Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / hamradio / dmascc.c
diff --git a/kernel/drivers/net/hamradio/dmascc.c b/kernel/drivers/net/hamradio/dmascc.c
new file mode 100644 (file)
index 0000000..c3d3777
--- /dev/null
@@ -0,0 +1,1458 @@
+/*
+ * Driver for high-speed SCC boards (those with DMA support)
+ * Copyright (C) 1997-2000 Klaus Kudielka
+ *
+ * S5SCC/DMA support by Janko Koleznik S52HI
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+
+#include <linux/module.h>
+#include <linux/bitops.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/if_arp.h>
+#include <linux/in.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/netdevice.h>
+#include <linux/slab.h>
+#include <linux/rtnetlink.h>
+#include <linux/sockios.h>
+#include <linux/workqueue.h>
+#include <linux/atomic.h>
+#include <asm/dma.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/uaccess.h>
+#include <net/ax25.h>
+#include "z8530.h"
+
+
+/* Number of buffers per channel */
+
+#define NUM_TX_BUF      2      /* NUM_TX_BUF >= 1 (min. 2 recommended) */
+#define NUM_RX_BUF      6      /* NUM_RX_BUF >= 1 (min. 2 recommended) */
+#define BUF_SIZE        1576   /* BUF_SIZE >= mtu + hard_header_len */
+
+
+/* Cards supported */
+
+#define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
+                            0, 8, 1843200, 3686400 }
+#define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
+                           0, 8, 3686400, 7372800 }
+#define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
+                           0, 4, 6144000, 6144000 }
+#define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
+                          0, 8, 4915200, 9830400 }
+
+#define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
+
+#define TMR_0_HZ        25600  /* Frequency of timer 0 */
+
+#define TYPE_PI         0
+#define TYPE_PI2        1
+#define TYPE_TWIN       2
+#define TYPE_S5         3
+#define NUM_TYPES       4
+
+#define MAX_NUM_DEVS    32
+
+
+/* SCC chips supported */
+
+#define Z8530           0
+#define Z85C30          1
+#define Z85230          2
+
+#define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }
+
+
+/* I/O registers */
+
+/* 8530 registers relative to card base */
+#define SCCB_CMD        0x00
+#define SCCB_DATA       0x01
+#define SCCA_CMD        0x02
+#define SCCA_DATA       0x03
+
+/* 8253/8254 registers relative to card base */
+#define TMR_CNT0        0x00
+#define TMR_CNT1        0x01
+#define TMR_CNT2        0x02
+#define TMR_CTRL        0x03
+
+/* Additional PI/PI2 registers relative to card base */
+#define PI_DREQ_MASK    0x04
+
+/* Additional PackeTwin registers relative to card base */
+#define TWIN_INT_REG    0x08
+#define TWIN_CLR_TMR1   0x09
+#define TWIN_CLR_TMR2   0x0a
+#define TWIN_SPARE_1    0x0b
+#define TWIN_DMA_CFG    0x08
+#define TWIN_SERIAL_CFG 0x09
+#define TWIN_DMA_CLR_FF 0x0a
+#define TWIN_SPARE_2    0x0b
+
+
+/* PackeTwin I/O register values */
+
+/* INT_REG */
+#define TWIN_SCC_MSK       0x01
+#define TWIN_TMR1_MSK      0x02
+#define TWIN_TMR2_MSK      0x04
+#define TWIN_INT_MSK       0x07
+
+/* SERIAL_CFG */
+#define TWIN_DTRA_ON       0x01
+#define TWIN_DTRB_ON       0x02
+#define TWIN_EXTCLKA       0x04
+#define TWIN_EXTCLKB       0x08
+#define TWIN_LOOPA_ON      0x10
+#define TWIN_LOOPB_ON      0x20
+#define TWIN_EI            0x80
+
+/* DMA_CFG */
+#define TWIN_DMA_HDX_T1    0x08
+#define TWIN_DMA_HDX_R1    0x0a
+#define TWIN_DMA_HDX_T3    0x14
+#define TWIN_DMA_HDX_R3    0x16
+#define TWIN_DMA_FDX_T3R1  0x1b
+#define TWIN_DMA_FDX_T1R3  0x1d
+
+
+/* Status values */
+
+#define IDLE      0
+#define TX_HEAD   1
+#define TX_DATA   2
+#define TX_PAUSE  3
+#define TX_TAIL   4
+#define RTS_OFF   5
+#define WAIT      6
+#define DCD_ON    7
+#define RX_ON     8
+#define DCD_OFF   9
+
+
+/* Ioctls */
+
+#define SIOCGSCCPARAM SIOCDEVPRIVATE
+#define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
+
+
+/* Data types */
+
+struct scc_param {
+       int pclk_hz;            /* frequency of BRG input (don't change) */
+       int brg_tc;             /* BRG terminal count; BRG disabled if < 0 */
+       int nrzi;               /* 0 (nrz), 1 (nrzi) */
+       int clocks;             /* see dmascc_cfg documentation */
+       int txdelay;            /* [1/TMR_0_HZ] */
+       int txtimeout;          /* [1/HZ] */
+       int txtail;             /* [1/TMR_0_HZ] */
+       int waittime;           /* [1/TMR_0_HZ] */
+       int slottime;           /* [1/TMR_0_HZ] */
+       int persist;            /* 1 ... 256 */
+       int dma;                /* -1 (disable), 0, 1, 3 */
+       int txpause;            /* [1/TMR_0_HZ] */
+       int rtsoff;             /* [1/TMR_0_HZ] */
+       int dcdon;              /* [1/TMR_0_HZ] */
+       int dcdoff;             /* [1/TMR_0_HZ] */
+};
+
+struct scc_hardware {
+       char *name;
+       int io_region;
+       int io_delta;
+       int io_size;
+       int num_devs;
+       int scc_offset;
+       int tmr_offset;
+       int tmr_hz;
+       int pclk_hz;
+};
+
+struct scc_priv {
+       int type;
+       int chip;
+       struct net_device *dev;
+       struct scc_info *info;
+
+       int channel;
+       int card_base, scc_cmd, scc_data;
+       int tmr_cnt, tmr_ctrl, tmr_mode;
+       struct scc_param param;
+       char rx_buf[NUM_RX_BUF][BUF_SIZE];
+       int rx_len[NUM_RX_BUF];
+       int rx_ptr;
+       struct work_struct rx_work;
+       int rx_head, rx_tail, rx_count;
+       int rx_over;
+       char tx_buf[NUM_TX_BUF][BUF_SIZE];
+       int tx_len[NUM_TX_BUF];
+       int tx_ptr;
+       int tx_head, tx_tail, tx_count;
+       int state;
+       unsigned long tx_start;
+       int rr0;
+       spinlock_t *register_lock;      /* Per scc_info */
+       spinlock_t ring_lock;
+};
+
+struct scc_info {
+       int irq_used;
+       int twin_serial_cfg;
+       struct net_device *dev[2];
+       struct scc_priv priv[2];
+       struct scc_info *next;
+       spinlock_t register_lock;       /* Per device register lock */
+};
+
+
+/* Function declarations */
+static int setup_adapter(int card_base, int type, int n) __init;
+
+static void write_scc(struct scc_priv *priv, int reg, int val);
+static void write_scc_data(struct scc_priv *priv, int val, int fast);
+static int read_scc(struct scc_priv *priv, int reg);
+static int read_scc_data(struct scc_priv *priv);
+
+static int scc_open(struct net_device *dev);
+static int scc_close(struct net_device *dev);
+static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
+static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
+static int scc_set_mac_address(struct net_device *dev, void *sa);
+
+static inline void tx_on(struct scc_priv *priv);
+static inline void rx_on(struct scc_priv *priv);
+static inline void rx_off(struct scc_priv *priv);
+static void start_timer(struct scc_priv *priv, int t, int r15);
+static inline unsigned char random(void);
+
+static inline void z8530_isr(struct scc_info *info);
+static irqreturn_t scc_isr(int irq, void *dev_id);
+static void rx_isr(struct scc_priv *priv);
+static void special_condition(struct scc_priv *priv, int rc);
+static void rx_bh(struct work_struct *);
+static void tx_isr(struct scc_priv *priv);
+static void es_isr(struct scc_priv *priv);
+static void tm_isr(struct scc_priv *priv);
+
+
+/* Initialization variables */
+
+static int io[MAX_NUM_DEVS] __initdata = { 0, };
+
+/* Beware! hw[] is also used in dmascc_exit(). */
+static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
+
+
+/* Global variables */
+
+static struct scc_info *first;
+static unsigned long rand;
+
+
+MODULE_AUTHOR("Klaus Kudielka");
+MODULE_DESCRIPTION("Driver for high-speed SCC boards");
+module_param_array(io, int, NULL, 0);
+MODULE_LICENSE("GPL");
+
+static void __exit dmascc_exit(void)
+{
+       int i;
+       struct scc_info *info;
+
+       while (first) {
+               info = first;
+
+               /* Unregister devices */
+               for (i = 0; i < 2; i++)
+                       unregister_netdev(info->dev[i]);
+
+               /* Reset board */
+               if (info->priv[0].type == TYPE_TWIN)
+                       outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
+               write_scc(&info->priv[0], R9, FHWRES);
+               release_region(info->dev[0]->base_addr,
+                              hw[info->priv[0].type].io_size);
+
+               for (i = 0; i < 2; i++)
+                       free_netdev(info->dev[i]);
+
+               /* Free memory */
+               first = info->next;
+               kfree(info);
+       }
+}
+
+static int __init dmascc_init(void)
+{
+       int h, i, j, n;
+       int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
+           t1[MAX_NUM_DEVS];
+       unsigned t_val;
+       unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
+           counting[MAX_NUM_DEVS];
+
+       /* Initialize random number generator */
+       rand = jiffies;
+       /* Cards found = 0 */
+       n = 0;
+       /* Warning message */
+       if (!io[0])
+               printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
+
+       /* Run autodetection for each card type */
+       for (h = 0; h < NUM_TYPES; h++) {
+
+               if (io[0]) {
+                       /* User-specified I/O address regions */
+                       for (i = 0; i < hw[h].num_devs; i++)
+                               base[i] = 0;
+                       for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
+                               j = (io[i] -
+                                    hw[h].io_region) / hw[h].io_delta;
+                               if (j >= 0 && j < hw[h].num_devs &&
+                                   hw[h].io_region +
+                                   j * hw[h].io_delta == io[i]) {
+                                       base[j] = io[i];
+                               }
+                       }
+               } else {
+                       /* Default I/O address regions */
+                       for (i = 0; i < hw[h].num_devs; i++) {
+                               base[i] =
+                                   hw[h].io_region + i * hw[h].io_delta;
+                       }
+               }
+
+               /* Check valid I/O address regions */
+               for (i = 0; i < hw[h].num_devs; i++)
+                       if (base[i]) {
+                               if (!request_region
+                                   (base[i], hw[h].io_size, "dmascc"))
+                                       base[i] = 0;
+                               else {
+                                       tcmd[i] =
+                                           base[i] + hw[h].tmr_offset +
+                                           TMR_CTRL;
+                                       t0[i] =
+                                           base[i] + hw[h].tmr_offset +
+                                           TMR_CNT0;
+                                       t1[i] =
+                                           base[i] + hw[h].tmr_offset +
+                                           TMR_CNT1;
+                               }
+                       }
+
+               /* Start timers */
+               for (i = 0; i < hw[h].num_devs; i++)
+                       if (base[i]) {
+                               /* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
+                               outb(0x36, tcmd[i]);
+                               outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
+                                    t0[i]);
+                               outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
+                                    t0[i]);
+                               /* Timer 1: LSB+MSB, Mode 0, HZ/10 */
+                               outb(0x70, tcmd[i]);
+                               outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
+                               outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
+                               start[i] = jiffies;
+                               delay[i] = 0;
+                               counting[i] = 1;
+                               /* Timer 2: LSB+MSB, Mode 0 */
+                               outb(0xb0, tcmd[i]);
+                       }
+               time = jiffies;
+               /* Wait until counter registers are loaded */
+               udelay(2000000 / TMR_0_HZ);
+
+               /* Timing loop */
+               while (jiffies - time < 13) {
+                       for (i = 0; i < hw[h].num_devs; i++)
+                               if (base[i] && counting[i]) {
+                                       /* Read back Timer 1: latch; read LSB; read MSB */
+                                       outb(0x40, tcmd[i]);
+                                       t_val =
+                                           inb(t1[i]) + (inb(t1[i]) << 8);
+                                       /* Also check whether counter did wrap */
+                                       if (t_val == 0 ||
+                                           t_val > TMR_0_HZ / HZ * 10)
+                                               counting[i] = 0;
+                                       delay[i] = jiffies - start[i];
+                               }
+               }
+
+               /* Evaluate measurements */
+               for (i = 0; i < hw[h].num_devs; i++)
+                       if (base[i]) {
+                               if ((delay[i] >= 9 && delay[i] <= 11) &&
+                                   /* Ok, we have found an adapter */
+                                   (setup_adapter(base[i], h, n) == 0))
+                                       n++;
+                               else
+                                       release_region(base[i],
+                                                      hw[h].io_size);
+                       }
+
+       }                       /* NUM_TYPES */
+
+       /* If any adapter was successfully initialized, return ok */
+       if (n)
+               return 0;
+
+       /* If no adapter found, return error */
+       printk(KERN_INFO "dmascc: no adapters found\n");
+       return -EIO;
+}
+
+module_init(dmascc_init);
+module_exit(dmascc_exit);
+
+static void __init dev_setup(struct net_device *dev)
+{
+       dev->type = ARPHRD_AX25;
+       dev->hard_header_len = AX25_MAX_HEADER_LEN;
+       dev->mtu = 1500;
+       dev->addr_len = AX25_ADDR_LEN;
+       dev->tx_queue_len = 64;
+       memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
+       memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
+}
+
+static const struct net_device_ops scc_netdev_ops = {
+       .ndo_open = scc_open,
+       .ndo_stop = scc_close,
+       .ndo_start_xmit = scc_send_packet,
+       .ndo_do_ioctl = scc_ioctl,
+       .ndo_set_mac_address = scc_set_mac_address,
+};
+
+static int __init setup_adapter(int card_base, int type, int n)
+{
+       int i, irq, chip;
+       struct scc_info *info;
+       struct net_device *dev;
+       struct scc_priv *priv;
+       unsigned long time;
+       unsigned int irqs;
+       int tmr_base = card_base + hw[type].tmr_offset;
+       int scc_base = card_base + hw[type].scc_offset;
+       char *chipnames[] = CHIPNAMES;
+
+       /* Initialize what is necessary for write_scc and write_scc_data */
+       info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
+       if (!info)
+               goto out;
+
+       info->dev[0] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
+       if (!info->dev[0]) {
+               printk(KERN_ERR "dmascc: "
+                      "could not allocate memory for %s at %#3x\n",
+                      hw[type].name, card_base);
+               goto out1;
+       }
+
+       info->dev[1] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
+       if (!info->dev[1]) {
+               printk(KERN_ERR "dmascc: "
+                      "could not allocate memory for %s at %#3x\n",
+                      hw[type].name, card_base);
+               goto out2;
+       }
+       spin_lock_init(&info->register_lock);
+
+       priv = &info->priv[0];
+       priv->type = type;
+       priv->card_base = card_base;
+       priv->scc_cmd = scc_base + SCCA_CMD;
+       priv->scc_data = scc_base + SCCA_DATA;
+       priv->register_lock = &info->register_lock;
+
+       /* Reset SCC */
+       write_scc(priv, R9, FHWRES | MIE | NV);
+
+       /* Determine type of chip by enabling SDLC/HDLC enhancements */
+       write_scc(priv, R15, SHDLCE);
+       if (!read_scc(priv, R15)) {
+               /* WR7' not present. This is an ordinary Z8530 SCC. */
+               chip = Z8530;
+       } else {
+               /* Put one character in TX FIFO */
+               write_scc_data(priv, 0, 0);
+               if (read_scc(priv, R0) & Tx_BUF_EMP) {
+                       /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
+                       chip = Z85230;
+               } else {
+                       /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
+                       chip = Z85C30;
+               }
+       }
+       write_scc(priv, R15, 0);
+
+       /* Start IRQ auto-detection */
+       irqs = probe_irq_on();
+
+       /* Enable interrupts */
+       if (type == TYPE_TWIN) {
+               outb(0, card_base + TWIN_DMA_CFG);
+               inb(card_base + TWIN_CLR_TMR1);
+               inb(card_base + TWIN_CLR_TMR2);
+               info->twin_serial_cfg = TWIN_EI;
+               outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
+       } else {
+               write_scc(priv, R15, CTSIE);
+               write_scc(priv, R0, RES_EXT_INT);
+               write_scc(priv, R1, EXT_INT_ENAB);
+       }
+
+       /* Start timer */
+       outb(1, tmr_base + TMR_CNT1);
+       outb(0, tmr_base + TMR_CNT1);
+
+       /* Wait and detect IRQ */
+       time = jiffies;
+       while (jiffies - time < 2 + HZ / TMR_0_HZ);
+       irq = probe_irq_off(irqs);
+
+       /* Clear pending interrupt, disable interrupts */
+       if (type == TYPE_TWIN) {
+               inb(card_base + TWIN_CLR_TMR1);
+       } else {
+               write_scc(priv, R1, 0);
+               write_scc(priv, R15, 0);
+               write_scc(priv, R0, RES_EXT_INT);
+       }
+
+       if (irq <= 0) {
+               printk(KERN_ERR
+                      "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
+                      hw[type].name, card_base, irq);
+               goto out3;
+       }
+
+       /* Set up data structures */
+       for (i = 0; i < 2; i++) {
+               dev = info->dev[i];
+               priv = &info->priv[i];
+               priv->type = type;
+               priv->chip = chip;
+               priv->dev = dev;
+               priv->info = info;
+               priv->channel = i;
+               spin_lock_init(&priv->ring_lock);
+               priv->register_lock = &info->register_lock;
+               priv->card_base = card_base;
+               priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
+               priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
+               priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
+               priv->tmr_ctrl = tmr_base + TMR_CTRL;
+               priv->tmr_mode = i ? 0xb0 : 0x70;
+               priv->param.pclk_hz = hw[type].pclk_hz;
+               priv->param.brg_tc = -1;
+               priv->param.clocks = TCTRxCP | RCRTxCP;
+               priv->param.persist = 256;
+               priv->param.dma = -1;
+               INIT_WORK(&priv->rx_work, rx_bh);
+               dev->ml_priv = priv;
+               sprintf(dev->name, "dmascc%i", 2 * n + i);
+               dev->base_addr = card_base;
+               dev->irq = irq;
+               dev->netdev_ops = &scc_netdev_ops;
+               dev->header_ops = &ax25_header_ops;
+       }
+       if (register_netdev(info->dev[0])) {
+               printk(KERN_ERR "dmascc: could not register %s\n",
+                      info->dev[0]->name);
+               goto out3;
+       }
+       if (register_netdev(info->dev[1])) {
+               printk(KERN_ERR "dmascc: could not register %s\n",
+                      info->dev[1]->name);
+               goto out4;
+       }
+
+
+       info->next = first;
+       first = info;
+       printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
+              hw[type].name, chipnames[chip], card_base, irq);
+       return 0;
+
+      out4:
+       unregister_netdev(info->dev[0]);
+      out3:
+       if (info->priv[0].type == TYPE_TWIN)
+               outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
+       write_scc(&info->priv[0], R9, FHWRES);
+       free_netdev(info->dev[1]);
+      out2:
+       free_netdev(info->dev[0]);
+      out1:
+       kfree(info);
+      out:
+       return -1;
+}
+
+
+/* Driver functions */
+
+static void write_scc(struct scc_priv *priv, int reg, int val)
+{
+       unsigned long flags;
+       switch (priv->type) {
+       case TYPE_S5:
+               if (reg)
+                       outb(reg, priv->scc_cmd);
+               outb(val, priv->scc_cmd);
+               return;
+       case TYPE_TWIN:
+               if (reg)
+                       outb_p(reg, priv->scc_cmd);
+               outb_p(val, priv->scc_cmd);
+               return;
+       default:
+               spin_lock_irqsave(priv->register_lock, flags);
+               outb_p(0, priv->card_base + PI_DREQ_MASK);
+               if (reg)
+                       outb_p(reg, priv->scc_cmd);
+               outb_p(val, priv->scc_cmd);
+               outb(1, priv->card_base + PI_DREQ_MASK);
+               spin_unlock_irqrestore(priv->register_lock, flags);
+               return;
+       }
+}
+
+
+static void write_scc_data(struct scc_priv *priv, int val, int fast)
+{
+       unsigned long flags;
+       switch (priv->type) {
+       case TYPE_S5:
+               outb(val, priv->scc_data);
+               return;
+       case TYPE_TWIN:
+               outb_p(val, priv->scc_data);
+               return;
+       default:
+               if (fast)
+                       outb_p(val, priv->scc_data);
+               else {
+                       spin_lock_irqsave(priv->register_lock, flags);
+                       outb_p(0, priv->card_base + PI_DREQ_MASK);
+                       outb_p(val, priv->scc_data);
+                       outb(1, priv->card_base + PI_DREQ_MASK);
+                       spin_unlock_irqrestore(priv->register_lock, flags);
+               }
+               return;
+       }
+}
+
+
+static int read_scc(struct scc_priv *priv, int reg)
+{
+       int rc;
+       unsigned long flags;
+       switch (priv->type) {
+       case TYPE_S5:
+               if (reg)
+                       outb(reg, priv->scc_cmd);
+               return inb(priv->scc_cmd);
+       case TYPE_TWIN:
+               if (reg)
+                       outb_p(reg, priv->scc_cmd);
+               return inb_p(priv->scc_cmd);
+       default:
+               spin_lock_irqsave(priv->register_lock, flags);
+               outb_p(0, priv->card_base + PI_DREQ_MASK);
+               if (reg)
+                       outb_p(reg, priv->scc_cmd);
+               rc = inb_p(priv->scc_cmd);
+               outb(1, priv->card_base + PI_DREQ_MASK);
+               spin_unlock_irqrestore(priv->register_lock, flags);
+               return rc;
+       }
+}
+
+
+static int read_scc_data(struct scc_priv *priv)
+{
+       int rc;
+       unsigned long flags;
+       switch (priv->type) {
+       case TYPE_S5:
+               return inb(priv->scc_data);
+       case TYPE_TWIN:
+               return inb_p(priv->scc_data);
+       default:
+               spin_lock_irqsave(priv->register_lock, flags);
+               outb_p(0, priv->card_base + PI_DREQ_MASK);
+               rc = inb_p(priv->scc_data);
+               outb(1, priv->card_base + PI_DREQ_MASK);
+               spin_unlock_irqrestore(priv->register_lock, flags);
+               return rc;
+       }
+}
+
+
+static int scc_open(struct net_device *dev)
+{
+       struct scc_priv *priv = dev->ml_priv;
+       struct scc_info *info = priv->info;
+       int card_base = priv->card_base;
+
+       /* Request IRQ if not already used by other channel */
+       if (!info->irq_used) {
+               if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
+                       return -EAGAIN;
+               }
+       }
+       info->irq_used++;
+
+       /* Request DMA if required */
+       if (priv->param.dma >= 0) {
+               if (request_dma(priv->param.dma, "dmascc")) {
+                       if (--info->irq_used == 0)
+                               free_irq(dev->irq, info);
+                       return -EAGAIN;
+               } else {
+                       unsigned long flags = claim_dma_lock();
+                       clear_dma_ff(priv->param.dma);
+                       release_dma_lock(flags);
+               }
+       }
+
+       /* Initialize local variables */
+       priv->rx_ptr = 0;
+       priv->rx_over = 0;
+       priv->rx_head = priv->rx_tail = priv->rx_count = 0;
+       priv->state = IDLE;
+       priv->tx_head = priv->tx_tail = priv->tx_count = 0;
+       priv->tx_ptr = 0;
+
+       /* Reset channel */
+       write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
+       /* X1 clock, SDLC mode */
+       write_scc(priv, R4, SDLC | X1CLK);
+       /* DMA */
+       write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
+       /* 8 bit RX char, RX disable */
+       write_scc(priv, R3, Rx8);
+       /* 8 bit TX char, TX disable */
+       write_scc(priv, R5, Tx8);
+       /* SDLC address field */
+       write_scc(priv, R6, 0);
+       /* SDLC flag */
+       write_scc(priv, R7, FLAG);
+       switch (priv->chip) {
+       case Z85C30:
+               /* Select WR7' */
+               write_scc(priv, R15, SHDLCE);
+               /* Auto EOM reset */
+               write_scc(priv, R7, AUTOEOM);
+               write_scc(priv, R15, 0);
+               break;
+       case Z85230:
+               /* Select WR7' */
+               write_scc(priv, R15, SHDLCE);
+               /* The following bits are set (see 2.5.2.1):
+                  - Automatic EOM reset
+                  - Interrupt request if RX FIFO is half full
+                  This bit should be ignored in DMA mode (according to the
+                  documentation), but actually isn't. The receiver doesn't work if
+                  it is set. Thus, we have to clear it in DMA mode.
+                  - Interrupt/DMA request if TX FIFO is completely empty
+                  a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
+                  compatibility).
+                  b) If cleared, DMA requests may follow each other very quickly,
+                  filling up the TX FIFO.
+                  Advantage: TX works even in case of high bus latency.
+                  Disadvantage: Edge-triggered DMA request circuitry may miss
+                  a request. No more data is delivered, resulting
+                  in a TX FIFO underrun.
+                  Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
+                  The PackeTwin doesn't. I don't know about the PI, but let's
+                  assume it behaves like the PI2.
+                */
+               if (priv->param.dma >= 0) {
+                       if (priv->type == TYPE_TWIN)
+                               write_scc(priv, R7, AUTOEOM | TXFIFOE);
+                       else
+                               write_scc(priv, R7, AUTOEOM);
+               } else {
+                       write_scc(priv, R7, AUTOEOM | RXFIFOH);
+               }
+               write_scc(priv, R15, 0);
+               break;
+       }
+       /* Preset CRC, NRZ(I) encoding */
+       write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
+
+       /* Configure baud rate generator */
+       if (priv->param.brg_tc >= 0) {
+               /* Program BR generator */
+               write_scc(priv, R12, priv->param.brg_tc & 0xFF);
+               write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
+               /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
+                  PackeTwin, not connected on the PI2); set DPLL source to BRG */
+               write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
+               /* Enable DPLL */
+               write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
+       } else {
+               /* Disable BR generator */
+               write_scc(priv, R14, DTRREQ | BRSRC);
+       }
+
+       /* Configure clocks */
+       if (priv->type == TYPE_TWIN) {
+               /* Disable external TX clock receiver */
+               outb((info->twin_serial_cfg &=
+                     ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
+                    card_base + TWIN_SERIAL_CFG);
+       }
+       write_scc(priv, R11, priv->param.clocks);
+       if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
+               /* Enable external TX clock receiver */
+               outb((info->twin_serial_cfg |=
+                     (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
+                    card_base + TWIN_SERIAL_CFG);
+       }
+
+       /* Configure PackeTwin */
+       if (priv->type == TYPE_TWIN) {
+               /* Assert DTR, enable interrupts */
+               outb((info->twin_serial_cfg |= TWIN_EI |
+                     (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
+                    card_base + TWIN_SERIAL_CFG);
+       }
+
+       /* Read current status */
+       priv->rr0 = read_scc(priv, R0);
+       /* Enable DCD interrupt */
+       write_scc(priv, R15, DCDIE);
+
+       netif_start_queue(dev);
+
+       return 0;
+}
+
+
+static int scc_close(struct net_device *dev)
+{
+       struct scc_priv *priv = dev->ml_priv;
+       struct scc_info *info = priv->info;
+       int card_base = priv->card_base;
+
+       netif_stop_queue(dev);
+
+       if (priv->type == TYPE_TWIN) {
+               /* Drop DTR */
+               outb((info->twin_serial_cfg &=
+                     (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
+                    card_base + TWIN_SERIAL_CFG);
+       }
+
+       /* Reset channel, free DMA and IRQ */
+       write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
+       if (priv->param.dma >= 0) {
+               if (priv->type == TYPE_TWIN)
+                       outb(0, card_base + TWIN_DMA_CFG);
+               free_dma(priv->param.dma);
+       }
+       if (--info->irq_used == 0)
+               free_irq(dev->irq, info);
+
+       return 0;
+}
+
+
+static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
+{
+       struct scc_priv *priv = dev->ml_priv;
+
+       switch (cmd) {
+       case SIOCGSCCPARAM:
+               if (copy_to_user
+                   (ifr->ifr_data, &priv->param,
+                    sizeof(struct scc_param)))
+                       return -EFAULT;
+               return 0;
+       case SIOCSSCCPARAM:
+               if (!capable(CAP_NET_ADMIN))
+                       return -EPERM;
+               if (netif_running(dev))
+                       return -EAGAIN;
+               if (copy_from_user
+                   (&priv->param, ifr->ifr_data,
+                    sizeof(struct scc_param)))
+                       return -EFAULT;
+               return 0;
+       default:
+               return -EINVAL;
+       }
+}
+
+
+static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
+{
+       struct scc_priv *priv = dev->ml_priv;
+       unsigned long flags;
+       int i;
+
+       if (skb->protocol == htons(ETH_P_IP))
+               return ax25_ip_xmit(skb);
+
+       /* Temporarily stop the scheduler feeding us packets */
+       netif_stop_queue(dev);
+
+       /* Transfer data to DMA buffer */
+       i = priv->tx_head;
+       skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
+       priv->tx_len[i] = skb->len - 1;
+
+       /* Clear interrupts while we touch our circular buffers */
+
+       spin_lock_irqsave(&priv->ring_lock, flags);
+       /* Move the ring buffer's head */
+       priv->tx_head = (i + 1) % NUM_TX_BUF;
+       priv->tx_count++;
+
+       /* If we just filled up the last buffer, leave queue stopped.
+          The higher layers must wait until we have a DMA buffer
+          to accept the data. */
+       if (priv->tx_count < NUM_TX_BUF)
+               netif_wake_queue(dev);
+
+       /* Set new TX state */
+       if (priv->state == IDLE) {
+               /* Assert RTS, start timer */
+               priv->state = TX_HEAD;
+               priv->tx_start = jiffies;
+               write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
+               write_scc(priv, R15, 0);
+               start_timer(priv, priv->param.txdelay, 0);
+       }
+
+       /* Turn interrupts back on and free buffer */
+       spin_unlock_irqrestore(&priv->ring_lock, flags);
+       dev_kfree_skb(skb);
+
+       return NETDEV_TX_OK;
+}
+
+
+static int scc_set_mac_address(struct net_device *dev, void *sa)
+{
+       memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
+              dev->addr_len);
+       return 0;
+}
+
+
+static inline void tx_on(struct scc_priv *priv)
+{
+       int i, n;
+       unsigned long flags;
+
+       if (priv->param.dma >= 0) {
+               n = (priv->chip == Z85230) ? 3 : 1;
+               /* Program DMA controller */
+               flags = claim_dma_lock();
+               set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
+               set_dma_addr(priv->param.dma,
+                            (int) priv->tx_buf[priv->tx_tail] + n);
+               set_dma_count(priv->param.dma,
+                             priv->tx_len[priv->tx_tail] - n);
+               release_dma_lock(flags);
+               /* Enable TX underrun interrupt */
+               write_scc(priv, R15, TxUIE);
+               /* Configure DREQ */
+               if (priv->type == TYPE_TWIN)
+                       outb((priv->param.dma ==
+                             1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
+                            priv->card_base + TWIN_DMA_CFG);
+               else
+                       write_scc(priv, R1,
+                                 EXT_INT_ENAB | WT_FN_RDYFN |
+                                 WT_RDY_ENAB);
+               /* Write first byte(s) */
+               spin_lock_irqsave(priv->register_lock, flags);
+               for (i = 0; i < n; i++)
+                       write_scc_data(priv,
+                                      priv->tx_buf[priv->tx_tail][i], 1);
+               enable_dma(priv->param.dma);
+               spin_unlock_irqrestore(priv->register_lock, flags);
+       } else {
+               write_scc(priv, R15, TxUIE);
+               write_scc(priv, R1,
+                         EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
+               tx_isr(priv);
+       }
+       /* Reset EOM latch if we do not have the AUTOEOM feature */
+       if (priv->chip == Z8530)
+               write_scc(priv, R0, RES_EOM_L);
+}
+
+
+static inline void rx_on(struct scc_priv *priv)
+{
+       unsigned long flags;
+
+       /* Clear RX FIFO */
+       while (read_scc(priv, R0) & Rx_CH_AV)
+               read_scc_data(priv);
+       priv->rx_over = 0;
+       if (priv->param.dma >= 0) {
+               /* Program DMA controller */
+               flags = claim_dma_lock();
+               set_dma_mode(priv->param.dma, DMA_MODE_READ);
+               set_dma_addr(priv->param.dma,
+                            (int) priv->rx_buf[priv->rx_head]);
+               set_dma_count(priv->param.dma, BUF_SIZE);
+               release_dma_lock(flags);
+               enable_dma(priv->param.dma);
+               /* Configure PackeTwin DMA */
+               if (priv->type == TYPE_TWIN) {
+                       outb((priv->param.dma ==
+                             1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
+                            priv->card_base + TWIN_DMA_CFG);
+               }
+               /* Sp. cond. intr. only, ext int enable, RX DMA enable */
+               write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
+                         WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
+       } else {
+               /* Reset current frame */
+               priv->rx_ptr = 0;
+               /* Intr. on all Rx characters and Sp. cond., ext int enable */
+               write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
+                         WT_FN_RDYFN);
+       }
+       write_scc(priv, R0, ERR_RES);
+       write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
+}
+
+
+static inline void rx_off(struct scc_priv *priv)
+{
+       /* Disable receiver */
+       write_scc(priv, R3, Rx8);
+       /* Disable DREQ / RX interrupt */
+       if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
+               outb(0, priv->card_base + TWIN_DMA_CFG);
+       else
+               write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
+       /* Disable DMA */
+       if (priv->param.dma >= 0)
+               disable_dma(priv->param.dma);
+}
+
+
+static void start_timer(struct scc_priv *priv, int t, int r15)
+{
+       outb(priv->tmr_mode, priv->tmr_ctrl);
+       if (t == 0) {
+               tm_isr(priv);
+       } else if (t > 0) {
+               outb(t & 0xFF, priv->tmr_cnt);
+               outb((t >> 8) & 0xFF, priv->tmr_cnt);
+               if (priv->type != TYPE_TWIN) {
+                       write_scc(priv, R15, r15 | CTSIE);
+                       priv->rr0 |= CTS;
+               }
+       }
+}
+
+
+static inline unsigned char random(void)
+{
+       /* See "Numerical Recipes in C", second edition, p. 284 */
+       rand = rand * 1664525L + 1013904223L;
+       return (unsigned char) (rand >> 24);
+}
+
+static inline void z8530_isr(struct scc_info *info)
+{
+       int is, i = 100;
+
+       while ((is = read_scc(&info->priv[0], R3)) && i--) {
+               if (is & CHARxIP) {
+                       rx_isr(&info->priv[0]);
+               } else if (is & CHATxIP) {
+                       tx_isr(&info->priv[0]);
+               } else if (is & CHAEXT) {
+                       es_isr(&info->priv[0]);
+               } else if (is & CHBRxIP) {
+                       rx_isr(&info->priv[1]);
+               } else if (is & CHBTxIP) {
+                       tx_isr(&info->priv[1]);
+               } else {
+                       es_isr(&info->priv[1]);
+               }
+               write_scc(&info->priv[0], R0, RES_H_IUS);
+               i++;
+       }
+       if (i < 0) {
+               printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
+                      is);
+       }
+       /* Ok, no interrupts pending from this 8530. The INT line should
+          be inactive now. */
+}
+
+
+static irqreturn_t scc_isr(int irq, void *dev_id)
+{
+       struct scc_info *info = dev_id;
+
+       spin_lock(info->priv[0].register_lock);
+       /* At this point interrupts are enabled, and the interrupt under service
+          is already acknowledged, but masked off.
+
+          Interrupt processing: We loop until we know that the IRQ line is
+          low. If another positive edge occurs afterwards during the ISR,
+          another interrupt will be triggered by the interrupt controller
+          as soon as the IRQ level is enabled again (see asm/irq.h).
+
+          Bottom-half handlers will be processed after scc_isr(). This is
+          important, since we only have small ringbuffers and want new data
+          to be fetched/delivered immediately. */
+
+       if (info->priv[0].type == TYPE_TWIN) {
+               int is, card_base = info->priv[0].card_base;
+               while ((is = ~inb(card_base + TWIN_INT_REG)) &
+                      TWIN_INT_MSK) {
+                       if (is & TWIN_SCC_MSK) {
+                               z8530_isr(info);
+                       } else if (is & TWIN_TMR1_MSK) {
+                               inb(card_base + TWIN_CLR_TMR1);
+                               tm_isr(&info->priv[0]);
+                       } else {
+                               inb(card_base + TWIN_CLR_TMR2);
+                               tm_isr(&info->priv[1]);
+                       }
+               }
+       } else
+               z8530_isr(info);
+       spin_unlock(info->priv[0].register_lock);
+       return IRQ_HANDLED;
+}
+
+
+static void rx_isr(struct scc_priv *priv)
+{
+       if (priv->param.dma >= 0) {
+               /* Check special condition and perform error reset. See 2.4.7.5. */
+               special_condition(priv, read_scc(priv, R1));
+               write_scc(priv, R0, ERR_RES);
+       } else {
+               /* Check special condition for each character. Error reset not necessary.
+                  Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
+               int rc;
+               while (read_scc(priv, R0) & Rx_CH_AV) {
+                       rc = read_scc(priv, R1);
+                       if (priv->rx_ptr < BUF_SIZE)
+                               priv->rx_buf[priv->rx_head][priv->
+                                                           rx_ptr++] =
+                                   read_scc_data(priv);
+                       else {
+                               priv->rx_over = 2;
+                               read_scc_data(priv);
+                       }
+                       special_condition(priv, rc);
+               }
+       }
+}
+
+
+static void special_condition(struct scc_priv *priv, int rc)
+{
+       int cb;
+       unsigned long flags;
+
+       /* See Figure 2-15. Only overrun and EOF need to be checked. */
+
+       if (rc & Rx_OVR) {
+               /* Receiver overrun */
+               priv->rx_over = 1;
+               if (priv->param.dma < 0)
+                       write_scc(priv, R0, ERR_RES);
+       } else if (rc & END_FR) {
+               /* End of frame. Get byte count */
+               if (priv->param.dma >= 0) {
+                       flags = claim_dma_lock();
+                       cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
+                           2;
+                       release_dma_lock(flags);
+               } else {
+                       cb = priv->rx_ptr - 2;
+               }
+               if (priv->rx_over) {
+                       /* We had an overrun */
+                       priv->dev->stats.rx_errors++;
+                       if (priv->rx_over == 2)
+                               priv->dev->stats.rx_length_errors++;
+                       else
+                               priv->dev->stats.rx_fifo_errors++;
+                       priv->rx_over = 0;
+               } else if (rc & CRC_ERR) {
+                       /* Count invalid CRC only if packet length >= minimum */
+                       if (cb >= 15) {
+                               priv->dev->stats.rx_errors++;
+                               priv->dev->stats.rx_crc_errors++;
+                       }
+               } else {
+                       if (cb >= 15) {
+                               if (priv->rx_count < NUM_RX_BUF - 1) {
+                                       /* Put good frame in FIFO */
+                                       priv->rx_len[priv->rx_head] = cb;
+                                       priv->rx_head =
+                                           (priv->rx_head +
+                                            1) % NUM_RX_BUF;
+                                       priv->rx_count++;
+                                       schedule_work(&priv->rx_work);
+                               } else {
+                                       priv->dev->stats.rx_errors++;
+                                       priv->dev->stats.rx_over_errors++;
+                               }
+                       }
+               }
+               /* Get ready for new frame */
+               if (priv->param.dma >= 0) {
+                       flags = claim_dma_lock();
+                       set_dma_addr(priv->param.dma,
+                                    (int) priv->rx_buf[priv->rx_head]);
+                       set_dma_count(priv->param.dma, BUF_SIZE);
+                       release_dma_lock(flags);
+               } else {
+                       priv->rx_ptr = 0;
+               }
+       }
+}
+
+
+static void rx_bh(struct work_struct *ugli_api)
+{
+       struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
+       int i = priv->rx_tail;
+       int cb;
+       unsigned long flags;
+       struct sk_buff *skb;
+       unsigned char *data;
+
+       spin_lock_irqsave(&priv->ring_lock, flags);
+       while (priv->rx_count) {
+               spin_unlock_irqrestore(&priv->ring_lock, flags);
+               cb = priv->rx_len[i];
+               /* Allocate buffer */
+               skb = dev_alloc_skb(cb + 1);
+               if (skb == NULL) {
+                       /* Drop packet */
+                       priv->dev->stats.rx_dropped++;
+               } else {
+                       /* Fill buffer */
+                       data = skb_put(skb, cb + 1);
+                       data[0] = 0;
+                       memcpy(&data[1], priv->rx_buf[i], cb);
+                       skb->protocol = ax25_type_trans(skb, priv->dev);
+                       netif_rx(skb);
+                       priv->dev->stats.rx_packets++;
+                       priv->dev->stats.rx_bytes += cb;
+               }
+               spin_lock_irqsave(&priv->ring_lock, flags);
+               /* Move tail */
+               priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
+               priv->rx_count--;
+       }
+       spin_unlock_irqrestore(&priv->ring_lock, flags);
+}
+
+
+static void tx_isr(struct scc_priv *priv)
+{
+       int i = priv->tx_tail, p = priv->tx_ptr;
+
+       /* Suspend TX interrupts if we don't want to send anything.
+          See Figure 2-22. */
+       if (p == priv->tx_len[i]) {
+               write_scc(priv, R0, RES_Tx_P);
+               return;
+       }
+
+       /* Write characters */
+       while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
+               write_scc_data(priv, priv->tx_buf[i][p++], 0);
+       }
+
+       /* Reset EOM latch of Z8530 */
+       if (!priv->tx_ptr && p && priv->chip == Z8530)
+               write_scc(priv, R0, RES_EOM_L);
+
+       priv->tx_ptr = p;
+}
+
+
+static void es_isr(struct scc_priv *priv)
+{
+       int i, rr0, drr0, res;
+       unsigned long flags;
+
+       /* Read status, reset interrupt bit (open latches) */
+       rr0 = read_scc(priv, R0);
+       write_scc(priv, R0, RES_EXT_INT);
+       drr0 = priv->rr0 ^ rr0;
+       priv->rr0 = rr0;
+
+       /* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
+          it might have already been cleared again by AUTOEOM. */
+       if (priv->state == TX_DATA) {
+               /* Get remaining bytes */
+               i = priv->tx_tail;
+               if (priv->param.dma >= 0) {
+                       disable_dma(priv->param.dma);
+                       flags = claim_dma_lock();
+                       res = get_dma_residue(priv->param.dma);
+                       release_dma_lock(flags);
+               } else {
+                       res = priv->tx_len[i] - priv->tx_ptr;
+                       priv->tx_ptr = 0;
+               }
+               /* Disable DREQ / TX interrupt */
+               if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
+                       outb(0, priv->card_base + TWIN_DMA_CFG);
+               else
+                       write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
+               if (res) {
+                       /* Update packet statistics */
+                       priv->dev->stats.tx_errors++;
+                       priv->dev->stats.tx_fifo_errors++;
+                       /* Other underrun interrupts may already be waiting */
+                       write_scc(priv, R0, RES_EXT_INT);
+                       write_scc(priv, R0, RES_EXT_INT);
+               } else {
+                       /* Update packet statistics */
+                       priv->dev->stats.tx_packets++;
+                       priv->dev->stats.tx_bytes += priv->tx_len[i];
+                       /* Remove frame from FIFO */
+                       priv->tx_tail = (i + 1) % NUM_TX_BUF;
+                       priv->tx_count--;
+                       /* Inform upper layers */
+                       netif_wake_queue(priv->dev);
+               }
+               /* Switch state */
+               write_scc(priv, R15, 0);
+               if (priv->tx_count &&
+                   (jiffies - priv->tx_start) < priv->param.txtimeout) {
+                       priv->state = TX_PAUSE;
+                       start_timer(priv, priv->param.txpause, 0);
+               } else {
+                       priv->state = TX_TAIL;
+                       start_timer(priv, priv->param.txtail, 0);
+               }
+       }
+
+       /* DCD transition */
+       if (drr0 & DCD) {
+               if (rr0 & DCD) {
+                       switch (priv->state) {
+                       case IDLE:
+                       case WAIT:
+                               priv->state = DCD_ON;
+                               write_scc(priv, R15, 0);
+                               start_timer(priv, priv->param.dcdon, 0);
+                       }
+               } else {
+                       switch (priv->state) {
+                       case RX_ON:
+                               rx_off(priv);
+                               priv->state = DCD_OFF;
+                               write_scc(priv, R15, 0);
+                               start_timer(priv, priv->param.dcdoff, 0);
+                       }
+               }
+       }
+
+       /* CTS transition */
+       if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
+               tm_isr(priv);
+
+}
+
+
+static void tm_isr(struct scc_priv *priv)
+{
+       switch (priv->state) {
+       case TX_HEAD:
+       case TX_PAUSE:
+               tx_on(priv);
+               priv->state = TX_DATA;
+               break;
+       case TX_TAIL:
+               write_scc(priv, R5, TxCRC_ENAB | Tx8);
+               priv->state = RTS_OFF;
+               if (priv->type != TYPE_TWIN)
+                       write_scc(priv, R15, 0);
+               start_timer(priv, priv->param.rtsoff, 0);
+               break;
+       case RTS_OFF:
+               write_scc(priv, R15, DCDIE);
+               priv->rr0 = read_scc(priv, R0);
+               if (priv->rr0 & DCD) {
+                       priv->dev->stats.collisions++;
+                       rx_on(priv);
+                       priv->state = RX_ON;
+               } else {
+                       priv->state = WAIT;
+                       start_timer(priv, priv->param.waittime, DCDIE);
+               }
+               break;
+       case WAIT:
+               if (priv->tx_count) {
+                       priv->state = TX_HEAD;
+                       priv->tx_start = jiffies;
+                       write_scc(priv, R5,
+                                 TxCRC_ENAB | RTS | TxENAB | Tx8);
+                       write_scc(priv, R15, 0);
+                       start_timer(priv, priv->param.txdelay, 0);
+               } else {
+                       priv->state = IDLE;
+                       if (priv->type != TYPE_TWIN)
+                               write_scc(priv, R15, DCDIE);
+               }
+               break;
+       case DCD_ON:
+       case DCD_OFF:
+               write_scc(priv, R15, DCDIE);
+               priv->rr0 = read_scc(priv, R0);
+               if (priv->rr0 & DCD) {
+                       rx_on(priv);
+                       priv->state = RX_ON;
+               } else {
+                       priv->state = WAIT;
+                       start_timer(priv,
+                                   random() / priv->param.persist *
+                                   priv->param.slottime, DCDIE);
+               }
+               break;
+       }
+}