Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / fs / btrfs / compression.c
diff --git a/kernel/fs/btrfs/compression.c b/kernel/fs/btrfs/compression.c
new file mode 100644 (file)
index 0000000..ce62324
--- /dev/null
@@ -0,0 +1,1091 @@
+/*
+ * Copyright (C) 2008 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/buffer_head.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/bit_spinlock.h>
+#include <linux/slab.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "ordered-data.h"
+#include "compression.h"
+#include "extent_io.h"
+#include "extent_map.h"
+
+struct compressed_bio {
+       /* number of bios pending for this compressed extent */
+       atomic_t pending_bios;
+
+       /* the pages with the compressed data on them */
+       struct page **compressed_pages;
+
+       /* inode that owns this data */
+       struct inode *inode;
+
+       /* starting offset in the inode for our pages */
+       u64 start;
+
+       /* number of bytes in the inode we're working on */
+       unsigned long len;
+
+       /* number of bytes on disk */
+       unsigned long compressed_len;
+
+       /* the compression algorithm for this bio */
+       int compress_type;
+
+       /* number of compressed pages in the array */
+       unsigned long nr_pages;
+
+       /* IO errors */
+       int errors;
+       int mirror_num;
+
+       /* for reads, this is the bio we are copying the data into */
+       struct bio *orig_bio;
+
+       /*
+        * the start of a variable length array of checksums only
+        * used by reads
+        */
+       u32 sums;
+};
+
+static int btrfs_decompress_biovec(int type, struct page **pages_in,
+                                  u64 disk_start, struct bio_vec *bvec,
+                                  int vcnt, size_t srclen);
+
+static inline int compressed_bio_size(struct btrfs_root *root,
+                                     unsigned long disk_size)
+{
+       u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+
+       return sizeof(struct compressed_bio) +
+               (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
+}
+
+static struct bio *compressed_bio_alloc(struct block_device *bdev,
+                                       u64 first_byte, gfp_t gfp_flags)
+{
+       int nr_vecs;
+
+       nr_vecs = bio_get_nr_vecs(bdev);
+       return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
+}
+
+static int check_compressed_csum(struct inode *inode,
+                                struct compressed_bio *cb,
+                                u64 disk_start)
+{
+       int ret;
+       struct page *page;
+       unsigned long i;
+       char *kaddr;
+       u32 csum;
+       u32 *cb_sum = &cb->sums;
+
+       if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
+               return 0;
+
+       for (i = 0; i < cb->nr_pages; i++) {
+               page = cb->compressed_pages[i];
+               csum = ~(u32)0;
+
+               kaddr = kmap_atomic(page);
+               csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
+               btrfs_csum_final(csum, (char *)&csum);
+               kunmap_atomic(kaddr);
+
+               if (csum != *cb_sum) {
+                       btrfs_info(BTRFS_I(inode)->root->fs_info,
+                          "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
+                          btrfs_ino(inode), disk_start, csum, *cb_sum,
+                          cb->mirror_num);
+                       ret = -EIO;
+                       goto fail;
+               }
+               cb_sum++;
+
+       }
+       ret = 0;
+fail:
+       return ret;
+}
+
+/* when we finish reading compressed pages from the disk, we
+ * decompress them and then run the bio end_io routines on the
+ * decompressed pages (in the inode address space).
+ *
+ * This allows the checksumming and other IO error handling routines
+ * to work normally
+ *
+ * The compressed pages are freed here, and it must be run
+ * in process context
+ */
+static void end_compressed_bio_read(struct bio *bio, int err)
+{
+       struct compressed_bio *cb = bio->bi_private;
+       struct inode *inode;
+       struct page *page;
+       unsigned long index;
+       int ret;
+
+       if (err)
+               cb->errors = 1;
+
+       /* if there are more bios still pending for this compressed
+        * extent, just exit
+        */
+       if (!atomic_dec_and_test(&cb->pending_bios))
+               goto out;
+
+       inode = cb->inode;
+       ret = check_compressed_csum(inode, cb,
+                                   (u64)bio->bi_iter.bi_sector << 9);
+       if (ret)
+               goto csum_failed;
+
+       /* ok, we're the last bio for this extent, lets start
+        * the decompression.
+        */
+       ret = btrfs_decompress_biovec(cb->compress_type,
+                                     cb->compressed_pages,
+                                     cb->start,
+                                     cb->orig_bio->bi_io_vec,
+                                     cb->orig_bio->bi_vcnt,
+                                     cb->compressed_len);
+csum_failed:
+       if (ret)
+               cb->errors = 1;
+
+       /* release the compressed pages */
+       index = 0;
+       for (index = 0; index < cb->nr_pages; index++) {
+               page = cb->compressed_pages[index];
+               page->mapping = NULL;
+               page_cache_release(page);
+       }
+
+       /* do io completion on the original bio */
+       if (cb->errors) {
+               bio_io_error(cb->orig_bio);
+       } else {
+               int i;
+               struct bio_vec *bvec;
+
+               /*
+                * we have verified the checksum already, set page
+                * checked so the end_io handlers know about it
+                */
+               bio_for_each_segment_all(bvec, cb->orig_bio, i)
+                       SetPageChecked(bvec->bv_page);
+
+               bio_endio(cb->orig_bio, 0);
+       }
+
+       /* finally free the cb struct */
+       kfree(cb->compressed_pages);
+       kfree(cb);
+out:
+       bio_put(bio);
+}
+
+/*
+ * Clear the writeback bits on all of the file
+ * pages for a compressed write
+ */
+static noinline void end_compressed_writeback(struct inode *inode,
+                                             const struct compressed_bio *cb)
+{
+       unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
+       unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
+       struct page *pages[16];
+       unsigned long nr_pages = end_index - index + 1;
+       int i;
+       int ret;
+
+       if (cb->errors)
+               mapping_set_error(inode->i_mapping, -EIO);
+
+       while (nr_pages > 0) {
+               ret = find_get_pages_contig(inode->i_mapping, index,
+                                    min_t(unsigned long,
+                                    nr_pages, ARRAY_SIZE(pages)), pages);
+               if (ret == 0) {
+                       nr_pages -= 1;
+                       index += 1;
+                       continue;
+               }
+               for (i = 0; i < ret; i++) {
+                       if (cb->errors)
+                               SetPageError(pages[i]);
+                       end_page_writeback(pages[i]);
+                       page_cache_release(pages[i]);
+               }
+               nr_pages -= ret;
+               index += ret;
+       }
+       /* the inode may be gone now */
+}
+
+/*
+ * do the cleanup once all the compressed pages hit the disk.
+ * This will clear writeback on the file pages and free the compressed
+ * pages.
+ *
+ * This also calls the writeback end hooks for the file pages so that
+ * metadata and checksums can be updated in the file.
+ */
+static void end_compressed_bio_write(struct bio *bio, int err)
+{
+       struct extent_io_tree *tree;
+       struct compressed_bio *cb = bio->bi_private;
+       struct inode *inode;
+       struct page *page;
+       unsigned long index;
+
+       if (err)
+               cb->errors = 1;
+
+       /* if there are more bios still pending for this compressed
+        * extent, just exit
+        */
+       if (!atomic_dec_and_test(&cb->pending_bios))
+               goto out;
+
+       /* ok, we're the last bio for this extent, step one is to
+        * call back into the FS and do all the end_io operations
+        */
+       inode = cb->inode;
+       tree = &BTRFS_I(inode)->io_tree;
+       cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
+       tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
+                                        cb->start,
+                                        cb->start + cb->len - 1,
+                                        NULL,
+                                        err ? 0 : 1);
+       cb->compressed_pages[0]->mapping = NULL;
+
+       end_compressed_writeback(inode, cb);
+       /* note, our inode could be gone now */
+
+       /*
+        * release the compressed pages, these came from alloc_page and
+        * are not attached to the inode at all
+        */
+       index = 0;
+       for (index = 0; index < cb->nr_pages; index++) {
+               page = cb->compressed_pages[index];
+               page->mapping = NULL;
+               page_cache_release(page);
+       }
+
+       /* finally free the cb struct */
+       kfree(cb->compressed_pages);
+       kfree(cb);
+out:
+       bio_put(bio);
+}
+
+/*
+ * worker function to build and submit bios for previously compressed pages.
+ * The corresponding pages in the inode should be marked for writeback
+ * and the compressed pages should have a reference on them for dropping
+ * when the IO is complete.
+ *
+ * This also checksums the file bytes and gets things ready for
+ * the end io hooks.
+ */
+int btrfs_submit_compressed_write(struct inode *inode, u64 start,
+                                unsigned long len, u64 disk_start,
+                                unsigned long compressed_len,
+                                struct page **compressed_pages,
+                                unsigned long nr_pages)
+{
+       struct bio *bio = NULL;
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       struct compressed_bio *cb;
+       unsigned long bytes_left;
+       struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+       int pg_index = 0;
+       struct page *page;
+       u64 first_byte = disk_start;
+       struct block_device *bdev;
+       int ret;
+       int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+       WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
+       cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
+       if (!cb)
+               return -ENOMEM;
+       atomic_set(&cb->pending_bios, 0);
+       cb->errors = 0;
+       cb->inode = inode;
+       cb->start = start;
+       cb->len = len;
+       cb->mirror_num = 0;
+       cb->compressed_pages = compressed_pages;
+       cb->compressed_len = compressed_len;
+       cb->orig_bio = NULL;
+       cb->nr_pages = nr_pages;
+
+       bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+       bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
+       if (!bio) {
+               kfree(cb);
+               return -ENOMEM;
+       }
+       bio->bi_private = cb;
+       bio->bi_end_io = end_compressed_bio_write;
+       atomic_inc(&cb->pending_bios);
+
+       /* create and submit bios for the compressed pages */
+       bytes_left = compressed_len;
+       for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
+               page = compressed_pages[pg_index];
+               page->mapping = inode->i_mapping;
+               if (bio->bi_iter.bi_size)
+                       ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
+                                                          PAGE_CACHE_SIZE,
+                                                          bio, 0);
+               else
+                       ret = 0;
+
+               page->mapping = NULL;
+               if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
+                   PAGE_CACHE_SIZE) {
+                       bio_get(bio);
+
+                       /*
+                        * inc the count before we submit the bio so
+                        * we know the end IO handler won't happen before
+                        * we inc the count.  Otherwise, the cb might get
+                        * freed before we're done setting it up
+                        */
+                       atomic_inc(&cb->pending_bios);
+                       ret = btrfs_bio_wq_end_io(root->fs_info, bio,
+                                       BTRFS_WQ_ENDIO_DATA);
+                       BUG_ON(ret); /* -ENOMEM */
+
+                       if (!skip_sum) {
+                               ret = btrfs_csum_one_bio(root, inode, bio,
+                                                        start, 1);
+                               BUG_ON(ret); /* -ENOMEM */
+                       }
+
+                       ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
+                       BUG_ON(ret); /* -ENOMEM */
+
+                       bio_put(bio);
+
+                       bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
+                       BUG_ON(!bio);
+                       bio->bi_private = cb;
+                       bio->bi_end_io = end_compressed_bio_write;
+                       bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
+               }
+               if (bytes_left < PAGE_CACHE_SIZE) {
+                       btrfs_info(BTRFS_I(inode)->root->fs_info,
+                                       "bytes left %lu compress len %lu nr %lu",
+                              bytes_left, cb->compressed_len, cb->nr_pages);
+               }
+               bytes_left -= PAGE_CACHE_SIZE;
+               first_byte += PAGE_CACHE_SIZE;
+               cond_resched();
+       }
+       bio_get(bio);
+
+       ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
+       BUG_ON(ret); /* -ENOMEM */
+
+       if (!skip_sum) {
+               ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
+               BUG_ON(ret); /* -ENOMEM */
+       }
+
+       ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
+       BUG_ON(ret); /* -ENOMEM */
+
+       bio_put(bio);
+       return 0;
+}
+
+static noinline int add_ra_bio_pages(struct inode *inode,
+                                    u64 compressed_end,
+                                    struct compressed_bio *cb)
+{
+       unsigned long end_index;
+       unsigned long pg_index;
+       u64 last_offset;
+       u64 isize = i_size_read(inode);
+       int ret;
+       struct page *page;
+       unsigned long nr_pages = 0;
+       struct extent_map *em;
+       struct address_space *mapping = inode->i_mapping;
+       struct extent_map_tree *em_tree;
+       struct extent_io_tree *tree;
+       u64 end;
+       int misses = 0;
+
+       page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
+       last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
+       em_tree = &BTRFS_I(inode)->extent_tree;
+       tree = &BTRFS_I(inode)->io_tree;
+
+       if (isize == 0)
+               return 0;
+
+       end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
+
+       while (last_offset < compressed_end) {
+               pg_index = last_offset >> PAGE_CACHE_SHIFT;
+
+               if (pg_index > end_index)
+                       break;
+
+               rcu_read_lock();
+               page = radix_tree_lookup(&mapping->page_tree, pg_index);
+               rcu_read_unlock();
+               if (page && !radix_tree_exceptional_entry(page)) {
+                       misses++;
+                       if (misses > 4)
+                               break;
+                       goto next;
+               }
+
+               page = __page_cache_alloc(mapping_gfp_mask(mapping) &
+                                                               ~__GFP_FS);
+               if (!page)
+                       break;
+
+               if (add_to_page_cache_lru(page, mapping, pg_index,
+                                                               GFP_NOFS)) {
+                       page_cache_release(page);
+                       goto next;
+               }
+
+               end = last_offset + PAGE_CACHE_SIZE - 1;
+               /*
+                * at this point, we have a locked page in the page cache
+                * for these bytes in the file.  But, we have to make
+                * sure they map to this compressed extent on disk.
+                */
+               set_page_extent_mapped(page);
+               lock_extent(tree, last_offset, end);
+               read_lock(&em_tree->lock);
+               em = lookup_extent_mapping(em_tree, last_offset,
+                                          PAGE_CACHE_SIZE);
+               read_unlock(&em_tree->lock);
+
+               if (!em || last_offset < em->start ||
+                   (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
+                   (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
+                       free_extent_map(em);
+                       unlock_extent(tree, last_offset, end);
+                       unlock_page(page);
+                       page_cache_release(page);
+                       break;
+               }
+               free_extent_map(em);
+
+               if (page->index == end_index) {
+                       char *userpage;
+                       size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
+
+                       if (zero_offset) {
+                               int zeros;
+                               zeros = PAGE_CACHE_SIZE - zero_offset;
+                               userpage = kmap_atomic(page);
+                               memset(userpage + zero_offset, 0, zeros);
+                               flush_dcache_page(page);
+                               kunmap_atomic(userpage);
+                       }
+               }
+
+               ret = bio_add_page(cb->orig_bio, page,
+                                  PAGE_CACHE_SIZE, 0);
+
+               if (ret == PAGE_CACHE_SIZE) {
+                       nr_pages++;
+                       page_cache_release(page);
+               } else {
+                       unlock_extent(tree, last_offset, end);
+                       unlock_page(page);
+                       page_cache_release(page);
+                       break;
+               }
+next:
+               last_offset += PAGE_CACHE_SIZE;
+       }
+       return 0;
+}
+
+/*
+ * for a compressed read, the bio we get passed has all the inode pages
+ * in it.  We don't actually do IO on those pages but allocate new ones
+ * to hold the compressed pages on disk.
+ *
+ * bio->bi_iter.bi_sector points to the compressed extent on disk
+ * bio->bi_io_vec points to all of the inode pages
+ * bio->bi_vcnt is a count of pages
+ *
+ * After the compressed pages are read, we copy the bytes into the
+ * bio we were passed and then call the bio end_io calls
+ */
+int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
+                                int mirror_num, unsigned long bio_flags)
+{
+       struct extent_io_tree *tree;
+       struct extent_map_tree *em_tree;
+       struct compressed_bio *cb;
+       struct btrfs_root *root = BTRFS_I(inode)->root;
+       unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
+       unsigned long compressed_len;
+       unsigned long nr_pages;
+       unsigned long pg_index;
+       struct page *page;
+       struct block_device *bdev;
+       struct bio *comp_bio;
+       u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
+       u64 em_len;
+       u64 em_start;
+       struct extent_map *em;
+       int ret = -ENOMEM;
+       int faili = 0;
+       u32 *sums;
+
+       tree = &BTRFS_I(inode)->io_tree;
+       em_tree = &BTRFS_I(inode)->extent_tree;
+
+       /* we need the actual starting offset of this extent in the file */
+       read_lock(&em_tree->lock);
+       em = lookup_extent_mapping(em_tree,
+                                  page_offset(bio->bi_io_vec->bv_page),
+                                  PAGE_CACHE_SIZE);
+       read_unlock(&em_tree->lock);
+       if (!em)
+               return -EIO;
+
+       compressed_len = em->block_len;
+       cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
+       if (!cb)
+               goto out;
+
+       atomic_set(&cb->pending_bios, 0);
+       cb->errors = 0;
+       cb->inode = inode;
+       cb->mirror_num = mirror_num;
+       sums = &cb->sums;
+
+       cb->start = em->orig_start;
+       em_len = em->len;
+       em_start = em->start;
+
+       free_extent_map(em);
+       em = NULL;
+
+       cb->len = uncompressed_len;
+       cb->compressed_len = compressed_len;
+       cb->compress_type = extent_compress_type(bio_flags);
+       cb->orig_bio = bio;
+
+       nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
+       cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
+                                      GFP_NOFS);
+       if (!cb->compressed_pages)
+               goto fail1;
+
+       bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+       for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+               cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
+                                                             __GFP_HIGHMEM);
+               if (!cb->compressed_pages[pg_index]) {
+                       faili = pg_index - 1;
+                       ret = -ENOMEM;
+                       goto fail2;
+               }
+       }
+       faili = nr_pages - 1;
+       cb->nr_pages = nr_pages;
+
+       /* In the parent-locked case, we only locked the range we are
+        * interested in.  In all other cases, we can opportunistically
+        * cache decompressed data that goes beyond the requested range. */
+       if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
+               add_ra_bio_pages(inode, em_start + em_len, cb);
+
+       /* include any pages we added in add_ra-bio_pages */
+       uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
+       cb->len = uncompressed_len;
+
+       comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
+       if (!comp_bio)
+               goto fail2;
+       comp_bio->bi_private = cb;
+       comp_bio->bi_end_io = end_compressed_bio_read;
+       atomic_inc(&cb->pending_bios);
+
+       for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+               page = cb->compressed_pages[pg_index];
+               page->mapping = inode->i_mapping;
+               page->index = em_start >> PAGE_CACHE_SHIFT;
+
+               if (comp_bio->bi_iter.bi_size)
+                       ret = tree->ops->merge_bio_hook(READ, page, 0,
+                                                       PAGE_CACHE_SIZE,
+                                                       comp_bio, 0);
+               else
+                       ret = 0;
+
+               page->mapping = NULL;
+               if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
+                   PAGE_CACHE_SIZE) {
+                       bio_get(comp_bio);
+
+                       ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
+                                       BTRFS_WQ_ENDIO_DATA);
+                       BUG_ON(ret); /* -ENOMEM */
+
+                       /*
+                        * inc the count before we submit the bio so
+                        * we know the end IO handler won't happen before
+                        * we inc the count.  Otherwise, the cb might get
+                        * freed before we're done setting it up
+                        */
+                       atomic_inc(&cb->pending_bios);
+
+                       if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+                               ret = btrfs_lookup_bio_sums(root, inode,
+                                                       comp_bio, sums);
+                               BUG_ON(ret); /* -ENOMEM */
+                       }
+                       sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
+                                            root->sectorsize);
+
+                       ret = btrfs_map_bio(root, READ, comp_bio,
+                                           mirror_num, 0);
+                       if (ret)
+                               bio_endio(comp_bio, ret);
+
+                       bio_put(comp_bio);
+
+                       comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
+                                                       GFP_NOFS);
+                       BUG_ON(!comp_bio);
+                       comp_bio->bi_private = cb;
+                       comp_bio->bi_end_io = end_compressed_bio_read;
+
+                       bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
+               }
+               cur_disk_byte += PAGE_CACHE_SIZE;
+       }
+       bio_get(comp_bio);
+
+       ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
+                       BTRFS_WQ_ENDIO_DATA);
+       BUG_ON(ret); /* -ENOMEM */
+
+       if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+               ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
+               BUG_ON(ret); /* -ENOMEM */
+       }
+
+       ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
+       if (ret)
+               bio_endio(comp_bio, ret);
+
+       bio_put(comp_bio);
+       return 0;
+
+fail2:
+       while (faili >= 0) {
+               __free_page(cb->compressed_pages[faili]);
+               faili--;
+       }
+
+       kfree(cb->compressed_pages);
+fail1:
+       kfree(cb);
+out:
+       free_extent_map(em);
+       return ret;
+}
+
+static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
+static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
+static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
+static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
+static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
+
+static const struct btrfs_compress_op * const btrfs_compress_op[] = {
+       &btrfs_zlib_compress,
+       &btrfs_lzo_compress,
+};
+
+void __init btrfs_init_compress(void)
+{
+       int i;
+
+       for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+               INIT_LIST_HEAD(&comp_idle_workspace[i]);
+               spin_lock_init(&comp_workspace_lock[i]);
+               atomic_set(&comp_alloc_workspace[i], 0);
+               init_waitqueue_head(&comp_workspace_wait[i]);
+       }
+}
+
+/*
+ * this finds an available workspace or allocates a new one
+ * ERR_PTR is returned if things go bad.
+ */
+static struct list_head *find_workspace(int type)
+{
+       struct list_head *workspace;
+       int cpus = num_online_cpus();
+       int idx = type - 1;
+
+       struct list_head *idle_workspace        = &comp_idle_workspace[idx];
+       spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
+       atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
+       wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
+       int *num_workspace                      = &comp_num_workspace[idx];
+again:
+       spin_lock(workspace_lock);
+       if (!list_empty(idle_workspace)) {
+               workspace = idle_workspace->next;
+               list_del(workspace);
+               (*num_workspace)--;
+               spin_unlock(workspace_lock);
+               return workspace;
+
+       }
+       if (atomic_read(alloc_workspace) > cpus) {
+               DEFINE_WAIT(wait);
+
+               spin_unlock(workspace_lock);
+               prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
+               if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
+                       schedule();
+               finish_wait(workspace_wait, &wait);
+               goto again;
+       }
+       atomic_inc(alloc_workspace);
+       spin_unlock(workspace_lock);
+
+       workspace = btrfs_compress_op[idx]->alloc_workspace();
+       if (IS_ERR(workspace)) {
+               atomic_dec(alloc_workspace);
+               wake_up(workspace_wait);
+       }
+       return workspace;
+}
+
+/*
+ * put a workspace struct back on the list or free it if we have enough
+ * idle ones sitting around
+ */
+static void free_workspace(int type, struct list_head *workspace)
+{
+       int idx = type - 1;
+       struct list_head *idle_workspace        = &comp_idle_workspace[idx];
+       spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
+       atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
+       wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
+       int *num_workspace                      = &comp_num_workspace[idx];
+
+       spin_lock(workspace_lock);
+       if (*num_workspace < num_online_cpus()) {
+               list_add(workspace, idle_workspace);
+               (*num_workspace)++;
+               spin_unlock(workspace_lock);
+               goto wake;
+       }
+       spin_unlock(workspace_lock);
+
+       btrfs_compress_op[idx]->free_workspace(workspace);
+       atomic_dec(alloc_workspace);
+wake:
+       smp_mb();
+       if (waitqueue_active(workspace_wait))
+               wake_up(workspace_wait);
+}
+
+/*
+ * cleanup function for module exit
+ */
+static void free_workspaces(void)
+{
+       struct list_head *workspace;
+       int i;
+
+       for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+               while (!list_empty(&comp_idle_workspace[i])) {
+                       workspace = comp_idle_workspace[i].next;
+                       list_del(workspace);
+                       btrfs_compress_op[i]->free_workspace(workspace);
+                       atomic_dec(&comp_alloc_workspace[i]);
+               }
+       }
+}
+
+/*
+ * given an address space and start/len, compress the bytes.
+ *
+ * pages are allocated to hold the compressed result and stored
+ * in 'pages'
+ *
+ * out_pages is used to return the number of pages allocated.  There
+ * may be pages allocated even if we return an error
+ *
+ * total_in is used to return the number of bytes actually read.  It
+ * may be smaller then len if we had to exit early because we
+ * ran out of room in the pages array or because we cross the
+ * max_out threshold.
+ *
+ * total_out is used to return the total number of compressed bytes
+ *
+ * max_out tells us the max number of bytes that we're allowed to
+ * stuff into pages
+ */
+int btrfs_compress_pages(int type, struct address_space *mapping,
+                        u64 start, unsigned long len,
+                        struct page **pages,
+                        unsigned long nr_dest_pages,
+                        unsigned long *out_pages,
+                        unsigned long *total_in,
+                        unsigned long *total_out,
+                        unsigned long max_out)
+{
+       struct list_head *workspace;
+       int ret;
+
+       workspace = find_workspace(type);
+       if (IS_ERR(workspace))
+               return PTR_ERR(workspace);
+
+       ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
+                                                     start, len, pages,
+                                                     nr_dest_pages, out_pages,
+                                                     total_in, total_out,
+                                                     max_out);
+       free_workspace(type, workspace);
+       return ret;
+}
+
+/*
+ * pages_in is an array of pages with compressed data.
+ *
+ * disk_start is the starting logical offset of this array in the file
+ *
+ * bvec is a bio_vec of pages from the file that we want to decompress into
+ *
+ * vcnt is the count of pages in the biovec
+ *
+ * srclen is the number of bytes in pages_in
+ *
+ * The basic idea is that we have a bio that was created by readpages.
+ * The pages in the bio are for the uncompressed data, and they may not
+ * be contiguous.  They all correspond to the range of bytes covered by
+ * the compressed extent.
+ */
+static int btrfs_decompress_biovec(int type, struct page **pages_in,
+                                  u64 disk_start, struct bio_vec *bvec,
+                                  int vcnt, size_t srclen)
+{
+       struct list_head *workspace;
+       int ret;
+
+       workspace = find_workspace(type);
+       if (IS_ERR(workspace))
+               return PTR_ERR(workspace);
+
+       ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
+                                                        disk_start,
+                                                        bvec, vcnt, srclen);
+       free_workspace(type, workspace);
+       return ret;
+}
+
+/*
+ * a less complex decompression routine.  Our compressed data fits in a
+ * single page, and we want to read a single page out of it.
+ * start_byte tells us the offset into the compressed data we're interested in
+ */
+int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
+                    unsigned long start_byte, size_t srclen, size_t destlen)
+{
+       struct list_head *workspace;
+       int ret;
+
+       workspace = find_workspace(type);
+       if (IS_ERR(workspace))
+               return PTR_ERR(workspace);
+
+       ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
+                                                 dest_page, start_byte,
+                                                 srclen, destlen);
+
+       free_workspace(type, workspace);
+       return ret;
+}
+
+void btrfs_exit_compress(void)
+{
+       free_workspaces();
+}
+
+/*
+ * Copy uncompressed data from working buffer to pages.
+ *
+ * buf_start is the byte offset we're of the start of our workspace buffer.
+ *
+ * total_out is the last byte of the buffer
+ */
+int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
+                             unsigned long total_out, u64 disk_start,
+                             struct bio_vec *bvec, int vcnt,
+                             unsigned long *pg_index,
+                             unsigned long *pg_offset)
+{
+       unsigned long buf_offset;
+       unsigned long current_buf_start;
+       unsigned long start_byte;
+       unsigned long working_bytes = total_out - buf_start;
+       unsigned long bytes;
+       char *kaddr;
+       struct page *page_out = bvec[*pg_index].bv_page;
+
+       /*
+        * start byte is the first byte of the page we're currently
+        * copying into relative to the start of the compressed data.
+        */
+       start_byte = page_offset(page_out) - disk_start;
+
+       /* we haven't yet hit data corresponding to this page */
+       if (total_out <= start_byte)
+               return 1;
+
+       /*
+        * the start of the data we care about is offset into
+        * the middle of our working buffer
+        */
+       if (total_out > start_byte && buf_start < start_byte) {
+               buf_offset = start_byte - buf_start;
+               working_bytes -= buf_offset;
+       } else {
+               buf_offset = 0;
+       }
+       current_buf_start = buf_start;
+
+       /* copy bytes from the working buffer into the pages */
+       while (working_bytes > 0) {
+               bytes = min(PAGE_CACHE_SIZE - *pg_offset,
+                           PAGE_CACHE_SIZE - buf_offset);
+               bytes = min(bytes, working_bytes);
+               kaddr = kmap_atomic(page_out);
+               memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
+               kunmap_atomic(kaddr);
+               flush_dcache_page(page_out);
+
+               *pg_offset += bytes;
+               buf_offset += bytes;
+               working_bytes -= bytes;
+               current_buf_start += bytes;
+
+               /* check if we need to pick another page */
+               if (*pg_offset == PAGE_CACHE_SIZE) {
+                       (*pg_index)++;
+                       if (*pg_index >= vcnt)
+                               return 0;
+
+                       page_out = bvec[*pg_index].bv_page;
+                       *pg_offset = 0;
+                       start_byte = page_offset(page_out) - disk_start;
+
+                       /*
+                        * make sure our new page is covered by this
+                        * working buffer
+                        */
+                       if (total_out <= start_byte)
+                               return 1;
+
+                       /*
+                        * the next page in the biovec might not be adjacent
+                        * to the last page, but it might still be found
+                        * inside this working buffer. bump our offset pointer
+                        */
+                       if (total_out > start_byte &&
+                           current_buf_start < start_byte) {
+                               buf_offset = start_byte - buf_start;
+                               working_bytes = total_out - start_byte;
+                               current_buf_start = buf_start + buf_offset;
+                       }
+               }
+       }
+
+       return 1;
+}
+
+/*
+ * When uncompressing data, we need to make sure and zero any parts of
+ * the biovec that were not filled in by the decompression code.  pg_index
+ * and pg_offset indicate the last page and the last offset of that page
+ * that have been filled in.  This will zero everything remaining in the
+ * biovec.
+ */
+void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
+                                  unsigned long pg_index,
+                                  unsigned long pg_offset)
+{
+       while (pg_index < vcnt) {
+               struct page *page = bvec[pg_index].bv_page;
+               unsigned long off = bvec[pg_index].bv_offset;
+               unsigned long len = bvec[pg_index].bv_len;
+
+               if (pg_offset < off)
+                       pg_offset = off;
+               if (pg_offset < off + len) {
+                       unsigned long bytes = off + len - pg_offset;
+                       char *kaddr;
+
+                       kaddr = kmap_atomic(page);
+                       memset(kaddr + pg_offset, 0, bytes);
+                       kunmap_atomic(kaddr);
+               }
+               pg_index++;
+               pg_offset = 0;
+       }
+}