Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wireless / ath / ath5k / phy.c
diff --git a/kernel/drivers/net/wireless/ath/ath5k/phy.c b/kernel/drivers/net/wireless/ath/ath5k/phy.c
new file mode 100644 (file)
index 0000000..0fce1c7
--- /dev/null
@@ -0,0 +1,3965 @@
+/*
+ * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
+ * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
+ * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
+ * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+/***********************\
+* PHY related functions *
+\***********************/
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <asm/unaligned.h>
+
+#include "ath5k.h"
+#include "reg.h"
+#include "rfbuffer.h"
+#include "rfgain.h"
+#include "../regd.h"
+
+
+/**
+ * DOC: PHY related functions
+ *
+ * Here we handle the low-level functions related to baseband
+ * and analog frontend (RF) parts. This is by far the most complex
+ * part of the hw code so make sure you know what you are doing.
+ *
+ * Here is a list of what this is all about:
+ *
+ * - Channel setting/switching
+ *
+ * - Automatic Gain Control (AGC) calibration
+ *
+ * - Noise Floor calibration
+ *
+ * - I/Q imbalance calibration (QAM correction)
+ *
+ * - Calibration due to thermal changes (gain_F)
+ *
+ * - Spur noise mitigation
+ *
+ * - RF/PHY initialization for the various operating modes and bwmodes
+ *
+ * - Antenna control
+ *
+ * - TX power control per channel/rate/packet type
+ *
+ * Also have in mind we never got documentation for most of these
+ * functions, what we have comes mostly from Atheros's code, reverse
+ * engineering and patent docs/presentations etc.
+ */
+
+
+/******************\
+* Helper functions *
+\******************/
+
+/**
+ * ath5k_hw_radio_revision() - Get the PHY Chip revision
+ * @ah: The &struct ath5k_hw
+ * @band: One of enum ieee80211_band
+ *
+ * Returns the revision number of a 2GHz, 5GHz or single chip
+ * radio.
+ */
+u16
+ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
+{
+       unsigned int i;
+       u32 srev;
+       u16 ret;
+
+       /*
+        * Set the radio chip access register
+        */
+       switch (band) {
+       case IEEE80211_BAND_2GHZ:
+               ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
+               break;
+       case IEEE80211_BAND_5GHZ:
+               ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
+               break;
+       default:
+               return 0;
+       }
+
+       usleep_range(2000, 2500);
+
+       /* ...wait until PHY is ready and read the selected radio revision */
+       ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
+
+       for (i = 0; i < 8; i++)
+               ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
+
+       if (ah->ah_version == AR5K_AR5210) {
+               srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
+               ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
+       } else {
+               srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
+               ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
+                               ((srev & 0x0f) << 4), 8);
+       }
+
+       /* Reset to the 5GHz mode */
+       ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
+
+       return ret;
+}
+
+/**
+ * ath5k_channel_ok() - Check if a channel is supported by the hw
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * Note: We don't do any regulatory domain checks here, it's just
+ * a sanity check.
+ */
+bool
+ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
+{
+       u16 freq = channel->center_freq;
+
+       /* Check if the channel is in our supported range */
+       if (channel->band == IEEE80211_BAND_2GHZ) {
+               if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
+                   (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
+                       return true;
+       } else if (channel->band == IEEE80211_BAND_5GHZ)
+               if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
+                   (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
+                       return true;
+
+       return false;
+}
+
+/**
+ * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ */
+bool
+ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
+                               struct ieee80211_channel *channel)
+{
+       u8 refclk_freq;
+
+       if ((ah->ah_radio == AR5K_RF5112) ||
+       (ah->ah_radio == AR5K_RF5413) ||
+       (ah->ah_radio == AR5K_RF2413) ||
+       (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
+               refclk_freq = 40;
+       else
+               refclk_freq = 32;
+
+       if ((channel->center_freq % refclk_freq != 0) &&
+       ((channel->center_freq % refclk_freq < 10) ||
+       (channel->center_freq % refclk_freq > 22)))
+               return true;
+       else
+               return false;
+}
+
+/**
+ * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
+ * @ah: The &struct ath5k_hw
+ * @rf_regs: The struct ath5k_rf_reg
+ * @val: New value
+ * @reg_id: RF register ID
+ * @set: Indicate we need to swap data
+ *
+ * This is an internal function used to modify RF Banks before
+ * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
+ * infos.
+ */
+static unsigned int
+ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
+                                       u32 val, u8 reg_id, bool set)
+{
+       const struct ath5k_rf_reg *rfreg = NULL;
+       u8 offset, bank, num_bits, col, position;
+       u16 entry;
+       u32 mask, data, last_bit, bits_shifted, first_bit;
+       u32 *rfb;
+       s32 bits_left;
+       int i;
+
+       data = 0;
+       rfb = ah->ah_rf_banks;
+
+       for (i = 0; i < ah->ah_rf_regs_count; i++) {
+               if (rf_regs[i].index == reg_id) {
+                       rfreg = &rf_regs[i];
+                       break;
+               }
+       }
+
+       if (rfb == NULL || rfreg == NULL) {
+               ATH5K_PRINTF("Rf register not found!\n");
+               /* should not happen */
+               return 0;
+       }
+
+       bank = rfreg->bank;
+       num_bits = rfreg->field.len;
+       first_bit = rfreg->field.pos;
+       col = rfreg->field.col;
+
+       /* first_bit is an offset from bank's
+        * start. Since we have all banks on
+        * the same array, we use this offset
+        * to mark each bank's start */
+       offset = ah->ah_offset[bank];
+
+       /* Boundary check */
+       if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
+               ATH5K_PRINTF("invalid values at offset %u\n", offset);
+               return 0;
+       }
+
+       entry = ((first_bit - 1) / 8) + offset;
+       position = (first_bit - 1) % 8;
+
+       if (set)
+               data = ath5k_hw_bitswap(val, num_bits);
+
+       for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
+            position = 0, entry++) {
+
+               last_bit = (position + bits_left > 8) ? 8 :
+                                       position + bits_left;
+
+               mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
+                                                               (col * 8);
+
+               if (set) {
+                       rfb[entry] &= ~mask;
+                       rfb[entry] |= ((data << position) << (col * 8)) & mask;
+                       data >>= (8 - position);
+               } else {
+                       data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
+                               << bits_shifted;
+                       bits_shifted += last_bit - position;
+               }
+
+               bits_left -= 8 - position;
+       }
+
+       data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
+
+       return data;
+}
+
+/**
+ * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
+ * @ah: the &struct ath5k_hw
+ * @channel: the currently set channel upon reset
+ *
+ * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
+ * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
+ *
+ * Since delta slope is floating point we split it on its exponent and
+ * mantissa and provide these values on hw.
+ *
+ * For more infos i think this patent is related
+ * "http://www.freepatentsonline.com/7184495.html"
+ */
+static inline int
+ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
+                               struct ieee80211_channel *channel)
+{
+       /* Get exponent and mantissa and set it */
+       u32 coef_scaled, coef_exp, coef_man,
+               ds_coef_exp, ds_coef_man, clock;
+
+       BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
+               (channel->hw_value == AR5K_MODE_11B));
+
+       /* Get coefficient
+        * ALGO: coef = (5 * clock / carrier_freq) / 2
+        * we scale coef by shifting clock value by 24 for
+        * better precision since we use integers */
+       switch (ah->ah_bwmode) {
+       case AR5K_BWMODE_40MHZ:
+               clock = 40 * 2;
+               break;
+       case AR5K_BWMODE_10MHZ:
+               clock = 40 / 2;
+               break;
+       case AR5K_BWMODE_5MHZ:
+               clock = 40 / 4;
+               break;
+       default:
+               clock = 40;
+               break;
+       }
+       coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
+
+       /* Get exponent
+        * ALGO: coef_exp = 14 - highest set bit position */
+       coef_exp = ilog2(coef_scaled);
+
+       /* Doesn't make sense if it's zero*/
+       if (!coef_scaled || !coef_exp)
+               return -EINVAL;
+
+       /* Note: we've shifted coef_scaled by 24 */
+       coef_exp = 14 - (coef_exp - 24);
+
+
+       /* Get mantissa (significant digits)
+        * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
+       coef_man = coef_scaled +
+               (1 << (24 - coef_exp - 1));
+
+       /* Calculate delta slope coefficient exponent
+        * and mantissa (remove scaling) and set them on hw */
+       ds_coef_man = coef_man >> (24 - coef_exp);
+       ds_coef_exp = coef_exp - 16;
+
+       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
+               AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
+       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
+               AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_phy_disable() - Disable PHY
+ * @ah: The &struct ath5k_hw
+ */
+int ath5k_hw_phy_disable(struct ath5k_hw *ah)
+{
+       /*Just a try M.F.*/
+       ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_wait_for_synth() - Wait for synth to settle
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ */
+static void
+ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
+                       struct ieee80211_channel *channel)
+{
+       /*
+        * On 5211+ read activation -> rx delay
+        * and use it (100ns steps).
+        */
+       if (ah->ah_version != AR5K_AR5210) {
+               u32 delay;
+               delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
+                       AR5K_PHY_RX_DELAY_M;
+               delay = (channel->hw_value == AR5K_MODE_11B) ?
+                       ((delay << 2) / 22) : (delay / 10);
+               if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
+                       delay = delay << 1;
+               if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
+                       delay = delay << 2;
+               /* XXX: /2 on turbo ? Let's be safe
+                * for now */
+               usleep_range(100 + delay, 100 + (2 * delay));
+       } else {
+               usleep_range(1000, 1500);
+       }
+}
+
+
+/**********************\
+* RF Gain optimization *
+\**********************/
+
+/**
+ * DOC: RF Gain optimization
+ *
+ * This code is used to optimize RF gain on different environments
+ * (temperature mostly) based on feedback from a power detector.
+ *
+ * It's only used on RF5111 and RF5112, later RF chips seem to have
+ * auto adjustment on hw -notice they have a much smaller BANK 7 and
+ * no gain optimization ladder-.
+ *
+ * For more infos check out this patent doc
+ * "http://www.freepatentsonline.com/7400691.html"
+ *
+ * This paper describes power drops as seen on the receiver due to
+ * probe packets
+ * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
+ * %20of%20Power%20Control.pdf"
+ *
+ * And this is the MadWiFi bug entry related to the above
+ * "http://madwifi-project.org/ticket/1659"
+ * with various measurements and diagrams
+ */
+
+/**
+ * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
+ * @ah: The &struct ath5k_hw
+ */
+int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
+{
+       /* Initialize the gain optimization values */
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
+               ah->ah_gain.g_low = 20;
+               ah->ah_gain.g_high = 35;
+               ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               break;
+       case AR5K_RF5112:
+               ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
+               ah->ah_gain.g_low = 20;
+               ah->ah_gain.g_high = 85;
+               ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
+ * @ah: The &struct ath5k_hw
+ *
+ * Schedules a gain probe check on the next transmitted packet.
+ * That means our next packet is going to be sent with lower
+ * tx power and a Peak to Average Power Detector (PAPD) will try
+ * to measure the gain.
+ *
+ * TODO: Force a tx packet (bypassing PCU arbitrator etc)
+ * just after we enable the probe so that we don't mess with
+ * standard traffic.
+ */
+static void
+ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
+{
+
+       /* Skip if gain calibration is inactive or
+        * we already handle a probe request */
+       if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
+               return;
+
+       /* Send the packet with 2dB below max power as
+        * patent doc suggest */
+       ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
+                       AR5K_PHY_PAPD_PROBE_TXPOWER) |
+                       AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
+
+       ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
+
+}
+
+/**
+ * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
+ * @ah: The &struct ath5k_hw
+ *
+ * Calculate Gain_F measurement correction
+ * based on the current step for RF5112 rev. 2
+ */
+static u32
+ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
+{
+       u32 mix, step;
+       u32 *rf;
+       const struct ath5k_gain_opt *go;
+       const struct ath5k_gain_opt_step *g_step;
+       const struct ath5k_rf_reg *rf_regs;
+
+       /* Only RF5112 Rev. 2 supports it */
+       if ((ah->ah_radio != AR5K_RF5112) ||
+       (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
+               return 0;
+
+       go = &rfgain_opt_5112;
+       rf_regs = rf_regs_5112a;
+       ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
+
+       g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+       if (ah->ah_rf_banks == NULL)
+               return 0;
+
+       rf = ah->ah_rf_banks;
+       ah->ah_gain.g_f_corr = 0;
+
+       /* No VGA (Variable Gain Amplifier) override, skip */
+       if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
+               return 0;
+
+       /* Mix gain stepping */
+       step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
+
+       /* Mix gain override */
+       mix = g_step->gos_param[0];
+
+       switch (mix) {
+       case 3:
+               ah->ah_gain.g_f_corr = step * 2;
+               break;
+       case 2:
+               ah->ah_gain.g_f_corr = (step - 5) * 2;
+               break;
+       case 1:
+               ah->ah_gain.g_f_corr = step;
+               break;
+       default:
+               ah->ah_gain.g_f_corr = 0;
+               break;
+       }
+
+       return ah->ah_gain.g_f_corr;
+}
+
+/**
+ * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
+ * @ah: The &struct ath5k_hw
+ *
+ * Check if current gain_F measurement is in the range of our
+ * power detector windows. If we get a measurement outside range
+ * we know it's not accurate (detectors can't measure anything outside
+ * their detection window) so we must ignore it.
+ *
+ * Returns true if readback was O.K. or false on failure
+ */
+static bool
+ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
+{
+       const struct ath5k_rf_reg *rf_regs;
+       u32 step, mix_ovr, level[4];
+       u32 *rf;
+
+       if (ah->ah_rf_banks == NULL)
+               return false;
+
+       rf = ah->ah_rf_banks;
+
+       if (ah->ah_radio == AR5K_RF5111) {
+
+               rf_regs = rf_regs_5111;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
+
+               step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
+                       false);
+
+               level[0] = 0;
+               level[1] = (step == 63) ? 50 : step + 4;
+               level[2] = (step != 63) ? 64 : level[0];
+               level[3] = level[2] + 50;
+
+               ah->ah_gain.g_high = level[3] -
+                       (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
+               ah->ah_gain.g_low = level[0] +
+                       (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
+       } else {
+
+               rf_regs = rf_regs_5112;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
+
+               mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
+                       false);
+
+               level[0] = level[2] = 0;
+
+               if (mix_ovr == 1) {
+                       level[1] = level[3] = 83;
+               } else {
+                       level[1] = level[3] = 107;
+                       ah->ah_gain.g_high = 55;
+               }
+       }
+
+       return (ah->ah_gain.g_current >= level[0] &&
+                       ah->ah_gain.g_current <= level[1]) ||
+               (ah->ah_gain.g_current >= level[2] &&
+                       ah->ah_gain.g_current <= level[3]);
+}
+
+/**
+ * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
+ * @ah: The &struct ath5k_hw
+ *
+ * Choose the right target gain based on current gain
+ * and RF gain optimization ladder
+ */
+static s8
+ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
+{
+       const struct ath5k_gain_opt *go;
+       const struct ath5k_gain_opt_step *g_step;
+       int ret = 0;
+
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               go = &rfgain_opt_5111;
+               break;
+       case AR5K_RF5112:
+               go = &rfgain_opt_5112;
+               break;
+       default:
+               return 0;
+       }
+
+       g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+       if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
+
+               /* Reached maximum */
+               if (ah->ah_gain.g_step_idx == 0)
+                       return -1;
+
+               for (ah->ah_gain.g_target = ah->ah_gain.g_current;
+                               ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
+                               ah->ah_gain.g_step_idx > 0;
+                               g_step = &go->go_step[ah->ah_gain.g_step_idx])
+                       ah->ah_gain.g_target -= 2 *
+                           (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
+                           g_step->gos_gain);
+
+               ret = 1;
+               goto done;
+       }
+
+       if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
+
+               /* Reached minimum */
+               if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
+                       return -2;
+
+               for (ah->ah_gain.g_target = ah->ah_gain.g_current;
+                               ah->ah_gain.g_target <= ah->ah_gain.g_low &&
+                               ah->ah_gain.g_step_idx < go->go_steps_count - 1;
+                               g_step = &go->go_step[ah->ah_gain.g_step_idx])
+                       ah->ah_gain.g_target -= 2 *
+                           (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
+                           g_step->gos_gain);
+
+               ret = 2;
+               goto done;
+       }
+
+done:
+       ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
+               "ret %d, gain step %u, current gain %u, target gain %u\n",
+               ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
+               ah->ah_gain.g_target);
+
+       return ret;
+}
+
+/**
+ * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
+ * @ah: The &struct ath5k_hw
+ *
+ * Main callback for thermal RF gain calibration engine
+ * Check for a new gain reading and schedule an adjustment
+ * if needed.
+ *
+ * Returns one of enum ath5k_rfgain codes
+ */
+enum ath5k_rfgain
+ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
+{
+       u32 data, type;
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+
+       if (ah->ah_rf_banks == NULL ||
+       ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
+               return AR5K_RFGAIN_INACTIVE;
+
+       /* No check requested, either engine is inactive
+        * or an adjustment is already requested */
+       if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
+               goto done;
+
+       /* Read the PAPD (Peak to Average Power Detector)
+        * register */
+       data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
+
+       /* No probe is scheduled, read gain_F measurement */
+       if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
+               ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
+               type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
+
+               /* If tx packet is CCK correct the gain_F measurement
+                * by cck ofdm gain delta */
+               if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
+                       if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
+                               ah->ah_gain.g_current +=
+                                       ee->ee_cck_ofdm_gain_delta;
+                       else
+                               ah->ah_gain.g_current +=
+                                       AR5K_GAIN_CCK_PROBE_CORR;
+               }
+
+               /* Further correct gain_F measurement for
+                * RF5112A radios */
+               if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
+                       ath5k_hw_rf_gainf_corr(ah);
+                       ah->ah_gain.g_current =
+                               ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
+                               (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
+                               0;
+               }
+
+               /* Check if measurement is ok and if we need
+                * to adjust gain, schedule a gain adjustment,
+                * else switch back to the active state */
+               if (ath5k_hw_rf_check_gainf_readback(ah) &&
+               AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
+               ath5k_hw_rf_gainf_adjust(ah)) {
+                       ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
+               } else {
+                       ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               }
+       }
+
+done:
+       return ah->ah_gain.g_state;
+}
+
+/**
+ * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
+ * @ah: The &struct ath5k_hw
+ * @band: One of enum ieee80211_band
+ *
+ * Write initial RF gain table to set the RF sensitivity.
+ *
+ * NOTE: This one works on all RF chips and has nothing to do
+ * with Gain_F calibration
+ */
+static int
+ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
+{
+       const struct ath5k_ini_rfgain *ath5k_rfg;
+       unsigned int i, size, index;
+
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               ath5k_rfg = rfgain_5111;
+               size = ARRAY_SIZE(rfgain_5111);
+               break;
+       case AR5K_RF5112:
+               ath5k_rfg = rfgain_5112;
+               size = ARRAY_SIZE(rfgain_5112);
+               break;
+       case AR5K_RF2413:
+               ath5k_rfg = rfgain_2413;
+               size = ARRAY_SIZE(rfgain_2413);
+               break;
+       case AR5K_RF2316:
+               ath5k_rfg = rfgain_2316;
+               size = ARRAY_SIZE(rfgain_2316);
+               break;
+       case AR5K_RF5413:
+               ath5k_rfg = rfgain_5413;
+               size = ARRAY_SIZE(rfgain_5413);
+               break;
+       case AR5K_RF2317:
+       case AR5K_RF2425:
+               ath5k_rfg = rfgain_2425;
+               size = ARRAY_SIZE(rfgain_2425);
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
+
+       for (i = 0; i < size; i++) {
+               AR5K_REG_WAIT(i);
+               ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
+                       (u32)ath5k_rfg[i].rfg_register);
+       }
+
+       return 0;
+}
+
+
+/********************\
+* RF Registers setup *
+\********************/
+
+/**
+ * ath5k_hw_rfregs_init() - Initialize RF register settings
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ * @mode: One of enum ath5k_driver_mode
+ *
+ * Setup RF registers by writing RF buffer on hw. For
+ * more infos on this, check out rfbuffer.h
+ */
+static int
+ath5k_hw_rfregs_init(struct ath5k_hw *ah,
+                       struct ieee80211_channel *channel,
+                       unsigned int mode)
+{
+       const struct ath5k_rf_reg *rf_regs;
+       const struct ath5k_ini_rfbuffer *ini_rfb;
+       const struct ath5k_gain_opt *go = NULL;
+       const struct ath5k_gain_opt_step *g_step;
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       u8 ee_mode = 0;
+       u32 *rfb;
+       int i, obdb = -1, bank = -1;
+
+       switch (ah->ah_radio) {
+       case AR5K_RF5111:
+               rf_regs = rf_regs_5111;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
+               ini_rfb = rfb_5111;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
+               go = &rfgain_opt_5111;
+               break;
+       case AR5K_RF5112:
+               if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
+                       rf_regs = rf_regs_5112a;
+                       ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
+                       ini_rfb = rfb_5112a;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
+               } else {
+                       rf_regs = rf_regs_5112;
+                       ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
+                       ini_rfb = rfb_5112;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
+               }
+               go = &rfgain_opt_5112;
+               break;
+       case AR5K_RF2413:
+               rf_regs = rf_regs_2413;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
+               ini_rfb = rfb_2413;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
+               break;
+       case AR5K_RF2316:
+               rf_regs = rf_regs_2316;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
+               ini_rfb = rfb_2316;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
+               break;
+       case AR5K_RF5413:
+               rf_regs = rf_regs_5413;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
+               ini_rfb = rfb_5413;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
+               break;
+       case AR5K_RF2317:
+               rf_regs = rf_regs_2425;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
+               ini_rfb = rfb_2317;
+               ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
+               break;
+       case AR5K_RF2425:
+               rf_regs = rf_regs_2425;
+               ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
+               if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
+                       ini_rfb = rfb_2425;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
+               } else {
+                       ini_rfb = rfb_2417;
+                       ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
+               }
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       /* If it's the first time we set RF buffer, allocate
+        * ah->ah_rf_banks based on ah->ah_rf_banks_size
+        * we set above */
+       if (ah->ah_rf_banks == NULL) {
+               ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
+                                                               GFP_KERNEL);
+               if (ah->ah_rf_banks == NULL) {
+                       ATH5K_ERR(ah, "out of memory\n");
+                       return -ENOMEM;
+               }
+       }
+
+       /* Copy values to modify them */
+       rfb = ah->ah_rf_banks;
+
+       for (i = 0; i < ah->ah_rf_banks_size; i++) {
+               if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
+                       ATH5K_ERR(ah, "invalid bank\n");
+                       return -EINVAL;
+               }
+
+               /* Bank changed, write down the offset */
+               if (bank != ini_rfb[i].rfb_bank) {
+                       bank = ini_rfb[i].rfb_bank;
+                       ah->ah_offset[bank] = i;
+               }
+
+               rfb[i] = ini_rfb[i].rfb_mode_data[mode];
+       }
+
+       /* Set Output and Driver bias current (OB/DB) */
+       if (channel->band == IEEE80211_BAND_2GHZ) {
+
+               if (channel->hw_value == AR5K_MODE_11B)
+                       ee_mode = AR5K_EEPROM_MODE_11B;
+               else
+                       ee_mode = AR5K_EEPROM_MODE_11G;
+
+               /* For RF511X/RF211X combination we
+                * use b_OB and b_DB parameters stored
+                * in eeprom on ee->ee_ob[ee_mode][0]
+                *
+                * For all other chips we use OB/DB for 2GHz
+                * stored in the b/g modal section just like
+                * 802.11a on ee->ee_ob[ee_mode][1] */
+               if ((ah->ah_radio == AR5K_RF5111) ||
+               (ah->ah_radio == AR5K_RF5112))
+                       obdb = 0;
+               else
+                       obdb = 1;
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
+                                               AR5K_RF_OB_2GHZ, true);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
+                                               AR5K_RF_DB_2GHZ, true);
+
+       /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
+       } else if ((channel->band == IEEE80211_BAND_5GHZ) ||
+                       (ah->ah_radio == AR5K_RF5111)) {
+
+               /* For 11a, Turbo and XR we need to choose
+                * OB/DB based on frequency range */
+               ee_mode = AR5K_EEPROM_MODE_11A;
+               obdb =   channel->center_freq >= 5725 ? 3 :
+                       (channel->center_freq >= 5500 ? 2 :
+                       (channel->center_freq >= 5260 ? 1 :
+                        (channel->center_freq > 4000 ? 0 : -1)));
+
+               if (obdb < 0)
+                       return -EINVAL;
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
+                                               AR5K_RF_OB_5GHZ, true);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
+                                               AR5K_RF_DB_5GHZ, true);
+       }
+
+       g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+       /* Set turbo mode (N/A on RF5413) */
+       if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
+       (ah->ah_radio != AR5K_RF5413))
+               ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
+
+       /* Bank Modifications (chip-specific) */
+       if (ah->ah_radio == AR5K_RF5111) {
+
+               /* Set gain_F settings according to current step */
+               if (channel->hw_value != AR5K_MODE_11B) {
+
+                       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
+                                       AR5K_PHY_FRAME_CTL_TX_CLIP,
+                                       g_step->gos_param[0]);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
+                                                       AR5K_RF_PWD_90, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
+                                                       AR5K_RF_PWD_84, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
+                                               AR5K_RF_RFGAIN_SEL, true);
+
+                       /* We programmed gain_F parameters, switch back
+                        * to active state */
+                       ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+
+               }
+
+               /* Bank 6/7 setup */
+
+               ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
+                                               AR5K_RF_PWD_XPD, true);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
+                                               AR5K_RF_XPD_GAIN, true);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
+                                               AR5K_RF_GAIN_I, true);
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
+                                               AR5K_RF_PLO_SEL, true);
+
+               /* Tweak power detectors for half/quarter rate support */
+               if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
+               ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
+                       u8 wait_i;
+
+                       ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
+                                               AR5K_RF_WAIT_S, true);
+
+                       wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
+                                                       0x1f : 0x10;
+
+                       ath5k_hw_rfb_op(ah, rf_regs, wait_i,
+                                               AR5K_RF_WAIT_I, true);
+                       ath5k_hw_rfb_op(ah, rf_regs, 3,
+                                               AR5K_RF_MAX_TIME, true);
+
+               }
+       }
+
+       if (ah->ah_radio == AR5K_RF5112) {
+
+               /* Set gain_F settings according to current step */
+               if (channel->hw_value != AR5K_MODE_11B) {
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
+                                               AR5K_RF_MIXGAIN_OVR, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
+                                               AR5K_RF_PWD_138, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
+                                               AR5K_RF_PWD_137, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
+                                               AR5K_RF_PWD_136, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
+                                               AR5K_RF_PWD_132, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
+                                               AR5K_RF_PWD_131, true);
+
+                       ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
+                                               AR5K_RF_PWD_130, true);
+
+                       /* We programmed gain_F parameters, switch back
+                        * to active state */
+                       ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+               }
+
+               /* Bank 6/7 setup */
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
+                                               AR5K_RF_XPD_SEL, true);
+
+               if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
+                       /* Rev. 1 supports only one xpd */
+                       ath5k_hw_rfb_op(ah, rf_regs,
+                                               ee->ee_x_gain[ee_mode],
+                                               AR5K_RF_XPD_GAIN, true);
+
+               } else {
+                       u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
+                       if (ee->ee_pd_gains[ee_mode] > 1) {
+                               ath5k_hw_rfb_op(ah, rf_regs,
+                                               pdg_curve_to_idx[0],
+                                               AR5K_RF_PD_GAIN_LO, true);
+                               ath5k_hw_rfb_op(ah, rf_regs,
+                                               pdg_curve_to_idx[1],
+                                               AR5K_RF_PD_GAIN_HI, true);
+                       } else {
+                               ath5k_hw_rfb_op(ah, rf_regs,
+                                               pdg_curve_to_idx[0],
+                                               AR5K_RF_PD_GAIN_LO, true);
+                               ath5k_hw_rfb_op(ah, rf_regs,
+                                               pdg_curve_to_idx[0],
+                                               AR5K_RF_PD_GAIN_HI, true);
+                       }
+
+                       /* Lower synth voltage on Rev 2 */
+                       if (ah->ah_radio == AR5K_RF5112 &&
+                           (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
+                               ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                               AR5K_RF_HIGH_VC_CP, true);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                               AR5K_RF_MID_VC_CP, true);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                               AR5K_RF_LOW_VC_CP, true);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 2,
+                                               AR5K_RF_PUSH_UP, true);
+                       }
+
+                       /* Decrease power consumption on 5213+ BaseBand */
+                       if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_PAD2GND, true);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_XB2_LVL, true);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_XB5_LVL, true);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_PWD_167, true);
+
+                               ath5k_hw_rfb_op(ah, rf_regs, 1,
+                                               AR5K_RF_PWD_166, true);
+                       }
+               }
+
+               ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
+                                               AR5K_RF_GAIN_I, true);
+
+               /* Tweak power detector for half/quarter rates */
+               if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
+               ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
+                       u8 pd_delay;
+
+                       pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
+                                                       0xf : 0x8;
+
+                       ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
+                                               AR5K_RF_PD_PERIOD_A, true);
+                       ath5k_hw_rfb_op(ah, rf_regs, 0xf,
+                                               AR5K_RF_PD_DELAY_A, true);
+
+               }
+       }
+
+       if (ah->ah_radio == AR5K_RF5413 &&
+       channel->band == IEEE80211_BAND_2GHZ) {
+
+               ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
+                                                                       true);
+
+               /* Set optimum value for early revisions (on pci-e chips) */
+               if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
+               ah->ah_mac_srev < AR5K_SREV_AR5413)
+                       ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
+                                               AR5K_RF_PWD_ICLOBUF_2G, true);
+
+       }
+
+       /* Write RF banks on hw */
+       for (i = 0; i < ah->ah_rf_banks_size; i++) {
+               AR5K_REG_WAIT(i);
+               ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
+       }
+
+       return 0;
+}
+
+
+/**************************\
+  PHY/RF channel functions
+\**************************/
+
+/**
+ * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
+ * @channel: The &struct ieee80211_channel
+ *
+ * Map channel frequency to IEEE channel number and convert it
+ * to an internal channel value used by the RF5110 chipset.
+ */
+static u32
+ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
+{
+       u32 athchan;
+
+       athchan = (ath5k_hw_bitswap(
+                       (ieee80211_frequency_to_channel(
+                               channel->center_freq) - 24) / 2, 5)
+                               << 1) | (1 << 6) | 0x1;
+       return athchan;
+}
+
+/**
+ * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ */
+static int
+ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
+               struct ieee80211_channel *channel)
+{
+       u32 data;
+
+       /*
+        * Set the channel and wait
+        */
+       data = ath5k_hw_rf5110_chan2athchan(channel);
+       ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
+       usleep_range(1000, 1500);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
+ * @ieee: IEEE channel number
+ * @athchan: The &struct ath5k_athchan_2ghz
+ *
+ * In order to enable the RF2111 frequency converter on RF5111/2111 setups
+ * we need to add some offsets and extra flags to the data values we pass
+ * on to the PHY. So for every 2GHz channel this function gets called
+ * to do the conversion.
+ */
+static int
+ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
+               struct ath5k_athchan_2ghz *athchan)
+{
+       int channel;
+
+       /* Cast this value to catch negative channel numbers (>= -19) */
+       channel = (int)ieee;
+
+       /*
+        * Map 2GHz IEEE channel to 5GHz Atheros channel
+        */
+       if (channel <= 13) {
+               athchan->a2_athchan = 115 + channel;
+               athchan->a2_flags = 0x46;
+       } else if (channel == 14) {
+               athchan->a2_athchan = 124;
+               athchan->a2_flags = 0x44;
+       } else if (channel >= 15 && channel <= 26) {
+               athchan->a2_athchan = ((channel - 14) * 4) + 132;
+               athchan->a2_flags = 0x46;
+       } else
+               return -EINVAL;
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ */
+static int
+ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
+               struct ieee80211_channel *channel)
+{
+       struct ath5k_athchan_2ghz ath5k_channel_2ghz;
+       unsigned int ath5k_channel =
+               ieee80211_frequency_to_channel(channel->center_freq);
+       u32 data0, data1, clock;
+       int ret;
+
+       /*
+        * Set the channel on the RF5111 radio
+        */
+       data0 = data1 = 0;
+
+       if (channel->band == IEEE80211_BAND_2GHZ) {
+               /* Map 2GHz channel to 5GHz Atheros channel ID */
+               ret = ath5k_hw_rf5111_chan2athchan(
+                       ieee80211_frequency_to_channel(channel->center_freq),
+                       &ath5k_channel_2ghz);
+               if (ret)
+                       return ret;
+
+               ath5k_channel = ath5k_channel_2ghz.a2_athchan;
+               data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
+                   << 5) | (1 << 4);
+       }
+
+       if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
+               clock = 1;
+               data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
+                       (clock << 1) | (1 << 10) | 1;
+       } else {
+               clock = 0;
+               data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
+                       << 2) | (clock << 1) | (1 << 10) | 1;
+       }
+
+       ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
+                       AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
+                       AR5K_RF_BUFFER_CONTROL_3);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * On RF5112/2112 and newer we don't need to do any conversion.
+ * We pass the frequency value after a few modifications to the
+ * chip directly.
+ *
+ * NOTE: Make sure channel frequency given is within our range or else
+ * we might damage the chip ! Use ath5k_channel_ok before calling this one.
+ */
+static int
+ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
+               struct ieee80211_channel *channel)
+{
+       u32 data, data0, data1, data2;
+       u16 c;
+
+       data = data0 = data1 = data2 = 0;
+       c = channel->center_freq;
+
+       /* My guess based on code:
+        * 2GHz RF has 2 synth modes, one with a Local Oscillator
+        * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
+        * (3040/2). data0 is used to set the PLL divider and data1
+        * selects synth mode. */
+       if (c < 4800) {
+               /* Channel 14 and all frequencies with 2Hz spacing
+                * below/above (non-standard channels) */
+               if (!((c - 2224) % 5)) {
+                       /* Same as (c - 2224) / 5 */
+                       data0 = ((2 * (c - 704)) - 3040) / 10;
+                       data1 = 1;
+               /* Channel 1 and all frequencies with 5Hz spacing
+                * below/above (standard channels without channel 14) */
+               } else if (!((c - 2192) % 5)) {
+                       /* Same as (c - 2192) / 5 */
+                       data0 = ((2 * (c - 672)) - 3040) / 10;
+                       data1 = 0;
+               } else
+                       return -EINVAL;
+
+               data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
+       /* This is more complex, we have a single synthesizer with
+        * 4 reference clock settings (?) based on frequency spacing
+        * and set using data2. LO is at 4800Hz and data0 is again used
+        * to set some divider.
+        *
+        * NOTE: There is an old atheros presentation at Stanford
+        * that mentions a method called dual direct conversion
+        * with 1GHz sliding IF for RF5110. Maybe that's what we
+        * have here, or an updated version. */
+       } else if ((c % 5) != 2 || c > 5435) {
+               if (!(c % 20) && c >= 5120) {
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
+                       data2 = ath5k_hw_bitswap(3, 2);
+               } else if (!(c % 10)) {
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
+                       data2 = ath5k_hw_bitswap(2, 2);
+               } else if (!(c % 5)) {
+                       data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
+                       data2 = ath5k_hw_bitswap(1, 2);
+               } else
+                       return -EINVAL;
+       } else {
+               data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
+               data2 = ath5k_hw_bitswap(0, 2);
+       }
+
+       data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
+
+       ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * AR2425/2417 have a different 2GHz RF so code changes
+ * a little bit from RF5112.
+ */
+static int
+ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
+               struct ieee80211_channel *channel)
+{
+       u32 data, data0, data2;
+       u16 c;
+
+       data = data0 = data2 = 0;
+       c = channel->center_freq;
+
+       if (c < 4800) {
+               data0 = ath5k_hw_bitswap((c - 2272), 8);
+               data2 = 0;
+       /* ? 5GHz ? */
+       } else if ((c % 5) != 2 || c > 5435) {
+               if (!(c % 20) && c < 5120)
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
+               else if (!(c % 10))
+                       data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
+               else if (!(c % 5))
+                       data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
+               else
+                       return -EINVAL;
+               data2 = ath5k_hw_bitswap(1, 2);
+       } else {
+               data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
+               data2 = ath5k_hw_bitswap(0, 2);
+       }
+
+       data = (data0 << 4) | data2 << 2 | 0x1001;
+
+       ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
+       ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_channel() - Set a channel on the radio chip
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * This is the main function called to set a channel on the
+ * radio chip based on the radio chip version.
+ */
+static int
+ath5k_hw_channel(struct ath5k_hw *ah,
+               struct ieee80211_channel *channel)
+{
+       int ret;
+       /*
+        * Check bounds supported by the PHY (we don't care about regulatory
+        * restrictions at this point).
+        */
+       if (!ath5k_channel_ok(ah, channel)) {
+               ATH5K_ERR(ah,
+                       "channel frequency (%u MHz) out of supported "
+                       "band range\n",
+                       channel->center_freq);
+                       return -EINVAL;
+       }
+
+       /*
+        * Set the channel and wait
+        */
+       switch (ah->ah_radio) {
+       case AR5K_RF5110:
+               ret = ath5k_hw_rf5110_channel(ah, channel);
+               break;
+       case AR5K_RF5111:
+               ret = ath5k_hw_rf5111_channel(ah, channel);
+               break;
+       case AR5K_RF2317:
+       case AR5K_RF2425:
+               ret = ath5k_hw_rf2425_channel(ah, channel);
+               break;
+       default:
+               ret = ath5k_hw_rf5112_channel(ah, channel);
+               break;
+       }
+
+       if (ret)
+               return ret;
+
+       /* Set JAPAN setting for channel 14 */
+       if (channel->center_freq == 2484) {
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
+                               AR5K_PHY_CCKTXCTL_JAPAN);
+       } else {
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
+                               AR5K_PHY_CCKTXCTL_WORLD);
+       }
+
+       ah->ah_current_channel = channel;
+
+       return 0;
+}
+
+
+/*****************\
+  PHY calibration
+\*****************/
+
+/**
+ * DOC: PHY Calibration routines
+ *
+ * Noise floor calibration: When we tell the hardware to
+ * perform a noise floor calibration by setting the
+ * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
+ * sample-and-hold the minimum noise level seen at the antennas.
+ * This value is then stored in a ring buffer of recently measured
+ * noise floor values so we have a moving window of the last few
+ * samples. The median of the values in the history is then loaded
+ * into the hardware for its own use for RSSI and CCA measurements.
+ * This type of calibration doesn't interfere with traffic.
+ *
+ * AGC calibration: When we tell the hardware to perform
+ * an AGC (Automatic Gain Control) calibration by setting the
+ * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
+ * a calibration on the DC offsets of ADCs. During this period
+ * rx/tx gets disabled so we have to deal with it on the driver
+ * part.
+ *
+ * I/Q calibration: When we tell the hardware to perform
+ * an I/Q calibration, it tries to correct I/Q imbalance and
+ * fix QAM constellation by sampling data from rxed frames.
+ * It doesn't interfere with traffic.
+ *
+ * For more infos on AGC and I/Q calibration check out patent doc
+ * #03/094463.
+ */
+
+/**
+ * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
+ * @ah: The &struct ath5k_hw
+ */
+static s32
+ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
+{
+       s32 val;
+
+       val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
+       return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
+}
+
+/**
+ * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
+ * @ah: The &struct ath5k_hw
+ */
+void
+ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
+{
+       int i;
+
+       ah->ah_nfcal_hist.index = 0;
+       for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
+               ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
+}
+
+/**
+ * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
+ * @ah: The &struct ath5k_hw
+ * @noise_floor: The NF we got from hw
+ */
+static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
+{
+       struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
+       hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
+       hist->nfval[hist->index] = noise_floor;
+}
+
+/**
+ * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
+ * @ah: The &struct ath5k_hw
+ */
+static s16
+ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
+{
+       s16 sort[ATH5K_NF_CAL_HIST_MAX];
+       s16 tmp;
+       int i, j;
+
+       memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
+       for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
+               for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
+                       if (sort[j] > sort[j - 1]) {
+                               tmp = sort[j];
+                               sort[j] = sort[j - 1];
+                               sort[j - 1] = tmp;
+                       }
+               }
+       }
+       for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
+               ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
+                       "cal %d:%d\n", i, sort[i]);
+       }
+       return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
+}
+
+/**
+ * ath5k_hw_update_noise_floor() - Update NF on hardware
+ * @ah: The &struct ath5k_hw
+ *
+ * This is the main function we call to perform a NF calibration,
+ * it reads NF from hardware, calculates the median and updates
+ * NF on hw.
+ */
+void
+ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       u32 val;
+       s16 nf, threshold;
+       u8 ee_mode;
+
+       /* keep last value if calibration hasn't completed */
+       if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
+               ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
+                       "NF did not complete in calibration window\n");
+
+               return;
+       }
+
+       ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
+
+       ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
+
+       /* completed NF calibration, test threshold */
+       nf = ath5k_hw_read_measured_noise_floor(ah);
+       threshold = ee->ee_noise_floor_thr[ee_mode];
+
+       if (nf > threshold) {
+               ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
+                       "noise floor failure detected; "
+                       "read %d, threshold %d\n",
+                       nf, threshold);
+
+               nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
+       }
+
+       ath5k_hw_update_nfcal_hist(ah, nf);
+       nf = ath5k_hw_get_median_noise_floor(ah);
+
+       /* load noise floor (in .5 dBm) so the hardware will use it */
+       val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
+       val |= (nf * 2) & AR5K_PHY_NF_M;
+       ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
+
+       AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
+               ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
+
+       ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
+               0, false);
+
+       /*
+        * Load a high max CCA Power value (-50 dBm in .5 dBm units)
+        * so that we're not capped by the median we just loaded.
+        * This will be used as the initial value for the next noise
+        * floor calibration.
+        */
+       val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
+       ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+               AR5K_PHY_AGCCTL_NF_EN |
+               AR5K_PHY_AGCCTL_NF_NOUPDATE |
+               AR5K_PHY_AGCCTL_NF);
+
+       ah->ah_noise_floor = nf;
+
+       ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
+
+       ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
+               "noise floor calibrated: %d\n", nf);
+}
+
+/**
+ * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
+ */
+static int
+ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
+               struct ieee80211_channel *channel)
+{
+       u32 phy_sig, phy_agc, phy_sat, beacon;
+       int ret;
+
+       if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
+               return 0;
+
+       /*
+        * Disable beacons and RX/TX queues, wait
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
+               AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
+       beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
+       ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
+
+       usleep_range(2000, 2500);
+
+       /*
+        * Set the channel (with AGC turned off)
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+       udelay(10);
+       ret = ath5k_hw_channel(ah, channel);
+
+       /*
+        * Activate PHY and wait
+        */
+       ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
+       usleep_range(1000, 1500);
+
+       AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+
+       if (ret)
+               return ret;
+
+       /*
+        * Calibrate the radio chip
+        */
+
+       /* Remember normal state */
+       phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
+       phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
+       phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
+
+       /* Update radio registers */
+       ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
+               AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
+
+       ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
+                       AR5K_PHY_AGCCOARSE_LO)) |
+               AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
+               AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
+
+       ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
+                       AR5K_PHY_ADCSAT_THR)) |
+               AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
+               AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
+
+       udelay(20);
+
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+       udelay(10);
+       ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
+       AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+
+       usleep_range(1000, 1500);
+
+       /*
+        * Enable calibration and wait until completion
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
+
+       ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
+                       AR5K_PHY_AGCCTL_CAL, 0, false);
+
+       /* Reset to normal state */
+       ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
+       ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
+       ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
+
+       if (ret) {
+               ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
+                               channel->center_freq);
+               return ret;
+       }
+
+       /*
+        * Re-enable RX/TX and beacons
+        */
+       AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
+               AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
+       ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
+ * @ah: The &struct ath5k_hw
+ */
+static int
+ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
+{
+       u32 i_pwr, q_pwr;
+       s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
+       int i;
+
+       /* Skip if I/Q calibration is not needed or if it's still running */
+       if (!ah->ah_iq_cal_needed)
+               return -EINVAL;
+       else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
+               ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
+                               "I/Q calibration still running");
+               return -EBUSY;
+       }
+
+       /* Calibration has finished, get the results and re-run */
+
+       /* Work around for empty results which can apparently happen on 5212:
+        * Read registers up to 10 times until we get both i_pr and q_pwr */
+       for (i = 0; i <= 10; i++) {
+               iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
+               i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
+               q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
+               ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
+                       "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
+               if (i_pwr && q_pwr)
+                       break;
+       }
+
+       i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
+
+       if (ah->ah_version == AR5K_AR5211)
+               q_coffd = q_pwr >> 6;
+       else
+               q_coffd = q_pwr >> 7;
+
+       /* In case i_coffd became zero, cancel calibration
+        * not only it's too small, it'll also result a divide
+        * by zero later on. */
+       if (i_coffd == 0 || q_coffd < 2)
+               return -ECANCELED;
+
+       /* Protect against loss of sign bits */
+
+       i_coff = (-iq_corr) / i_coffd;
+       i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
+
+       if (ah->ah_version == AR5K_AR5211)
+               q_coff = (i_pwr / q_coffd) - 64;
+       else
+               q_coff = (i_pwr / q_coffd) - 128;
+       q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
+
+       ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
+                       "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
+                       i_coff, q_coff, i_coffd, q_coffd);
+
+       /* Commit new I/Q values (set enable bit last to match HAL sources) */
+       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
+       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
+
+       /* Re-enable calibration -if we don't we'll commit
+        * the same values again and again */
+       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
+                       AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_phy_calibrate() - Perform a PHY calibration
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * The main function we call from above to perform
+ * a short or full PHY calibration based on RF chip
+ * and current channel
+ */
+int
+ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
+               struct ieee80211_channel *channel)
+{
+       int ret;
+
+       if (ah->ah_radio == AR5K_RF5110)
+               return ath5k_hw_rf5110_calibrate(ah, channel);
+
+       ret = ath5k_hw_rf511x_iq_calibrate(ah);
+       if (ret) {
+               ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
+                       "No I/Q correction performed (%uMHz)\n",
+                       channel->center_freq);
+
+               /* Happens all the time if there is not much
+                * traffic, consider it normal behaviour. */
+               ret = 0;
+       }
+
+       /* On full calibration request a PAPD probe for
+        * gainf calibration if needed */
+       if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
+           (ah->ah_radio == AR5K_RF5111 ||
+            ah->ah_radio == AR5K_RF5112) &&
+           channel->hw_value != AR5K_MODE_11B)
+               ath5k_hw_request_rfgain_probe(ah);
+
+       /* Update noise floor */
+       if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
+               ath5k_hw_update_noise_floor(ah);
+
+       return ret;
+}
+
+
+/***************************\
+* Spur mitigation functions *
+\***************************/
+
+/**
+ * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * This function gets called during PHY initialization to
+ * configure the spur filter for the given channel. Spur is noise
+ * generated due to "reflection" effects, for more information on this
+ * method check out patent US7643810
+ */
+static void
+ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
+                               struct ieee80211_channel *channel)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       u32 mag_mask[4] = {0, 0, 0, 0};
+       u32 pilot_mask[2] = {0, 0};
+       /* Note: fbin values are scaled up by 2 */
+       u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
+       s32 spur_delta_phase, spur_freq_sigma_delta;
+       s32 spur_offset, num_symbols_x16;
+       u8 num_symbol_offsets, i, freq_band;
+
+       /* Convert current frequency to fbin value (the same way channels
+        * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
+        * up by 2 so we can compare it later */
+       if (channel->band == IEEE80211_BAND_2GHZ) {
+               chan_fbin = (channel->center_freq - 2300) * 10;
+               freq_band = AR5K_EEPROM_BAND_2GHZ;
+       } else {
+               chan_fbin = (channel->center_freq - 4900) * 10;
+               freq_band = AR5K_EEPROM_BAND_5GHZ;
+       }
+
+       /* Check if any spur_chan_fbin from EEPROM is
+        * within our current channel's spur detection range */
+       spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
+       spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
+       /* XXX: Half/Quarter channels ?*/
+       if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
+               spur_detection_window *= 2;
+
+       for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
+               spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
+
+               /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
+                * so it's zero if we got nothing from EEPROM */
+               if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
+                       spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
+                       break;
+               }
+
+               if ((chan_fbin - spur_detection_window <=
+               (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
+               (chan_fbin + spur_detection_window >=
+               (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
+                       spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
+                       break;
+               }
+       }
+
+       /* We need to enable spur filter for this channel */
+       if (spur_chan_fbin) {
+               spur_offset = spur_chan_fbin - chan_fbin;
+               /*
+                * Calculate deltas:
+                * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
+                * spur_delta_phase -> spur_offset / chip_freq << 11
+                * Note: Both values have 100Hz resolution
+                */
+               switch (ah->ah_bwmode) {
+               case AR5K_BWMODE_40MHZ:
+                       /* Both sample_freq and chip_freq are 80MHz */
+                       spur_delta_phase = (spur_offset << 16) / 25;
+                       spur_freq_sigma_delta = (spur_delta_phase >> 10);
+                       symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
+                       break;
+               case AR5K_BWMODE_10MHZ:
+                       /* Both sample_freq and chip_freq are 20MHz (?) */
+                       spur_delta_phase = (spur_offset << 18) / 25;
+                       spur_freq_sigma_delta = (spur_delta_phase >> 10);
+                       symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
+                       break;
+               case AR5K_BWMODE_5MHZ:
+                       /* Both sample_freq and chip_freq are 10MHz (?) */
+                       spur_delta_phase = (spur_offset << 19) / 25;
+                       spur_freq_sigma_delta = (spur_delta_phase >> 10);
+                       symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
+                       break;
+               default:
+                       if (channel->band == IEEE80211_BAND_5GHZ) {
+                               /* Both sample_freq and chip_freq are 40MHz */
+                               spur_delta_phase = (spur_offset << 17) / 25;
+                               spur_freq_sigma_delta =
+                                               (spur_delta_phase >> 10);
+                               symbol_width =
+                                       AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
+                       } else {
+                               /* sample_freq -> 40MHz chip_freq -> 44MHz
+                                * (for b compatibility) */
+                               spur_delta_phase = (spur_offset << 17) / 25;
+                               spur_freq_sigma_delta =
+                                               (spur_offset << 8) / 55;
+                               symbol_width =
+                                       AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
+                       }
+                       break;
+               }
+
+               /* Calculate pilot and magnitude masks */
+
+               /* Scale up spur_offset by 1000 to switch to 100HZ resolution
+                * and divide by symbol_width to find how many symbols we have
+                * Note: number of symbols is scaled up by 16 */
+               num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
+
+               /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
+               if (!(num_symbols_x16 & 0xF))
+                       /* _X_ */
+                       num_symbol_offsets = 3;
+               else
+                       /* _xx_ */
+                       num_symbol_offsets = 4;
+
+               for (i = 0; i < num_symbol_offsets; i++) {
+
+                       /* Calculate pilot mask */
+                       s32 curr_sym_off =
+                               (num_symbols_x16 / 16) + i + 25;
+
+                       /* Pilot magnitude mask seems to be a way to
+                        * declare the boundaries for our detection
+                        * window or something, it's 2 for the middle
+                        * value(s) where the symbol is expected to be
+                        * and 1 on the boundary values */
+                       u8 plt_mag_map =
+                               (i == 0 || i == (num_symbol_offsets - 1))
+                                                               ? 1 : 2;
+
+                       if (curr_sym_off >= 0 && curr_sym_off <= 32) {
+                               if (curr_sym_off <= 25)
+                                       pilot_mask[0] |= 1 << curr_sym_off;
+                               else if (curr_sym_off >= 27)
+                                       pilot_mask[0] |= 1 << (curr_sym_off - 1);
+                       } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
+                               pilot_mask[1] |= 1 << (curr_sym_off - 33);
+
+                       /* Calculate magnitude mask (for viterbi decoder) */
+                       if (curr_sym_off >= -1 && curr_sym_off <= 14)
+                               mag_mask[0] |=
+                                       plt_mag_map << (curr_sym_off + 1) * 2;
+                       else if (curr_sym_off >= 15 && curr_sym_off <= 30)
+                               mag_mask[1] |=
+                                       plt_mag_map << (curr_sym_off - 15) * 2;
+                       else if (curr_sym_off >= 31 && curr_sym_off <= 46)
+                               mag_mask[2] |=
+                                       plt_mag_map << (curr_sym_off - 31) * 2;
+                       else if (curr_sym_off >= 47 && curr_sym_off <= 53)
+                               mag_mask[3] |=
+                                       plt_mag_map << (curr_sym_off - 47) * 2;
+
+               }
+
+               /* Write settings on hw to enable spur filter */
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+                                       AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
+               /* XXX: Self correlator also ? */
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
+                                       AR5K_PHY_IQ_PILOT_MASK_EN |
+                                       AR5K_PHY_IQ_CHAN_MASK_EN |
+                                       AR5K_PHY_IQ_SPUR_FILT_EN);
+
+               /* Set delta phase and freq sigma delta */
+               ath5k_hw_reg_write(ah,
+                               AR5K_REG_SM(spur_delta_phase,
+                                       AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
+                               AR5K_REG_SM(spur_freq_sigma_delta,
+                               AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
+                               AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
+                               AR5K_PHY_TIMING_11);
+
+               /* Write pilot masks */
+               ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
+                                       AR5K_PHY_TIMING_8_PILOT_MASK_2,
+                                       pilot_mask[1]);
+
+               ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
+                                       AR5K_PHY_TIMING_10_PILOT_MASK_2,
+                                       pilot_mask[1]);
+
+               /* Write magnitude masks */
+               ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
+               ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
+               ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+                                       AR5K_PHY_BIN_MASK_CTL_MASK_4,
+                                       mag_mask[3]);
+
+               ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
+               ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
+               ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
+                                       AR5K_PHY_BIN_MASK2_4_MASK_4,
+                                       mag_mask[3]);
+
+       } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
+       AR5K_PHY_IQ_SPUR_FILT_EN) {
+               /* Clean up spur mitigation settings and disable filter */
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+                                       AR5K_PHY_BIN_MASK_CTL_RATE, 0);
+               AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
+                                       AR5K_PHY_IQ_PILOT_MASK_EN |
+                                       AR5K_PHY_IQ_CHAN_MASK_EN |
+                                       AR5K_PHY_IQ_SPUR_FILT_EN);
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
+
+               /* Clear pilot masks */
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
+                                       AR5K_PHY_TIMING_8_PILOT_MASK_2,
+                                       0);
+
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
+                                       AR5K_PHY_TIMING_10_PILOT_MASK_2,
+                                       0);
+
+               /* Clear magnitude masks */
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+                                       AR5K_PHY_BIN_MASK_CTL_MASK_4,
+                                       0);
+
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
+               ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
+                                       AR5K_PHY_BIN_MASK2_4_MASK_4,
+                                       0);
+       }
+}
+
+
+/*****************\
+* Antenna control *
+\*****************/
+
+/**
+ * DOC: Antenna control
+ *
+ * Hw supports up to 14 antennas ! I haven't found any card that implements
+ * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
+ * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
+ * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
+ *
+ * We can have a single antenna for RX and multiple antennas for TX.
+ * RX antenna is our "default" antenna (usually antenna 1) set on
+ * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
+ * (0 for automatic selection, 1 - 14 antenna number).
+ *
+ * We can let hw do all the work doing fast antenna diversity for both
+ * tx and rx or we can do things manually. Here are the options we have
+ * (all are bits of STA_ID1 register):
+ *
+ * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
+ * control descriptor, use the default antenna to transmit or else use the last
+ * antenna on which we received an ACK.
+ *
+ * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
+ * the antenna on which we got the ACK for that frame.
+ *
+ * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
+ * one on the TX descriptor.
+ *
+ * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
+ * (ACKs etc), or else use current antenna (the one we just used for TX).
+ *
+ * Using the above we support the following scenarios:
+ *
+ * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
+ *
+ * AR5K_ANTMODE_FIXED_A        -> Only antenna A (MAIN) is present
+ *
+ * AR5K_ANTMODE_FIXED_B        -> Only antenna B (AUX) is present
+ *
+ * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
+ *
+ * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
+ *
+ * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
+ *
+ * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
+ *
+ * Also note that when setting antenna to F on tx descriptor card inverts
+ * current tx antenna.
+ */
+
+/**
+ * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
+ * @ah: The &struct ath5k_hw
+ * @ant: Antenna number
+ */
+static void
+ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
+{
+       if (ah->ah_version != AR5K_AR5210)
+               ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
+}
+
+/**
+ * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
+ * @ah: The &struct ath5k_hw
+ * @ee_mode: One of enum ath5k_driver_mode
+ * @enable: True to enable, false to disable
+ */
+static void
+ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
+{
+       switch (ee_mode) {
+       case AR5K_EEPROM_MODE_11G:
+               /* XXX: This is set to
+                * disabled on initvals !!! */
+       case AR5K_EEPROM_MODE_11A:
+               if (enable)
+                       AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
+                                       AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
+               else
+                       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+                                       AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
+               break;
+       case AR5K_EEPROM_MODE_11B:
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+                                       AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
+               break;
+       default:
+               return;
+       }
+
+       if (enable) {
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
+                               AR5K_PHY_RESTART_DIV_GC, 4);
+
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
+                                       AR5K_PHY_FAST_ANT_DIV_EN);
+       } else {
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
+                               AR5K_PHY_RESTART_DIV_GC, 0);
+
+               AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
+                                       AR5K_PHY_FAST_ANT_DIV_EN);
+       }
+}
+
+/**
+ * ath5k_hw_set_antenna_switch() - Set up antenna switch table
+ * @ah: The &struct ath5k_hw
+ * @ee_mode: One of enum ath5k_driver_mode
+ *
+ * Switch table comes from EEPROM and includes information on controlling
+ * the 2 antenna RX attenuators
+ */
+void
+ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
+{
+       u8 ant0, ant1;
+
+       /*
+        * In case a fixed antenna was set as default
+        * use the same switch table twice.
+        */
+       if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
+               ant0 = ant1 = AR5K_ANT_SWTABLE_A;
+       else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
+               ant0 = ant1 = AR5K_ANT_SWTABLE_B;
+       else {
+               ant0 = AR5K_ANT_SWTABLE_A;
+               ant1 = AR5K_ANT_SWTABLE_B;
+       }
+
+       /* Set antenna idle switch table */
+       AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
+                       AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
+                       (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
+                       AR5K_PHY_ANT_CTL_TXRX_EN));
+
+       /* Set antenna switch tables */
+       ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
+               AR5K_PHY_ANT_SWITCH_TABLE_0);
+       ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
+               AR5K_PHY_ANT_SWITCH_TABLE_1);
+}
+
+/**
+ * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
+ * @ah: The &struct ath5k_hw
+ * @ant_mode: One of enum ath5k_ant_mode
+ */
+void
+ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
+{
+       struct ieee80211_channel *channel = ah->ah_current_channel;
+       bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
+       bool use_def_for_sg;
+       int ee_mode;
+       u8 def_ant, tx_ant;
+       u32 sta_id1 = 0;
+
+       /* if channel is not initialized yet we can't set the antennas
+        * so just store the mode. it will be set on the next reset */
+       if (channel == NULL) {
+               ah->ah_ant_mode = ant_mode;
+               return;
+       }
+
+       def_ant = ah->ah_def_ant;
+
+       ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
+
+       switch (ant_mode) {
+       case AR5K_ANTMODE_DEFAULT:
+               tx_ant = 0;
+               use_def_for_tx = false;
+               update_def_on_tx = false;
+               use_def_for_rts = false;
+               use_def_for_sg = false;
+               fast_div = true;
+               break;
+       case AR5K_ANTMODE_FIXED_A:
+               def_ant = 1;
+               tx_ant = 1;
+               use_def_for_tx = true;
+               update_def_on_tx = false;
+               use_def_for_rts = true;
+               use_def_for_sg = true;
+               fast_div = false;
+               break;
+       case AR5K_ANTMODE_FIXED_B:
+               def_ant = 2;
+               tx_ant = 2;
+               use_def_for_tx = true;
+               update_def_on_tx = false;
+               use_def_for_rts = true;
+               use_def_for_sg = true;
+               fast_div = false;
+               break;
+       case AR5K_ANTMODE_SINGLE_AP:
+               def_ant = 1;    /* updated on tx */
+               tx_ant = 0;
+               use_def_for_tx = true;
+               update_def_on_tx = true;
+               use_def_for_rts = true;
+               use_def_for_sg = true;
+               fast_div = true;
+               break;
+       case AR5K_ANTMODE_SECTOR_AP:
+               tx_ant = 1;     /* variable */
+               use_def_for_tx = false;
+               update_def_on_tx = false;
+               use_def_for_rts = true;
+               use_def_for_sg = false;
+               fast_div = false;
+               break;
+       case AR5K_ANTMODE_SECTOR_STA:
+               tx_ant = 1;     /* variable */
+               use_def_for_tx = true;
+               update_def_on_tx = false;
+               use_def_for_rts = true;
+               use_def_for_sg = false;
+               fast_div = true;
+               break;
+       case AR5K_ANTMODE_DEBUG:
+               def_ant = 1;
+               tx_ant = 2;
+               use_def_for_tx = false;
+               update_def_on_tx = false;
+               use_def_for_rts = false;
+               use_def_for_sg = false;
+               fast_div = false;
+               break;
+       default:
+               return;
+       }
+
+       ah->ah_tx_ant = tx_ant;
+       ah->ah_ant_mode = ant_mode;
+       ah->ah_def_ant = def_ant;
+
+       sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
+       sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
+       sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
+       sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
+
+       AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
+
+       if (sta_id1)
+               AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
+
+       ath5k_hw_set_antenna_switch(ah, ee_mode);
+       /* Note: set diversity before default antenna
+        * because it won't work correctly */
+       ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
+       ath5k_hw_set_def_antenna(ah, def_ant);
+}
+
+
+/****************\
+* TX power setup *
+\****************/
+
+/*
+ * Helper functions
+ */
+
+/**
+ * ath5k_get_interpolated_value() - Get interpolated Y val between two points
+ * @target: X value of the middle point
+ * @x_left: X value of the left point
+ * @x_right: X value of the right point
+ * @y_left: Y value of the left point
+ * @y_right: Y value of the right point
+ */
+static s16
+ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
+                                       s16 y_left, s16 y_right)
+{
+       s16 ratio, result;
+
+       /* Avoid divide by zero and skip interpolation
+        * if we have the same point */
+       if ((x_left == x_right) || (y_left == y_right))
+               return y_left;
+
+       /*
+        * Since we use ints and not fps, we need to scale up in
+        * order to get a sane ratio value (or else we 'll eg. get
+        * always 1 instead of 1.25, 1.75 etc). We scale up by 100
+        * to have some accuracy both for 0.5 and 0.25 steps.
+        */
+       ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
+
+       /* Now scale down to be in range */
+       result = y_left + (ratio * (target - x_left) / 100);
+
+       return result;
+}
+
+/**
+ * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
+ * linear PCDAC curve
+ * @stepL: Left array with y values (pcdac steps)
+ * @stepR: Right array with y values (pcdac steps)
+ * @pwrL: Left array with x values (power steps)
+ * @pwrR: Right array with x values (power steps)
+ *
+ * Since we have the top of the curve and we draw the line below
+ * until we reach 1 (1 pcdac step) we need to know which point
+ * (x value) that is so that we don't go below x axis and have negative
+ * pcdac values when creating the curve, or fill the table with zeros.
+ */
+static s16
+ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
+                               const s16 *pwrL, const s16 *pwrR)
+{
+       s8 tmp;
+       s16 min_pwrL, min_pwrR;
+       s16 pwr_i;
+
+       /* Some vendors write the same pcdac value twice !!! */
+       if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
+               return max(pwrL[0], pwrR[0]);
+
+       if (pwrL[0] == pwrL[1])
+               min_pwrL = pwrL[0];
+       else {
+               pwr_i = pwrL[0];
+               do {
+                       pwr_i--;
+                       tmp = (s8) ath5k_get_interpolated_value(pwr_i,
+                                                       pwrL[0], pwrL[1],
+                                                       stepL[0], stepL[1]);
+               } while (tmp > 1);
+
+               min_pwrL = pwr_i;
+       }
+
+       if (pwrR[0] == pwrR[1])
+               min_pwrR = pwrR[0];
+       else {
+               pwr_i = pwrR[0];
+               do {
+                       pwr_i--;
+                       tmp = (s8) ath5k_get_interpolated_value(pwr_i,
+                                                       pwrR[0], pwrR[1],
+                                                       stepR[0], stepR[1]);
+               } while (tmp > 1);
+
+               min_pwrR = pwr_i;
+       }
+
+       /* Keep the right boundary so that it works for both curves */
+       return max(min_pwrL, min_pwrR);
+}
+
+/**
+ * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
+ * @pmin: Minimum power value (xmin)
+ * @pmax: Maximum power value (xmax)
+ * @pwr: Array of power steps (x values)
+ * @vpd: Array of matching PCDAC/PDADC steps (y values)
+ * @num_points: Number of provided points
+ * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
+ * @type: One of enum ath5k_powertable_type (eeprom.h)
+ *
+ * Interpolate (pwr,vpd) points to create a Power to PDADC or a
+ * Power to PCDAC curve.
+ *
+ * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
+ * steps (offsets) on y axis. Power can go up to 31.5dB and max
+ * PCDAC/PDADC step for each curve is 64 but we can write more than
+ * one curves on hw so we can go up to 128 (which is the max step we
+ * can write on the final table).
+ *
+ * We write y values (PCDAC/PDADC steps) on hw.
+ */
+static void
+ath5k_create_power_curve(s16 pmin, s16 pmax,
+                       const s16 *pwr, const u8 *vpd,
+                       u8 num_points,
+                       u8 *vpd_table, u8 type)
+{
+       u8 idx[2] = { 0, 1 };
+       s16 pwr_i = 2 * pmin;
+       int i;
+
+       if (num_points < 2)
+               return;
+
+       /* We want the whole line, so adjust boundaries
+        * to cover the entire power range. Note that
+        * power values are already 0.25dB so no need
+        * to multiply pwr_i by 2 */
+       if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
+               pwr_i = pmin;
+               pmin = 0;
+               pmax = 63;
+       }
+
+       /* Find surrounding turning points (TPs)
+        * and interpolate between them */
+       for (i = 0; (i <= (u16) (pmax - pmin)) &&
+       (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
+
+               /* We passed the right TP, move to the next set of TPs
+                * if we pass the last TP, extrapolate above using the last
+                * two TPs for ratio */
+               if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
+                       idx[0]++;
+                       idx[1]++;
+               }
+
+               vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
+                                               pwr[idx[0]], pwr[idx[1]],
+                                               vpd[idx[0]], vpd[idx[1]]);
+
+               /* Increase by 0.5dB
+                * (0.25 dB units) */
+               pwr_i += 2;
+       }
+}
+
+/**
+ * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
+ * for a given channel.
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
+ * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
+ *
+ * Get the surrounding per-channel power calibration piers
+ * for a given frequency so that we can interpolate between
+ * them and come up with an appropriate dataset for our current
+ * channel.
+ */
+static void
+ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
+                       struct ieee80211_channel *channel,
+                       struct ath5k_chan_pcal_info **pcinfo_l,
+                       struct ath5k_chan_pcal_info **pcinfo_r)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       struct ath5k_chan_pcal_info *pcinfo;
+       u8 idx_l, idx_r;
+       u8 mode, max, i;
+       u32 target = channel->center_freq;
+
+       idx_l = 0;
+       idx_r = 0;
+
+       switch (channel->hw_value) {
+       case AR5K_EEPROM_MODE_11A:
+               pcinfo = ee->ee_pwr_cal_a;
+               mode = AR5K_EEPROM_MODE_11A;
+               break;
+       case AR5K_EEPROM_MODE_11B:
+               pcinfo = ee->ee_pwr_cal_b;
+               mode = AR5K_EEPROM_MODE_11B;
+               break;
+       case AR5K_EEPROM_MODE_11G:
+       default:
+               pcinfo = ee->ee_pwr_cal_g;
+               mode = AR5K_EEPROM_MODE_11G;
+               break;
+       }
+       max = ee->ee_n_piers[mode] - 1;
+
+       /* Frequency is below our calibrated
+        * range. Use the lowest power curve
+        * we have */
+       if (target < pcinfo[0].freq) {
+               idx_l = idx_r = 0;
+               goto done;
+       }
+
+       /* Frequency is above our calibrated
+        * range. Use the highest power curve
+        * we have */
+       if (target > pcinfo[max].freq) {
+               idx_l = idx_r = max;
+               goto done;
+       }
+
+       /* Frequency is inside our calibrated
+        * channel range. Pick the surrounding
+        * calibration piers so that we can
+        * interpolate */
+       for (i = 0; i <= max; i++) {
+
+               /* Frequency matches one of our calibration
+                * piers, no need to interpolate, just use
+                * that calibration pier */
+               if (pcinfo[i].freq == target) {
+                       idx_l = idx_r = i;
+                       goto done;
+               }
+
+               /* We found a calibration pier that's above
+                * frequency, use this pier and the previous
+                * one to interpolate */
+               if (target < pcinfo[i].freq) {
+                       idx_r = i;
+                       idx_l = idx_r - 1;
+                       goto done;
+               }
+       }
+
+done:
+       *pcinfo_l = &pcinfo[idx_l];
+       *pcinfo_r = &pcinfo[idx_r];
+}
+
+/**
+ * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
+ * calibration data
+ * @ah: The &struct ath5k_hw *ah,
+ * @channel: The &struct ieee80211_channel
+ * @rates: The &struct ath5k_rate_pcal_info to fill
+ *
+ * Get the surrounding per-rate power calibration data
+ * for a given frequency and interpolate between power
+ * values to set max target power supported by hw for
+ * each rate on this frequency.
+ */
+static void
+ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
+                       struct ieee80211_channel *channel,
+                       struct ath5k_rate_pcal_info *rates)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       struct ath5k_rate_pcal_info *rpinfo;
+       u8 idx_l, idx_r;
+       u8 mode, max, i;
+       u32 target = channel->center_freq;
+
+       idx_l = 0;
+       idx_r = 0;
+
+       switch (channel->hw_value) {
+       case AR5K_MODE_11A:
+               rpinfo = ee->ee_rate_tpwr_a;
+               mode = AR5K_EEPROM_MODE_11A;
+               break;
+       case AR5K_MODE_11B:
+               rpinfo = ee->ee_rate_tpwr_b;
+               mode = AR5K_EEPROM_MODE_11B;
+               break;
+       case AR5K_MODE_11G:
+       default:
+               rpinfo = ee->ee_rate_tpwr_g;
+               mode = AR5K_EEPROM_MODE_11G;
+               break;
+       }
+       max = ee->ee_rate_target_pwr_num[mode] - 1;
+
+       /* Get the surrounding calibration
+        * piers - same as above */
+       if (target < rpinfo[0].freq) {
+               idx_l = idx_r = 0;
+               goto done;
+       }
+
+       if (target > rpinfo[max].freq) {
+               idx_l = idx_r = max;
+               goto done;
+       }
+
+       for (i = 0; i <= max; i++) {
+
+               if (rpinfo[i].freq == target) {
+                       idx_l = idx_r = i;
+                       goto done;
+               }
+
+               if (target < rpinfo[i].freq) {
+                       idx_r = i;
+                       idx_l = idx_r - 1;
+                       goto done;
+               }
+       }
+
+done:
+       /* Now interpolate power value, based on the frequency */
+       rates->freq = target;
+
+       rates->target_power_6to24 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_6to24,
+                                       rpinfo[idx_r].target_power_6to24);
+
+       rates->target_power_36 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_36,
+                                       rpinfo[idx_r].target_power_36);
+
+       rates->target_power_48 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_48,
+                                       rpinfo[idx_r].target_power_48);
+
+       rates->target_power_54 =
+               ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+                                       rpinfo[idx_r].freq,
+                                       rpinfo[idx_l].target_power_54,
+                                       rpinfo[idx_r].target_power_54);
+}
+
+/**
+ * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
+ * @ah: the &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ *
+ * Get the max edge power for this channel if
+ * we have such data from EEPROM's Conformance Test
+ * Limits (CTL), and limit max power if needed.
+ */
+static void
+ath5k_get_max_ctl_power(struct ath5k_hw *ah,
+                       struct ieee80211_channel *channel)
+{
+       struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
+       u8 *ctl_val = ee->ee_ctl;
+       s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
+       s16 edge_pwr = 0;
+       u8 rep_idx;
+       u8 i, ctl_mode;
+       u8 ctl_idx = 0xFF;
+       u32 target = channel->center_freq;
+
+       ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
+
+       switch (channel->hw_value) {
+       case AR5K_MODE_11A:
+               if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
+                       ctl_mode |= AR5K_CTL_TURBO;
+               else
+                       ctl_mode |= AR5K_CTL_11A;
+               break;
+       case AR5K_MODE_11G:
+               if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
+                       ctl_mode |= AR5K_CTL_TURBOG;
+               else
+                       ctl_mode |= AR5K_CTL_11G;
+               break;
+       case AR5K_MODE_11B:
+               ctl_mode |= AR5K_CTL_11B;
+               break;
+       default:
+               return;
+       }
+
+       for (i = 0; i < ee->ee_ctls; i++) {
+               if (ctl_val[i] == ctl_mode) {
+                       ctl_idx = i;
+                       break;
+               }
+       }
+
+       /* If we have a CTL dataset available grab it and find the
+        * edge power for our frequency */
+       if (ctl_idx == 0xFF)
+               return;
+
+       /* Edge powers are sorted by frequency from lower
+        * to higher. Each CTL corresponds to 8 edge power
+        * measurements. */
+       rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
+
+       /* Don't do boundaries check because we
+        * might have more that one bands defined
+        * for this mode */
+
+       /* Get the edge power that's closer to our
+        * frequency */
+       for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
+               rep_idx += i;
+               if (target <= rep[rep_idx].freq)
+                       edge_pwr = (s16) rep[rep_idx].edge;
+       }
+
+       if (edge_pwr)
+               ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
+}
+
+
+/*
+ * Power to PCDAC table functions
+ */
+
+/**
+ * DOC: Power to PCDAC table functions
+ *
+ * For RF5111 we have an XPD -eXternal Power Detector- curve
+ * for each calibrated channel. Each curve has 0,5dB Power steps
+ * on x axis and PCDAC steps (offsets) on y axis and looks like an
+ * exponential function. To recreate the curve we read 11 points
+ * from eeprom (eeprom.c) and interpolate here.
+ *
+ * For RF5112 we have 4 XPD -eXternal Power Detector- curves
+ * for each calibrated channel on 0, -6, -12 and -18dBm but we only
+ * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
+ * power steps on x axis and PCDAC steps on y axis and looks like a
+ * linear function. To recreate the curve and pass the power values
+ * on hw, we get 4 points for xpd 0 (lower gain -> max power)
+ * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
+ * and interpolate here.
+ *
+ * For a given channel we get the calibrated points (piers) for it or
+ * -if we don't have calibration data for this specific channel- from the
+ * available surrounding channels we have calibration data for, after we do a
+ * linear interpolation between them. Then since we have our calibrated points
+ * for this channel, we do again a linear interpolation between them to get the
+ * whole curve.
+ *
+ * We finally write the Y values of the curve(s) (the PCDAC values) on hw
+ */
+
+/**
+ * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
+ * @ah: The &struct ath5k_hw
+ * @table_min: Minimum power (x min)
+ * @table_max: Maximum power (x max)
+ *
+ * No further processing is needed for RF5111, the only thing we have to
+ * do is fill the values below and above calibration range since eeprom data
+ * may not cover the entire PCDAC table.
+ */
+static void
+ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
+                                                       s16 *table_max)
+{
+       u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
+       u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
+       u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
+       s16     min_pwr, max_pwr;
+
+       /* Get table boundaries */
+       min_pwr = table_min[0];
+       pcdac_0 = pcdac_tmp[0];
+
+       max_pwr = table_max[0];
+       pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
+
+       /* Extrapolate below minimum using pcdac_0 */
+       pcdac_i = 0;
+       for (i = 0; i < min_pwr; i++)
+               pcdac_out[pcdac_i++] = pcdac_0;
+
+       /* Copy values from pcdac_tmp */
+       pwr_idx = min_pwr;
+       for (i = 0; pwr_idx <= max_pwr &&
+                   pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
+               pcdac_out[pcdac_i++] = pcdac_tmp[i];
+               pwr_idx++;
+       }
+
+       /* Extrapolate above maximum */
+       while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
+               pcdac_out[pcdac_i++] = pcdac_n;
+
+}
+
+/**
+ * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
+ * @ah: The &struct ath5k_hw
+ * @table_min: Minimum power (x min)
+ * @table_max: Maximum power (x max)
+ * @pdcurves: Number of pd curves
+ *
+ * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
+ * RFX112 can have up to 2 curves (one for low txpower range and one for
+ * higher txpower range). We need to put them both on pcdac_out and place
+ * them in the correct location. In case we only have one curve available
+ * just fit it on pcdac_out (it's supposed to cover the entire range of
+ * available pwr levels since it's always the higher power curve). Extrapolate
+ * below and above final table if needed.
+ */
+static void
+ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
+                                               s16 *table_max, u8 pdcurves)
+{
+       u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
+       u8      *pcdac_low_pwr;
+       u8      *pcdac_high_pwr;
+       u8      *pcdac_tmp;
+       u8      pwr;
+       s16     max_pwr_idx;
+       s16     min_pwr_idx;
+       s16     mid_pwr_idx = 0;
+       /* Edge flag turns on the 7nth bit on the PCDAC
+        * to declare the higher power curve (force values
+        * to be greater than 64). If we only have one curve
+        * we don't need to set this, if we have 2 curves and
+        * fill the table backwards this can also be used to
+        * switch from higher power curve to lower power curve */
+       u8      edge_flag;
+       int     i;
+
+       /* When we have only one curve available
+        * that's the higher power curve. If we have
+        * two curves the first is the high power curve
+        * and the next is the low power curve. */
+       if (pdcurves > 1) {
+               pcdac_low_pwr = ah->ah_txpower.tmpL[1];
+               pcdac_high_pwr = ah->ah_txpower.tmpL[0];
+               mid_pwr_idx = table_max[1] - table_min[1] - 1;
+               max_pwr_idx = (table_max[0] - table_min[0]) / 2;
+
+               /* If table size goes beyond 31.5dB, keep the
+                * upper 31.5dB range when setting tx power.
+                * Note: 126 = 31.5 dB in quarter dB steps */
+               if (table_max[0] - table_min[1] > 126)
+                       min_pwr_idx = table_max[0] - 126;
+               else
+                       min_pwr_idx = table_min[1];
+
+               /* Since we fill table backwards
+                * start from high power curve */
+               pcdac_tmp = pcdac_high_pwr;
+
+               edge_flag = 0x40;
+       } else {
+               pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
+               pcdac_high_pwr = ah->ah_txpower.tmpL[0];
+               min_pwr_idx = table_min[0];
+               max_pwr_idx = (table_max[0] - table_min[0]) / 2;
+               pcdac_tmp = pcdac_high_pwr;
+               edge_flag = 0;
+       }
+
+       /* This is used when setting tx power*/
+       ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
+
+       /* Fill Power to PCDAC table backwards */
+       pwr = max_pwr_idx;
+       for (i = 63; i >= 0; i--) {
+               /* Entering lower power range, reset
+                * edge flag and set pcdac_tmp to lower
+                * power curve.*/
+               if (edge_flag == 0x40 &&
+               (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
+                       edge_flag = 0x00;
+                       pcdac_tmp = pcdac_low_pwr;
+                       pwr = mid_pwr_idx / 2;
+               }
+
+               /* Don't go below 1, extrapolate below if we have
+                * already switched to the lower power curve -or
+                * we only have one curve and edge_flag is zero
+                * anyway */
+               if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
+                       while (i >= 0) {
+                               pcdac_out[i] = pcdac_out[i + 1];
+                               i--;
+                       }
+                       break;
+               }
+
+               pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
+
+               /* Extrapolate above if pcdac is greater than
+                * 126 -this can happen because we OR pcdac_out
+                * value with edge_flag on high power curve */
+               if (pcdac_out[i] > 126)
+                       pcdac_out[i] = 126;
+
+               /* Decrease by a 0.5dB step */
+               pwr--;
+       }
+}
+
+/**
+ * ath5k_write_pcdac_table() - Write the PCDAC values on hw
+ * @ah: The &struct ath5k_hw
+ */
+static void
+ath5k_write_pcdac_table(struct ath5k_hw *ah)
+{
+       u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
+       int     i;
+
+       /*
+        * Write TX power values
+        */
+       for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
+               ath5k_hw_reg_write(ah,
+                       (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
+                       (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
+                       AR5K_PHY_PCDAC_TXPOWER(i));
+       }
+}
+
+
+/*
+ * Power to PDADC table functions
+ */
+
+/**
+ * DOC: Power to PDADC table functions
+ *
+ * For RF2413 and later we have a Power to PDADC table (Power Detector)
+ * instead of a PCDAC (Power Control) and 4 pd gain curves for each
+ * calibrated channel. Each curve has power on x axis in 0.5 db steps and
+ * PDADC steps on y axis and looks like an exponential function like the
+ * RF5111 curve.
+ *
+ * To recreate the curves we read the points from eeprom (eeprom.c)
+ * and interpolate here. Note that in most cases only 2 (higher and lower)
+ * curves are used (like RF5112) but vendors have the opportunity to include
+ * all 4 curves on eeprom. The final curve (higher power) has an extra
+ * point for better accuracy like RF5112.
+ *
+ * The process is similar to what we do above for RF5111/5112
+ */
+
+/**
+ * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
+ * @ah: The &struct ath5k_hw
+ * @pwr_min: Minimum power (x min)
+ * @pwr_max: Maximum power (x max)
+ * @pdcurves: Number of available curves
+ *
+ * Combine the various pd curves and create the final Power to PDADC table
+ * We can have up to 4 pd curves, we need to do a similar process
+ * as we do for RF5112. This time we don't have an edge_flag but we
+ * set the gain boundaries on a separate register.
+ */
+static void
+ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
+                       s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
+{
+       u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
+       u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
+       u8 *pdadc_tmp;
+       s16 pdadc_0;
+       u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
+       u8 pd_gain_overlap;
+
+       /* Note: Register value is initialized on initvals
+        * there is no feedback from hw.
+        * XXX: What about pd_gain_overlap from EEPROM ? */
+       pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
+               AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
+
+       /* Create final PDADC table */
+       for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
+               pdadc_tmp = ah->ah_txpower.tmpL[pdg];
+
+               if (pdg == pdcurves - 1)
+                       /* 2 dB boundary stretch for last
+                        * (higher power) curve */
+                       gain_boundaries[pdg] = pwr_max[pdg] + 4;
+               else
+                       /* Set gain boundary in the middle
+                        * between this curve and the next one */
+                       gain_boundaries[pdg] =
+                               (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
+
+               /* Sanity check in case our 2 db stretch got out of
+                * range. */
+               if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
+                       gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
+
+               /* For the first curve (lower power)
+                * start from 0 dB */
+               if (pdg == 0)
+                       pdadc_0 = 0;
+               else
+                       /* For the other curves use the gain overlap */
+                       pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
+                                                       pd_gain_overlap;
+
+               /* Force each power step to be at least 0.5 dB */
+               if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
+                       pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
+               else
+                       pwr_step = 1;
+
+               /* If pdadc_0 is negative, we need to extrapolate
+                * below this pdgain by a number of pwr_steps */
+               while ((pdadc_0 < 0) && (pdadc_i < 128)) {
+                       s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
+                       pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
+                       pdadc_0++;
+               }
+
+               /* Set last pwr level, using gain boundaries */
+               pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
+               /* Limit it to be inside pwr range */
+               table_size = pwr_max[pdg] - pwr_min[pdg];
+               max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
+
+               /* Fill pdadc_out table */
+               while (pdadc_0 < max_idx && pdadc_i < 128)
+                       pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
+
+               /* Need to extrapolate above this pdgain? */
+               if (pdadc_n <= max_idx)
+                       continue;
+
+               /* Force each power step to be at least 0.5 dB */
+               if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
+                       pwr_step = pdadc_tmp[table_size - 1] -
+                                               pdadc_tmp[table_size - 2];
+               else
+                       pwr_step = 1;
+
+               /* Extrapolate above */
+               while ((pdadc_0 < (s16) pdadc_n) &&
+               (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
+                       s16 tmp = pdadc_tmp[table_size - 1] +
+                                       (pdadc_0 - max_idx) * pwr_step;
+                       pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
+                       pdadc_0++;
+               }
+       }
+
+       while (pdg < AR5K_EEPROM_N_PD_GAINS) {
+               gain_boundaries[pdg] = gain_boundaries[pdg - 1];
+               pdg++;
+       }
+
+       while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
+               pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
+               pdadc_i++;
+       }
+
+       /* Set gain boundaries */
+       ath5k_hw_reg_write(ah,
+               AR5K_REG_SM(pd_gain_overlap,
+                       AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
+               AR5K_REG_SM(gain_boundaries[0],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
+               AR5K_REG_SM(gain_boundaries[1],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
+               AR5K_REG_SM(gain_boundaries[2],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
+               AR5K_REG_SM(gain_boundaries[3],
+                       AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
+               AR5K_PHY_TPC_RG5);
+
+       /* Used for setting rate power table */
+       ah->ah_txpower.txp_min_idx = pwr_min[0];
+
+}
+
+/**
+ * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
+ * @ah: The &struct ath5k_hw
+ * @ee_mode: One of enum ath5k_driver_mode
+ */
+static void
+ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
+{
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
+       u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
+       u8 pdcurves = ee->ee_pd_gains[ee_mode];
+       u32 reg;
+       u8 i;
+
+       /* Select the right pdgain curves */
+
+       /* Clear current settings */
+       reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
+       reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
+               AR5K_PHY_TPC_RG1_PDGAIN_2 |
+               AR5K_PHY_TPC_RG1_PDGAIN_3 |
+               AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
+
+       /*
+        * Use pd_gains curve from eeprom
+        *
+        * This overrides the default setting from initvals
+        * in case some vendors (e.g. Zcomax) don't use the default
+        * curves. If we don't honor their settings we 'll get a
+        * 5dB (1 * gain overlap ?) drop.
+        */
+       reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
+
+       switch (pdcurves) {
+       case 3:
+               reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
+               /* Fall through */
+       case 2:
+               reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
+               /* Fall through */
+       case 1:
+               reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
+               break;
+       }
+       ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
+
+       /*
+        * Write TX power values
+        */
+       for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
+               u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
+               ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
+       }
+}
+
+
+/*
+ * Common code for PCDAC/PDADC tables
+ */
+
+/**
+ * ath5k_setup_channel_powertable() - Set up power table for this channel
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ * @ee_mode: One of enum ath5k_driver_mode
+ * @type: One of enum ath5k_powertable_type (eeprom.h)
+ *
+ * This is the main function that uses all of the above
+ * to set PCDAC/PDADC table on hw for the current channel.
+ * This table is used for tx power calibration on the baseband,
+ * without it we get weird tx power levels and in some cases
+ * distorted spectral mask
+ */
+static int
+ath5k_setup_channel_powertable(struct ath5k_hw *ah,
+                       struct ieee80211_channel *channel,
+                       u8 ee_mode, u8 type)
+{
+       struct ath5k_pdgain_info *pdg_L, *pdg_R;
+       struct ath5k_chan_pcal_info *pcinfo_L;
+       struct ath5k_chan_pcal_info *pcinfo_R;
+       struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+       u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
+       s16 table_min[AR5K_EEPROM_N_PD_GAINS];
+       s16 table_max[AR5K_EEPROM_N_PD_GAINS];
+       u8 *tmpL;
+       u8 *tmpR;
+       u32 target = channel->center_freq;
+       int pdg, i;
+
+       /* Get surrounding freq piers for this channel */
+       ath5k_get_chan_pcal_surrounding_piers(ah, channel,
+                                               &pcinfo_L,
+                                               &pcinfo_R);
+
+       /* Loop over pd gain curves on
+        * surrounding freq piers by index */
+       for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
+
+               /* Fill curves in reverse order
+                * from lower power (max gain)
+                * to higher power. Use curve -> idx
+                * backmapping we did on eeprom init */
+               u8 idx = pdg_curve_to_idx[pdg];
+
+               /* Grab the needed curves by index */
+               pdg_L = &pcinfo_L->pd_curves[idx];
+               pdg_R = &pcinfo_R->pd_curves[idx];
+
+               /* Initialize the temp tables */
+               tmpL = ah->ah_txpower.tmpL[pdg];
+               tmpR = ah->ah_txpower.tmpR[pdg];
+
+               /* Set curve's x boundaries and create
+                * curves so that they cover the same
+                * range (if we don't do that one table
+                * will have values on some range and the
+                * other one won't have any so interpolation
+                * will fail) */
+               table_min[pdg] = min(pdg_L->pd_pwr[0],
+                                       pdg_R->pd_pwr[0]) / 2;
+
+               table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
+                               pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
+
+               /* Now create the curves on surrounding channels
+                * and interpolate if needed to get the final
+                * curve for this gain on this channel */
+               switch (type) {
+               case AR5K_PWRTABLE_LINEAR_PCDAC:
+                       /* Override min/max so that we don't loose
+                        * accuracy (don't divide by 2) */
+                       table_min[pdg] = min(pdg_L->pd_pwr[0],
+                                               pdg_R->pd_pwr[0]);
+
+                       table_max[pdg] =
+                               max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
+                                       pdg_R->pd_pwr[pdg_R->pd_points - 1]);
+
+                       /* Override minimum so that we don't get
+                        * out of bounds while extrapolating
+                        * below. Don't do this when we have 2
+                        * curves and we are on the high power curve
+                        * because table_min is ok in this case */
+                       if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
+
+                               table_min[pdg] =
+                                       ath5k_get_linear_pcdac_min(pdg_L->pd_step,
+                                                               pdg_R->pd_step,
+                                                               pdg_L->pd_pwr,
+                                                               pdg_R->pd_pwr);
+
+                               /* Don't go too low because we will
+                                * miss the upper part of the curve.
+                                * Note: 126 = 31.5dB (max power supported)
+                                * in 0.25dB units */
+                               if (table_max[pdg] - table_min[pdg] > 126)
+                                       table_min[pdg] = table_max[pdg] - 126;
+                       }
+
+                       /* Fall through */
+               case AR5K_PWRTABLE_PWR_TO_PCDAC:
+               case AR5K_PWRTABLE_PWR_TO_PDADC:
+
+                       ath5k_create_power_curve(table_min[pdg],
+                                               table_max[pdg],
+                                               pdg_L->pd_pwr,
+                                               pdg_L->pd_step,
+                                               pdg_L->pd_points, tmpL, type);
+
+                       /* We are in a calibration
+                        * pier, no need to interpolate
+                        * between freq piers */
+                       if (pcinfo_L == pcinfo_R)
+                               continue;
+
+                       ath5k_create_power_curve(table_min[pdg],
+                                               table_max[pdg],
+                                               pdg_R->pd_pwr,
+                                               pdg_R->pd_step,
+                                               pdg_R->pd_points, tmpR, type);
+                       break;
+               default:
+                       return -EINVAL;
+               }
+
+               /* Interpolate between curves
+                * of surrounding freq piers to
+                * get the final curve for this
+                * pd gain. Re-use tmpL for interpolation
+                * output */
+               for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
+               (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
+                       tmpL[i] = (u8) ath5k_get_interpolated_value(target,
+                                                       (s16) pcinfo_L->freq,
+                                                       (s16) pcinfo_R->freq,
+                                                       (s16) tmpL[i],
+                                                       (s16) tmpR[i]);
+               }
+       }
+
+       /* Now we have a set of curves for this
+        * channel on tmpL (x range is table_max - table_min
+        * and y values are tmpL[pdg][]) sorted in the same
+        * order as EEPROM (because we've used the backmapping).
+        * So for RF5112 it's from higher power to lower power
+        * and for RF2413 it's from lower power to higher power.
+        * For RF5111 we only have one curve. */
+
+       /* Fill min and max power levels for this
+        * channel by interpolating the values on
+        * surrounding channels to complete the dataset */
+       ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
+                                       (s16) pcinfo_L->freq,
+                                       (s16) pcinfo_R->freq,
+                                       pcinfo_L->min_pwr, pcinfo_R->min_pwr);
+
+       ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
+                                       (s16) pcinfo_L->freq,
+                                       (s16) pcinfo_R->freq,
+                                       pcinfo_L->max_pwr, pcinfo_R->max_pwr);
+
+       /* Fill PCDAC/PDADC table */
+       switch (type) {
+       case AR5K_PWRTABLE_LINEAR_PCDAC:
+               /* For RF5112 we can have one or two curves
+                * and each curve covers a certain power lvl
+                * range so we need to do some more processing */
+               ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
+                                               ee->ee_pd_gains[ee_mode]);
+
+               /* Set txp.offset so that we can
+                * match max power value with max
+                * table index */
+               ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
+               break;
+       case AR5K_PWRTABLE_PWR_TO_PCDAC:
+               /* We are done for RF5111 since it has only
+                * one curve, just fit the curve on the table */
+               ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
+
+               /* No rate powertable adjustment for RF5111 */
+               ah->ah_txpower.txp_min_idx = 0;
+               ah->ah_txpower.txp_offset = 0;
+               break;
+       case AR5K_PWRTABLE_PWR_TO_PDADC:
+               /* Set PDADC boundaries and fill
+                * final PDADC table */
+               ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
+                                               ee->ee_pd_gains[ee_mode]);
+
+               /* Set txp.offset, note that table_min
+                * can be negative */
+               ah->ah_txpower.txp_offset = table_min[0];
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       ah->ah_txpower.txp_setup = true;
+
+       return 0;
+}
+
+/**
+ * ath5k_write_channel_powertable() - Set power table for current channel on hw
+ * @ah: The &struct ath5k_hw
+ * @ee_mode: One of enum ath5k_driver_mode
+ * @type: One of enum ath5k_powertable_type (eeprom.h)
+ */
+static void
+ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
+{
+       if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
+               ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
+       else
+               ath5k_write_pcdac_table(ah);
+}
+
+
+/**
+ * DOC: Per-rate tx power setting
+ *
+ * This is the code that sets the desired tx power limit (below
+ * maximum) on hw for each rate (we also have TPC that sets
+ * power per packet type). We do that by providing an index on the
+ * PCDAC/PDADC table we set up above, for each rate.
+ *
+ * For now we only limit txpower based on maximum tx power
+ * supported by hw (what's inside rate_info) + conformance test
+ * limits. We need to limit this even more, based on regulatory domain
+ * etc to be safe. Normally this is done from above so we don't care
+ * here, all we care is that the tx power we set will be O.K.
+ * for the hw (e.g. won't create noise on PA etc).
+ *
+ * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
+ * x values) and is indexed as follows:
+ * rates[0] - rates[7] -> OFDM rates
+ * rates[8] - rates[14] -> CCK rates
+ * rates[15] -> XR rates (they all have the same power)
+ */
+
+/**
+ * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
+ * @ah: The &struct ath5k_hw
+ * @max_pwr: The maximum tx power requested in 0.5dB steps
+ * @rate_info: The &struct ath5k_rate_pcal_info to fill
+ * @ee_mode: One of enum ath5k_driver_mode
+ */
+static void
+ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
+                       struct ath5k_rate_pcal_info *rate_info,
+                       u8 ee_mode)
+{
+       unsigned int i;
+       u16 *rates;
+       s16 rate_idx_scaled = 0;
+
+       /* max_pwr is power level we got from driver/user in 0.5dB
+        * units, switch to 0.25dB units so we can compare */
+       max_pwr *= 2;
+       max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
+
+       /* apply rate limits */
+       rates = ah->ah_txpower.txp_rates_power_table;
+
+       /* OFDM rates 6 to 24Mb/s */
+       for (i = 0; i < 5; i++)
+               rates[i] = min(max_pwr, rate_info->target_power_6to24);
+
+       /* Rest OFDM rates */
+       rates[5] = min(rates[0], rate_info->target_power_36);
+       rates[6] = min(rates[0], rate_info->target_power_48);
+       rates[7] = min(rates[0], rate_info->target_power_54);
+
+       /* CCK rates */
+       /* 1L */
+       rates[8] = min(rates[0], rate_info->target_power_6to24);
+       /* 2L */
+       rates[9] = min(rates[0], rate_info->target_power_36);
+       /* 2S */
+       rates[10] = min(rates[0], rate_info->target_power_36);
+       /* 5L */
+       rates[11] = min(rates[0], rate_info->target_power_48);
+       /* 5S */
+       rates[12] = min(rates[0], rate_info->target_power_48);
+       /* 11L */
+       rates[13] = min(rates[0], rate_info->target_power_54);
+       /* 11S */
+       rates[14] = min(rates[0], rate_info->target_power_54);
+
+       /* XR rates */
+       rates[15] = min(rates[0], rate_info->target_power_6to24);
+
+       /* CCK rates have different peak to average ratio
+        * so we have to tweak their power so that gainf
+        * correction works ok. For this we use OFDM to
+        * CCK delta from eeprom */
+       if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
+       (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
+               for (i = 8; i <= 15; i++)
+                       rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
+
+       /* Save min/max and current tx power for this channel
+        * in 0.25dB units.
+        *
+        * Note: We use rates[0] for current tx power because
+        * it covers most of the rates, in most cases. It's our
+        * tx power limit and what the user expects to see. */
+       ah->ah_txpower.txp_min_pwr = 2 * rates[7];
+       ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
+
+       /* Set max txpower for correct OFDM operation on all rates
+        * -that is the txpower for 54Mbit-, it's used for the PAPD
+        * gain probe and it's in 0.5dB units */
+       ah->ah_txpower.txp_ofdm = rates[7];
+
+       /* Now that we have all rates setup use table offset to
+        * match the power range set by user with the power indices
+        * on PCDAC/PDADC table */
+       for (i = 0; i < 16; i++) {
+               rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
+               /* Don't get out of bounds */
+               if (rate_idx_scaled > 63)
+                       rate_idx_scaled = 63;
+               if (rate_idx_scaled < 0)
+                       rate_idx_scaled = 0;
+               rates[i] = rate_idx_scaled;
+       }
+}
+
+
+/**
+ * ath5k_hw_txpower() - Set transmission power limit for a given channel
+ * @ah: The &struct ath5k_hw
+ * @channel: The &struct ieee80211_channel
+ * @txpower: Requested tx power in 0.5dB steps
+ *
+ * Combines all of the above to set the requested tx power limit
+ * on hw.
+ */
+static int
+ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
+                u8 txpower)
+{
+       struct ath5k_rate_pcal_info rate_info;
+       struct ieee80211_channel *curr_channel = ah->ah_current_channel;
+       int ee_mode;
+       u8 type;
+       int ret;
+
+       if (txpower > AR5K_TUNE_MAX_TXPOWER) {
+               ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
+               return -EINVAL;
+       }
+
+       ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
+
+       /* Initialize TX power table */
+       switch (ah->ah_radio) {
+       case AR5K_RF5110:
+               /* TODO */
+               return 0;
+       case AR5K_RF5111:
+               type = AR5K_PWRTABLE_PWR_TO_PCDAC;
+               break;
+       case AR5K_RF5112:
+               type = AR5K_PWRTABLE_LINEAR_PCDAC;
+               break;
+       case AR5K_RF2413:
+       case AR5K_RF5413:
+       case AR5K_RF2316:
+       case AR5K_RF2317:
+       case AR5K_RF2425:
+               type = AR5K_PWRTABLE_PWR_TO_PDADC;
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       /*
+        * If we don't change channel/mode skip tx powertable calculation
+        * and use the cached one.
+        */
+       if (!ah->ah_txpower.txp_setup ||
+           (channel->hw_value != curr_channel->hw_value) ||
+           (channel->center_freq != curr_channel->center_freq)) {
+               /* Reset TX power values but preserve requested
+                * tx power from above */
+               int requested_txpower = ah->ah_txpower.txp_requested;
+
+               memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
+
+               /* Restore TPC setting and requested tx power */
+               ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
+
+               ah->ah_txpower.txp_requested = requested_txpower;
+
+               /* Calculate the powertable */
+               ret = ath5k_setup_channel_powertable(ah, channel,
+                                                       ee_mode, type);
+               if (ret)
+                       return ret;
+       }
+
+       /* Write table on hw */
+       ath5k_write_channel_powertable(ah, ee_mode, type);
+
+       /* Limit max power if we have a CTL available */
+       ath5k_get_max_ctl_power(ah, channel);
+
+       /* FIXME: Antenna reduction stuff */
+
+       /* FIXME: Limit power on turbo modes */
+
+       /* FIXME: TPC scale reduction */
+
+       /* Get surrounding channels for per-rate power table
+        * calibration */
+       ath5k_get_rate_pcal_data(ah, channel, &rate_info);
+
+       /* Setup rate power table */
+       ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
+
+       /* Write rate power table on hw */
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
+               AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
+               AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
+
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
+               AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
+               AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
+
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
+               AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
+               AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
+
+       ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
+               AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
+               AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
+
+       /* FIXME: TPC support */
+       if (ah->ah_txpower.txp_tpc) {
+               ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
+                       AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
+
+               ath5k_hw_reg_write(ah,
+                       AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
+                       AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
+                       AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
+                       AR5K_TPC);
+       } else {
+               ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
+                       AR5K_PHY_TXPOWER_RATE_MAX);
+       }
+
+       return 0;
+}
+
+/**
+ * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
+ * @ah: The &struct ath5k_hw
+ * @txpower: The requested tx power limit in 0.5dB steps
+ *
+ * This function provides access to ath5k_hw_txpower to the driver in
+ * case user or an application changes it while PHY is running.
+ */
+int
+ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
+{
+       ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
+               "changing txpower to %d\n", txpower);
+
+       return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
+}
+
+
+/*************\
+ Init function
+\*************/
+
+/**
+ * ath5k_hw_phy_init() - Initialize PHY
+ * @ah: The &struct ath5k_hw
+ * @channel: The @struct ieee80211_channel
+ * @mode: One of enum ath5k_driver_mode
+ * @fast: Try a fast channel switch instead
+ *
+ * This is the main function used during reset to initialize PHY
+ * or do a fast channel change if possible.
+ *
+ * NOTE: Do not call this one from the driver, it assumes PHY is in a
+ * warm reset state !
+ */
+int
+ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
+                     u8 mode, bool fast)
+{
+       struct ieee80211_channel *curr_channel;
+       int ret, i;
+       u32 phy_tst1;
+       ret = 0;
+
+       /*
+        * Sanity check for fast flag
+        * Don't try fast channel change when changing modulation
+        * mode/band. We check for chip compatibility on
+        * ath5k_hw_reset.
+        */
+       curr_channel = ah->ah_current_channel;
+       if (fast && (channel->hw_value != curr_channel->hw_value))
+               return -EINVAL;
+
+       /*
+        * On fast channel change we only set the synth parameters
+        * while PHY is running, enable calibration and skip the rest.
+        */
+       if (fast) {
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
+                                   AR5K_PHY_RFBUS_REQ_REQUEST);
+               for (i = 0; i < 100; i++) {
+                       if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
+                               break;
+                       udelay(5);
+               }
+               /* Failed */
+               if (i >= 100)
+                       return -EIO;
+
+               /* Set channel and wait for synth */
+               ret = ath5k_hw_channel(ah, channel);
+               if (ret)
+                       return ret;
+
+               ath5k_hw_wait_for_synth(ah, channel);
+       }
+
+       /*
+        * Set TX power
+        *
+        * Note: We need to do that before we set
+        * RF buffer settings on 5211/5212+ so that we
+        * properly set curve indices.
+        */
+       ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
+                                       ah->ah_txpower.txp_requested * 2 :
+                                       AR5K_TUNE_MAX_TXPOWER);
+       if (ret)
+               return ret;
+
+       /* Write OFDM timings on 5212*/
+       if (ah->ah_version == AR5K_AR5212 &&
+               channel->hw_value != AR5K_MODE_11B) {
+
+               ret = ath5k_hw_write_ofdm_timings(ah, channel);
+               if (ret)
+                       return ret;
+
+               /* Spur info is available only from EEPROM versions
+                * greater than 5.3, but the EEPROM routines will use
+                * static values for older versions */
+               if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
+                       ath5k_hw_set_spur_mitigation_filter(ah,
+                                                           channel);
+       }
+
+       /* If we used fast channel switching
+        * we are done, release RF bus and
+        * fire up NF calibration.
+        *
+        * Note: Only NF calibration due to
+        * channel change, not AGC calibration
+        * since AGC is still running !
+        */
+       if (fast) {
+               /*
+                * Release RF Bus grant
+                */
+               AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
+                                   AR5K_PHY_RFBUS_REQ_REQUEST);
+
+               /*
+                * Start NF calibration
+                */
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+                                       AR5K_PHY_AGCCTL_NF);
+
+               return ret;
+       }
+
+       /*
+        * For 5210 we do all initialization using
+        * initvals, so we don't have to modify
+        * any settings (5210 also only supports
+        * a/aturbo modes)
+        */
+       if (ah->ah_version != AR5K_AR5210) {
+
+               /*
+                * Write initial RF gain settings
+                * This should work for both 5111/5112
+                */
+               ret = ath5k_hw_rfgain_init(ah, channel->band);
+               if (ret)
+                       return ret;
+
+               usleep_range(1000, 1500);
+
+               /*
+                * Write RF buffer
+                */
+               ret = ath5k_hw_rfregs_init(ah, channel, mode);
+               if (ret)
+                       return ret;
+
+               /*Enable/disable 802.11b mode on 5111
+               (enable 2111 frequency converter + CCK)*/
+               if (ah->ah_radio == AR5K_RF5111) {
+                       if (mode == AR5K_MODE_11B)
+                               AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
+                                   AR5K_TXCFG_B_MODE);
+                       else
+                               AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
+                                   AR5K_TXCFG_B_MODE);
+               }
+
+       } else if (ah->ah_version == AR5K_AR5210) {
+               usleep_range(1000, 1500);
+               /* Disable phy and wait */
+               ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
+               usleep_range(1000, 1500);
+       }
+
+       /* Set channel on PHY */
+       ret = ath5k_hw_channel(ah, channel);
+       if (ret)
+               return ret;
+
+       /*
+        * Enable the PHY and wait until completion
+        * This includes BaseBand and Synthesizer
+        * activation.
+        */
+       ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
+
+       ath5k_hw_wait_for_synth(ah, channel);
+
+       /*
+        * Perform ADC test to see if baseband is ready
+        * Set tx hold and check adc test register
+        */
+       phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
+       ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
+       for (i = 0; i <= 20; i++) {
+               if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
+                       break;
+               usleep_range(200, 250);
+       }
+       ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
+
+       /*
+        * Start automatic gain control calibration
+        *
+        * During AGC calibration RX path is re-routed to
+        * a power detector so we don't receive anything.
+        *
+        * This method is used to calibrate some static offsets
+        * used together with on-the fly I/Q calibration (the
+        * one performed via ath5k_hw_phy_calibrate), which doesn't
+        * interrupt rx path.
+        *
+        * While rx path is re-routed to the power detector we also
+        * start a noise floor calibration to measure the
+        * card's noise floor (the noise we measure when we are not
+        * transmitting or receiving anything).
+        *
+        * If we are in a noisy environment, AGC calibration may time
+        * out and/or noise floor calibration might timeout.
+        */
+       AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+                               AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
+
+       /* At the same time start I/Q calibration for QAM constellation
+        * -no need for CCK- */
+       ah->ah_iq_cal_needed = false;
+       if (!(mode == AR5K_MODE_11B)) {
+               ah->ah_iq_cal_needed = true;
+               AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
+                               AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
+               AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
+                               AR5K_PHY_IQ_RUN);
+       }
+
+       /* Wait for gain calibration to finish (we check for I/Q calibration
+        * during ath5k_phy_calibrate) */
+       if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
+                       AR5K_PHY_AGCCTL_CAL, 0, false)) {
+               ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
+                       channel->center_freq);
+       }
+
+       /* Restore antenna mode */
+       ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
+
+       return ret;
+}