 1);
+}
+
+/*
+ * this returns the element from the log with the largest time sequence
+ * value that's in the log (the most recent log item). any element with
+ * a time sequence lower than min_seq will be ignored.
+ */
+static struct tree_mod_elem *
+tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
+{
+       return __tree_mod_log_search(fs_info, start, min_seq, 0);
+}
+
+static noinline int
+tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
+                    struct extent_buffer *src, unsigned long dst_offset,
+                    unsigned long src_offset, int nr_items)
+{
+       int ret = 0;
+       struct tree_mod_elem **tm_list = NULL;
+       struct tree_mod_elem **tm_list_add, **tm_list_rem;
+       int i;
+       int locked = 0;
+
+       if (!tree_mod_need_log(fs_info, NULL))
+               return 0;
+
+       if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
+               return 0;
+
+       tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
+                         GFP_NOFS);
+       if (!tm_list)
+               return -ENOMEM;
+
+       tm_list_add = tm_list;
+       tm_list_rem = tm_list + nr_items;
+       for (i = 0; i < nr_items; i++) {
+               tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
+                   MOD_LOG_KEY_REMOVE, GFP_NOFS);
+               if (!tm_list_rem[i]) {
+                       ret = -ENOMEM;
+                       goto free_tms;
+               }
+
+               tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
+                   MOD_LOG_KEY_ADD, GFP_NOFS);
+               if (!tm_list_add[i]) {
+                       ret = -ENOMEM;
+                       goto free_tms;
+               }
+       }
+
+       if (tree_mod_dont_log(fs_info, NULL))
+               goto free_tms;
+       locked = 1;
+
+       for (i = 0; i < nr_items; i++) {
+               ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
+               if (ret)
+                       goto free_tms;
+               ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
+               if (ret)
+                       goto free_tms;
+       }
+
+       tree_mod_log_write_unlock(fs_info);
+       kfree(tm_list);
+
+       return 0;
+
+free_tms:
+       for (i = 0; i < nr_items * 2; i++) {
+               if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
+                       rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
+               kfree(tm_list[i]);
+       }
+       if (locked)
+               tree_mod_log_write_unlock(fs_info);
+       kfree(tm_list);
+
+       return ret;
+}
+
+static inline void
+tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
+                    int dst_offset, int src_offset, int nr_items)
+{
+       int ret;
+       ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
+                                      nr_items, GFP_NOFS);
+       BUG_ON(ret < 0);
+}
+
+static noinline void
+tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
+                         struct extent_buffer *eb, int slot, int atomic)
+{
+       int ret;
+
+       ret = tree_mod_log_insert_key(fs_info, eb, slot,
+                                       MOD_LOG_KEY_REPLACE,
+                                       atomic ? GFP_ATOMIC : GFP_NOFS);
+       BUG_ON(ret < 0);
+}
+
+static noinline int
+tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
+{
+       struct tree_mod_elem **tm_list = NULL;
+       int nritems = 0;
+       int i;
+       int ret = 0;
+
+       if (btrfs_header_level(eb) == 0)
+               return 0;
+
+       if (!tree_mod_need_log(fs_info, NULL))
+               return 0;
+
+       nritems = btrfs_header_nritems(eb);
+       tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
+       if (!tm_list)
+               return -ENOMEM;
+
+       for (i = 0; i < nritems; i++) {
+               tm_list[i] = alloc_tree_mod_elem(eb, i,
+                   MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
+               if (!tm_list[i]) {
+                       ret = -ENOMEM;
+                       goto free_tms;
+               }
+       }
+
+       if (tree_mod_dont_log(fs_info, eb))
+               goto free_tms;
+
+       ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
+       tree_mod_log_write_unlock(fs_info);
+       if (ret)
+               goto free_tms;
+       kfree(tm_list);
+
+       return 0;
+
+free_tms:
+       for (i = 0; i < nritems; i++)
+               kfree(tm_list[i]);
+       kfree(tm_list);
+
+       return ret;
+}
+
+static noinline void
+tree_mod_log_set_root_pointer(struct btrfs_root *root,
+                             struct extent_buffer *new_root_node,
+                             int log_removal)
+{
+       int ret;
+       ret = tree_mod_log_insert_root(root->fs_info, root->node,
+                                      new_root_node, GFP_NOFS, log_removal);
+       BUG_ON(ret < 0);
+}
+
+/*
+ * check if the tree block can be shared by multiple trees
+ */
+int btrfs_block_can_be_shared(struct btrfs_root *root,
+                             struct extent_buffer *buf)
+{
+       /*
+        * Tree blocks not in refernece counted trees and tree roots
+        * are never shared. If a block was allocated after the last
+        * snapshot and the block was not allocated by tree relocation,
+        * we know the block is not shared.
+        */
+       if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
+           buf != root->node && buf != root->commit_root &&
+           (btrfs_header_generation(buf) <=
+            btrfs_root_last_snapshot(&root->root_item) ||
+            btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
+               return 1;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+       if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
+           btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
+               return 1;
+#endif
+       return 0;
+}
+
+static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
+                                      struct btrfs_root *root,
+                                      struct extent_buffer *buf,
+                                      struct extent_buffer *cow,
+                                      int *last_ref)
+{
+       u64 refs;
+       u64 owner;
+       u64 flags;
+       u64 new_flags = 0;
+       int ret;
+
+       /*
+        * Backrefs update rules:
+        *
+        * Always use full backrefs for extent pointers in tree block
+        * allocated by tree relocation.
+        *
+        * If a shared tree block is no longer referenced by its owner
+        * tree (btrfs_header_owner(buf) == root->root_key.objectid),
+        * use full backrefs for extent pointers in tree block.
+        *
+        * If a tree block is been relocating
+        * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
+        * use full backrefs for extent pointers in tree block.
+        * The reason for this is some operations (such as drop tree)
+        * are only allowed for blocks use full backrefs.
+        */
+
+       if (btrfs_block_can_be_shared(root, buf)) {
+               ret = btrfs_lookup_extent_info(trans, root, buf->start,
+                                              btrfs_header_level(buf), 1,
+                                              &refs, &flags);
+               if (ret)
+                       return ret;
+               if (refs == 0) {
+                       ret = -EROFS;
+                       btrfs_std_error(root->fs_info, ret);
+                       return ret;
+               }
+       } else {
+               refs = 1;
+               if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
+                   btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
+                       flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+               else
+                       flags = 0;
+       }
+
+       owner = btrfs_header_owner(buf);
+       BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
+              !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
+
+       if (refs > 1) {
+               if ((owner == root->root_key.objectid ||
+                    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
+                   !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
+                       ret = btrfs_inc_ref(trans, root, buf, 1);
+                       BUG_ON(ret); /* -ENOMEM */
+
+                       if (root->root_key.objectid ==
+                           BTRFS_TREE_RELOC_OBJECTID) {
+                               ret = btrfs_dec_ref(trans, root, buf, 0);
+                               BUG_ON(ret); /* -ENOMEM */
+                               ret = btrfs_inc_ref(trans, root, cow, 1);
+                               BUG_ON(ret); /* -ENOMEM */
+                       }
+                       new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
+               } else {
+
+                       if (root->root_key.objectid ==
+                           BTRFS_TREE_RELOC_OBJECTID)
+                               ret = btrfs_inc_ref(trans, root, cow, 1);
+                       else
+                               ret = btrfs_inc_ref(trans, root, cow, 0);
+                       BUG_ON(ret); /* -ENOMEM */
+               }
+               if (new_flags != 0) {
+                       int level = btrfs_header_level(buf);
+
+                       ret = btrfs_set_disk_extent_flags(trans, root,
+                                                         buf->start,
+                                                         buf->len,
+                                                         new_flags, level, 0);
+                       if (ret)
+                               return ret;
+               }
+       } else {
+               if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
+                       if (root->root_key.objectid ==
+                           BTRFS_TREE_RELOC_OBJECTID)
+                               ret = btrfs_inc_ref(trans, root, cow, 1);
+                       else
+                               ret = btrfs_inc_ref(trans, root, cow, 0);
+                       BUG_ON(ret); /* -ENOMEM */
+                       ret = btrfs_dec_ref(trans, root, buf, 1);
+                       BUG_ON(ret); /* -ENOMEM */
+               }
+               clean_tree_block(trans, root->fs_info, buf);
+               *last_ref = 1;
+       }
+       return 0;
+}
+
+/*
+ * does the dirty work in cow of a single block.  The parent block (if
+ * supplied) is updated to point to the new cow copy.  The new buffer is marked
+ * dirty and returned locked.  If you modify the block it needs to be marked
+ * dirty again.
+ *
+ * search_start -- an allocation hint for the new block
+ *
+ * empty_size -- a hint that you plan on doing more cow.  This is the size in
+ * bytes the allocator should try to find free next to the block it returns.
+ * This is just a hint and may be ignored by the allocator.
+ */
+static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
+                            struct btrfs_root *root,
+                            struct extent_buffer *buf,
+                            struct extent_buffer *parent, int parent_slot,
+                            struct extent_buffer **cow_ret,
+                            u64 search_start, u64 empty_size)
+{
+       struct btrfs_disk_key disk_key;
+       struct extent_buffer *cow;
+       int level, ret;
+       int last_ref = 0;
+       int unlock_orig = 0;
+       u64 parent_start;
+
+       if (*cow_ret == buf)
+               unlock_orig = 1;
+
+       btrfs_assert_tree_locked(buf);
+
+       WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
+               trans->transid != root->fs_info->running_transaction->transid);
+       WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
+               trans->transid != root->last_trans);
+
+       level = btrfs_header_level(buf);
+
+       if (level == 0)
+               btrfs_item_key(buf, &disk_key, 0);
+       else
+               btrfs_node_key(buf, &disk_key, 0);
+
+       if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
+               if (parent)
+                       parent_start = parent->start;
+               else
+                       parent_start = 0;
+       } else
+               parent_start = 0;
+
+       cow = btrfs_alloc_tree_block(trans, root, parent_start,
+                       root->root_key.objectid, &disk_key, level,
+                       search_start, empty_size);
+       if (IS_ERR(cow))
+               return PTR_ERR(cow);
+
+       /* cow is set to blocking by btrfs_init_new_buffer */
+
+       copy_extent_buffer(cow, buf, 0, 0, cow->len);
+       btrfs_set_header_bytenr(cow, cow->start);
+       btrfs_set_header_generation(cow, trans->transid);
+       btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
+       btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
+                                    BTRFS_HEADER_FLAG_RELOC);
+       if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
+               btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
+       else
+               btrfs_set_header_owner(cow, root->root_key.objectid);
+
+       write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
+                           BTRFS_FSID_SIZE);
+
+       ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
+       if (ret) {
+               btrfs_abort_transaction(trans, root, ret);
+               return ret;
+       }
+
+       if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
+               ret = btrfs_reloc_cow_block(trans, root, buf, cow);
+               if (ret)
+                       return ret;
+       }
+
+       if (buf == root->node) {
+               WARN_ON(parent && parent != buf);
+               if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
+                   btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
+                       parent_start = buf->start;
+               else
+                       parent_start = 0;
+
+               extent_buffer_get(cow);
+               tree_mod_log_set_root_pointer(root, cow, 1);
+               rcu_assign_pointer(root->node, cow);
+
+               btrfs_free_tree_block(trans, root, buf, parent_start,
+                                     last_ref);
+               free_extent_buffer(buf);
+               add_root_to_dirty_list(root);
+       } else {
+               if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
+                       parent_start = parent->start;
+               else
+                       parent_start = 0;
+
+               WARN_ON(trans->transid != btrfs_header_generation(parent));
+               tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
+                                       MOD_LOG_KEY_REPLACE, GFP_NOFS);
+               btrfs_set_node_blockptr(parent, parent_slot,
+                                       cow->start);
+               btrfs_set_node_ptr_generation(parent, parent_slot,
+                                             trans->transid);
+               btrfs_mark_buffer_dirty(parent);
+               if (last_ref) {
+                       ret = tree_mod_log_free_eb(root->fs_info, buf);
+                       if (ret) {
+                               btrfs_abort_transaction(trans, root, ret);
+                               return ret;
+                       }
+               }
+               btrfs_free_tree_block(trans, root, buf, parent_start,
+                                     last_ref);
+       }
+       if (unlock_orig)
+               btrfs_tree_unlock(buf);
+       free_extent_buffer_stale(buf);
+       btrfs_mark_buffer_dirty(cow);
+       *cow_ret = cow;
+       return 0;
+}
+
+/*
+ * returns the logical address of the oldest predecessor of the given root.
+ * entries older than time_seq are ignored.
+ */
+static struct tree_mod_elem *
+__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
+                          struct extent_buffer *eb_root, u64 time_seq)
+{
+       struct tree_mod_elem *tm;
+       struct tree_mod_elem *found = NULL;
+       u64 root_logical = eb_root->start;
+       int looped = 0;
+
+       if (!time_seq)
+               return NULL;
+
+       /*
+        * the very last operation that's logged for a root is the replacement
+        * operation (if it is replaced at all). this has the index of the *new*
+        * root, making it the very first operation that's logged for this root.
+        */
+       while (1) {
+               tm = tree_mod_log_search_oldest(fs_info, root_logical,
+                                               time_seq);
+               if (!looped && !tm)
+                       return NULL;
+               /*
+                * if there are no tree operation for the oldest root, we simply
+                * return it. this should only happen if that (old) root is at
+                * level 0.
+                */
+               if (!tm)
+                       break;
+
+               /*
+                * if there's an operation that's not a root replacement, we
+                * found the oldest version of our root. normally, we'll find a
+                * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
+                */
+               if (tm->op != MOD_LOG_ROOT_REPLACE)
+                       break;
+
+               found = tm;
+               root_logical = tm->old_root.logical;
+               looped = 1;
+       }
+
+       /* if there's no old root to return, return what we found instead */
+       if (!found)
+               found = tm;
+
+       return found;
+}
+
+/*
+ * tm is a pointer to the first operation to rewind within eb. then, all
+ * previous operations will be rewinded (until we reach something older than
+ * time_seq).
+ */
+static void
+__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
+                     u64 time_seq, struct tree_mod_elem *first_tm)
+{
+       u32 n;
+       struct rb_node *next;
+       struct tree_mod_elem *tm = first_tm;
+       unsigned long o_dst;
+       unsigned long o_src;
+       unsigned long p_size = sizeof(struct btrfs_key_ptr);
+
+       n = btrfs_header_nritems(eb);
+       tree_mod_log_read_lock(fs_info);
+       while (tm && tm->seq >= time_seq) {
+               /*
+                * all the operations are recorded with the operator used for
+                * the modification. as we're going backwards, we do the
+                * opposite of each operation here.
+                */
+               switch (tm->op) {
+               case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
+                       BUG_ON(tm->slot < n);
+                       /* Fallthrough */
+               case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
+               case MOD_LOG_KEY_REMOVE:
+                       btrfs_set_node_key(eb, &tm->key, tm->slot);
+                       btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
+                       btrfs_set_node_ptr_generation(eb, tm->slot,
+                                                     tm->generation);
+                       n++;
+                       break;
+               case MOD_LOG_KEY_REPLACE:
+                       BUG_ON(tm->slot >= n);
+                       btrfs_set_node_key(eb, &tm->key, tm->slot);
+                       btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
+                       btrfs_set_node_ptr_generation(eb, tm->slot,
+                                                     tm->generation);
+                       break;
+               case MOD_LOG_KEY_ADD:
+                       /* if a move operation is needed it's in the log */
+                       n--;
+                       break;
+               case MOD_LOG_MOVE_KEYS:
+                       o_dst = btrfs_node_key_ptr_offset(tm->slot);
+                       o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
+                       memmove_extent_buffer(eb, o_dst, o_src,
+                                             tm->move.nr_items * p_size);
+                       break;
+               case MOD_LOG_ROOT_REPLACE:
+                       /*
+                        * this operation is special. for roots, this must be
+                        * handled explicitly before rewinding.
+                        * for non-roots, this operation may exist if the node
+                        * was a root: root A -> child B; then A gets empty and
+                        * B is promoted to the new root. in the mod log, we'll
+                        * have a root-replace operation for B, a tree block
+                        * that is no root. we simply ignore that operation.
+                        */
+                       break;
+               }
+               next = rb_next(&tm->node);
+               if (!next)
+                       break;
+               tm = container_of(next, struct tree_mod_elem, node);
+               if (tm->index != first_tm->index)
+                       break;
+       }
+       tree_mod_log_read_unlock(fs_info);
+       btrfs_set_header_nritems(eb, n);
+}
+
+/*
+ * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
+ * is returned. If rewind operations happen, a fresh buffer is returned. The
+ * returned buffer is always read-locked. If the returned buffer is not the
+ * input buffer, the lock on the input buffer is released and the input buffer
+ * is freed (its refcount is decremented).
+ */
+static struct extent_buffer *
+tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
+                   struct extent_buffer *eb, u64 time_seq)
+{
+       struct extent_buffer *eb_rewin;
+       struct tree_mod_elem *tm;
+
+       if (!time_seq)
+               return eb;
+
+       if (btrfs_header_level(eb) == 0)
+               return eb;
+
+       tm = tree_mod_log_search(fs_info, eb->start, time_seq);
+       if (!tm)
+               return eb;
+
+       btrfs_set_path_blocking(path);
+       btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
+
+       if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
+               BUG_ON(tm->slot != 0);
+               eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
+               if (!eb_rewin) {
+                       btrfs_tree_read_unlock_blocking(eb);
+                       free_extent_buffer(eb);
+                       return NULL;
+               }
+               btrfs_set_header_bytenr(eb_rewin, eb->start);
+               btrfs_set_header_backref_rev(eb_rewin,
+                                            btrfs_header_backref_rev(eb));
+               btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
+               btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
+       } else {
+               eb_rewin = btrfs_clone_extent_buffer(eb);
+               if (!eb_rewin) {
+                       btrfs_tree_read_unlock_blocking(eb);
+                       free_extent_buffer(eb);
+                       return NULL;
+               }
+       }
+
+       btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
+       btrfs_tree_read_unlock_blocking(eb);
+       free_extent_buffer(eb);
+
+       extent_buffer_get(eb_rewin);
+       btrfs_tree_read_lock(eb_rewin);
+       __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
+       WARN_ON(btrfs_header_nritems(eb_rewin) >
+               BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
+
+       return eb_rewin;
+}
+
+/*
+ * get_old_root() rewinds the state of @root's root node to the given @time_seq
+ * value. If there are no changes, the current root->root_node is returned. If
+ * anything changed in between, there's a fresh buffer allocated on which the
+ * rewind operations are done. In any case, the returned buffer is read locked.
+ * Returns NULL on error (with no locks held).
+ */
+static inline struct extent_buffer *
+get_old_root(struct btrfs_root *root, u64 time_seq)
+{
+       struct tree_mod_elem *tm;
+       struct extent_buffer *eb = NULL;
+       struct extent_buffer *eb_root;
+       struct extent_buffer *old;
+       struct tree_mod_root *old_root = NULL;
+       u64 old_generation = 0;
+       u64 logical;
+
+       eb_root = btrfs_read_lock_root_node(root);
+       tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
+       if (!tm)
+               return eb_root;
+
+       if (tm->op == MOD_LOG_ROOT_REPLACE) {
+               old_root = &tm->old_root;
+               old_generation = tm->generation;
+               logical = old_root->logical;
+       } else {
+               logical = eb_root->start;
+       }
+
+       tm = tree_mod_log_search(root->fs_info, logical, time_seq);
+       if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
+               btrfs_tree_read_unlock(eb_root);
+               free_extent_buffer(eb_root);
+               old = read_tree_block(root, logical, 0);
+               if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
+                       free_extent_buffer(old);
+                       btrfs_warn(root->fs_info,
+                               "failed to read tree block %llu from get_old_root", logical);
+               } else {
+                       eb = btrfs_clone_extent_buffer(old);
+                       free_extent_buffer(old);
+               }
+       } else if (old_root) {
+               btrfs_tree_read_unlock(eb_root);
+               free_extent_buffer(eb_root);
+               eb = alloc_dummy_extent_buffer(root->fs_info, logical);
+       } else {
+               btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
+               eb = btrfs_clone_extent_buffer(eb_root);
+               btrfs_tree_read_unlock_blocking(eb_root);
+               free_extent_buffer(eb_root);
+       }
+
+       if (!eb)
+               return NULL;
+       extent_buffer_get(eb);
+       btrfs_tree_read_lock(eb);
+       if (old_root) {
+               btrfs_set_header_bytenr(eb, eb->start);
+               btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
+               btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
+               btrfs_set_header_level(eb, old_root->level);
+               btrfs_set_header_generation(eb, old_generation);
+       }
+       if (tm)
+               __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
+       else
+               WARN_ON(btrfs_header_level(eb) != 0);
+       WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
+
+       return eb;
+}
+
+int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
+{
+       struct tree_mod_elem *tm;
+       int level;
+       struct extent_buffer *eb_root = btrfs_root_node(root);
+
+       tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
+       if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
+               level = tm->old_root.level;
+       } else {
+               level = btrfs_header_level(eb_root);
+       }
+       free_extent_buffer(eb_root);
+
+       return level;
+}
+
+static inline int should_cow_block(struct btrfs_trans_handle *trans,
+                                  struct btrfs_root *root,
+                                  struct extent_buffer *buf)
+{
+       if (btrfs_test_is_dummy_root(root))
+               return 0;
+
+       /* ensure we can see the force_cow */
+       smp_rmb();
+
+       /*
+        * We do not need to cow a block if
+        * 1) this block is not created or changed in this transaction;
+        * 2) this block does not belong to TREE_RELOC tree;
+        * 3) the root is not forced COW.
+        *
+        * What is forced COW:
+        *    when we create snapshot during commiting the transaction,
+        *    after we've finished coping src root, we must COW the shared
+        *    block to ensure the metadata consistency.
+        */
+       if (btrfs_header_generation(buf) == trans->transid &&
+           !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
+           !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
+             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
+           !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
+               return 0;
+       return 1;
+}
+
+/*
+ * cows a single block, see __btrfs_cow_block for the real work.
+ * This version of it has extra checks so that a block isn't cow'd more than
+ * once per transaction, as long as it hasn't been written yet
+ */
+noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
+                   struct btrfs_root *root, struct extent_buffer *buf,
+                   struct extent_buffer *parent, int parent_slot,
+                   struct extent_buffer **cow_ret)
+{
+       u64 search_start;
+       int ret;
+
+       if (trans->transaction != root->fs_info->running_transaction)
+               WARN(1, KERN_CRIT "trans %llu running %llu\n",
+                      trans->transid,
+                      root->fs_info->running_transaction->transid);
+
+       if (trans->transid != root->fs_info->generation)
+               WARN(1, KERN_CRIT "trans %llu running %llu\n",
+                      trans->transid, root->fs_info->generation);
+
+       if (!should_cow_block(trans, root, buf)) {
+               *cow_ret = buf;
+               return 0;
+       }
+
+       search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
+
+       if (parent)
+               btrfs_set_lock_blocking(parent);
+       btrfs_set_lock_blocking(buf);
+
+       ret = __btrfs_cow_block(trans, root, buf, parent,
+                                parent_slot, cow_ret, search_start, 0);
+
+       trace_btrfs_cow_block(root, buf, *cow_ret);
+
+       return ret;
+}
+
+/*
+ * helper function for defrag to decide if two blocks pointed to by a
+ * node are actually close by
+ */
+static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
+{
+       if (blocknr < other && other - (blocknr + blocksize) < 32768)
+               return 1;
+       if (blocknr > other && blocknr - (other + blocksize) < 32768)
+               return 1;
+       return 0;
+}
+
+/*
+ * compare two keys in a memcmp fashion
+ */
+static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
+{
+       struct btrfs_key k1;
+
+       btrfs_disk_key_to_cpu(&k1, disk);
+
+       return btrfs_comp_cpu_keys(&k1, k2);
+}
+
+/*
+ * same as comp_keys only with two btrfs_key's
+ */
+int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
+{
+       if (k1->objectid > k2->objectid)
+               return 1;
+       if (k1->objectid < k2->objectid)
+               return -1;
+       if (k1->type > k2->type)
+               return 1;
+       if (k1->type < k2->type)
+               return -1;
+       if (k1->offset > k2->offset)
+               return 1;
+       if (k1->offset < k2->offset)
+               return -1;
+       return 0;
+}
+
+/*
+ * this is used by the defrag code to go through all the
+ * leaves pointed to by a node and reallocate them so that
+ * disk order is close to key order
+ */
+int btrfs_realloc_node(struct btrfs_trans_handle *trans,
+                      struct btrfs_root *root, struct extent_buffer *parent,
+                      int start_slot, u64 *last_ret,
+                      struct btrfs_key *progress)
+{
+       struct extent_buffer *cur;
+       u64 blocknr;
+       u64 gen;
+       u64 search_start = *last_ret;
+       u64 last_block = 0;
+       u64 other;
+       u32 parent_nritems;
+       int end_slot;
+       int i;
+       int err = 0;
+       int parent_level;
+       int uptodate;
+       u32 blocksize;
+       int progress_passed = 0;
+       struct btrfs_disk_key disk_key;
+
+       parent_level = btrfs_header_level(parent);
+
+       WARN_ON(trans->transaction != root->fs_info->running_transaction);
+       WARN_ON(trans->transid != root->fs_info->generation);
+
+       parent_nritems = btrfs_header_nritems(parent);
+       blocksize = root->nodesize;
+       end_slot = parent_nritems - 1;
+
+       if (parent_nritems <= 1)
+               return 0;
+
+       btrfs_set_lock_blocking(parent);
+
+       for (i = start_slot; i <= end_slot; i++) {
+               int close = 1;
+
+               btrfs_node_key(parent, &disk_key, i);
+               if (!progress_passed && comp_keys(&disk_key, progress) < 0)
+                       continue;
+
+               progress_passed = 1;
+               blocknr = btrfs_node_blockptr(parent, i);
+               gen = btrfs_node_ptr_generation(parent, i);
+               if (last_block == 0)
+                       last_block = blocknr;
+
+               if (i > 0) {
+                       other = btrfs_node_blockptr(parent, i - 1);
+                       close = close_blocks(blocknr, other, blocksize);
+               }
+               if (!close && i < end_slot) {
+                       other = btrfs_node_blockptr(parent, i + 1);
+                       close = close_blocks(blocknr, other, blocksize);
+               }
+               if (close) {
+                       last_block = blocknr;
+                       continue;
+               }
+
+               cur = btrfs_find_tree_block(root->fs_info, blocknr);
+               if (cur)
+                       uptodate = btrfs_buffer_uptodate(cur, gen, 0);
+               else
+                       uptodate = 0;
+               if (!cur || !uptodate) {
+                       if (!cur) {
+                               cur = read_tree_block(root, blocknr, gen);
+                               if (!cur || !extent_buffer_uptodate(cur)) {
+                                       free_extent_buffer(cur);
+                                       return -EIO;
+                               }
+                       } else if (!uptodate) {
+                               err = btrfs_read_buffer(cur, gen);
+                               if (err) {
+                                       free_extent_buffer(cur);
+                                       return err;
+                               }
+                       }
+               }
+               if (search_start == 0)
+                       search_start = last_block;
+
+               btrfs_tree_lock(cur);
+               btrfs_set_lock_blocking(cur);
+               err = __btrfs_cow_block(trans, root, cur, parent, i,
+                                       &cur, search_start,
+                                       min(16 * blocksize,
+                                           (end_slot - i) * blocksize));
+               if (err) {
+                       btrfs_tree_unlock(cur);
+                       free_extent_buffer(cur);
+                       break;
+               }
+               search_start = cur->start;
+               last_block = cur->start;
+               *last_ret = search_start;
+               btrfs_tree_unlock(cur);
+               free_extent_buffer(cur);
+       }
+       return err;
+}
+
+/*
+ * The leaf data grows from end-to-front in the node.
+ * this returns the address of the start of the last item,
+ * which is the stop of the leaf data stack
+ */
+static inline unsigned int leaf_data_end(struct btrfs_root *root,
+                                        struct extent_buffer *leaf)
+{
+       u32 nr = btrfs_header_nritems(leaf);
+       if (nr == 0)
+               return BTRFS_LEAF_DATA_SIZE(root);
+       return btrfs_item_offset_nr(leaf, nr - 1);
+}
+
+
+/*
+ * search for key in the extent_buffer.  The items start at offset p,
+ * and they are item_size apart.  There are 'max' items in p.
+ *
+ * the slot in the array is returned via slot, and it points to
+ * the place where you would insert key if it is not found in
+ * the array.
+ *
+ * slot may point to max if the key is bigger than all of the keys
+ */
+static noinline int generic_bin_search(struct extent_buffer *eb,
+                                      unsigned long p,
+                                      int item_size, struct btrfs_key *key,
+                                      int max, int *slot)
+{
+       int low = 0;
+       int high = max;
+       int mid;
+       int ret;
+       struct btrfs_disk_key *tmp = NULL;
+       struct btrfs_disk_key unaligned;
+       unsigned long offset;
+       char *kaddr = NULL;
+       unsigned long map_start = 0;
+       unsigned long map_len = 0;
+       int err;
+
+       while (low < high) {
+               mid = (low + high) / 2;
+               offset = p + mid * item_size;
+
+               if (!kaddr || offset < map_start ||
+                   (offset + sizeof(struct btrfs_disk_key)) >
+                   map_start + map_len) {
+
+                       err = map_private_extent_buffer(eb, offset,
+                                               sizeof(struct btrfs_disk_key),
+                                               &kaddr, &map_start, &map_len);
+
+                       if (!err) {
+                               tmp = (struct btrfs_disk_key *)(kaddr + offset -
+                                                       map_start);
+                       } else {
+                               read_extent_buffer(eb, &unaligned,
+                                                  offset, sizeof(unaligned));
+                               tmp = &unaligned;
+                       }
+
+               } else {
+                       tmp = (struct btrfs_disk_key *)(kaddr + offset -
+                                                       map_start);
+               }
+               ret = comp_keys(tmp, key);
+
+               if (ret < 0)
+                       low = mid + 1;
+               else if (ret > 0)
+                       high = mid;
+               else {
+                       *slot = mid;
+                       return 0;
+               }
+       }
+       *slot = low;
+       return 1;
+}
+
+/*
+ * simple bin_search frontend that does the right thing for
+ * leaves vs nodes
+ */
+static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
+                     int level, int *slot)
+{
+       if (level == 0)
+               return generic_bin_search(eb,
+                                         offsetof(struct btrfs_leaf, items),
+                                         sizeof(struct btrfs_item),
+                                         key, btrfs_header_nritems(eb),
+                                         slot);
+       else
+               return generic_bin_search(eb,
+                                         offsetof(struct btrfs_node, ptrs),
+                                         sizeof(struct btrfs_key_ptr),
+                                         key, btrfs_header_nritems(eb),
+                                         slot);
+}
+
+int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
+                    int level, int *slot)
+{
+       return bin_search(eb, key, level, slot);
+}
+
+static void root_add_used(struct btrfs_root *root, u32 size)
+{
+       spin_lock(&root->accounting_lock);
+       btrfs_set_root_used(&root->root_item,
+                           btrfs_root_used(&root->root_item) + size);
+       spin_unlock(&root->accounting_lock);
+}
+
+static void root_sub_used(struct btrfs_root *root, u32 size)
+{
+       spin_lock(&root->accounting_lock);
+       btrfs_set_root_used(&root->root_item,
+                           btrfs_root_used(&root->root_item) - size);
+       spin_unlock(&root->accounting_lock);
+}
+
+/* given a node and slot number, this reads the blocks it points to.  The
+ * extent buffer is returned with a reference taken (but unlocked).
+ * NULL is returned on error.
+ */
+static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
+                                  struct extent_buffer *parent, int slot)
+{
+       int level = btrfs_header_level(parent);
+       struct extent_buffer *eb;
+
+       if (slot < 0)
+               return NULL;
+       if (slot >= btrfs_header_nritems(parent))
+               return NULL;
+
+       BUG_ON(level == 0);
+
+       eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
+                            btrfs_node_ptr_generation(parent, slot));
+       if (eb && !extent_buffer_uptodate(eb)) {
+               free_extent_buffer(eb);
+               eb = NULL;
+       }
+
+       return eb;
+}
+
+/*
+ * node level balancing, used to make sure nodes are in proper order for
+ * item deletion.  We balance from the top down, so we have to make sure
+ * that a deletion won't leave an node completely empty later on.
+ */
+static noinline int balance_level(struct btrfs_trans_handle *trans,
+                        struct btrfs_root *root,
+                        struct btrfs_path *path, int level)
+{
+       struct extent_buffer *right = NULL;
+       struct extent_buffer *mid;
+       struct extent_buffer *left = NULL;
+       struct extent_buffer *parent = NULL;
+       int ret = 0;
+       int wret;
+       int pslot;
+       int orig_slot = path->slots[level];
+       u64 orig_ptr;
+
+       if (level == 0)
+               return 0;
+
+       mid = path->nodes[level];
+
+       WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
+               path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
+       WARN_ON(btrfs_header_generation(mid) != trans->transid);
+
+       orig_ptr = btrfs_node_blockptr(mid, orig_slot);
+
+       if (level < BTRFS_MAX_LEVEL - 1) {
+               parent = path->nodes[level + 1];
+               pslot = path->slots[level + 1];
+       }
+
+       /*
+        * deal with the case where there is only one pointer in the root
+        * by promoting the node below to a root
+        */
+       if (!parent) {
+               struct extent_buffer *child;
+
+               if (btrfs_header_nritems(mid) != 1)
+                       return 0;
+
+               /* promote the child to a root */
+               child = read_node_slot(root, mid, 0);
+               if (!child) {
+                       ret = -EROFS;
+                       btrfs_std_error(root->fs_info, ret);
+                       goto enospc;
+               }
+
+               btrfs_tree_lock(child);
+               btrfs_set_lock_blocking(child);
+               ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
+               if (ret) {
+                       btrfs_tree_unlock(child);
+                       free_extent_buffer(child);
+                       goto enospc;
+               }
+
+               tree_mod_log_set_root_pointer(root, child, 1);
+               rcu_assign_pointer(root->node, child);
+
+               add_root_to_dirty_list(root);
+               btrfs_tree_unlock(child);
+
+               path->locks[level] = 0;
+               path->nodes[level] = NULL;
+               clean_tree_block(trans, root->fs_info, mid);
+               btrfs_tree_unlock(mid);
+               /* once for the path */
+               free_extent_buffer(mid);
+
+               root_sub_used(root, mid->len);
+               btrfs_free_tree_block(trans, root, mid, 0, 1);
+               /* once for the root ptr */
+               free_extent_buffer_stale(mid);
+               return 0;
+       }
+       if (btrfs_header_nritems(mid) >
+           BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
+               return 0;
+
+       left = read_node_slot(root, parent, pslot - 1);
+       if (left) {
+               btrfs_tree_lock(left);
+               btrfs_set_lock_blocking(left);
+               wret = btrfs_cow_block(trans, root, left,
+                                      parent, pslot - 1, &left);
+               if (wret) {
+                       ret = wret;
+                       goto enospc;
+               }
+       }
+       right = read_node_slot(root, parent, pslot + 1);
+       if (right) {
+               btrfs_tree_lock(right);
+               btrfs_set_lock_blocking(right);
+               wret = btrfs_cow_block(trans, root, right,
+                                      parent, pslot + 1, &right);
+               if (wret) {
+                       ret = wret;
+                       goto enospc;
+               }
+       }
+
+       /* first, try to make some room in the middle buffer */
+       if (left) {
+               orig_slot += btrfs_header_nritems(left);
+               wret = push_node_left(trans, root, left, mid, 1);
+               if (wret < 0)
+                       ret = wret;
+       }
+
+       /*
+        * then try to empty the right most buffer into the middle
+        */
+       if (right) {
+               wret = push_node_left(trans, root, mid, right, 1);
+               if (wret < 0 && wret != -ENOSPC)
+                       ret = wret;
+               if (btrfs_header_nritems(right) == 0) {
+                       clean_tree_block(trans, root->fs_info, right);
+                       btrfs_tree_unlock(right);
+                       del_ptr(root, path, level + 1, pslot + 1);
+                       root_sub_used(root, right->len);
+                       btrfs_free_tree_block(trans, root, right, 0, 1);
+                       free_extent_buffer_stale(right);
+                       right = NULL;
+               } else {
+                       struct btrfs_disk_key right_key;
+                       btrfs_node_key(right, &right_key, 0);
+                       tree_mod_log_set_node_key(root->fs_info, parent,
+                                                 pslot + 1, 0);
+                       btrfs_set_node_key(parent, &right_key, pslot + 1);
+                       btrfs_mark_buffer_dirty(parent);
+               }
+       }
+       if (btrfs_header_nritems(mid) == 1) {
+               /*
+                * we're not allowed to leave a node with one item in the
+                * tree during a delete.  A deletion from lower in the tree
+                * could try to delete the only pointer in this node.
+                * So, pull some keys from the left.
+                * There has to be a left pointer at this point because
+                * otherwise we would have pulled some pointers from the
+                * right
+                */
+               if (!left) {
+                       ret = -EROFS;
+                       btrfs_std_error(root->fs_info, ret);
+                       goto enospc;
+               }
+               wret = balance_node_right(trans, root, mid, left);
+               if (wret < 0) {
+                       ret = wret;
+                       goto enospc;
+               }
+               if (wret == 1) {
+                       wret = push_node_left(trans, root, left, mid, 1);
+                       if (wret < 0)
+                               ret = wret;
+               }
+               BUG_ON(wret == 1);
+       }
+       if (btrfs_header_nritems(mid) == 0) {
+               clean_tree_block(trans, root->fs_info, mid);
+               btrfs_tree_unlock(mid);
+               del_ptr(root, path, level + 1, pslot);
+               root_sub_used(root, mid->len);
+               btrfs_free_tree_block(trans, root, mid, 0, 1);
+               free_extent_buffer_stale(mid);
+               mid = NULL;
+       } else {
+               /* update the parent key to reflect our changes */
+               struct btrfs_disk_key mid_key;
+               btrfs_node_key(mid, &mid_key, 0);
+               tree_mod_log_set_node_key(root->fs_info, parent,
+                                         pslot, 0);
+               btrfs_set_node_key(parent, &mid_key, pslot);
+               btrfs_mark_buffer_dirty(parent);
+       }
+
+       /* update the path */
+       if (left) {
+               if (btrfs_header_nritems(left) > orig_slot) {
+                       extent_buffer_get(left);
+                       /* left was locked after cow */
+                       path->nodes[level] = left;
+                       path->slots[level + 1] -= 1;
+                       path->slots[level] = orig_slot;
+                       if (mid) {
+                               btrfs_tree_unlock(mid);
+                               free_extent_buffer(mid);
+                       }
+               } else {
+                       orig_slot -= btrfs_header_nritems(left);
+                       path->slots[level] = orig_slot;
+               }
+       }
+       /* double check we haven't messed things up */
+       if (orig_ptr !=
+           btrfs_node_blockptr(path->nodes[level], path->slots[level]))
+               BUG();
+enospc:
+       if (right) {
+               btrfs_tree_unlock(right);
+               free_extent_buffer(right);
+       }
+       if (left) {
+               if (path->nodes[level] != left)
+                       btrfs_tree_unlock(left);
+               free_extent_buffer(left);
+       }
+       return ret;
+}
+
+/* Node balancing for insertion.  Here we only split or push nodes around
+ * when they are completely full.  This is also done top down, so we
+ * have to be pessimistic.
+ */
+static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
+                                         struct btrfs_root *root,
+                                         struct btrfs_path *path, int level)
+{
+       struct extent_buffer *right = NULL;
+       struct extent_buffer *mid;
+       struct extent_buffer *left = NULL;
+       struct extent_buffer *parent = NULL;
+       int ret = 0;
+       int wret;
+       int pslot;
+       int orig_slot = path->slots[level];
+
+       if (level == 0)
+               return 1;
+
+       mid = path->nodes[level];
+       WARN_ON(btrfs_header_generation(mid) != trans->transid);
+
+       if (level < BTRFS_MAX_LEVEL - 1) {
+               parent = path->nodes[level + 1];
+               pslot = path->slots[level + 1];
+       }
+
+       if (!parent)
+               return 1;
+
+       left = read_node_slot(root, parent, pslot - 1);
+
+       /* first, try to make some room in the middle buffer */
+       if (left) {
+               u32 left_nr;
+
+               btrfs_tree_lock(left);
+               btrfs_set_lock_blocking(left);
+
+               left_nr = btrfs_header_nritems(left);
+               if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
+                       wret = 1;
+               } else {
+                       ret = btrfs_cow_block(trans, root, left, parent,
+                                             pslot - 1, &left);
+                       if (ret)
+                               wret = 1;
+                       else {
+                               wret = push_node_left(trans, root,
+                                                     left, mid, 0);
+                       }
+               }
+               if (wret < 0)
+                       ret = wret;
+               if (wret == 0) {
+                       struct btrfs_disk_key disk_key;
+                       orig_slot += left_nr;
+                       btrfs_node_key(mid, &disk_key, 0);
+                       tree_mod_log_set_node_key(root->fs_info, parent,
+                                                 pslot, 0);
+                       btrfs_set_node_key(parent, &disk_key, pslot);
+                       btrfs_mark_buffer_dirty(parent);
+                       if (btrfs_header_nritems(left) > orig_slot) {
+                               path->nodes[level] = left;
+                               path->slots[level + 1] -= 1;
+                               path->slots[level] = orig_slot;
+                               btrfs_tree_unlock(mid);
+                               free_extent_buffer(mid);
+                       } else {
+                               orig_slot -=
+                                       btrfs_header_nritems(left);
+                               path->slots[level] = orig_slot;
+                               btrfs_tree_unlock(left);
+                               free_extent_buffer(left);
+                       }
+                       return 0;
+               }
+               btrfs_tree_unlock(left);
+               free_extent_buffer(left);
+       }
+       right = read_node_slot(root, parent, pslot + 1);
+
+       /*
+        * then try to empty the right most buffer into the middle
+        */
+       if (right) {
+               u32 right_nr;
+
+               btrfs_tree_lock(right);
+               btrfs_set_lock_blocking(right);
+
+               right_nr = btrfs_header_nritems(right);
+               if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
+                       wret = 1;
+               } else {
+                       ret = btrfs_cow_block(trans, root, right,
+                                             parent, pslot + 1,
+                                             &right);
+                       if (ret)
+                               wret = 1;
+                       else {
+                               wret = balance_node_right(trans, root,
+                                                         right, mid);
+                       }
+               }
+               if (wret < 0)
+                       ret = wret;
+               if (wret == 0) {
+                       struct btrfs_disk_key disk_key;
+
+                       btrfs_node_key(right, &disk_key, 0);
+                       tree_mod_log_set_node_key(root->fs_info, parent,
+                                                 pslot + 1, 0);
+                       btrfs_set_node_key(parent, &disk_key, pslot + 1);
+                       btrfs_mark_buffer_dirty(parent);
+
+                       if (btrfs_header_nritems(mid) <= orig_slot) {
+                               path->nodes[level] = right;
+                               path->slots[level + 1] += 1;
+                               path->slots[level] = orig_slot -
+                                       btrfs_header_nritems(mid);
+                               btrfs_tree_unlock(mid);
+                               free_extent_buffer(mid);
+                       } else {
+                               btrfs_tree_unlock(right);
+                               free_extent_buffer(right);
+                       }
+                       return 0;
+               }
+               btrfs_tree_unlock(right);
+               free_extent_buffer(right);
+       }
+       return 1;
+}
+
+/*
+ * readahead one full node of leaves, finding things that are close
+ * to the block in 'slot', and triggering ra on them.
+ */
+static void reada_for_search(struct btrfs_root *root,
+                            struct btrfs_path *path,
+                            int level, int slot, u64 objectid)
+{
+       struct extent_buffer *node;
+       struct btrfs_disk_key disk_key;
+       u32 nritems;
+       u64 search;
+       u64 target;
+       u64 nread = 0;
+       u64 gen;
+       int direction = path->reada;
+       struct extent_buffer *eb;
+       u32 nr;
+       u32 blocksize;
+       u32 nscan = 0;
+
+       if (level != 1)
+               return;
+
+       if (!path->nodes[level])
+               return;
+
+       node = path->nodes[level];
+
+       search = btrfs_node_blockptr(node, slot);
+       blocksize = root->nodesize;
+       eb = btrfs_find_tree_block(root->fs_info, search);
+       if (eb) {
+               free_extent_buffer(eb);
+               return;
+       }
+
+       target = search;
+
+       nritems = btrfs_header_nritems(node);
+       nr = slot;
+
+       while (1) {
+               if (direction < 0) {
+                       if (nr == 0)
+                               break;
+                       nr--;
+               } else if (direction > 0) {
+                       nr++;
+                       if (nr >= nritems)
+                               break;
+               }
+               if (path->reada < 0 && objectid) {
+                       btrfs_node_key(node, &disk_key, nr);
+                       if (btrfs_disk_key_objectid(&disk_key) != objectid)
+                               break;
+               }
+               search = btrfs_node_blockptr(node, nr);
+               if ((search <= target && target - search <= 65536) ||
+                   (search > target && search - target <= 65536)) {
+                       gen = btrfs_node_ptr_generation(node, nr);
+                       readahead_tree_block(root, search);
+                       nread += blocksize;
+               }
+               nscan++;
+               if ((nread > 65536 || nscan > 32))
+                       break;
+       }
+}
+
+static noinline void reada_for_balance(struct btrfs_root *root,
+                                      struct btrfs_path *path, int level)
+{
+       int slot;
+       int nritems;
+       struct extent_buffer *parent;
+       struct extent_buffer *eb;
+       u64 gen;
+       u64 block1 = 0;
+       u64 block2 = 0;
+
+       parent = path->nodes[level + 1];
+       if (!parent)
+               return;
+
+       nritems = btrfs_header_nritems(parent);
+       slot = path->slots[level + 1];
+
+       if (slot > 0) {
+               block1 = btrfs_node_blockptr(parent, slot - 1);
+               gen = btrfs_node_ptr_generation(parent, slot - 1);
+               eb = btrfs_find_tree_block(root->fs_info, block1);
+               /*
+                * if we get -eagain from btrfs_buffer_uptodate, we
+                * don't want to return eagain here.  That will loop
+                * forever
+                */
+               if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
+                       block1 = 0;
+               free_extent_buffer(eb);
+       }
+       if (slot + 1 < nritems) {
+               block2 = btrfs_node_blockptr(parent, slot + 1);
+               gen = btrfs_node_ptr_generation(parent, slot + 1);
+               eb = btrfs_find_tree_block(root->fs_info, block2);
+               if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
+                       block2 = 0;
+               free_extent_buffer(eb);
+       }
+
+       if (block1)
+               readahead_tree_block(root, block1);
+       if (block2)
+               readahead_tree_block(root, block2);
+}
+
+
+/*
+ * when we walk down the tree, it is usually safe to unlock the higher layers
+ * in the tree.  The exceptions are when our path goes through slot 0, because
+ * operations on the tree might require changing key pointers higher up in the
+ * tree.
+ *
+ * callers might also have set path->keep_locks, which tells this code to keep
+ * the lock if the path points to the last slot in the block.  This is part of
+ * walking through the tree, and selecting the next slot in the higher block.
+ *
+ * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
+ * if lowest_unlock is 1, level 0 won't be unlocked
+ */
+static noinline void unlock_up(struct btrfs_path *path, int level,
+                              int lowest_unlock, int min_write_lock_level,
+                              int *write_lock_level)
+{
+       int i;
+       int skip_level = level;
+       int no_skips = 0;
+       struct extent_buffer *t;
+
+       for (i = level; i < BTRFS_MAX_LEVEL; i++) {
+               if (!path->nodes[i])
+                       break;
+               if (!path->locks[i])
+                       break;
+               if (!no_skips && path->slots[i] == 0) {
+                       skip_level = i + 1;
+                       continue;
+               }
+               if (!no_skips && path->keep_locks) {
+                       u32 nritems;
+                       t = path->nodes[i];
+                       nritems = btrfs_header_nritems(t);
+                       if (nritems < 1 || path->slots[i] >= nritems - 1) {
+                               skip_level = i + 1;
+                               continue;
+                       }
+               }
+               if (skip_level < i && i >= lowest_unlock)
+                       no_skips = 1;
+
+               t = path->nodes[i];
+               if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
+                       btrfs_tree_unlock_rw(t, path->locks[i]);
+                       path->locks[i] = 0;
+                       if (write_lock_level &&
+                           i > min_write_lock_level &&
+                           i <= *write_lock_level) {
+                               *write_lock_level = i - 1;
+                       }
+               }
+       }
+}
+
+/*
+ * This releases any locks held in the path starting at level and
+ * going all the way up to the root.
+ *
+ * btrfs_search_slot will keep the lock held on higher nodes in a few
+ * corner cases, such as COW of the block at slot zero in the node.  This
+ * ignores those rules, and it should only be called when there are no
+ * more updates to be done higher up in the tree.
+ */
+noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
+{
+       int i;
+
+       if (path->keep_locks)
+               return;
+
+       for (i = level; i < BTRFS_MAX_LEVEL; i++) {
+               if (!path->nodes[i])
+                       continue;
+               if (!path->locks[i])
+                       continue;
+               btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
+               path->locks[i] = 0;
+       }
+}
+
+/*
+ * helper function for btrfs_search_slot.  The goal is to find a block
+ * in cache without setting the path to blocking.  If we find the block
+ * we return zero and the path is unchanged.
+ *
+ * If we can't find the block, we set the path blocking and do some
+ * reada.  -EAGAIN is returned and the search must be repeated.
+ */
+static int
+read_block_for_search(struct btrfs_trans_handle *trans,
+                      struct btrfs_root *root, struct btrfs_path *p,
+                      struct extent_buffer **eb_ret, int level, int slot,
+                      struct btrfs_key *key, u64 time_seq)
+{
+       u64 blocknr;
+       u64 gen;
+       struct extent_buffer *b = *eb_ret;
+       struct extent_buffer *tmp;
+       int ret;
+
+       blocknr = btrfs_node_blockptr(b, slot);
+       gen = btrfs_node_ptr_generation(b, slot);
+
+       tmp = btrfs_find_tree_block(root->fs_info, blocknr);
+       if (tmp) {
+               /* first we do an atomic uptodate check */
+               if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
+                       *eb_ret = tmp;
+                       return 0;
+               }
+
+               /* the pages were up to date, but we failed
+                * the generation number check.  Do a full
+                * read for the generation number that is correct.
+                * We must do this without dropping locks so
+                * we can trust our generation number
+                */
+               btrfs_set_path_blocking(p);
+
+               /* now we're allowed to do a blocking uptodate check */
+               ret = btrfs_read_buffer(tmp, gen);
+               if (!ret) {
+                       *eb_ret = tmp;
+                       return 0;
+               }
+               free_extent_buffer(tmp);
+               btrfs_release_path(p);
+               return -EIO;
+       }
+
+       /*
+        * reduce lock contention at high levels
+        * of the btree by dropping locks before
+        * we read.  Don't release the lock on the current
+        * level because we need to walk this node to figure
+        * out which blocks to read.
+        */
+       btrfs_unlock_up_safe(p, level + 1);
+       btrfs_set_path_blocking(p);
+
+       free_extent_buffer(tmp);
+       if (p->reada)
+               reada_for_search(root, p, level, slot, key->objectid);
+
+       btrfs_release_path(p);
+
+       ret = -EAGAIN;
+       tmp = read_tree_block(root, blocknr, 0);
+       if (tmp) {
+               /*
+                * If the read above didn't mark this buffer up to date,
+                * it will never end up being up to date.  Set ret to EIO now
+                * and give up so that our caller doesn't loop forever
+                * on our EAGAINs.
+                */
+               if (!btrfs_buffer_uptodate(tmp, 0, 0))
+                       ret = -EIO;
+               free_extent_buffer(tmp);
+       }
+       return ret;
+}
+
+/*
+ * helper function for btrfs_search_slot.  This does all of the checks
+ * for node-level blocks and does any balancing required based on
+ * the ins_len.
+ *
+ * If no extra work was required, zero is returned.  If we had to
+ * drop the path, -EAGAIN is returned and btrfs_search_slot must
+ * start over
+ */
+static int
+setup_nodes_for_search(struct btrfs_trans_handle *trans,
+                      struct btrfs_root *root, struct btrfs_path *p,
+                      struct extent_buffer *b, int level, int ins_len,
+                      int *write_lock_level)
+{
+       int ret;
+       if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
+           BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
+               int sret;
+
+               if (*write_lock_level < level + 1) {
+                       *write_lock_level = level + 1;
+                       btrfs_release_path(p);
+                       goto again;
+               }
+
+               btrfs_set_path_blocking(p);
+               reada_for_balance(root, p, level);
+               sret = split_node(trans, root, p, level);
+               btrfs_clear_path_blocking(p, NULL, 0);
+
+               BUG_ON(sret > 0);
+               if (sret) {
+                       ret = sret;
+                       goto done;
+               }
+               b = p->nodes[level];
+       } else if (ins_len < 0 && btrfs_header_nritems(b) <
+                  BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
+               int sret;
+
+               if (*write_lock_level < level + 1) {
+                       *write_lock_level = level + 1;
+                       btrfs_release_path(p);
+                       goto again;
+               }
+
+               btrfs_set_path_blocking(p);
+               reada_for_balance(root, p, level);
+               sret = balance_level(trans, root, p, level);
+               btrfs_clear_path_blocking(p, NULL, 0);
+
+               if (sret) {
+                       ret = sret;
+                       goto done;
+               }
+               b = p->nodes[level];
+               if (!b) {
+                       btrfs_release_path(p);
+                       goto again;
+               }
+               BUG_ON(btrfs_header_nritems(b) == 1);
+       }
+       return 0;
+
+again:
+       ret = -EAGAIN;
+done:
+       return ret;
+}
+
+static void key_search_validate(struct extent_buffer *b,
+                               struct btrfs_key *key,
+                               int level)
+{
+#ifdef CONFIG_BTRFS_ASSERT
+       struct btrfs_disk_key disk_key;
+
+       btrfs_cpu_key_to_disk(&disk_key, key);
+
+       if (level == 0)
+               ASSERT(!memcmp_extent_buffer(b, &disk_key,
+                   offsetof(struct btrfs_leaf, items[0].key),
+                   sizeof(disk_key)));
+       else
+               ASSERT(!memcmp_extent_buffer(b, &disk_key,
+                   offsetof(struct btrfs_node, ptrs[0].key),
+                   sizeof(disk_key)));
+#endif
+}
+
+static int key_search(struct extent_buffer *b, struct btrfs_key *key,
+                     int level, int *prev_cmp, int *slot)
+{
+       if (*prev_cmp != 0) {
+               *prev_cmp = bin_search(b, key, level, slot);
+               return *prev_cmp;
+       }
+
+       key_search_validate(b, key, level);
+       *slot = 0;
+
+       return 0;
+}
+
+int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
+               u64 iobjectid, u64 ioff, u8 key_type,
+               struct btrfs_key *found_key)
+{
+       int ret;
+       struct btrfs_key key;
+       struct extent_buffer *eb;
+
+       ASSERT(path);
+       ASSERT(found_key);
+
+       key.type = key_type;
+       key.objectid = iobjectid;
+       key.offset = ioff;
+
+       ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
+       if (ret < 0)
+               return ret;
+
+       eb = path->nodes[0];
+       if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
+               ret = btrfs_next_leaf(fs_root, path);
+               if (ret)
+                       return ret;
+               eb = path->nodes[0];
+       }
+
+       btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
+       if (found_key->type != key.type ||
+                       found_key->objectid != key.objectid)
+               return 1;
+
+       return 0;
+}
+
+/*
+ * look for key in the tree.  path is filled in with nodes along the way
+ * if key is found, we return zero and you can find the item in the leaf
+ * level of the path (level 0)
+ *
+ * If the key isn't found, the path points to the slot where it should
+ * be inserted, and 1 is returned.  If there are other errors during the
+ * search a negative error number is returned.
+ *
+ * if ins_len > 0, nodes and leaves will be split as we walk down the
+ * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
+ * possible)
+ */
+int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
+                     *root, struct btrfs_key *key, struct btrfs_path *p, int
+                     ins_len, int cow)
+{
+       struct extent_buffer *b;
+       int slot;
+       int ret;
+       int err;
+       int level;
+       int lowest_unlock = 1;
+       int root_lock;
+       /* everything at write_lock_level or lower must be write locked */
+       int write_lock_level = 0;
+       u8 lowest_level = 0;
+       int min_write_lock_level;
+       int prev_cmp;
+
+       lowest_level = p->lowest_level;
+       WARN_ON(lowest_level && ins_len > 0);
+       WARN_ON(p->nodes[0] != NULL);
+       BUG_ON(!cow && ins_len);
+
+       if (ins_len < 0) {
+               lowest_unlock = 2;
+
+               /* when we are removing items, we might have to go up to level
+                * two as we update tree pointers  Make sure we keep write
+                * for those levels as well
+                */
+               write_lock_level = 2;
+       } else if (ins_len > 0) {
+               /*
+                * for inserting items, make sure we have a write lock on
+                * level 1 so we can update keys
+                */
+               write_lock_level = 1;
+       }
+
+       if (!cow)
+               write_lock_level = -1;
+
+       if (cow && (p->keep_locks || p->lowest_level))
+               write_lock_level = BTRFS_MAX_LEVEL;
+
+       min_write_lock_level = write_lock_level;
+
+again:
+       prev_cmp = -1;
+       /*
+        * we try very hard to do read locks on the root
+        */
+       root_lock = BTRFS_READ_LOCK;
+       level = 0;
+       if (p->search_commit_root) {
+               /*
+                * the commit roots are read only
+                * so we always do read locks
+                */
+               if (p->need_commit_sem)
+                       down_read(&root->fs_info->commit_root_sem);
+               b = root->commit_root;
+               extent_buffer_get(b);
+               level = btrfs_header_level(b);
+               if (p->need_commit_sem)
+                       up_read(&root->fs_info->commit_root_sem);
+               if (!p->skip_locking)
+                       btrfs_tree_read_lock(b);
+       } else {
+               if (p->skip_locking) {
+                       b = btrfs_root_node(root);
+                       level = btrfs_header_level(b);
+               } else {
+                       /* we don't know the level of the root node
+                        * until we actually have it read locked
+                        */
+                       b = btrfs_read_lock_root_node(root);
+                       level = btrfs_header_level(b);
+                       if (level <= write_lock_level) {
+                               /* whoops, must trade for write lock */
+                               btrfs_tree_read_unlock(b);
+                               free_extent_buffer(b);
+                               b = btrfs_lock_root_node(root);
+                               root_lock = BTRFS_WRITE_LOCK;
+
+                               /* the level might have changed, check again */
+                               level = btrfs_header_level(b);
+                       }
+               }
+       }
+       p->nodes[level] = b;
+       if (!p->skip_locking)
+               p->locks[level] = root_lock;
+
+       while (b) {
+               level = btrfs_header_level(b);
+
+               /*
+                * setup the path here so we can release it under lock
+                * contention with the cow code
+                */
+               if (cow) {
+                       /*
+                        * if we don't really need to cow this block
+                        * then we don't want to set the path blocking,
+                        * so we test it here
+                        */
+                       if (!should_cow_block(trans, root, b))
+                               goto cow_done;
+
+                       /*
+                        * must have write locks on this node and the
+                        * parent
+                        */
+                       if (level > write_lock_level ||
+                           (level + 1 > write_lock_level &&
+                           level + 1 < BTRFS_MAX_LEVEL &&
+                           p->nodes[level + 1])) {
+                               write_lock_level = level + 1;
+                               btrfs_release_path(p);
+                               goto again;
+                       }
+
+                       btrfs_set_path_blocking(p);
+                       err = btrfs_cow_block(trans, root, b,
+                                             p->nodes[level + 1],
+                                             p->slots[level + 1], &b);
+                       if (err) {
+                               ret = err;
+                               goto done;
+                       }
+               }
+cow_done:
+               p->nodes[level] = b;
+               btrfs_clear_path_blocking(p, NULL, 0);
+
+               /*
+                * we have a lock on b and as long as we aren't changing
+                * the tree, there is no way to for the items in b to change.
+                * It is safe to drop the lock on our parent before we
+                * go through the expensive btree search on b.
+                *
+                * If we're inserting or deleting (ins_len != 0), then we might
+                * be changing slot zero, which may require changing the parent.
+                * So, we can't drop the lock until after we know which slot
+                * we're operating on.
+                */
+               if (!ins_len && !p->keep_locks) {
+                       int u = level + 1;
+
+                       if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
+                               btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
+                               p->locks[u] = 0;
+                       }
+               }
+
+               ret = key_search(b, key, level, &prev_cmp, &slot);
+
+               if (level != 0) {
+                       int dec = 0;
+                       if (ret && slot > 0) {
+                               dec = 1;
+                               slot -= 1;
+                       }
+                       p->slots[level] = slot;
+                       err = setup_nodes_for_search(trans, root, p, b, level,
+                                            ins_len, &write_lock_level);
+                       if (err == -EAGAIN)
+                               goto again;
+                       if (err) {
+                               ret = err;
+                               goto done;
+                       }
+                       b = p->nodes[level];
+                       slot = p->slots[level];
+
+                       /*
+                        * slot 0 is special, if we change the key
+                        * we have to update the parent pointer
+                        * which means we must have a write lock
+                        * on the parent
+                        */
+                       if (slot == 0 && ins_len &&
+                           write_lock_level < level + 1) {
+                               write_lock_level = level + 1;
+                               btrfs_release_path(p);
+                               goto again;
+                       }
+
+                       unlock_up(p, level, lowest_unlock,
+                                 min_write_lock_level, &write_lock_level);
+
+                       if (level == lowest_level) {
+                               if (dec)
+                                       p->slots[level]++;
+                               goto done;
+                       }
+
+                       err = read_block_for_search(trans, root, p,
+                                                   &b, level, slot, key, 0);
+                       if (err == -EAGAIN)
+                               goto again;
+                       if (err) {
+                               ret = err;
+                               goto done;
+                       }
+
+                       if (!p->skip_locking) {
+                               level = btrfs_header_level(b);
+                               if (level <= write_lock_level) {
+                                       err = btrfs_try_tree_write_lock(b);
+                                       if (!err) {
+                                               btrfs_set_path_blocking(p);
+                                               btrfs_tree_lock(b);
+                                               btrfs_clear_path_blocking(p, b,
+                                                                 BTRFS_WRITE_LOCK);
+                                       }
+                                       p->locks[level] = BTRFS_WRITE_LOCK;
+                               } else {
+                                       err = btrfs_tree_read_lock_atomic(b);
+                                       if (!err) {
+                                               btrfs_set_path_blocking(p);
+                                               btrfs_tree_read_lock(b);
+                                               btrfs_clear_path_blocking(p, b,
+                                                                 BTRFS_READ_LOCK);
+                                       }
+                                       p->locks[level] = BTRFS_READ_LOCK;
+                               }
+                               p->nodes[level] = b;
+                       }
+               } else {
+                       p->slots[level] = slot;
+                       if (ins_len > 0 &&
+                           btrfs_leaf_free_space(root, b) < ins_len) {
+                               if (write_lock_level < 1) {
+                                       write_lock_level = 1;
+                                       btrfs_release_path(p);
+                                       goto again;
+                               }
+
+                               btrfs_set_path_blocking(p);
+                               err = split_leaf(trans, root, key,
+                                                p, ins_len, ret == 0);
+                               btrfs_clear_path_blocking(p, NULL, 0);
+
+                               BUG_ON(err > 0);
+                               if (err) {
+                                       ret = err;
+                                       goto done;
+                               }
+                       }
+                       if (!p->search_for_split)
+                               unlock_up(p, level, lowest_unlock,
+                                         min_write_lock_level, &write_lock_level);
+                       goto done;
+               }
+       }
+       ret = 1;
+done:
+       /*
+        * we don't really know what they plan on doing with the path
+        * from here on, so for now just mark it as blocking
+        */
+       if (!p->leave_spinning)
+               btrfs_set_path_blocking(p);
+       if (ret < 0 && !p->skip_release_on_error)
+               btrfs_release_path(p);
+       return ret;
+}
+
+/*
+ * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
+ * current state of the tree together with the operations recorded in the tree
+ * modification log to search for the key in a previous version of this tree, as
+ * denoted by the time_seq parameter.
+ *
+ * Naturally, there is no support for insert, delete or cow operations.
+ *
+ * The resulting path and return value will be set up as if we called
+ * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
+ */
+int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
+                         struct btrfs_path *p, u64 time_seq)
+{
+       struct extent_buffer *b;
+       int slot;
+       int ret;
+       int err;
+       int level;
+       int lowest_unlock = 1;
+       u8 lowest_level = 0;
+       int prev_cmp = -1;
+
+       lowest_level = p->lowest_level;
+       WARN_ON(p->nodes[0] != NULL);
+
+       if (p->search_commit_root) {
+               BUG_ON(time_seq);
+               return btrfs_search_slot(NULL, root, key, p, 0, 0);
+       }
+
+again:
+       b = get_old_root(root, time_seq);
+       level = btrfs_header_level(b);
+       p->locks[level] = BTRFS_READ_LOCK;
+
+       while (b) {
+               level = btrfs_header_level(b);
+               p->nodes[level] = b;
+               btrfs_clear_path_blocking(p, NULL, 0);
+
+               /*
+                * we have a lock on b and as long as we aren't changing
+                * the tree, there is no way to for the items in b to change.
+                * It is safe to drop the lock on our parent before we
+                * go through the expensive btree search on b.
+                */
+               btrfs_unlock_up_safe(p, level + 1);
+
+               /*
+                * Since we can unwind eb's we want to do a real search every
+                * time.
+                */
+               prev_cmp = -1;
+               ret = key_search(b, key, level, &prev_cmp, &slot);
+
+               if (level != 0) {
+                       int dec = 0;
+                       if (ret && slot > 0) {
+                               dec = 1;
+                               slot -= 1;
+                       }
+                       p->slots[level] = slot;
+                       unlock_up(p, level, lowest_unlock, 0, NULL);
+
+                       if (level == lowest_level) {
+                               if (dec)
+                                       p->slots[level]++;
+                               goto done;
+                       }
+
+                       err = read_block_for_search(NULL, root, p, &b, level,
+                                                   slot, key, time_seq);
+                       if (err == -EAGAIN)
+                               goto again;
+                       if (err) {
+                               ret = err;
+                               goto done;
+                       }
+
+                       level = btrfs_header_level(b);
+                       err = btrfs_tree_read_lock_atomic(b);
+                       if (!err) {
+                               btrfs_set_path_blocking(p);
+                               btrfs_tree_read_lock(b);
+                               btrfs_clear_path_blocking(p, b,
+                                                         BTRFS_READ_LOCK);
+                       }
+                       b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
+                       if (!b) {
+                               ret = -ENOMEM;
+                               goto done;
+                       }
+                       p->locks[level] = BTRFS_READ_LOCK;
+                       p->nodes[level] = b;
+               } else {
+                       p->slots[level] = slot;
+                       unlock_up(p, level, lowest_unlock, 0, NULL);
+                       goto done;
+               }
+       }
+       ret = 1;
+done:
+       if (!p->leave_spinning)
+               btrfs_set_path_blocking(p);
+       if (ret < 0)
+               btrfs_release_path(p);
+
+       return ret;
+}
+
+/*
+ * helper to use instead of search slot if no exact match is needed but
+ * instead the next or previous item should be returned.
+ * When find_higher is true, the next higher item is returned, the next lower
+ * otherwise.
+ * When return_any and find_higher are both true, and no higher item is found,
+ * return the next lower instead.
+ * When return_any is true and find_higher is false, and no lower item is found,
+ * return the next higher instead.
+ * It returns 0 if any item is found, 1 if none is found (tree empty), and
+ * < 0 on error
+ */
+int btrfs_search_slot_for_read(struct btrfs_root *root,
+                              struct btrfs_key *key, struct btrfs_path *p,
+                              int find_higher, int return_any)
+{
+       int ret;
+       struct extent_buffer *leaf;
+
+again:
+       ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
+       if (ret <= 0)
+               return ret;
+       /*
+        * a return value of 1 means the path is at the position where the
+        * item should be inserted. Normally this is the next bigger item,
+        * but in case the previous item is the last in a leaf, path points
+        * to the first free slot in the previous leaf, i.e. at an invalid
+        * item.
+        */
+       leaf = p->nodes[0];
+
+       if (find_higher) {
+               if (p->slots[0] >= btrfs_header_nritems(leaf)) {
+                       ret = btrfs_next_leaf(root, p);
+                       if (ret <= 0)
+                               return ret;
+                       if (!return_any)
+                               return 1;
+                       /*
+                        * no higher item found, return the next
+                        * lower instead
+                        */
+                       return_any = 0;
+                       find_higher = 0;
+                       btrfs_release_path(p);
+                       goto again;
+               }
+       } else {
+               if (p->slots[0] == 0) {
+                       ret = btrfs_prev_leaf(root, p);
+                       if (ret < 0)
+                               return ret;
+                       if (!ret) {
+                               leaf = p->nodes[0];
+                               if (p->slots[0] == btrfs_header_nritems(leaf))
+                                       p->slots[0]--;
+                               return 0;
+                       }
+                       if (!return_any)
+                               return 1;
+                       /*
+                        * no lower item found, return the next
+                        * higher instead
+                        */
+                       return_any = 0;
+                       find_higher = 1;
+                       btrfs_release_path(p);
+                       goto again;
+               } else {
+                       --p->slots[0];
+               }
+       }
+       return 0;
+}
+
+/*
+ * adjust the pointers going up the tree, starting at level
+ * making sure the right key of each node is points to 'key'.
+ * This is used after shifting pointers to the left, so it stops
+ * fixing up pointers when a given leaf/node is not in slot 0 of the
+ * higher levels
+ *
+ */
+static void fixup_low_keys(struct btrfs_fs_info *fs_info,
+                          struct btrfs_path *path,
+                          struct btrfs_disk_key *key, int level)
+{
+       int i;
+       struct extent_buffer *t;
+
+       for (i = level; i < BTRFS_MAX_LEVEL; i++) {
+               int tslot = path->slots[i];
+               if (!path->nodes[i])
+                       break;
+               t = path->nodes[i];
+               tree_mod_log_set_node_key(fs_info, t, tslot, 1);
+               btrfs_set_node_key(t, key, tslot);
+               btrfs_mark_buffer_dirty(path->nodes[i]);
+               if (tslot != 0)
+                       break;
+       }
+}
+
+/*
+ * update item key.
+ *
+ * This function isn't completely safe. It's the caller's responsibility
+ * that the new key won't break the order
+ */
+void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
+                            struct btrfs_path *path,
+                            struct btrfs_key *new_key)
+{
+       struct btrfs_disk_key disk_key;
+       struct extent_buffer *eb;
+       int slot;
+
+       eb = path->nodes[0];
+       slot = path->slots[0];
+       if (slot > 0) {
+               btrfs_item_key(eb, &disk_key, slot - 1);
+               BUG_ON(comp_keys(&disk_key, new_key) >= 0);
+       }
+       if (slot < btrfs_header_nritems(eb) - 1) {
+               btrfs_item_key(eb, &disk_key, slot + 1);
+               BUG_ON(comp_keys(&disk_key, new_key) <= 0);
+       }
+
+       btrfs_cpu_key_to_disk(&disk_key, new_key);
+       btrfs_set_item_key(eb, &disk_key, slot);
+       btrfs_mark_buffer_dirty(eb);
+       if (slot == 0)
+               fixup_low_keys(fs_info, path, &disk_key, 1);
+}
+
+/*
+ * try to push data from one node into the next node left in the
+ * tree.
+ *
+ * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
+ * error, and > 0 if there was no room in the left hand block.
+ */
+static int push_node_left(struct btrfs_trans_handle *trans,
+                         struct btrfs_root *root, struct extent_buffer *dst,
+                         struct extent_buffer *src, int empty)
+{
+       int push_items = 0;
+       int src_nritems;
+       int dst_nritems;
+       int ret = 0;
+
+       src_nritems = btrfs_header_nritems(src);
+       dst_nritems = btrfs_header_nritems(dst);
+       push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
+       WARN_ON(btrfs_header_generation(src) != trans->transid);
+       WARN_ON(btrfs_header_generation(dst) != trans->transid);
+
+       if (!empty && src_nritems <= 8)
+               return 1;
+
+       if (push_items <= 0)
+               return 1;
+
+       if (empty) {
+               push_items = min(src_nritems, push_items);
+               if (push_items < src_nritems) {
+                       /* leave at least 8 pointers in the node if
+                        * we aren't going to empty it
+                        */
+                       if (src_nritems - push_items < 8) {
+                               if (push_items <= 8)
+                                       return 1;
+                               push_items -= 8;
+                       }
+               }
+       } else
+               push_items = min(src_nritems - 8, push_items);
+
+       ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
+                                  push_items);
+       if (ret) {
+               btrfs_abort_transaction(trans, root, ret);
+               return ret;
+       }
+       copy_extent_buffer(dst, src,
+                          btrfs_node_key_ptr_offset(dst_nritems),
+                          btrfs_node_key_ptr_offset(0),
+                          push_items * sizeof(struct btrfs_key_ptr));
+
+       if (push_items < src_nritems) {
+               /*
+                * don't call tree_mod_log_eb_move here, key removal was already
+                * fully logged by tree_mod_log_eb_copy above.
+                */
+               memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
+                                     btrfs_node_key_ptr_offset(push_items),
+                                     (src_nritems - push_items) *
+                                     sizeof(struct btrfs_key_ptr));
+       }
+       btrfs_set_header_nritems(src, src_nritems - push_items);
+       btrfs_set_header_nritems(dst, dst_nritems + push_items);
+       btrfs_mark_buffer_dirty(src);
+       btrfs_mark_buffer_dirty(dst);
+
+       return ret;
+}
+
+/*
+ * try to push data from one node into the next node right in the
+ * tree.
+ *
+ * returns 0 if some ptrs were pushed, < 0 if there was some horrible
+ * error, and > 0 if there was no room in the right hand block.
+ *
+ * this will  only push up to 1/2 the contents of the left node over
+ */
+static int balance_node_right(struct btrfs_trans_handle *trans,
+                             struct btrfs_root *root,
+                             struct extent_buffer *dst,
+                             struct extent_buffer *src)
+{
+       int push_items = 0;
+       int max_push;
+       int src_nritems;
+       int dst_nritems;
+       int ret = 0;
+
+       WARN_ON(btrfs_header_generation(src) != trans->transid);
+       WARN_ON(btrfs_header_generation(dst) != trans->transid);
+
+       src_nritems = btrfs_header_nritems(src);
+       dst_nritems = btrfs_header_nritems(dst);
+       push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
+       if (push_items <= 0)
+               return 1;
+
+       if (src_nritems < 4)
+               return 1;
+
+       max_push = src_nritems / 2 + 1;
+       /* don't try to empty the node */
+       if (max_push >= src_nritems)
+               return 1;
+
+       if (max_push < push_items)
+               push_items = max_push;
+
+       tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
+       memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
+                                     btrfs_node_key_ptr_offset(0),
+                                     (dst_nritems) *
+                                     sizeof(struct btrfs_key_ptr));
+
+       ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
+                                  src_nritems - push_items, push_items);
+       if (ret) {
+               btrfs_abort_transaction(trans, root, ret);
+               return ret;
+       }
+       copy_extent_buffer(dst, src,
+                          btrfs_node_key_ptr_offset(0),
+                          btrfs_node_key_ptr_offset(src_nritems - push_items),
+                          push_items * sizeof(struct btrfs_key_ptr));
+
+       btrfs_set_header_nritems(src, src_nritems - push_items);
+       btrfs_set_header_nritems(dst, dst_nritems + push_items);
+
+       btrfs_mark_buffer_dirty(src);
+       btrfs_mark_buffer_dirty(dst);
+
+       return ret;
+}
+
+/*
+ * helper function to insert a new root level in the tree.
+ * A new node is allocated, and a single item is inserted to
+ * point to the existing root
+ *
+ * returns zero on success or < 0 on failure.
+ */
+static noinline int insert_new_root(struct btrfs_trans_handle *trans,
+                          struct btrfs_root *root,
+                          struct btrfs_path *path, int level)
+{
+       u64 lower_gen;
+       struct extent_buffer *lower;
+       struct extent_buffer *c;
+       struct extent_buffer *old;
+       struct btrfs_disk_key lower_key;
+
+       BUG_ON(path->nodes[level]);
+       BUG_ON(path->nodes[level-1] != root->node);
+
+       lower = path->nodes[level-1];
+       if (level == 1)
+               btrfs_item_key(lower, &lower_key, 0);
+       else
+               btrfs_node_key(lower, &lower_key, 0);
+
+       c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
+                                  &lower_key, level, root->node->start, 0);
+       if (IS_ERR(c))
+               return PTR_ERR(c);
+
+       root_add_used(root, root->nodesize);
+
+       memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
+       btrfs_set_header_nritems(c, 1);
+       btrfs_set_header_level(c, level);
+       btrfs_set_header_bytenr(c, c->start);
+       btrfs_set_header_generation(c, trans->transid);
+       btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
+       btrfs_set_header_owner(c, root->root_key.objectid);
+
+       write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
+                           BTRFS_FSID_SIZE);
+
+       write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
+                           btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
+
+       btrfs_set_node_key(c, &lower_key, 0);
+       btrfs_set_node_blockptr(c, 0, lower->start);
+       lower_gen = btrfs_header_generation(lower);
+       WARN_ON(lower_gen != trans->transid);
+
+       btrfs_set_node_ptr_generation(c, 0, lower_gen);
+
+       btrfs_mark_buffer_dirty(c);
+
+       old = root->node;
+       tree_mod_log_set_root_pointer(root, c, 0);
+       rcu_assign_pointer(root->node, c);
+
+       /* the super has an extra ref to root->node */
+       free_extent_buffer(old);
+
+       add_root_to_dirty_list(root);
+       extent_buffer_get(c);
+       path->nodes[level] = c;
+       path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+       path->slots[level] = 0;
+       return 0;
+}
+
+/*
+ * worker function to insert a single pointer in a node.
+ * the node should have enough room for the pointer already
+ *
+ * slot and level indicate where you want the key to go, and
+ * blocknr is the block the key points to.
+ */
+static void insert_ptr(struct btrfs_trans_handle *trans,
+                      struct btrfs_root *root, struct btrfs_path *path,
+                      struct btrfs_disk_key *key, u64 bytenr,
+                      int slot, int level)
+{
+       struct extent_buffer *lower;
+       int nritems;
+       int ret;
+
+       BUG_ON(!path->nodes[level]);
+       btrfs_assert_tree_locked(path->nodes[level]);
+       lower = path->nodes[level];
+       nritems = btrfs_header_nritems(lower);
+       BUG_ON(slot > nritems);
+       BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
+       if (slot != nritems) {
+               if (level)
+                       tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
+                                            slot, nritems - slot);
+               memmove_extent_buffer(lower,
+                             btrfs_node_key_ptr_offset(slot + 1),
+                             btrfs_node_key_ptr_offset(slot),
+                             (nritems - slot) * sizeof(struct btrfs_key_ptr));
+       }
+       if (level) {
+               ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
+                                             MOD_LOG_KEY_ADD, GFP_NOFS);
+               BUG_ON(ret < 0);
+       }
+       btrfs_set_node_key(lower, key, slot);
+       btrfs_set_node_blockptr(lower, slot, bytenr);
+       WARN_ON(trans->transid == 0);
+       btrfs_set_node_ptr_generation(lower, slot, trans->transid);
+       btrfs_set_header_nritems(lower, nritems + 1);
+       btrfs_mark_buffer_dirty(lower);
+}
+
+/*
+ * split the node at the specified level in path in two.
+ * The path is corrected to point to the appropriate node after the split
+ *
+ * Before splitting this tries to make some room in the node by pushing
+ * left and right, if either one works, it returns right away.
+ *
+ * returns 0 on success and < 0 on failure
+ */
+static noinline int split_node(struct btrfs_trans_handle *trans,
+                              struct btrfs_root *root,
+                              struct btrfs_path *path, int level)
+{
+       struct extent_buffer *c;
+       struct extent_buffer *split;
+       struct btrfs_disk_key disk_key;
+       int mid;
+       int ret;
+       u32 c_nritems;
+
+       c = path->nodes[level];
+       WARN_ON(btrfs_header_generation(c) != trans->transid);
+       if (c == root->node) {
+               /*
+                * trying to split the root, lets make a new one
+                *
+                * tree mod log: We don't log_removal old root in
+                * insert_new_root, because that root buffer will be kept as a
+                * normal node. We are going to log removal of half of the
+                * elements below with tree_mod_log_eb_copy. We're holding a
+                * tree lock on the buffer, which is why we cannot race with
+                * other tree_mod_log users.
+                */
+               ret = insert_new_root(trans, root, path, level + 1);
+               if (ret)
+                       return ret;
+       } else {
+               ret = push_nodes_for_insert(trans, root, path, level);
+               c = path->nodes[level];
+               if (!ret && btrfs_header_nritems(c) <
+                   BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
+                       return 0;
+               if (ret < 0)
+                       return ret;
+       }
+
+       c_nritems = btrfs_header_nritems(c);
+       mid = (c_nritems + 1) / 2;
+       btrfs_node_key(c, &disk_key, mid);
+
+       split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
+                       &disk_key, level, c->start, 0);
+       if (IS_ERR(split))
+               return PTR_ERR(split);
+
+       root_add_used(root, root->nodesize);
+
+       memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
+       btrfs_set_header_level(split, btrfs_header_level(c));
+       btrfs_set_header_bytenr(split, split->start);
+       btrfs_set_header_generation(split, trans->transid);
+       btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
+       btrfs_set_header_owner(split, root->root_key.objectid);
+       write_extent_buffer(split, root->fs_info->fsid,
+                           btrfs_header_fsid(), BTRFS_FSID_SIZE);
+       write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
+                           btrfs_header_chunk_tree_uuid(split),
+                           BTRFS_UUID_SIZE);
+
+       ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
+                                  mid, c_nritems - mid);
+       if (ret) {
+               btrfs_abort_transaction(trans, root, ret);
+               return ret;
+       }
+       copy_extent_buffer(split, c,
+                          btrfs_node_key_ptr_offset(0),
+                          btrfs_node_key_ptr_offset(mid),
+                          (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
+       btrfs_set_header_nritems(split, c_nritems - mid);
+       btrfs_set_header_nritems(c, mid);
+       ret = 0;
+
+       btrfs_mark_buffer_dirty(c);
+       btrfs_mark_buffer_dirty(split);
+
+       insert_ptr(trans, root, path, &disk_key, split->start,
+                  path->slots[level + 1] + 1, level + 1);
+
+       if (path->slots[level] >= mid) {
+               path->slots[level] -= mid;
+               btrfs_tree_unlock(c);
+               free_extent_buffer(c);
+               path->nodes[level] = split;
+               path->slots[level + 1] += 1;
+       } else {
+               btrfs_tree_unlock(split);
+               free_extent_buffer(split);
+       }
+       return ret;
+}
+
+/*
+ * how many bytes are required to store the items in a leaf.  start
+ * and nr indicate which items in the leaf to check.  This totals up the
+ * space used both by the item structs and the item data
+ */
+static int leaf_space_used(struct extent_buffer *l, int start, int nr)
+{
+       struct btrfs_item *start_item;
+       struct btrfs_item *end_item;
+       struct btrfs_map_token token;
+       int data_len;
+       int nritems = btrfs_header_nritems(l);
+       int end = min(nritems, start + nr) - 1;
+
+       if (!nr)
+               return 0;
+       btrfs_init_map_token(&token);
+       start_item = btrfs_item_nr(start);
+       end_item = btrfs_item_nr(end);
+       data_len = btrfs_token_item_offset(l, start_item, &token) +
+               btrfs_token_item_size(l, start_item, &token);
+       data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
+       data_len += sizeof(struct btrfs_item) * nr;
+       WARN_ON(data_len < 0);
+       return data_len;
+}
+
+/*
+ * The space between the end of the leaf items and
+ * the start of the leaf data.  IOW, how much room
+ * the leaf has left for both items and data
+ */
+noinline int btrfs_leaf_free_space(struct btrfs_root *root,
+                                  struct extent_buffer *leaf)
+{
+       int nritems = btrfs_header_nritems(leaf);
+       int ret;
+       ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
+       if (ret < 0) {
+               btrfs_crit(root->fs_info,
+                       "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
+                      ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
+                      leaf_space_used(leaf, 0, nritems), nritems);
+       }
+       return ret;
+}
+
+/*
+ * min slot controls the lowest index we're willing to push to the
+ * right.  We'll push up to and including min_slot, but no lower
+ */
+static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
+                                     struct btrfs_root *root,
+                                     struct btrfs_path *path,
+                                     int data_size, int empty,
+                                     struct extent_buffer *right,
+                                     int free_space, u32 left_nritems,
+                                     u32 min_slot)
+{
+       struct extent_buffer *left = path->nodes[0];
+       struct extent_buffer *upper = path->nodes[1];
+       struct btrfs_map_token token;
+       struct btrfs_disk_key disk_key;
+       int slot;
+       u32 i;
+       int push_space = 0;
+       int push_items = 0;
+       struct btrfs_item *item;
+       u32 nr;
+       u32 right_nritems;
+       u32 data_end;
+       u32 this_item_size;
+
+       btrfs_init_map_token(&token);
+
+       if (empty)
+               nr = 0;
+       else
+               nr = max_t(u32, 1, min_slot);
+
+       if (path->slots[0] >= left_nritems)
+               push_space += data_size;
+
+       slot = path->slots[1];
+       i = left_nritems - 1;
+       while (i >= nr) {
+               item = btrfs_item_nr(i);
+
+               if (!empty && push_items > 0) {
+                       if (path->slots[0] > i)
+                               break;
+                       if (path->slots[0] == i) {
+                               int space = btrfs_leaf_free_space(root, left);
+                               if (space + push_space * 2 > free_space)
+                                       break;
+                       }
+               }
+
+               if (path->slots[0] == i)
+                       push_space += data_size;
+
+               this_item_size = btrfs_item_size(left, item);
+               if (this_item_size + sizeof(*item) + push_space > free_space)
+                       break;
+
+               push_items++;
+               push_space += this_item_size + sizeof(*item);
+               if (i == 0)
+                       break;
+               i--;
+       }
+
+       if (push_items == 0)
+               goto out_unlock;
+
+       WARN_ON(!empty && push_items == left_nritems);
+
+       /* push left to right */
+       right_nritems = btrfs_header_nritems(right);
+
+       push_space = btrfs_item_end_nr(left, left_nritems - push_items);
+       push_space -= leaf_data_end(root, left);
+
+       /* make room in the right data area */
+       data_end = leaf_data_end(root, right);
+       memmove_extent_buffer(right,
+                             btrfs_leaf_data(right) + data_end - push_space,
+                             btrfs_leaf_data(right) + data_end,
+                             BTRFS_LEAF_DATA_SIZE(root) - data_end);
+
+       /* copy from the left data area */
+       copy_extent_buffer(right, left, btrfs_leaf_data(right) +
+                    BTRFS_LEAF_DATA_SIZE(root) - push_space,
+                    btrfs_leaf_data(left) + leaf_data_end(root, left),
+                    push_space);
+
+       memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
+                             btrfs_item_nr_offset(0),
+                             right_nritems * sizeof(struct btrfs_item));
+
+       /* copy the items from left to right */
+       copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
+                  btrfs_item_nr_offset(left_nritems - push_items),
+                  push_items * sizeof(struct btrfs_item));
+
+       /* update the item pointers */
+       right_nritems += push_items;
+       btrfs_set_header_nritems(right, right_nritems);
+       push_space = BTRFS_LEAF_DATA_SIZE(root);
+       for (i = 0; i < right_nritems; i++) {
+               item = btrfs_item_nr(i);
+               push_space -= btrfs_token_item_size(right, item, &token);
+               btrfs_set_token_item_offset(right, item, push_space, &token);
+       }
+
+       left_nritems -= push_items;
+       btrfs_set_header_nritems(left, left_nritems);
+
+       if (left_nritems)
+               btrfs_mark_buffer_dirty(left);
+       else
+               clean_tree_block(trans, root->fs_info, left);
+
+       btrfs_mark_buffer_dirty(right);
+
+       btrfs_item_key(right, &disk_key, 0);
+       btrfs_set_node_key(upper, &disk_key, slot + 1);
+       btrfs_mark_buffer_dirty(upper);
+
+       /* then fixup the leaf pointer in the path */
+       if (path->slots[0] >= left_nritems) {
+               path->slots[0] -= left_nritems;
+               if (btrfs_header_nritems(path->nodes[0]) == 0)
+                       clean_tree_block(trans, root->fs_info, path->nodes[0]);
+               btrfs_tree_unlock(path->nodes[0]);
+               free_extent_buffer(path->nodes[0]);
+               path->nodes[0] = right;
+               path->slots[1] += 1;
+       } else {
+               btrfs_tree_unlock(right);
+               free_extent_buffer(right);
+       }
+       return 0;
+
+out_unlock:
+       btrfs_tree_unlock(right);
+       free_extent_buffer(right);
+       return 1;
+}
+
+/*
+ * push some data in the path leaf to the right, trying to free up at
+ * least data_size bytes.  returns zero if the push worked, nonzero otherwise
+ *
+ * returns 1 if the push failed because the other node didn't have enough
+ * room, 0 if everything worked out and < 0 if there were major errors.
+ *
+ * this will push starting from min_slot to the end of the leaf.  It won't
+ * push any slot lower than min_slot
+ */
+static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
+                          *root, struct btrfs_path *path,
+                          int min_data_size, int data_size,
+                          int empty, u32 min_slot)
+{
+       struct extent_buffer *left = path->nodes[0];
+       struct extent_buffer *right;
+       struct extent_buffer *upper;
+       int slot;
+       int free_space;
+       u32 left_nritems;
+       int ret;
+
+       if (!path->nodes[1])
+               return 1;
+
+       slot = path->slots[1];
+       upper = path->nodes[1];
+       if (slot >= btrfs_header_nritems(upper) - 1)
+               return 1;
+
+       btrfs_assert_tree_locked(path->nodes[1]);
+
+       right = read_node_slot(root, upper, slot + 1);
+       if (right == NULL)
+               return 1;
+
+       btrfs_tree_lock(right);
+       btrfs_set_lock_blocking(right);
+
+       free_space = btrfs_leaf_free_space(root, right);
+       if (free_space < data_size)
+               goto out_unlock;
+
+       /* cow and double check */
+       ret = btrfs_cow_block(trans, root, right, upper,
+                             slot + 1, &right);
+       if (ret)
+               goto out_unlock;
+
+       free_space = btrfs_leaf_free_space(root, right);
+       if (free_space < data_size)
+               goto out_unlock;
+
+       left_nritems = btrfs_header_nritems(left);
+       if (left_nritems == 0)
+               goto out_unlock;
+
+       if (path->slots[0] == left_nritems && !empty) {
+               /* Key greater than all keys in the leaf, right neighbor has
+                * enough room for it and we're not emptying our leaf to delete
+                * it, therefore use right neighbor to insert the new item and
+                * no need to touch/dirty our left leaft. */
+               btrfs_tree_unlock(left);
+               free_extent_buffer(left);
+               path->nodes[0] = right;
+               path->slots[0] = 0;
+               path->slots[1]++;
+               return 0;
+       }
+
+       return __push_leaf_right(trans, root, path, min_data_size, empty,
+                               right, free_space, left_nritems, min_slot);
+out_unlock:
+       btrfs_tree_unlock(right);
+       free_extent_buffer(right);
+       return 1;
+}
+
+/*
+ * push some data in the path leaf to the left, trying to free up at
+ * least data_size bytes.  returns zero if the push worked, nonzero otherwise
+ *
+ * max_slot can put a limit on how far into the leaf we'll push items.  The
+ * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
+ * items
+ */
+static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
+                                    struct btrfs_root *root,
+                                    struct btrfs_path *path, int data_size,
+                                    int empty, struct extent_buffer *left,
+                                    int free_space, u32 right_nritems,
+                                    u32 max_slot)
+{
+       struct btrfs_disk_key disk_key;
+       struct extent_buffer *right = path->nodes[0];
+       int i;
+       int push_space = 0;
+       int push_items = 0;
+       struct btrfs_item *item;
+       u32 old_left_nritems;
+       u32 nr;
+       int ret = 0;
+       u32 this_item_size;
+       u32 old_left_item_size;
+       struct btrfs_map_token token;
+
+       btrfs_init_map_token(&token);
+
+       if (empty)
+               nr = min(right_nritems, max_slot);
+       else
+               nr = min(right_nritems - 1, max_slot);
+
+       for (i = 0; i < nr; i++) {
+               item = btrfs_item_nr(i);
+
+               if (!empty && push_items > 0) {
+                       if (path->slots[0] < i)
+                               break;
+                       if (path->slots[0] == i) {
+                               int space = btrfs_leaf_free_space(root, right);
+                               if (space + push_space * 2 > free_space)
+                                       break;
+                       }
+               }
+
+               if (path->slots[0] == i)
+                       push_space += data_size;
+
+               this_item_size = btrfs_item_size(right, item);
+               if (this_item_size + sizeof(*item) + push_space > free_space)
+                       break;
+
+               push_items++;
+               push_space += this_item_size + sizeof(*item);
+       }
+
+       if (push_items == 0) {
+               ret = 1;
+               goto out;
+       }
+       WARN_ON(!empty && push_items == btrfs_header_nritems(right));
+
+       /* push data from right to left */
+       copy_extent_buffer(left, right,
+                          btrfs_item_nr_offset(btrfs_header_nritems(left)),
+                          btrfs_item_nr_offset(0),
+                          push_items * sizeof(struct btrfs_item));
+
+       push_space = BTRFS_LEAF_DATA_SIZE(root) -
+                    btrfs_item_offset_nr(right, push_items - 1);
+
+       copy_extent_buffer(left, right, btrfs_leaf_data(left) +
+                    leaf_data_end(root, left) - push_space,
+                    btrfs_leaf_data(right) +
+                    btrfs_item_offset_nr(right, push_items - 1),
+                    push_space);
+       old_left_nritems = btrfs_header_nritems(left);
+       BUG_ON(old_left_nritems <= 0);
+
+       old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
+       for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
+               u32 ioff;
+
+               item = btrfs_item_nr(i);
+
+               ioff = btrfs_token_item_offset(left, item, &token);
+               btrfs_set_token_item_offset(left, item,
+                     ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
+                     &token);
+       }
+       btrfs_set_header_nritems(left, old_left_nritems + push_items);
+
+       /* fixup right node */
+       if (push_items > right_nritems)
+               WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
+                      right_nritems);
+
+       if (push_items < right_nritems) {
+               push_space = btrfs_item_offset_nr(right, push_items - 1) -
+                                                 leaf_data_end(root, right);
+               memmove_extent_buffer(right, btrfs_leaf_data(right) +
+                                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
+                                     btrfs_leaf_data(right) +
+                                     leaf_data_end(root, right), push_space);
+
+               memmove_extent_buffer(right, btrfs_item_nr_offset(0),
+                             btrfs_item_nr_offset(push_items),
+                            (btrfs_header_nritems(right) - push_items) *
+                            sizeof(struct btrfs_item));
+       }
+       right_nritems -= push_items;
+       btrfs_set_header_nritems(right, right_nritems);
+       push_space = BTRFS_LEAF_DATA_SIZE(root);
+       for (i = 0; i < right_nritems; i++) {
+               item = btrfs_item_nr(i);
+
+               push_space = push_space - btrfs_token_item_size(right,
+                                                               item, &token);
+               btrfs_set_token_item_offset(right, item, push_space, &token);
+       }
+
+       btrfs_mark_buffer_dirty(left);
+       if (right_nritems)
+               btrfs_mark_buffer_dirty(right);
+       else
+               clean_tree_block(trans, root->fs_info, right);
+
+       btrfs_item_key(right, &disk_key, 0);
+       fixup_low_keys(root->fs_info, path, &disk_key, 1);
+
+       /* then fixup the leaf pointer in the path */
+       if (path->slots[0] < push_items) {
+               path->slots[0] += old_left_nritems;
+               btrfs_tree_unlock(path->nodes[0]);
+               free_extent_buffer(path->nodes[0]);
+               path->nodes[0] = left;
+               path->slots[1] -= 1;
+       } else {
+               btrfs_tree_unlock(left);
+               free_extent_buffer(left);
+               path->slots[0] -= push_items;
+       }
+       BUG_ON(path->slots[0] < 0);
+       return ret;
+out:
+       btrfs_tree_unlock(left);
+       free_extent_buffer(left);
+       return ret;
+}
+
+/*
+ * push some data in the path leaf to the left, trying to free up at
+ * least data_size bytes.  returns zero if the push worked, nonzero otherwise
+ *
+ * max_slot can put a limit on how far into the leaf we'll push items.  The
+ * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
+ * items
+ */
+static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
+                         *root, struct btrfs_path *path, int min_data_size,
+                         int data_size, int empty, u32 max_slot)
+{
+       struct extent_buffer *right = path->nodes[0];
+       struct extent_buffer *left;
+       int slot;
+       int free_space;
+       u32 right_nritems;
+       int ret = 0;
+
+       slot = path->slots[1];
+       if (slot == 0)
+               return 1;
+       if (!path->nodes[1])
+               return 1;
+
+       right_nritems = btrfs_header_nritems(right);
+       if (right_nritems == 0)
+               return 1;
+
+       btrfs_assert_tree_locked(path->nodes[1]);
+
+       left = read_node_slot(root, path->nodes[1], slot - 1);
+       if (left == NULL)
+               return 1;
+
+       btrfs_tree_lock(left);
+       btrfs_set_lock_blocking(left);
+
+       free_space = btrfs_leaf_free_space(root, left);
+       if (free_space < data_size) {
+               ret = 1;
+               goto out;
+       }
+
+       /* cow and double check */
+       ret = btrfs_cow_block(trans, root, left,
+                             path->nodes[1], slot - 1, &left);
+       if (ret) {
+               /* we hit -ENOSPC, but it isn't fatal here */
+               if (ret == -ENOSPC)
+                       ret = 1;
+               goto out;
+       }
+
+       free_space = btrfs_leaf_free_space(root, left);
+       if (free_space < data_size) {
+               ret = 1;
+               goto out;
+       }
+
+       return __push_leaf_left(trans, root, path, min_data_size,
+                              empty, left, free_space, right_nritems,
+                              max_slot);
+out:
+       btrfs_tree_unlock(left);
+       free_extent_buffer(left);
+       return ret;
+}
+
+/*
+ * split the path's leaf in two, making sure there is at least data_size
+ * available for the resulting leaf level of the path.
+ */
+static noinline void copy_for_split(struct btrfs_trans_handle *trans,
+                                   struct btrfs_root *root,
+                                   struct btrfs_path *path,
+                                   struct extent_buffer *l,
+                                   struct extent_buffer *right,
+                                   int slot, int mid, int nritems)
+{
+       int data_copy_size;
+       int rt_data_off;
+       int i;
+       struct btrfs_disk_key disk_key;
+       struct btrfs_map_token token;
+
+       btrfs_init_map_token(&token);
+
+       nritems = nritems - mid;
+       btrfs_set_header_nritems(right, nritems);
+       data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
+
+       copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
+                          btrfs_item_nr_offset(mid),
+                          nritems * sizeof(struct btrfs_item));
+
+       copy_extent_buffer(right, l,
+                    btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
+                    data_copy_size, btrfs_leaf_data(l) +
+                    leaf_data_end(root, l), data_copy_size);
+
+       rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
+                     btrfs_item_end_nr(l, mid);
+
+       for (i = 0; i < nritems; i++) {
+               struct btrfs_item *item = btrfs_item_nr(i);
+               u32 ioff;
+
+               ioff = btrfs_token_item_offset(right, item, &token);
+               btrfs_set_token_item_offset(right, item,
+                                           ioff + rt_data_off, &token);
+       }
+
+       btrfs_set_header_nritems(l, mid);
+       btrfs_item_key(right, &disk_key, 0);
+       insert_ptr(trans, root, path, &disk_key, right->start,
+                  path->slots[1] + 1, 1);
+
+       btrfs_mark_buffer_dirty(right);
+       btrfs_mark_buffer_dirty(l);
+       BUG_ON(path->slots[0] != slot);
+
+       if (mid <= slot) {
+               btrfs_tree_unlock(path->nodes[0]);
+               free_extent_buffer(path->nodes[0]);
+               path->nodes[0] = right;
+               path->slots[0] -= mid;
+               path->slots[1] += 1;
+       } else {
+               btrfs_tree_unlock(right);
+               free_extent_buffer(right);
+       }
+
+       BUG_ON(path->slots[0] < 0);
+}
+
+/*
+ * double splits happen when we need to insert a big item in the middle
+ * of a leaf.  A double split can leave us with 3 mostly empty leaves:
+ * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
+ *          A                 B                 C
+ *
+ * We avoid this by trying to push the items on either side of our target
+ * into the adjacent leaves.  If all goes well we can avoid the double split
+ * completely.
+ */
+static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
+                                         struct btrfs_root *root,
+                                         struct btrfs_path *path,
+                                         int data_size)
+{
+       int ret;
+       int progress = 0;
+       int slot;
+       u32 nritems;
+       int space_needed = data_size;
+
+       slot = path->slots[0];
+       if (slot < btrfs_header_nritems(path->nodes[0]))
+               space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
+
+       /*
+        * try to push all the items after our slot into the
+        * right leaf
+        */
+       ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
+       if (ret < 0)
+               return ret;
+
+       if (ret == 0)
+               progress++;
+
+       nritems = btrfs_header_nritems(path->nodes[0]);
+       /*
+        * our goal is to get our slot at the start or end of a leaf.  If
+        * we've done so we're done
+        */
+       if (path->slots[0] == 0 || path->slots[0] == nritems)
+               return 0;
+
+       if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
+               return 0;
+
+       /* try to push all the items before our slot into the next leaf */
+       slot = path->slots[0];
+       ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
+       if (ret < 0)
+               return ret;
+
+       if (ret == 0)
+               progress++;
+
+       if (progress)
+               return 0;
+       return 1;
+}
+
+/*
+ * split the path's leaf in two, making sure there is at least data_size
+ * available for the resulting leaf level of the path.
+ *
+ * returns 0 if all went well and < 0 on failure.
+ */
+static noinline int split_leaf(struct btrfs_trans_handle *trans,
+                              struct btrfs_root *root,
+                              struct btrfs_key *ins_key,
+                              struct btrfs_path *path, int data_size,
+                              int extend)
+{
+       struct btrfs_disk_key disk_key;
+       struct extent_buffer *l;
+       u32 nritems;
+       int mid;
+       int slot;
+       struct extent_buffer *right;
+       struct btrfs_fs_info *fs_info = root->fs_info;
+       int ret = 0;
+       int wret;
+       int split;
+       int num_doubles = 0;
+       int tried_avoid_double = 0;
+
+       l = path->nodes[0];
+       slot = path->slots[0];
+       if (extend && data_size + btrfs_item_size_nr(l, slot) +
+           sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
+               return -EOVERFLOW;
+
+       /* first try to make some room by pushing left and right */
+       if (data_size && path->nodes[1]) {
+               int space_needed = data_size;
+
+               if (slot < btrfs_header_nritems(l))
+                       space_needed -= btrfs_leaf_free_space(root, l);
+
+               wret = push_leaf_right(trans, root, path, space_needed,
+                                      space_needed, 0, 0);
+               if (wret < 0)
+                       return wret;
+               if (wret) {
+                       wret = push_leaf_left(trans, root, path, space_needed,
+                                             space_needed, 0, (u32)-1);
+                       if (wret < 0)
+                               return wret;
+               }
+               l = path->nodes[0];
+
+               /* did the pushes work? */
+               if (btrfs_leaf_free_space(root, l) >= data_size)
+                       return 0;
+       }
+
+       if (!path->nodes[1]) {
+               ret = insert_new_root(trans, root, path, 1);
+               if (ret)
+                       return ret;
+       }
+again:
+       split = 1;
+       l = path->nodes[0];
+       slot = path->slots[0];
+       nritems = btrfs_header_nritems(l);
+       mid = (nritems + 1) / 2;
+
+       if (mid <= slot) {
+               if (nritems == 1 ||
+                   leaf_space_used(l, mid, nritems - mid) + data_size >
+                       BTRFS_LEAF_DATA_SIZE(root)) {
+                       if (slot >= nritems) {
+                               split = 0;
+                       } else {
+                               mid = slot;
+                               if (mid != nritems &&
+                                   leaf_space_used(l, mid, nritems - mid) +
+                                   data_size > BTRFS_LEAF_DATA_SIZE(root)) {
+                                       if (data_size && !tried_avoid_double)
+                                               goto push_for_double;
+                                       split = 2;
+                               }
+                       }
+               }
+       } else {
+               if (leaf_space_used(l, 0, mid) + data_size >
+                       BTRFS_LEAF_DATA_SIZE(root)) {
+                       if (!extend && data_size && slot == 0) {
+                               split = 0;
+                       } else if ((extend || !data_size) && slot == 0) {
+                               mid = 1;
+                       } else {
+                               mid = slot;
+                               if (mid != nritems &&
+                                   leaf_space_used(l, mid, nritems - mid) +
+                                   data_size > BTRFS_LEAF_DATA_SIZE(root)) {
+                                       if (data_size && !tried_avoid_double)
+                                               goto push_for_double;
+                                       split = 2;
+                               }
+                       }
+               }
+       }
+
+       if (split == 0)
+               btrfs_cpu_key_to_disk(&disk_key, ins_key);
+       else
+               btrfs_item_key(l, &disk_key, mid);
+
+       right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
+                       &disk_key, 0, l->start, 0);
+       if (IS_ERR(right))
+               return PTR_ERR(right);
+
+       root_add_used(root, root->nodesize);
+
+       memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
+       btrfs_set_header_bytenr(right, right->start);
+       btrfs_set_header_generation(right, trans->transid);
+       btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
+       btrfs_set_header_owner(right, root->root_key.objectid);
+       btrfs_set_header_level(right, 0);
+       write_extent_buffer(right, fs_info->fsid,
+                           btrfs_header_fsid(), BTRFS_FSID_SIZE);
+
+       write_extent_buffer(right, fs_info->chunk_tree_uuid,
+                           btrfs_header_chunk_tree_uuid(right),
+                           BTRFS_UUID_SIZE);
+
+       if (split == 0) {
+               if (mid <= slot) {
+                       btrfs_set_header_nritems(right, 0);
+                       insert_ptr(trans, root, path, &disk_key, right->start,
+                                  path->slots[1] + 1, 1);
+                       btrfs_tree_unlock(path->nodes[0]);
+                       free_extent_buffer(path->nodes[0]);
+                       path->nodes[0] = right;
+                       path->slots[0] = 0;
+                       path->slots[1] += 1;
+               } else {
+                       btrfs_set_header_nritems(right, 0);
+                       insert_ptr(trans, root, path, &disk_key, right->start,
+                                         path->slots[1], 1);
+                       btrfs_tree_unlock(path->nodes[0]);
+                       free_extent_buffer(path->nodes[0]);
+                       path->nodes[0] = right;
+                       path->slots[0] = 0;
+                       if (path->slots[1] == 0)
+                               fixup_low_keys(fs_info, path, &disk_key, 1);
+               }
+               btrfs_mark_buffer_dirty(right);
+               return ret;
+       }
+
+       copy_for_split(trans, root, path, l, right, slot, mid, nritems);
+
+       if (split == 2) {
+               BUG_ON(num_doubles != 0);
+               num_doubles++;
+               goto again;
+       }
+
+       return 0;
+
+push_for_double:
+       push_for_double_split(trans, root, path, data_size);
+       tried_avoid_double = 1;
+       if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
+               return 0;
+       goto again;
+}
+
+static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
+                                        struct btrfs_root *root,
+                                        struct btrfs_path *path, int ins_len)
+{
+       struct btrfs_key key;
+       struct extent_buffer *leaf;
+       struct btrfs_file_extent_item *fi;
+       u64 extent_len = 0;
+       u32 item_size;
+       int ret;
+
+       leaf = path->nodes[0];
+       btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+       BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
+              key.type != BTRFS_EXTENT_CSUM_KEY);
+
+       if (btrfs_leaf_free_space(root, leaf) >= ins_len)
+               return 0;
+
+       item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+       if (key.type == BTRFS_EXTENT_DATA_KEY) {
+               fi = btrfs_item_ptr(leaf, path->slots[0],
+                                   struct btrfs_file_extent_item);
+               extent_len = btrfs_file_extent_num_bytes(leaf, fi);
+       }
+       btrfs_release_path(path);
+
+       path->keep_locks = 1;
+       path->search_for_split = 1;
+       ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+       path->search_for_split = 0;
+       if (ret > 0)
+               ret = -EAGAIN;
+       if (ret < 0)
+               goto err;
+
+       ret = -EAGAIN;
+       leaf = path->nodes[0];
+       /* if our item isn't there, return now */
+       if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
+               goto err;
+
+       /* the leaf has  changed, it now has room.  return now */
+       if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
+               goto err;
+
+       if (key.type == BTRFS_EXTENT_DATA_KEY) {
+               fi = btrfs_item_ptr(leaf, path->slots[0],
+                                   struct btrfs_file_extent_item);
+               if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
+                       goto err;
+       }
+
+       btrfs_set_path_blocking(path);
+       ret = split_leaf(trans, root, &key, path, ins_len, 1);
+       if (ret)
+               goto err;
+
+       path->keep_locks = 0;
+       btrfs_unlock_up_safe(path, 1);
+       return 0;
+err:
+       path->keep_locks = 0;
+       return ret;
+}
+
+static noinline int split_item(struct btrfs_trans_handle *trans,
+                              struct btrfs_root *root,
+                              struct btrfs_path *path,
+                              struct btrfs_key *new_key,
+                              unsigned long split_offset)
+{
+       struct extent_buffer *leaf;
+       struct btrfs_item *item;
+       struct btrfs_item *new_item;
+       int slot;
+       char *buf;
+       u32 nritems;
+       u32 item_size;
+       u32 orig_offset;
+       struct btrfs_disk_key disk_key;
+
+       leaf = path->nodes[0];
+       BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
+
+       btrfs_set_path_blocking(path);
+
+       item = btrfs_item_nr(path->slots[0]);
+       orig_offset = btrfs_item_offset(leaf, item);
+       item_size = btrfs_item_size(leaf, item);
+
+       buf = kmalloc(item_size, GFP_NOFS);
+       if (!buf)
+               return -ENOMEM;
+
+       read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
+                           path->slots[0]), item_size);
+
+       slot = path->slots[0] + 1;
+       nritems = btrfs_header_nritems(leaf);
+       if (slot != nritems) {
+               /* shift the items */
+               memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
+                               btrfs_item_nr_offset(slot),
+                               (nritems - slot) * sizeof(struct btrfs_item));
+       }
+
+       btrfs_cpu_key_to_disk(&disk_key, new_key);
+       btrfs_set_item_key(leaf, &disk_key, slot);
+
+       new_item = btrfs_item_nr(slot);
+
+       btrfs_set_item_offset(leaf, new_item, orig_offset);
+       btrfs_set_item_size(leaf, new_item, item_size - split_offset);
+
+       btrfs_set_item_offset(leaf, item,
+                             orig_offset + item_size - split_offset);
+       btrfs_set_item_size(leaf, item, split_offset);
+
+       btrfs_set_header_nritems(leaf, nritems + 1);
+
+       /* write the data for the start of the original item */
+       write_extent_buffer(leaf, buf,
+                           btrfs_item_ptr_offset(leaf, path->slots[0]),
+                           split_offset);
+
+       /* write the data for the new item */
+       write_extent_buffer(leaf, buf + split_offset,
+                           btrfs_item_ptr_offset(leaf, slot),
+                           item_size - split_offset);
+       btrfs_mark_buffer_dirty(leaf);
+
+       BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
+       kfree(buf);
+       return 0;
+}
+
+/*
+ * This function splits a single item into two items,
+ * giving 'new_key' to the new item and splitting the
+ * old one at split_offset (from the start of the item).
+ *
+ * The path may be released by this operation.  After
+ * the split, the path is pointing to the old item.  The
+ * new item is going to be in the same node as the old one.
+ *
+ * Note, the item being split must be smaller enough to live alone on
+ * a tree block with room for one extra struct btrfs_item
+ *
+ * This allows us to split the item in place, keeping a lock on the
+ * leaf the entire time.
+ */
+int btrfs_split_item(struct btrfs_trans_handle *trans,
+                    struct btrfs_root *root,
+                    struct btrfs_path *path,
+                    struct btrfs_key *new_key,
+                    unsigned long split_offset)
+{
+       int ret;
+       ret = setup_leaf_for_split(trans, root, path,
+                                  sizeof(struct btrfs_item));
+       if (ret)
+               return ret;
+
+       ret = split_item(trans, root, path, new_key, split_offset);
+       return ret;
+}
+
+/*
+ * This function duplicate a item, giving 'new_key' to the new item.
+ * It guarantees both items live in the same tree leaf and the new item
+ * is contiguous with the original item.
+ *
+ * This allows us to split file extent in place, keeping a lock on the
+ * leaf the entire time.
+ */
+int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
+                        struct btrfs_root *root,
+                        struct btrfs_path *path,
+                        struct btrfs_key *new_key)
+{
+       struct extent_buffer *leaf;
+       int ret;
+       u32 item_size;
+
+       leaf = path->nodes[0];
+       item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+       ret = setup_leaf_for_split(trans, root, path,
+                                  item_size + sizeof(struct btrfs_item));
+       if (ret)
+               return ret;
+
+       path->slots[0]++;
+       setup_items_for_insert(root, path, new_key, &item_size,
+                              item_size, item_size +
+                              sizeof(struct btrfs_item), 1);
+       leaf = path->nodes[0];
+       memcpy_extent_buffer(leaf,
+                            btrfs_item_ptr_offset(leaf, path->slots[0]),
+                            btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
+                            item_size);
+       return 0;
+}
+
+/*
+ * make the item pointed to by the path smaller.  new_size indicates
+ * how small to make it, and from_end tells us if we just chop bytes
+ * off the end of the item or if we shift the item to chop bytes off
+ * the front.
+ */
+void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
+                        u32 new_size, int from_end)
+{
+       int slot;
+       struct extent_buffer *leaf;
+       struct btrfs_item *item;
+       u32 nritems;
+       unsigned int data_end;
+       unsigned int old_data_start;
+       unsigned int old_size;
+       unsigned int size_diff;
+       int i;
+       struct btrfs_map_token token;
+
+       btrfs_init_map_token(&token);
+
+       leaf = path->nodes[0];
+       slot = path->slots[0];
+
+       old_size = btrfs_item_size_nr(leaf, slot);
+       if (old_size == new_size)
+               return;
+
+       nritems = btrfs_header_nritems(leaf);
+       data_end = leaf_data_end(root, leaf);
+
+       old_data_start = btrfs_item_offset_nr(leaf, slot);
+
+       size_diff = old_size - new_size;
+
+       BUG_ON(slot < 0);
+       BUG_ON(slot >= nritems);
+
+       /*
+        * item0..itemN ... dataN.offset..dataN.size .. data0.size
+        */
+       /* first correct the data pointers */
+       for (i = slot; i < nritems; i++) {
+               u32 ioff;
+               item = btrfs_item_nr(i);
+
+               ioff = btrfs_token_item_offset(leaf, item, &token);
+               btrfs_set_token_item_offset(leaf, item,
+                                           ioff + size_diff, &token);
+       }
+
+       /* shift the data */
+       if (from_end) {
+               memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+                             data_end + size_diff, btrfs_leaf_data(leaf) +
+                             data_end, old_data_start + new_size - data_end);
+       } else {
+               struct btrfs_disk_key disk_key;
+               u64 offset;
+
+               btrfs_item_key(leaf, &disk_key, slot);
+
+               if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
+                       unsigned long ptr;
+                       struct btrfs_file_extent_item *fi;
+
+                       fi = btrfs_item_ptr(leaf, slot,
+                                           struct btrfs_file_extent_item);
+                       fi = (struct btrfs_file_extent_item *)(
+                            (unsigned long)fi - size_diff);
+
+                       if (btrfs_file_extent_type(leaf, fi) ==
+                           BTRFS_FILE_EXTENT_INLINE) {
+                               ptr = btrfs_item_ptr_offset(leaf, slot);
+                               memmove_extent_buffer(leaf, ptr,
+                                     (unsigned long)fi,
+                                     BTRFS_FILE_EXTENT_INLINE_DATA_START);
+                       }
+               }
+
+               memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+                             data_end + size_diff, btrfs_leaf_data(leaf) +
+                             data_end, old_data_start - data_end);
+
+               offset = btrfs_disk_key_offset(&disk_key);
+               btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
+               btrfs_set_item_key(leaf, &disk_key, slot);
+               if (slot == 0)
+                       fixup_low_keys(root->fs_info, path, &disk_key, 1);
+       }
+
+       item = btrfs_item_nr(slot);
+       btrfs_set_item_size(leaf, item, new_size);
+       btrfs_mark_buffer_dirty(leaf);
+
+       if (btrfs_leaf_free_space(root, leaf) < 0) {
+               btrfs_print_leaf(root, leaf);
+               BUG();
+       }
+}
+
+/*
+ * make the item pointed to by the path bigger, data_size is the added size.
+ */
+void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
+                      u32 data_size)
+{
+       int slot;
+       struct extent_buffer *leaf;
+       struct btrfs_item *item;
+       u32 nritems;
+       unsigned int data_end;
+       unsigned int old_data;
+       unsigned int old_size;
+       int i;
+       struct btrfs_map_token token;
+
+       btrfs_init_map_token(&token);
+
+       leaf = path->nodes[0];
+
+       nritems = btrfs_header_nritems(leaf);
+       data_end = leaf_data_end(root, leaf);
+
+       if (btrfs_leaf_free_space(root, leaf) < data_size) {
+               btrfs_print_leaf(root, leaf);
+               BUG();
+       }
+       slot = path->slots[0];
+       old_data = btrfs_item_end_nr(leaf, slot);
+
+       BUG_ON(slot < 0);
+       if (slot >= nritems) {
+               btrfs_print_leaf(root, leaf);
+               btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
+                      slot, nritems);
+               BUG_ON(1);
+       }
+
+       /*
+        * item0..itemN ... dataN.offset..dataN.size .. data0.size
+        */
+       /* first correct the data pointers */
+       for (i = slot; i < nritems; i++) {
+               u32 ioff;
+               item = btrfs_item_nr(i);
+
+               ioff = btrfs_token_item_offset(leaf, item, &token);
+               btrfs_set_token_item_offset(leaf, item,
+                                           ioff - data_size, &token);
+       }
+
+       /* shift the data */
+       memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+                     data_end - data_size, btrfs_leaf_data(leaf) +
+                     data_end, old_data - data_end);
+
+       data_end = old_data;
+       old_size = btrfs_item_size_nr(leaf, slot);
+       item = btrfs_item_nr(slot);
+       btrfs_set_item_size(leaf, item, old_size + data_size);
+       btrfs_mark_buffer_dirty(leaf);
+
+       if (btrfs_leaf_free_space(root, leaf) < 0) {
+               btrfs_print_leaf(root, leaf);
+               BUG();
+       }
+}
+
+/*
+ * this is a helper for btrfs_insert_empty_items, the main goal here is
+ * to save stack depth by doing the bulk of the work in a function
+ * that doesn't call btrfs_search_slot
+ */
+void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
+                           struct btrfs_key *cpu_key, u32 *data_size,
+                           u32 total_data, u32 total_size, int nr)
+{
+       struct btrfs_item *item;
+       int i;
+       u32 nritems;
+       unsigned int data_end;
+       struct btrfs_disk_key disk_key;
+       struct extent_buffer *leaf;
+       int slot;
+       struct btrfs_map_token token;
+
+       if (path->slots[0] == 0) {
+               btrfs_cpu_key_to_disk(&disk_key, cpu_key);
+               fixup_low_keys(root->fs_info, path, &disk_key, 1);
+       }
+       btrfs_unlock_up_safe(path, 1);
+
+       btrfs_init_map_token(&token);
+
+       leaf = path->nodes[0];
+       slot = path->slots[0];
+
+       nritems = btrfs_header_nritems(leaf);
+       data_end = leaf_data_end(root, leaf);
+
+       if (btrfs_leaf_free_space(root, leaf) < total_size) {
+               btrfs_print_leaf(root, leaf);
+               btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
+                      total_size, btrfs_leaf_free_space(root, leaf));
+               BUG();
+       }
+
+       if (slot != nritems) {
+               unsigned int old_data = btrfs_item_end_nr(leaf, slot);
+
+               if (old_data < data_end) {
+                       btrfs_print_leaf(root, leaf);
+                       btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
+                              slot, old_data, data_end);
+                       BUG_ON(1);
+               }
+               /*
+                * item0..itemN ... dataN.offset..dataN.size .. data0.size
+                */
+               /* first correct the data pointers */
+               for (i = slot; i < nritems; i++) {
+                       u32 ioff;
+
+                       item = btrfs_item_nr( i);
+                       ioff = btrfs_token_item_offset(leaf, item, &token);
+                       btrfs_set_token_item_offset(leaf, item,
+                                                   ioff - total_data, &token);
+               }
+               /* shift the items */
+               memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
+                             btrfs_item_nr_offset(slot),
+                             (nritems - slot) * sizeof(struct btrfs_item));
+
+               /* shift the data */
+               memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+                             data_end - total_data, btrfs_leaf_data(leaf) +
+                             data_end, old_data - data_end);
+               data_end = old_data;
+       }
+
+       /* setup the item for the new data */
+       for (i = 0; i < nr; i++) {
+               btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
+               btrfs_set_item_key(leaf, &disk_key, slot + i);
+               item = btrfs_item_nr(slot + i);
+               btrfs_set_token_item_offset(leaf, item,
+                                           data_end - data_size[i], &token);
+               data_end -= data_size[i];
+               btrfs_set_token_item_size(leaf, item, data_size[i], &token);
+       }
+
+       btrfs_set_header_nritems(leaf, nritems + nr);
+       btrfs_mark_buffer_dirty(leaf);
+
+       if (btrfs_leaf_free_space(root, leaf) < 0) {
+               btrfs_print_leaf(root, leaf);
+               BUG();
+       }
+}
+
+/*
+ * Given a key and some data, insert items into the tree.
+ * This does all the path init required, making room in the tree if needed.
+ */
+int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
+                           struct btrfs_root *root,
+                           struct btrfs_path *path,
+                           struct btrfs_key *cpu_key, u32 *data_size,
+                           int nr)
+{
+       int ret = 0;
+       int slot;
+       int i;
+       u32 total_size = 0;
+       u32 total_data = 0;
+
+       for (i = 0; i < nr; i++)
+               total_data += data_size[i];
+
+       total_size = total_data + (nr * sizeof(struct btrfs_item));
+       ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
+       if (ret == 0)
+               return -EEXIST;
+       if (ret < 0)
+               return ret;
+
+       slot = path->slots[0];
+       BUG_ON(slot < 0);
+
+       setup_items_for_insert(root, path, cpu_key, data_size,
+                              total_data, total_size, nr);
+       return 0;
+}
+
+/*
+ * Given a key and some data, insert an item into the tree.
+ * This does all the path init required, making room in the tree if needed.
+ */
+int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
+                     *root, struct btrfs_key *cpu_key, void *data, u32
+                     data_size)
+{
+       int ret = 0;
+       struct btrfs_path *path;
+       struct extent_buffer *leaf;
+       unsigned long ptr;
+
+       path = btrfs_alloc_path();
+       if (!path)
+               return -ENOMEM;
+       ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
+       if (!ret) {
+               leaf = path->nodes[0];
+               ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
+               write_extent_buffer(leaf, data, ptr, data_size);
+               btrfs_mark_buffer_dirty(leaf);
+       }
+       btrfs_free_path(path);
+       return ret;
+}
+
+/*
+ * delete the pointer from a given node.
+ *
+ * the tree should have been previously balanced so the deletion does not
+ * empty a node.
+ */
+static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
+                   int level, int slot)
+{
+       struct extent_buffer *parent = path->nodes[level];
+       u32 nritems;
+       int ret;
+
+       nritems = btrfs_header_nritems(parent);
+       if (slot != nritems - 1) {
+               if (level)
+                       tree_mod_log_eb_move(root->fs_info, parent, slot,
+                                            slot + 1, nritems - slot - 1);
+               memmove_extent_buffer(parent,
+                             btrfs_node_key_ptr_offset(slot),
+                             btrfs_node_key_ptr_offset(slot + 1),
+                             sizeof(struct btrfs_key_ptr) *
+                             (nritems - slot - 1));
+       } else if (level) {
+               ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
+                                             MOD_LOG_KEY_REMOVE, GFP_NOFS);
+               BUG_ON(ret < 0);
+       }
+
+       nritems--;
+       btrfs_set_header_nritems(parent, nritems);
+       if (nritems == 0 && parent == root->node) {
+               BUG_ON(btrfs_header_level(root->node) != 1);
+               /* just turn the root into a leaf and break */
+               btrfs_set_header_level(root->node, 0);
+       } else if (slot == 0) {
+               struct btrfs_disk_key disk_key;
+
+               btrfs_node_key(parent, &disk_key, 0);
+               fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
+       }
+       btrfs_mark_buffer_dirty(parent);
+}
+
+/*
+ * a helper function to delete the leaf pointed to by path->slots[1] and
+ * path->nodes[1].
+ *
+ * This deletes the pointer in path->nodes[1] and frees the leaf
+ * block extent.  zero is returned if it all worked out, < 0 otherwise.
+ *
+ * The path must have already been setup for deleting the leaf, including
+ * all the proper balancing.  path->nodes[1] must be locked.
+ */
+static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
+                                   struct btrfs_root *root,
+                                   struct btrfs_path *path,
+                                   struct extent_buffer *leaf)
+{
+       WARN_ON(btrfs_header_generation(leaf) != trans->transid);
+       del_ptr(root, path, 1, path->slots[1]);
+
+       /*
+        * btrfs_free_extent is expensive, we want to make sure we
+        * aren't holding any locks when we call it
+        */
+       btrfs_unlock_up_safe(path, 0);
+
+       root_sub_used(root, leaf->len);
+
+       extent_buffer_get(leaf);
+       btrfs_free_tree_block(trans, root, leaf, 0, 1);
+       free_extent_buffer_stale(leaf);
+}
+/*
+ * delete the item at the leaf level in path.  If that empties
+ * the leaf, remove it from the tree
+ */
+int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+                   struct btrfs_path *path, int slot, int nr)
+{
+       struct extent_buffer *leaf;
+       struct btrfs_item *item;
+       int last_off;
+       int dsize = 0;
+       int ret = 0;
+       int wret;
+       int i;
+       u32 nritems;
+       struct btrfs_map_token token;
+
+       btrfs_init_map_token(&token);
+
+       leaf = path->nodes[0];
+       last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
+
+       for (i = 0; i < nr; i++)
+               dsize += btrfs_item_size_nr(leaf, slot + i);
+
+       nritems = btrfs_header_nritems(leaf);
+
+       if (slot + nr != nritems) {
+               int data_end = leaf_data_end(root, leaf);
+
+               memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+                             data_end + dsize,
+                             btrfs_leaf_data(leaf) + data_end,
+                             last_off - data_end);
+
+               for (i = slot + nr; i < nritems; i++) {
+                       u32 ioff;
+
+                       item = btrfs_item_nr(i);
+                       ioff = btrfs_token_item_offset(leaf, item, &token);
+                       btrfs_set_token_item_offset(leaf, item,
+                                                   ioff + dsize, &token);
+               }
+
+               memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
+                             btrfs_item_nr_offset(slot + nr),
+                             sizeof(struct btrfs_item) *
+                             (nritems - slot - nr));
+       }
+       btrfs_set_header_nritems(leaf, nritems - nr);
+       nritems -= nr;
+
+       /* delete the leaf if we've emptied it */
+       if (nritems == 0) {
+               if (leaf == root->node) {
+                       btrfs_set_header_level(leaf, 0);
+               } else {
+                       btrfs_set_path_blocking(path);
+                       clean_tree_block(trans, root->fs_info, leaf);
+                       btrfs_del_leaf(trans, root, path, leaf);
+               }
+       } else {
+               int used = leaf_space_used(leaf, 0, nritems);
+               if (slot == 0) {
+                       struct btrfs_disk_key disk_key;
+
+                       btrfs_item_key(leaf, &disk_key, 0);
+                       fixup_low_keys(root->fs_info, path, &disk_key, 1);
+               }
+
+               /* delete the leaf if it is mostly empty */
+               if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
+                       /* push_leaf_left fixes the path.
+                        * make sure the path still points to our leaf
+                        * for possible call to del_ptr below
+                        */
+                       slot = path->slots[1];
+                       extent_buffer_get(leaf);
+
+                       btrfs_set_path_blocking(path);
+                       wret = push_leaf_left(trans, root, path, 1, 1,
+                                             1, (u32)-1);
+                       if (wret < 0 && wret != -ENOSPC)
+                               ret = wret;
+
+                       if (path->nodes[0] == leaf &&
+                           btrfs_header_nritems(leaf)) {
+                               wret = push_leaf_right(trans, root, path, 1,
+                                                      1, 1, 0);
+                               if (wret < 0 && wret != -ENOSPC)
+                                       ret = wret;
+                       }
+
+                       if (btrfs_header_nritems(leaf) == 0) {
+                               path->slots[1] = slot;
+                               btrfs_del_leaf(trans, root, path, leaf);
+                               free_extent_buffer(leaf);
+                               ret = 0;
+                       } else {
+                               /* if we're still in the path, make sure
+                                * we're dirty.  Otherwise, one of the
+                                * push_leaf functions must have already
+                                * dirtied this buffer
+                                */
+                               if (path->nodes[0] == leaf)
+                                       btrfs_mark_buffer_dirty(leaf);
+                               free_extent_buffer(leaf);
+                       }
+               } else {
+                       btrfs_mark_buffer_dirty(leaf);
+               }
+       }
+       return ret;
+}
+
+/*
+ * search the tree again to find a leaf with lesser keys
+ * returns 0 if it found something or 1 if there are no lesser leaves.
+ * returns < 0 on io errors.
+ *
+ * This may release the path, and so you may lose any locks held at the
+ * time you call it.
+ */
+int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
+{
+       struct btrfs_key key;
+       struct btrfs_disk_key found_key;
+       int ret;
+
+       btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
+
+       if (key.offset > 0) {
+               key.offset--;
+       } else if (key.type > 0) {
+               key.type--;
+               key.offset = (u64)-1;
+       } else if (key.objectid > 0) {
+               key.objectid--;
+               key.type = (u8)-1;
+               key.offset = (u64)-1;
+       } else {
+               return 1;
+       }
+
+       btrfs_release_path(path);
+       ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+       if (ret < 0)
+               return ret;
+       btrfs_item_key(path->nodes[0], &found_key, 0);
+       ret = comp_keys(&found_key, &key);
+       /*
+        * We might have had an item with the previous key in the tree right
+        * before we released our path. And after we released our path, that
+        * item might have been pushed to the first slot (0) of the leaf we
+        * were holding due to a tree balance. Alternatively, an item with the
+        * previous key can exist as the only element of a leaf (big fat item).
+        * Therefore account for these 2 cases, so that our callers (like
+        * btrfs_previous_item) don't miss an existing item with a key matching
+        * the previous key we computed above.
+        */
+       if (ret <= 0)
+               return 0;
+       return 1;
+}
+
+/*
+ * A helper function to walk down the tree starting at min_key, and looking
+ * for nodes or leaves that are have a minimum transaction id.
+ * This is used by the btree defrag code, and tree logging
+ *
+ * This does not cow, but it does stuff the starting key it finds back
+ * into min_key, so you can call btrfs_search_slot with cow=1 on the
+ * key and get a writable path.
+ *
+ * This does lock as it descends, and path->keep_locks should be set
+ * to 1 by the caller.
+ *
+ * This honors path->lowest_level to prevent descent past a given level
+ * of the tree.
+ *
+ * min_trans indicates the oldest transaction that you are interested
+ * in walking through.  Any nodes or leaves older than min_trans are
+ * skipped over (without reading them).
+ *
+ * returns zero if something useful was found, < 0 on error and 1 if there
+ * was nothing in the tree that matched the search criteria.
+ */
+int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
+                        struct btrfs_path *path,
+                        u64 min_trans)
+{
+       struct extent_buffer *cur;
+       struct btrfs_key found_key;
+       int slot;
+       int sret;
+       u32 nritems;
+       int level;
+       int ret = 1;
+       int keep_locks = path->keep_locks;
+
+       path->keep_locks = 1;
+again:
+       cur = btrfs_read_lock_root_node(root);
+       level = btrfs_header_level(cur);
+       WARN_ON(path->nodes[level]);
+       path->nodes[level] = cur;
+       path->locks[level] = BTRFS_READ_LOCK;
+
+       if (btrfs_header_generation(cur) < min_trans) {
+               ret = 1;
+               goto out;
+       }
+       while (1) {
+               nritems = btrfs_header_nritems(cur);
+               level = btrfs_header_level(cur);
+               sret = bin_search(cur, min_key, level, &slot);
+
+               /* at the lowest level, we're done, setup the path and exit */
+               if (level == path->lowest_level) {
+                       if (slot >= nritems)
+                               goto find_next_key;
+                       ret = 0;
+                       path->slots[level] = slot;
+                       btrfs_item_key_to_cpu(cur, &found_key, slot);
+                       goto out;
+               }
+               if (sret && slot > 0)
+                       slot--;
+               /*
+                * check this node pointer against the min_trans parameters.
+                * If it is too old, old, skip to the next one.
+                */
+               while (slot < nritems) {
+                       u64 gen;
+
+                       gen = btrfs_node_ptr_generation(cur, slot);
+                       if (gen < min_trans) {
+                               slot++;
+                               continue;
+                       }
+                       break;
+               }
+find_next_key:
+               /*
+                * we didn't find a candidate key in this node, walk forward
+                * and find another one
+                */
+               if (slot >= nritems) {
+                       path->slots[level] = slot;
+                       btrfs_set_path_blocking(path);
+                       sret = btrfs_find_next_key(root, path, min_key, level,
+                                                 min_trans);
+                       if (sret == 0) {
+                               btrfs_release_path(path);
+                               goto again;
+                       } else {
+                               goto out;
+                       }
+               }
+               /* save our key for returning back */
+               btrfs_node_key_to_cpu(cur, &found_key, slot);
+               path->slots[level] = slot;
+               if (level == path->lowest_level) {
+                       ret = 0;
+                       goto out;
+               }
+               btrfs_set_path_blocking(path);
+               cur = read_node_slot(root, cur, slot);
+               BUG_ON(!cur); /* -ENOMEM */
+
+               btrfs_tree_read_lock(cur);
+
+               path->locks[level - 1] = BTRFS_READ_LOCK;
+               path->nodes[level - 1] = cur;
+               unlock_up(path, level, 1, 0, NULL);
+               btrfs_clear_path_blocking(path, NULL, 0);
+       }
+out:
+       path->keep_locks = keep_locks;
+       if (ret == 0) {
+               btrfs_unlock_up_safe(path, path->lowest_level + 1);
+               btrfs_set_path_blocking(path);
+               memcpy(min_key, &found_key, sizeof(found_key));
+       }
+       return ret;
+}
+
+static void tree_move_down(struct btrfs_root *root,
+                          struct btrfs_path *path,
+                          int *level, int root_level)
+{
+       BUG_ON(*level == 0);
+       path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
+                                       path->slots[*level]);
+       path->slots[*level - 1] = 0;
+       (*level)--;
+}
+
+static int tree_move_next_or_upnext(struct btrfs_root *root,
+                                   struct btrfs_path *path,
+                                   int *level, int root_level)
+{
+       int ret = 0;
+       int nritems;
+       nritems = btrfs_header_nritems(path->nodes[*level]);
+
+       path->slots[*level]++;
+
+       while (path->slots[*level] >= nritems) {
+               if (*level == root_level)
+                       return -1;
+
+               /* move upnext */
+               path->slots[*level] = 0;
+               free_extent_buffer(path->nodes[*level]);
+               path->nodes[*level] = NULL;
+               (*level)++;
+               path->slots[*level]++;
+
+               nritems = btrfs_header_nritems(path->nodes[*level]);
+               ret = 1;
+       }
+       return ret;
+}
+
+/*
+ * Returns 1 if it had to move up and next. 0 is returned if it moved only next
+ * or down.
+ */
+static int tree_advance(struct btrfs_root *root,
+                       struct btrfs_path *path,
+                       int *level, int root_level,
+                       int allow_down,
+                       struct btrfs_key *key)
+{
+       int ret;
+
+       if (*level == 0 || !allow_down) {
+               ret = tree_move_next_or_upnext(root, path, level, root_level);
+       } else {
+               tree_move_down(root, path, level, root_level);
+               ret = 0;
+       }
+       if (ret >= 0) {
+               if (*level == 0)
+                       btrfs_item_key_to_cpu(path->nodes[*level], key,
+                                       path->slots[*level]);
+               else
+                       btrfs_node_key_to_cpu(path->nodes[*level], key,
+                                       path->slots[*level]);
+       }
+       return ret;
+}
+
+static int tree_compare_item(struct btrfs_root *left_root,
+                            struct btrfs_path *left_path,
+                            struct btrfs_path *right_path,
+                            char *tmp_buf)
+{
+       int cmp;
+       int len1, len2;
+       unsigned long off1, off2;
+
+       len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
+       len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
+       if (len1 != len2)
+               return 1;
+
+       off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
+       off2 = btrfs_item_ptr_offset(right_path->nodes[0],
+                               right_path->slots[0]);
+
+       read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
+
+       cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
+       if (cmp)
+               return 1;
+       return 0;
+}
+
+#define ADVANCE 1
+#define ADVANCE_ONLY_NEXT -1
+
+/*
+ * This function compares two trees and calls the provided callback for
+ * every changed/new/deleted item it finds.
+ * If shared tree blocks are encountered, whole subtrees are skipped, making
+ * the compare pretty fast on snapshotted subvolumes.
+ *
+ * This currently works on commit roots only. As commit roots are read only,
+ * we don't do any locking. The commit roots are protected with transactions.
+ * Transactions are ended and rejoined when a commit is tried in between.
+ *
+ * This function checks for modifications done to the trees while comparing.
+ * If it detects a change, it aborts immediately.
+ */
+int btrfs_compare_trees(struct btrfs_root *left_root,
+                       struct btrfs_root *right_root,
+                       btrfs_changed_cb_t changed_cb, void *ctx)
+{
+       int ret;
+       int cmp;
+       struct btrfs_path *left_path = NULL;
+       struct btrfs_path *right_path = NULL;
+       struct btrfs_key left_key;
+       struct btrfs_key right_key;
+       char *tmp_buf = NULL;
+       int left_root_level;
+       int right_root_level;
+       int left_level;
+       int right_level;
+       int left_end_reached;
+       int right_end_reached;
+       int advance_left;
+       int advance_right;
+       u64 left_blockptr;
+       u64 right_blockptr;
+       u64 left_gen;
+       u64 right_gen;
+
+       left_path = btrfs_alloc_path();
+       if (!left_path) {
+               ret = -ENOMEM;
+               goto out;
+       }
+       right_path = btrfs_alloc_path();
+       if (!right_path) {
+               ret = -ENOMEM;
+               goto out;
+       }
+
+       tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
+       if (!tmp_buf) {
+               ret = -ENOMEM;
+               goto out;
+       }
+
+       left_path->search_commit_root = 1;
+       left_path->skip_locking = 1;
+       right_path->search_commit_root = 1;
+       right_path->skip_locking = 1;
+
+       /*
+        * Strategy: Go to the first items of both trees. Then do
+        *
+        * If both trees are at level 0
+        *   Compare keys of current items
+        *     If left < right treat left item as new, advance left tree
+        *       and repeat
+        *     If left > right treat right item as deleted, advance right tree
+        *       and repeat
+        *     If left == right do deep compare of items, treat as changed if
+        *       needed, advance both trees and repeat
+        * If both trees are at the same level but not at level 0
+        *   Compare keys of current nodes/leafs
+        *     If left < right advance left tree and repeat
+        *     If left > right advance right tree and repeat
+        *     If left == right compare blockptrs of the next nodes/leafs
+        *       If they match advance both trees but stay at the same level
+        *         and repeat
+        *       If they don't match advance both trees while allowing to go
+        *         deeper and repeat
+        * If tree levels are different
+        *   Advance the tree that needs it and repeat
+        *
+        * Advancing a tree means:
+        *   If we are at level 0, try to go to the next slot. If that's not
+        *   possible, go one level up and repeat. Stop when we found a level
+        *   where we could go to the next slot. We may at this point be on a
+        *   node or a leaf.
+        *
+        *   If we are not at level 0 and not on shared tree blocks, go one
+        *   level deeper.
+        *
+        *   If we are not at level 0 and on shared tree blocks, go one slot to
+        *   the right if possible or go up and right.
+        */
+
+       down_read(&left_root->fs_info->commit_root_sem);
+       left_level = btrfs_header_level(left_root->commit_root);
+       left_root_level = left_level;
+       left_path->nodes[left_level] = left_root->commit_root;
+       extent_buffer_get(left_path->nodes[left_level]);
+
+       right_level = btrfs_header_level(right_root->commit_root);
+       right_root_level = right_level;
+       right_path->nodes[right_level] = right_root->commit_root;
+       extent_buffer_get(right_path->nodes[right_level]);
+       up_read(&left_root->fs_info->commit_root_sem);
+
+       if (left_level == 0)
+               btrfs_item_key_to_cpu(left_path->nodes[left_level],
+                               &left_key, left_path->slots[left_level]);
+       else
+               btrfs_node_key_to_cpu(left_path->nodes[left_level],
+                               &left_key, left_path->slots[left_level]);
+       if (right_level == 0)
+               btrfs_item_key_to_cpu(right_path->nodes[right_level],
+                               &right_key, right_path->slots[right_level]);
+       else
+               btrfs_node_key_to_cpu(right_path->nodes[right_level],
+                               &right_key, right_path->slots[right_level]);
+
+       left_end_reached = right_end_reached = 0;
+       advance_left = advance_right = 0;
+
+       while (1) {
+               if (advance_left && !left_end_reached) {
+                       ret = tree_advance(left_root, left_path, &left_level,
+                                       left_root_level,
+                                       advance_left != ADVANCE_ONLY_NEXT,
+                                       &left_key);
+                       if (ret < 0)
+                               left_end_reached = ADVANCE;
+                       advance_left = 0;
+               }
+               if (advance_right && !right_end_reached) {
+                       ret = tree_advance(right_root, right_path, &right_level,
+                                       right_root_level,
+                                       advance_right != ADVANCE_ONLY_NEXT,
+                                       &right_key);
+                       if (ret < 0)
+                               right_end_reached = ADVANCE;
+                       advance_right = 0;
+               }
+
+               if (left_end_reached && right_end_reached) {
+                       ret = 0;
+                       goto out;
+               } else if (left_end_reached) {
+                       if (right_level == 0) {
+                               ret = changed_cb(left_root, right_root,
+                                               left_path, right_path,
+                                               &right_key,
+                                               BTRFS_COMPARE_TREE_DELETED,
+                                               ctx);
+                               if (ret < 0)
+                                       goto out;
+                       }
+                       advance_right = ADVANCE;
+                       continue;
+               } else if (right_end_reached) {
+                       if (left_level == 0) {
+                               ret = changed_cb(left_root, right_root,
+                                               left_path, right_path,
+                                               &left_key,
+                                               BTRFS_COMPARE_TREE_NEW,
+                                               ctx);
+                               if (ret < 0)
+                                       goto out;
+                       }
+                       advance_left = ADVANCE;
+                       continue;
+               }
+
+               if (left_level == 0 && right_level == 0) {
+                       cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
+                       if (cmp < 0) {
+                               ret = changed_cb(left_root, right_root,
+                                               left_path, right_path,
+                                               &left_key,
+                                               BTRFS_COMPARE_TREE_NEW,
+                                               ctx);
+                               if (ret < 0)
+                                       goto out;
+                               advance_left = ADVANCE;
+                       } else if (cmp > 0) {
+                               ret = changed_cb(left_root, right_root,
+                                               left_path, right_path,
+                                               &right_key,
+                                               BTRFS_COMPARE_TREE_DELETED,
+                                               ctx);
+                               if (ret < 0)
+                                       goto out;
+                               advance_right = ADVANCE;
+                       } else {
+                               enum btrfs_compare_tree_result result;
+
+                               WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
+                               ret = tree_compare_item(left_root, left_path,
+                                               right_path, tmp_buf);
+                               if (ret)
+                                       result = BTRFS_COMPARE_TREE_CHANGED;
+                               else
+                                       result = BTRFS_COMPARE_TREE_SAME;
+                               ret = changed_cb(left_root, right_root,
+                                                left_path, right_path,
+                                                &left_key, result, ctx);
+                               if (ret < 0)
+                                       goto out;
+                               advance_left = ADVANCE;
+                               advance_right = ADVANCE;
+                       }
+               } else if (left_level == right_level) {
+                       cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
+                       if (cmp < 0) {
+                               advance_left = ADVANCE;
+                       } else if (cmp > 0) {
+                               advance_right = ADVANCE;
+                       } else {
+                               left_blockptr = btrfs_node_blockptr(
+                                               left_path->nodes[left_level],
+                                               left_path->slots[left_level]);
+                               right_blockptr = btrfs_node_blockptr(
+                                               right_path->nodes[right_level],
+                                               right_path->slots[right_level]);
+                               left_gen = btrfs_node_ptr_generation(
+                                               left_path->nodes[left_level],
+                                               left_path->slots[left_level]);
+                               right_gen = btrfs_node_ptr_generation(
+                                               right_path->nodes[right_level],
+                                               right_path->slots[right_level]);
+                               if (left_blockptr == right_blockptr &&
+                                   left_gen == right_gen) {
+                                       /*
+                                        * As we're on a shared block, don't
+                                        * allow to go deeper.
+                                        */
+                                       advance_left = ADVANCE_ONLY_NEXT;
+                                       advance_right = ADVANCE_ONLY_NEXT;
+                               } else {
+                                       advance_left = ADVANCE;
+                                       advance_right = ADVANCE;
+                               }
+                       }
+               } else if (left_level < right_level) {
+                       advance_right = ADVANCE;
+               } else {
+                       advance_left = ADVANCE;
+               }
+       }
+
+out:
+       btrfs_free_path(left_path);
+       btrfs_free_path(right_path);
+       kfree(tmp_buf);
+       return ret;
+}
+
+/*
+ * this is similar to btrfs_next_leaf, but does not try to preserve
+ * and fixup the path.  It looks for and returns the next key in the
+ * tree based on the current path and the min_trans parameters.
+ *
+ * 0 is returned if another key is found, < 0 if there are any errors
+ * and 1 is returned if there are no higher keys in the tree
+ *
+ * path->keep_locks should be set to 1 on the search made before
+ * calling this function.
+ */
+int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
+                       struct btrfs_key *key, int level, u64 min_trans)
+{
+       int slot;
+       struct extent_buffer *c;
+
+       WARN_ON(!path->keep_locks);
+       while (level < BTRFS_MAX_LEVEL) {
+               if (!path->nodes[level])
+                       return 1;
+
+               slot = path->slots[level] + 1;
+               c = path->nodes[level];
+next:
+               if (slot >= btrfs_header_nritems(c)) {
+                       int ret;
+                       int orig_lowest;
+                       struct btrfs_key cur_key;
+                       if (level + 1 >= BTRFS_MAX_LEVEL ||
+                           !path->nodes[level + 1])
+                               return 1;
+
+                       if (path->locks[level + 1]) {
+                               level++;
+                               continue;
+                       }
+
+                       slot = btrfs_header_nritems(c) - 1;
+                       if (level == 0)
+                               btrfs_item_key_to_cpu(c, &cur_key, slot);
+                       else
+                               btrfs_node_key_to_cpu(c, &cur_key, slot);
+
+                       orig_lowest = path->lowest_level;
+                       btrfs_release_path(path);
+                       path->lowest_level = level;
+                       ret = btrfs_search_slot(NULL, root, &cur_key, path,
+                                               0, 0);
+                       path->lowest_level = orig_lowest;
+                       if (ret < 0)
+                               return ret;
+
+                       c = path->nodes[level];
+                       slot = path->slots[level];
+                       if (ret == 0)
+                               slot++;
+                       goto next;
+               }
+
+               if (level == 0)
+                       btrfs_item_key_to_cpu(c, key, slot);
+               else {
+                       u64 gen = btrfs_node_ptr_generation(c, slot);
+
+                       if (gen < min_trans) {
+                               slot++;
+                               goto next;
+                       }
+                       btrfs_node_key_to_cpu(c, key, slot);
+               }
+               return 0;
+       }
+       return 1;
+}
+
+/*
+ * search the tree again to find a leaf with greater keys
+ * returns 0 if it found something or 1 if there are no greater leaves.
+ * returns < 0 on io errors.
+ */
+int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
+{
+       return btrfs_next_old_leaf(root, path, 0);
+}
+
+int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
+                       u64 time_seq)
+{
+       int slot;
+       int level;
+       struct extent_buffer *c;
+       struct extent_buffer *next;
+       struct btrfs_key key;
+       u32 nritems;
+       int ret;
+       int old_spinning = path->leave_spinning;
+       int next_rw_lock = 0;
+
+       nritems = btrfs_header_nritems(path->nodes[0]);
+       if (nritems == 0)
+               return 1;
+
+       btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
+again:
+       level = 1;
+       next = NULL;
+       next_rw_lock = 0;
+       btrfs_release_path(path);
+
+       path->keep_locks = 1;
+       path->leave_spinning = 1;
+
+       if (time_seq)
+               ret = btrfs_search_old_slot(root, &key, path, time_seq);
+       else
+               ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+       path->keep_locks = 0;
+
+       if (ret < 0)
+               return ret;
+
+       nritems = btrfs_header_nritems(path->nodes[0]);
+       /*
+        * by releasing the path above we dropped all our locks.  A balance
+        * could have added more items next to the key that used to be
+        * at the very end of the block.  So, check again here and
+        * advance the path if there are now more items available.
+        */
+       if (nritems > 0 && path->slots[0] < nritems - 1) {
+               if (ret == 0)
+                       path->slots[0]++;
+               ret = 0;
+               goto done;
+       }
+       /*
+        * So the above check misses one case:
+        * - after releasing the path above, someone has removed the item that
+        *   used to be at the very end of the block, and balance between leafs
+        *   gets another one with bigger key.offset to replace it.
+        *
+        * This one should be returned as well, or we can get leaf corruption
+        * later(esp. in __btrfs_drop_extents()).
+        *
+        * And a bit more explanation about this check,
+        * with ret > 0, the key isn't found, the path points to the slot
+        * where it should be inserted, so the path->slots[0] item must be the
+        * bigger one.
+        */
+       if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
+               ret = 0;
+               goto done;
+       }
+
+       while (level < BTRFS_MAX_LEVEL) {
+               if (!path->nodes[level]) {
+                       ret = 1;
+                       goto done;
+               }
+
+               slot = path->slots[level] + 1;
+               c = path->nodes[level];
+               if (slot >= btrfs_header_nritems(c)) {
+                       level++;
+                       if (level == BTRFS_MAX_LEVEL) {
+                               ret = 1;
+                               goto done;
+                       }
+                       continue;
+               }
+
+               if (next) {
+                       btrfs_tree_unlock_rw(next, next_rw_lock);
+                       free_extent_buffer(next);
+               }
+
+               next = c;
+               next_rw_lock = path->locks[level];
+               ret = read_block_for_search(NULL, root, path, &next, level,
+                                           slot, &key, 0);
+               if (ret == -EAGAIN)
+                       goto again;
+
+               if (ret < 0) {
+                       btrfs_release_path(path);
+                       goto done;
+               }
+
+               if (!path->skip_locking) {
+                       ret = btrfs_try_tree_read_lock(next);
+                       if (!ret && time_seq) {
+                               /*
+                                * If we don't get the lock, we may be racing
+                                * with push_leaf_left, holding that lock while
+                                * itself waiting for the leaf we've currently
+                                * locked. To solve this situation, we give up
+                                * on our lock and cycle.
+                                */
+                               free_extent_buffer(next);
+                               btrfs_release_path(path);
+                               cond_resched();
+                               goto again;
+                       }
+                       if (!ret) {
+                               btrfs_set_path_blocking(path);
+                               btrfs_tree_read_lock(next);
+                               btrfs_clear_path_blocking(path, next,
+                                                         BTRFS_READ_LOCK);
+                       }
+                       next_rw_lock = BTRFS_READ_LOCK;
+               }
+               break;
+       }
+       path->slots[level] = slot;
+       while (1) {
+               level--;
+               c = path->nodes[level];
+               if (path->locks[level])
+                       btrfs_tree_unlock_rw(c, path->locks[level]);
+
+               free_extent_buffer(c);
+               path->nodes[level] = next;
+               path->slots[level] = 0;
+               if (!path->skip_locking)
+                       path->locks[level] = next_rw_lock;
+               if (!level)
+                       break;
+
+               ret = read_block_for_search(NULL, root, path, &next, level,
+                                           0, &key, 0);
+               if (ret == -EAGAIN)
+                       goto again;
+
+               if (ret < 0) {
+                       btrfs_release_path(path);
+                       goto done;
+               }
+
+               if (!path->skip_locking) {
+                       ret = btrfs_try_tree_read_lock(next);
+                       if (!ret) {
+                               btrfs_set_path_blocking(path);
+                               btrfs_tree_read_lock(next);
+                               btrfs_clear_path_blocking(path, next,
+                                                         BTRFS_READ_LOCK);
+                       }
+                       next_rw_lock = BTRFS_READ_LOCK;
+               }
+       }
+       ret = 0;
+done:
+       unlock_up(path, 0, 1, 0, NULL);
+       path->leave_spinning = old_spinning;
+       if (!old_spinning)
+               btrfs_set_path_blocking(path);
+
+       return ret;
+}
+
+/*
+ * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
+ * searching until it gets past min_objectid or finds an item of 'type'
+ *
+ * returns 0 if something is found, 1 if nothing was found and < 0 on error
+ */
+int btrfs_previous_item(struct btrfs_root *root,
+                       struct btrfs_path *path, u64 min_objectid,
+                       int type)
+{
+       struct btrfs_key found_key;
+       struct extent_buffer *leaf;
+       u32 nritems;
+       int ret;
+
+       while (1) {
+               if (path->slots[0] == 0) {
+                       btrfs_set_path_blocking(path);
+                       ret = btrfs_prev_leaf(root, path);
+                       if (ret != 0)
+                               return ret;
+               } else {
+                       path->slots[0]--;
+               }
+               leaf = path->nodes[0];
+               nritems = btrfs_header_nritems(leaf);
+               if (nritems == 0)
+                       return 1;
+               if (path->slots[0] == nritems)
+                       path->slots[0]--;
+
+               btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+               if (found_key.objectid < min_objectid)
+                       break;
+               if (found_key.type == type)
+                       return 0;
+               if (found_key.objectid == min_objectid &&
+                   found_key.type < type)
+                       break;
+       }
+       return 1;
+}
+
+/*
+ * search in extent tree to find a previous Metadata/Data extent item with
+ * min objecitd.
+ *
+ * returns 0 if something is found, 1 if nothing was found and < 0 on error
+ */
+int btrfs_previous_extent_item(struct btrfs_root *root,
+                       struct btrfs_path *path, u64 min_objectid)
+{
+       struct btrfs_key found_key;
+       struct extent_buffer *leaf;
+       u32 nritems;
+       int ret;
+
+       while (1) {
+               if (path->slots[0] == 0) {
+                       btrfs_set_path_blocking(path);
+                       ret = btrfs_prev_leaf(root, path);
+                       if (ret != 0)
+                               return ret;
+               } else {
+                       path->slots[0]--;
+               }
+               leaf = path->nodes[0];
+               nritems = btrfs_header_nritems(leaf);
+               if (nritems == 0)
+                       return 1;
+               if (path->slots[0] == nritems)
+                       path->slots[0]--;
+
+               btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+               if (found_key.objectid < min_objectid)
+                       break;
+               if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
+                   found_key.type == BTRFS_METADATA_ITEM_KEY)
+                       return 0;
+               if (found_key.objectid == min_objectid &&
+                   found_key.type < BTRFS_EXTENT_ITEM_KEY)
+                       break;
+       }
+       return 1;
+}