Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / fddi / defxx.c
diff --git a/kernel/drivers/net/fddi/defxx.c b/kernel/drivers/net/fddi/defxx.c
new file mode 100644 (file)
index 0000000..7f975a2
--- /dev/null
@@ -0,0 +1,3853 @@
+/*
+ * File Name:
+ *   defxx.c
+ *
+ * Copyright Information:
+ *   Copyright Digital Equipment Corporation 1996.
+ *
+ *   This software may be used and distributed according to the terms of
+ *   the GNU General Public License, incorporated herein by reference.
+ *
+ * Abstract:
+ *   A Linux device driver supporting the Digital Equipment Corporation
+ *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
+ *   adapters include:
+ *
+ *             DEC FDDIcontroller/TURBOchannel (DEFTA)
+ *             DEC FDDIcontroller/EISA         (DEFEA)
+ *             DEC FDDIcontroller/PCI          (DEFPA)
+ *
+ * The original author:
+ *   LVS       Lawrence V. Stefani <lstefani@yahoo.com>
+ *
+ * Maintainers:
+ *   macro     Maciej W. Rozycki <macro@linux-mips.org>
+ *
+ * Credits:
+ *   I'd like to thank Patricia Cross for helping me get started with
+ *   Linux, David Davies for a lot of help upgrading and configuring
+ *   my development system and for answering many OS and driver
+ *   development questions, and Alan Cox for recommendations and
+ *   integration help on getting FDDI support into Linux.  LVS
+ *
+ * Driver Architecture:
+ *   The driver architecture is largely based on previous driver work
+ *   for other operating systems.  The upper edge interface and
+ *   functions were largely taken from existing Linux device drivers
+ *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
+ *   driver.
+ *
+ *   Adapter Probe -
+ *             The driver scans for supported EISA adapters by reading the
+ *             SLOT ID register for each EISA slot and making a match
+ *             against the expected value.
+ *
+ *   Bus-Specific Initialization -
+ *             This driver currently supports both EISA and PCI controller
+ *             families.  While the custom DMA chip and FDDI logic is similar
+ *             or identical, the bus logic is very different.  After
+ *             initialization, the     only bus-specific differences is in how the
+ *             driver enables and disables interrupts.  Other than that, the
+ *             run-time critical code behaves the same on both families.
+ *             It's important to note that both adapter families are configured
+ *             to I/O map, rather than memory map, the adapter registers.
+ *
+ *   Driver Open/Close -
+ *             In the driver open routine, the driver ISR (interrupt service
+ *             routine) is registered and the adapter is brought to an
+ *             operational state.  In the driver close routine, the opposite
+ *             occurs; the driver ISR is deregistered and the adapter is
+ *             brought to a safe, but closed state.  Users may use consecutive
+ *             commands to bring the adapter up and down as in the following
+ *             example:
+ *                                     ifconfig fddi0 up
+ *                                     ifconfig fddi0 down
+ *                                     ifconfig fddi0 up
+ *
+ *   Driver Shutdown -
+ *             Apparently, there is no shutdown or halt routine support under
+ *             Linux.  This routine would be called during "reboot" or
+ *             "shutdown" to allow the driver to place the adapter in a safe
+ *             state before a warm reboot occurs.  To be really safe, the user
+ *             should close the adapter before shutdown (eg. ifconfig fddi0 down)
+ *             to ensure that the adapter DMA engine is taken off-line.  However,
+ *             the current driver code anticipates this problem and always issues
+ *             a soft reset of the adapter     at the beginning of driver initialization.
+ *             A future driver enhancement in this area may occur in 2.1.X where
+ *             Alan indicated that a shutdown handler may be implemented.
+ *
+ *   Interrupt Service Routine -
+ *             The driver supports shared interrupts, so the ISR is registered for
+ *             each board with the appropriate flag and the pointer to that board's
+ *             device structure.  This provides the context during interrupt
+ *             processing to support shared interrupts and multiple boards.
+ *
+ *             Interrupt enabling/disabling can occur at many levels.  At the host
+ *             end, you can disable system interrupts, or disable interrupts at the
+ *             PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
+ *             have a bus-logic chip interrupt enable/disable as well as a DMA
+ *             controller interrupt enable/disable.
+ *
+ *             The driver currently enables and disables adapter interrupts at the
+ *             bus-logic chip and assumes that Linux will take care of clearing or
+ *             acknowledging any host-based interrupt chips.
+ *
+ *   Control Functions -
+ *             Control functions are those used to support functions such as adding
+ *             or deleting multicast addresses, enabling or disabling packet
+ *             reception filters, or other custom/proprietary commands.  Presently,
+ *             the driver supports the "get statistics", "set multicast list", and
+ *             "set mac address" functions defined by Linux.  A list of possible
+ *             enhancements include:
+ *
+ *                             - Custom ioctl interface for executing port interface commands
+ *                             - Custom ioctl interface for adding unicast addresses to
+ *                               adapter CAM (to support bridge functions).
+ *                             - Custom ioctl interface for supporting firmware upgrades.
+ *
+ *   Hardware (port interface) Support Routines -
+ *             The driver function names that start with "dfx_hw_" represent
+ *             low-level port interface routines that are called frequently.  They
+ *             include issuing a DMA or port control command to the adapter,
+ *             resetting the adapter, or reading the adapter state.  Since the
+ *             driver initialization and run-time code must make calls into the
+ *             port interface, these routines were written to be as generic and
+ *             usable as possible.
+ *
+ *   Receive Path -
+ *             The adapter DMA engine supports a 256 entry receive descriptor block
+ *             of which up to 255 entries can be used at any given time.  The
+ *             architecture is a standard producer, consumer, completion model in
+ *             which the driver "produces" receive buffers to the adapter, the
+ *             adapter "consumes" the receive buffers by DMAing incoming packet data,
+ *             and the driver "completes" the receive buffers by servicing the
+ *             incoming packet, then "produces" a new buffer and starts the cycle
+ *             again.  Receive buffers can be fragmented in up to 16 fragments
+ *             (descriptor     entries).  For simplicity, this driver posts
+ *             single-fragment receive buffers of 4608 bytes, then allocates a
+ *             sk_buff, copies the data, then reposts the buffer.  To reduce CPU
+ *             utilization, a better approach would be to pass up the receive
+ *             buffer (no extra copy) then allocate and post a replacement buffer.
+ *             This is a performance enhancement that should be looked into at
+ *             some point.
+ *
+ *   Transmit Path -
+ *             Like the receive path, the adapter DMA engine supports a 256 entry
+ *             transmit descriptor block of which up to 255 entries can be used at
+ *             any     given time.  Transmit buffers can be fragmented in up to 255
+ *             fragments (descriptor entries).  This driver always posts one
+ *             fragment per transmit packet request.
+ *
+ *             The fragment contains the entire packet from FC to end of data.
+ *             Before posting the buffer to the adapter, the driver sets a three-byte
+ *             packet request header (PRH) which is required by the Motorola MAC chip
+ *             used on the adapters.  The PRH tells the MAC the type of token to
+ *             receive/send, whether or not to generate and append the CRC, whether
+ *             synchronous or asynchronous framing is used, etc.  Since the PRH
+ *             definition is not necessarily consistent across all FDDI chipsets,
+ *             the driver, rather than the common FDDI packet handler routines,
+ *             sets these bytes.
+ *
+ *             To reduce the amount of descriptor fetches needed per transmit request,
+ *             the driver takes advantage of the fact that there are at least three
+ *             bytes available before the skb->data field on the outgoing transmit
+ *             request.  This is guaranteed by having fddi_setup() in net_init.c set
+ *             dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
+ *             header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
+ *             bytes which we'll use to store the PRH.
+ *
+ *             There's a subtle advantage to adding these pad bytes to the
+ *             hard_header_len, it ensures that the data portion of the packet for
+ *             an 802.2 SNAP frame is longword aligned.  Other FDDI driver
+ *             implementations may not need the extra padding and can start copying
+ *             or DMAing directly from the FC byte which starts at skb->data.  Should
+ *             another driver implementation need ADDITIONAL padding, the net_init.c
+ *             module should be updated and dev->hard_header_len should be increased.
+ *             NOTE: To maintain the alignment on the data portion of the packet,
+ *             dev->hard_header_len should always be evenly divisible by 4 and at
+ *             least 24 bytes in size.
+ *
+ * Modification History:
+ *             Date            Name    Description
+ *             16-Aug-96       LVS             Created.
+ *             20-Aug-96       LVS             Updated dfx_probe so that version information
+ *                                                     string is only displayed if 1 or more cards are
+ *                                                     found.  Changed dfx_rcv_queue_process to copy
+ *                                                     3 NULL bytes before FC to ensure that data is
+ *                                                     longword aligned in receive buffer.
+ *             09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
+ *                                                     LLC group promiscuous mode if multicast list
+ *                                                     is too large.  LLC individual/group promiscuous
+ *                                                     mode is now disabled if IFF_PROMISC flag not set.
+ *                                                     dfx_xmt_queue_pkt no longer checks for NULL skb
+ *                                                     on Alan Cox recommendation.  Added node address
+ *                                                     override support.
+ *             12-Sep-96       LVS             Reset current address to factory address during
+ *                                                     device open.  Updated transmit path to post a
+ *                                                     single fragment which includes PRH->end of data.
+ *             Mar 2000        AC              Did various cleanups for 2.3.x
+ *             Jun 2000        jgarzik         PCI and resource alloc cleanups
+ *             Jul 2000        tjeerd          Much cleanup and some bug fixes
+ *             Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
+ *             Feb 2001                        Skb allocation fixes
+ *             Feb 2001        davej           PCI enable cleanups.
+ *             04 Aug 2003     macro           Converted to the DMA API.
+ *             14 Aug 2004     macro           Fix device names reported.
+ *             14 Jun 2005     macro           Use irqreturn_t.
+ *             23 Oct 2006     macro           Big-endian host support.
+ *             14 Dec 2006     macro           TURBOchannel support.
+ *             01 Jul 2014     macro           Fixes for DMA on 64-bit hosts.
+ */
+
+/* Include files */
+#include <linux/bitops.h>
+#include <linux/compiler.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/eisa.h>
+#include <linux/errno.h>
+#include <linux/fddidevice.h>
+#include <linux/interrupt.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/netdevice.h>
+#include <linux/pci.h>
+#include <linux/skbuff.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/tc.h>
+
+#include <asm/byteorder.h>
+#include <asm/io.h>
+
+#include "defxx.h"
+
+/* Version information string should be updated prior to each new release!  */
+#define DRV_NAME "defxx"
+#define DRV_VERSION "v1.11"
+#define DRV_RELDATE "2014/07/01"
+
+static char version[] =
+       DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
+       "  Lawrence V. Stefani and others\n";
+
+#define DYNAMIC_BUFFERS 1
+
+#define SKBUFF_RX_COPYBREAK 200
+/*
+ * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
+ * alignment for compatibility with old EISA boards.
+ */
+#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
+
+#ifdef CONFIG_EISA
+#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
+#else
+#define DFX_BUS_EISA(dev) 0
+#endif
+
+#ifdef CONFIG_TC
+#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
+#else
+#define DFX_BUS_TC(dev) 0
+#endif
+
+#ifdef CONFIG_DEFXX_MMIO
+#define DFX_MMIO 1
+#else
+#define DFX_MMIO 0
+#endif
+
+/* Define module-wide (static) routines */
+
+static void            dfx_bus_init(struct net_device *dev);
+static void            dfx_bus_uninit(struct net_device *dev);
+static void            dfx_bus_config_check(DFX_board_t *bp);
+
+static int             dfx_driver_init(struct net_device *dev,
+                                       const char *print_name,
+                                       resource_size_t bar_start);
+static int             dfx_adap_init(DFX_board_t *bp, int get_buffers);
+
+static int             dfx_open(struct net_device *dev);
+static int             dfx_close(struct net_device *dev);
+
+static void            dfx_int_pr_halt_id(DFX_board_t *bp);
+static void            dfx_int_type_0_process(DFX_board_t *bp);
+static void            dfx_int_common(struct net_device *dev);
+static irqreturn_t     dfx_interrupt(int irq, void *dev_id);
+
+static struct          net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
+static void            dfx_ctl_set_multicast_list(struct net_device *dev);
+static int             dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
+static int             dfx_ctl_update_cam(DFX_board_t *bp);
+static int             dfx_ctl_update_filters(DFX_board_t *bp);
+
+static int             dfx_hw_dma_cmd_req(DFX_board_t *bp);
+static int             dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
+static void            dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
+static int             dfx_hw_adap_state_rd(DFX_board_t *bp);
+static int             dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
+
+static int             dfx_rcv_init(DFX_board_t *bp, int get_buffers);
+static void            dfx_rcv_queue_process(DFX_board_t *bp);
+#ifdef DYNAMIC_BUFFERS
+static void            dfx_rcv_flush(DFX_board_t *bp);
+#else
+static inline void     dfx_rcv_flush(DFX_board_t *bp) {}
+#endif
+
+static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
+                                    struct net_device *dev);
+static int             dfx_xmt_done(DFX_board_t *bp);
+static void            dfx_xmt_flush(DFX_board_t *bp);
+
+/* Define module-wide (static) variables */
+
+static struct pci_driver dfx_pci_driver;
+static struct eisa_driver dfx_eisa_driver;
+static struct tc_driver dfx_tc_driver;
+
+
+/*
+ * =======================
+ * = dfx_port_write_long =
+ * = dfx_port_read_long  =
+ * =======================
+ *
+ * Overview:
+ *   Routines for reading and writing values from/to adapter
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp                - pointer to board information
+ *   offset    - register offset from base I/O address
+ *   data      - for dfx_port_write_long, this is a value to write;
+ *               for dfx_port_read_long, this is a pointer to store
+ *               the read value
+ *
+ * Functional Description:
+ *   These routines perform the correct operation to read or write
+ *   the adapter register.
+ *
+ *   EISA port block base addresses are based on the slot number in which the
+ *   controller is installed.  For example, if the EISA controller is installed
+ *   in slot 4, the port block base address is 0x4000.  If the controller is
+ *   installed in slot 2, the port block base address is 0x2000, and so on.
+ *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
+ *   registers using the register offsets defined in DEFXX.H.
+ *
+ *   PCI port block base addresses are assigned by the PCI BIOS or system
+ *   firmware.  There is one 128 byte port block which can be accessed.  It
+ *   allows for I/O mapping of both PDQ and PFI registers using the register
+ *   offsets defined in DEFXX.H.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   bp->base is a valid base I/O address for this adapter.
+ *   offset is a valid register offset for this adapter.
+ *
+ * Side Effects:
+ *   Rather than produce macros for these functions, these routines
+ *   are defined using "inline" to ensure that the compiler will
+ *   generate inline code and not waste a procedure call and return.
+ *   This provides all the benefits of macros, but with the
+ *   advantage of strict data type checking.
+ */
+
+static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
+{
+       writel(data, bp->base.mem + offset);
+       mb();
+}
+
+static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
+{
+       outl(data, bp->base.port + offset);
+}
+
+static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
+{
+       struct device __maybe_unused *bdev = bp->bus_dev;
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+       int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
+
+       if (dfx_use_mmio)
+               dfx_writel(bp, offset, data);
+       else
+               dfx_outl(bp, offset, data);
+}
+
+
+static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
+{
+       mb();
+       *data = readl(bp->base.mem + offset);
+}
+
+static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
+{
+       *data = inl(bp->base.port + offset);
+}
+
+static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
+{
+       struct device __maybe_unused *bdev = bp->bus_dev;
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+       int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
+
+       if (dfx_use_mmio)
+               dfx_readl(bp, offset, data);
+       else
+               dfx_inl(bp, offset, data);
+}
+
+
+/*
+ * ================
+ * = dfx_get_bars =
+ * ================
+ *
+ * Overview:
+ *   Retrieves the address ranges used to access control and status
+ *   registers.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bdev      - pointer to device information
+ *   bar_start - pointer to store the start addresses
+ *   bar_len   - pointer to store the lengths of the areas
+ *
+ * Assumptions:
+ *   I am sure there are some.
+ *
+ * Side Effects:
+ *   None
+ */
+static void dfx_get_bars(struct device *bdev,
+                        resource_size_t *bar_start, resource_size_t *bar_len)
+{
+       int dfx_bus_pci = dev_is_pci(bdev);
+       int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+       int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
+
+       if (dfx_bus_pci) {
+               int num = dfx_use_mmio ? 0 : 1;
+
+               bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
+               bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
+               bar_start[2] = bar_start[1] = 0;
+               bar_len[2] = bar_len[1] = 0;
+       }
+       if (dfx_bus_eisa) {
+               unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+               resource_size_t bar_lo;
+               resource_size_t bar_hi;
+
+               if (dfx_use_mmio) {
+                       bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
+                       bar_lo <<= 8;
+                       bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
+                       bar_lo <<= 8;
+                       bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
+                       bar_lo <<= 8;
+                       bar_start[0] = bar_lo;
+                       bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
+                       bar_hi <<= 8;
+                       bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
+                       bar_hi <<= 8;
+                       bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
+                       bar_hi <<= 8;
+                       bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
+                                    1;
+               } else {
+                       bar_start[0] = base_addr;
+                       bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
+               }
+               bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
+               bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
+               bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
+               bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
+       }
+       if (dfx_bus_tc) {
+               bar_start[0] = to_tc_dev(bdev)->resource.start +
+                              PI_TC_K_CSR_OFFSET;
+               bar_len[0] = PI_TC_K_CSR_LEN;
+               bar_start[2] = bar_start[1] = 0;
+               bar_len[2] = bar_len[1] = 0;
+       }
+}
+
+static const struct net_device_ops dfx_netdev_ops = {
+       .ndo_open               = dfx_open,
+       .ndo_stop               = dfx_close,
+       .ndo_start_xmit         = dfx_xmt_queue_pkt,
+       .ndo_get_stats          = dfx_ctl_get_stats,
+       .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
+       .ndo_set_mac_address    = dfx_ctl_set_mac_address,
+};
+
+/*
+ * ================
+ * = dfx_register =
+ * ================
+ *
+ * Overview:
+ *   Initializes a supported FDDI controller
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   bdev - pointer to device information
+ *
+ * Functional Description:
+ *
+ * Return Codes:
+ *   0          - This device (fddi0, fddi1, etc) configured successfully
+ *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
+ *
+ * Assumptions:
+ *   It compiles so it should work :-( (PCI cards do :-)
+ *
+ * Side Effects:
+ *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
+ *   initialized and the board resources are read and stored in
+ *   the device structure.
+ */
+static int dfx_register(struct device *bdev)
+{
+       static int version_disp;
+       int dfx_bus_pci = dev_is_pci(bdev);
+       int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+       int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
+       const char *print_name = dev_name(bdev);
+       struct net_device *dev;
+       DFX_board_t       *bp;                  /* board pointer */
+       resource_size_t bar_start[3];           /* pointers to ports */
+       resource_size_t bar_len[3];             /* resource length */
+       int alloc_size;                         /* total buffer size used */
+       struct resource *region;
+       int err = 0;
+
+       if (!version_disp) {    /* display version info if adapter is found */
+               version_disp = 1;       /* set display flag to TRUE so that */
+               printk(version);        /* we only display this string ONCE */
+       }
+
+       dev = alloc_fddidev(sizeof(*bp));
+       if (!dev) {
+               printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
+                      print_name);
+               return -ENOMEM;
+       }
+
+       /* Enable PCI device. */
+       if (dfx_bus_pci) {
+               err = pci_enable_device(to_pci_dev(bdev));
+               if (err) {
+                       pr_err("%s: Cannot enable PCI device, aborting\n",
+                              print_name);
+                       goto err_out;
+               }
+       }
+
+       SET_NETDEV_DEV(dev, bdev);
+
+       bp = netdev_priv(dev);
+       bp->bus_dev = bdev;
+       dev_set_drvdata(bdev, dev);
+
+       dfx_get_bars(bdev, bar_start, bar_len);
+       if (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0) {
+               pr_err("%s: Cannot use MMIO, no address set, aborting\n",
+                      print_name);
+               pr_err("%s: Run ECU and set adapter's MMIO location\n",
+                      print_name);
+               pr_err("%s: Or recompile driver with \"CONFIG_DEFXX_MMIO=n\""
+                      "\n", print_name);
+               err = -ENXIO;
+               goto err_out;
+       }
+
+       if (dfx_use_mmio)
+               region = request_mem_region(bar_start[0], bar_len[0],
+                                           print_name);
+       else
+               region = request_region(bar_start[0], bar_len[0], print_name);
+       if (!region) {
+               pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, "
+                      "aborting\n", dfx_use_mmio ? "MMIO" : "I/O", print_name,
+                      (long)bar_len[0], (long)bar_start[0]);
+               err = -EBUSY;
+               goto err_out_disable;
+       }
+       if (bar_start[1] != 0) {
+               region = request_region(bar_start[1], bar_len[1], print_name);
+               if (!region) {
+                       pr_err("%s: Cannot reserve I/O resource "
+                              "0x%lx @ 0x%lx, aborting\n", print_name,
+                              (long)bar_len[1], (long)bar_start[1]);
+                       err = -EBUSY;
+                       goto err_out_csr_region;
+               }
+       }
+       if (bar_start[2] != 0) {
+               region = request_region(bar_start[2], bar_len[2], print_name);
+               if (!region) {
+                       pr_err("%s: Cannot reserve I/O resource "
+                              "0x%lx @ 0x%lx, aborting\n", print_name,
+                              (long)bar_len[2], (long)bar_start[2]);
+                       err = -EBUSY;
+                       goto err_out_bh_region;
+               }
+       }
+
+       /* Set up I/O base address. */
+       if (dfx_use_mmio) {
+               bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]);
+               if (!bp->base.mem) {
+                       printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
+                       err = -ENOMEM;
+                       goto err_out_esic_region;
+               }
+       } else {
+               bp->base.port = bar_start[0];
+               dev->base_addr = bar_start[0];
+       }
+
+       /* Initialize new device structure */
+       dev->netdev_ops                 = &dfx_netdev_ops;
+
+       if (dfx_bus_pci)
+               pci_set_master(to_pci_dev(bdev));
+
+       if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
+               err = -ENODEV;
+               goto err_out_unmap;
+       }
+
+       err = register_netdev(dev);
+       if (err)
+               goto err_out_kfree;
+
+       printk("%s: registered as %s\n", print_name, dev->name);
+       return 0;
+
+err_out_kfree:
+       alloc_size = sizeof(PI_DESCR_BLOCK) +
+                    PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+                    (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+                    sizeof(PI_CONSUMER_BLOCK) +
+                    (PI_ALIGN_K_DESC_BLK - 1);
+       if (bp->kmalloced)
+               dma_free_coherent(bdev, alloc_size,
+                                 bp->kmalloced, bp->kmalloced_dma);
+
+err_out_unmap:
+       if (dfx_use_mmio)
+               iounmap(bp->base.mem);
+
+err_out_esic_region:
+       if (bar_start[2] != 0)
+               release_region(bar_start[2], bar_len[2]);
+
+err_out_bh_region:
+       if (bar_start[1] != 0)
+               release_region(bar_start[1], bar_len[1]);
+
+err_out_csr_region:
+       if (dfx_use_mmio)
+               release_mem_region(bar_start[0], bar_len[0]);
+       else
+               release_region(bar_start[0], bar_len[0]);
+
+err_out_disable:
+       if (dfx_bus_pci)
+               pci_disable_device(to_pci_dev(bdev));
+
+err_out:
+       free_netdev(dev);
+       return err;
+}
+
+
+/*
+ * ================
+ * = dfx_bus_init =
+ * ================
+ *
+ * Overview:
+ *   Initializes the bus-specific controller logic.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   dev - pointer to device information
+ *
+ * Functional Description:
+ *   Determine and save adapter IRQ in device table,
+ *   then perform bus-specific logic initialization.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   bp->base has already been set with the proper
+ *      base I/O address for this device.
+ *
+ * Side Effects:
+ *   Interrupts are enabled at the adapter bus-specific logic.
+ *   Note:  Interrupts at the DMA engine (PDQ chip) are not
+ *   enabled yet.
+ */
+
+static void dfx_bus_init(struct net_device *dev)
+{
+       DFX_board_t *bp = netdev_priv(dev);
+       struct device *bdev = bp->bus_dev;
+       int dfx_bus_pci = dev_is_pci(bdev);
+       int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+       int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
+       u8 val;
+
+       DBG_printk("In dfx_bus_init...\n");
+
+       /* Initialize a pointer back to the net_device struct */
+       bp->dev = dev;
+
+       /* Initialize adapter based on bus type */
+
+       if (dfx_bus_tc)
+               dev->irq = to_tc_dev(bdev)->interrupt;
+       if (dfx_bus_eisa) {
+               unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+
+               /* Disable the board before fiddling with the decoders.  */
+               outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
+
+               /* Get the interrupt level from the ESIC chip.  */
+               val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+               val &= PI_CONFIG_STAT_0_M_IRQ;
+               val >>= PI_CONFIG_STAT_0_V_IRQ;
+
+               switch (val) {
+               case PI_CONFIG_STAT_0_IRQ_K_9:
+                       dev->irq = 9;
+                       break;
+
+               case PI_CONFIG_STAT_0_IRQ_K_10:
+                       dev->irq = 10;
+                       break;
+
+               case PI_CONFIG_STAT_0_IRQ_K_11:
+                       dev->irq = 11;
+                       break;
+
+               case PI_CONFIG_STAT_0_IRQ_K_15:
+                       dev->irq = 15;
+                       break;
+               }
+
+               /*
+                * Enable memory decoding (MEMCS1) and/or port decoding
+                * (IOCS1/IOCS0) as appropriate in Function Control
+                * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
+                * taking 16 32-bit words, while IOCS1 is used for the
+                * Burst Holdoff register, taking a single 32-bit word
+                * only.  We use the slot-specific I/O range as per the
+                * ESIC spec, that is set bits 15:12 in the mask registers
+                * to mask them out.
+                */
+
+               /* Set the decode range of the board.  */
+               val = 0;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
+               val = PI_DEFEA_K_CSR_IO;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
+
+               val = PI_IO_CMP_M_SLOT;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
+               val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
+
+               val = 0;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
+               val = PI_DEFEA_K_BURST_HOLDOFF;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
+
+               val = PI_IO_CMP_M_SLOT;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
+               val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
+               outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
+
+               /* Enable the decoders.  */
+               val = PI_FUNCTION_CNTRL_M_IOCS1;
+               if (dfx_use_mmio)
+                       val |= PI_FUNCTION_CNTRL_M_MEMCS1;
+               else
+                       val |= PI_FUNCTION_CNTRL_M_IOCS0;
+               outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
+
+               /*
+                * Enable access to the rest of the module
+                * (including PDQ and packet memory).
+                */
+               val = PI_SLOT_CNTRL_M_ENB;
+               outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
+
+               /*
+                * Map PDQ registers into memory or port space.  This is
+                * done with a bit in the Burst Holdoff register.
+                */
+               val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
+               if (dfx_use_mmio)
+                       val |= PI_BURST_HOLDOFF_M_MEM_MAP;
+               else
+                       val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
+               outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
+
+               /* Enable interrupts at EISA bus interface chip (ESIC) */
+               val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+               val |= PI_CONFIG_STAT_0_M_INT_ENB;
+               outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+       }
+       if (dfx_bus_pci) {
+               struct pci_dev *pdev = to_pci_dev(bdev);
+
+               /* Get the interrupt level from the PCI Configuration Table */
+
+               dev->irq = pdev->irq;
+
+               /* Check Latency Timer and set if less than minimal */
+
+               pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
+               if (val < PFI_K_LAT_TIMER_MIN) {
+                       val = PFI_K_LAT_TIMER_DEF;
+                       pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
+               }
+
+               /* Enable interrupts at PCI bus interface chip (PFI) */
+               val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
+               dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
+       }
+}
+
+/*
+ * ==================
+ * = dfx_bus_uninit =
+ * ==================
+ *
+ * Overview:
+ *   Uninitializes the bus-specific controller logic.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   dev - pointer to device information
+ *
+ * Functional Description:
+ *   Perform bus-specific logic uninitialization.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   bp->base has already been set with the proper
+ *      base I/O address for this device.
+ *
+ * Side Effects:
+ *   Interrupts are disabled at the adapter bus-specific logic.
+ */
+
+static void dfx_bus_uninit(struct net_device *dev)
+{
+       DFX_board_t *bp = netdev_priv(dev);
+       struct device *bdev = bp->bus_dev;
+       int dfx_bus_pci = dev_is_pci(bdev);
+       int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+       u8 val;
+
+       DBG_printk("In dfx_bus_uninit...\n");
+
+       /* Uninitialize adapter based on bus type */
+
+       if (dfx_bus_eisa) {
+               unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+
+               /* Disable interrupts at EISA bus interface chip (ESIC) */
+               val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+               val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
+               outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+
+               /* Disable the board.  */
+               outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
+
+               /* Disable memory and port decoders.  */
+               outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
+       }
+       if (dfx_bus_pci) {
+               /* Disable interrupts at PCI bus interface chip (PFI) */
+               dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
+       }
+}
+
+
+/*
+ * ========================
+ * = dfx_bus_config_check =
+ * ========================
+ *
+ * Overview:
+ *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
+ *   are illegal, then this routine will set new defaults.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
+ *   PDQ, and all FDDI PCI controllers, all values are legal.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   dfx_adap_init has NOT been called yet so burst size and other items have
+ *   not been set.
+ *
+ * Side Effects:
+ *   None
+ */
+
+static void dfx_bus_config_check(DFX_board_t *bp)
+{
+       struct device __maybe_unused *bdev = bp->bus_dev;
+       int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+       int     status;                         /* return code from adapter port control call */
+       u32     host_data;                      /* LW data returned from port control call */
+
+       DBG_printk("In dfx_bus_config_check...\n");
+
+       /* Configuration check only valid for EISA adapter */
+
+       if (dfx_bus_eisa) {
+               /*
+                * First check if revision 2 EISA controller.  Rev. 1 cards used
+                * PDQ revision B, so no workaround needed in this case.  Rev. 3
+                * cards used PDQ revision E, so no workaround needed in this
+                * case, either.  Only Rev. 2 cards used either Rev. D or E
+                * chips, so we must verify the chip revision on Rev. 2 cards.
+                */
+               if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
+                       /*
+                        * Revision 2 FDDI EISA controller found,
+                        * so let's check PDQ revision of adapter.
+                        */
+                       status = dfx_hw_port_ctrl_req(bp,
+                                                                                       PI_PCTRL_M_SUB_CMD,
+                                                                                       PI_SUB_CMD_K_PDQ_REV_GET,
+                                                                                       0,
+                                                                                       &host_data);
+                       if ((status != DFX_K_SUCCESS) || (host_data == 2))
+                               {
+                               /*
+                                * Either we couldn't determine the PDQ revision, or
+                                * we determined that it is at revision D.  In either case,
+                                * we need to implement the workaround.
+                                */
+
+                               /* Ensure that the burst size is set to 8 longwords or less */
+
+                               switch (bp->burst_size)
+                                       {
+                                       case PI_PDATA_B_DMA_BURST_SIZE_32:
+                                       case PI_PDATA_B_DMA_BURST_SIZE_16:
+                                               bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
+                                               break;
+
+                                       default:
+                                               break;
+                                       }
+
+                               /* Ensure that full-duplex mode is not enabled */
+
+                               bp->full_duplex_enb = PI_SNMP_K_FALSE;
+                               }
+                       }
+               }
+       }
+
+
+/*
+ * ===================
+ * = dfx_driver_init =
+ * ===================
+ *
+ * Overview:
+ *   Initializes remaining adapter board structure information
+ *   and makes sure adapter is in a safe state prior to dfx_open().
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   dev - pointer to device information
+ *   print_name - printable device name
+ *
+ * Functional Description:
+ *   This function allocates additional resources such as the host memory
+ *   blocks needed by the adapter (eg. descriptor and consumer blocks).
+ *      Remaining bus initialization steps are also completed.  The adapter
+ *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
+ *   must call dfx_open() to open the adapter and bring it on-line.
+ *
+ * Return Codes:
+ *   DFX_K_SUCCESS     - initialization succeeded
+ *   DFX_K_FAILURE     - initialization failed - could not allocate memory
+ *                                             or read adapter MAC address
+ *
+ * Assumptions:
+ *   Memory allocated from pci_alloc_consistent() call is physically
+ *   contiguous, locked memory.
+ *
+ * Side Effects:
+ *   Adapter is reset and should be in DMA_UNAVAILABLE state before
+ *   returning from this routine.
+ */
+
+static int dfx_driver_init(struct net_device *dev, const char *print_name,
+                          resource_size_t bar_start)
+{
+       DFX_board_t *bp = netdev_priv(dev);
+       struct device *bdev = bp->bus_dev;
+       int dfx_bus_pci = dev_is_pci(bdev);
+       int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+       int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
+       int alloc_size;                 /* total buffer size needed */
+       char *top_v, *curr_v;           /* virtual addrs into memory block */
+       dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
+       u32 data;                       /* host data register value */
+       __le32 le32;
+       char *board_name = NULL;
+
+       DBG_printk("In dfx_driver_init...\n");
+
+       /* Initialize bus-specific hardware registers */
+
+       dfx_bus_init(dev);
+
+       /*
+        * Initialize default values for configurable parameters
+        *
+        * Note: All of these parameters are ones that a user may
+        *       want to customize.  It'd be nice to break these
+        *               out into Space.c or someplace else that's more
+        *               accessible/understandable than this file.
+        */
+
+       bp->full_duplex_enb             = PI_SNMP_K_FALSE;
+       bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
+       bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
+       bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
+
+       /*
+        * Ensure that HW configuration is OK
+        *
+        * Note: Depending on the hardware revision, we may need to modify
+        *       some of the configurable parameters to workaround hardware
+        *       limitations.  We'll perform this configuration check AFTER
+        *       setting the parameters to their default values.
+        */
+
+       dfx_bus_config_check(bp);
+
+       /* Disable PDQ interrupts first */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+       /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+       (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
+
+       /*  Read the factory MAC address from the adapter then save it */
+
+       if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
+                                &data) != DFX_K_SUCCESS) {
+               printk("%s: Could not read adapter factory MAC address!\n",
+                      print_name);
+               return DFX_K_FAILURE;
+       }
+       le32 = cpu_to_le32(data);
+       memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
+
+       if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
+                                &data) != DFX_K_SUCCESS) {
+               printk("%s: Could not read adapter factory MAC address!\n",
+                      print_name);
+               return DFX_K_FAILURE;
+       }
+       le32 = cpu_to_le32(data);
+       memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
+
+       /*
+        * Set current address to factory address
+        *
+        * Note: Node address override support is handled through
+        *       dfx_ctl_set_mac_address.
+        */
+
+       memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
+       if (dfx_bus_tc)
+               board_name = "DEFTA";
+       if (dfx_bus_eisa)
+               board_name = "DEFEA";
+       if (dfx_bus_pci)
+               board_name = "DEFPA";
+       pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
+               print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
+               (long long)bar_start, dev->irq, dev->dev_addr);
+
+       /*
+        * Get memory for descriptor block, consumer block, and other buffers
+        * that need to be DMA read or written to by the adapter.
+        */
+
+       alloc_size = sizeof(PI_DESCR_BLOCK) +
+                                       PI_CMD_REQ_K_SIZE_MAX +
+                                       PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+                                       (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+                                       sizeof(PI_CONSUMER_BLOCK) +
+                                       (PI_ALIGN_K_DESC_BLK - 1);
+       bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
+                                                   &bp->kmalloced_dma,
+                                                   GFP_ATOMIC);
+       if (top_v == NULL)
+               return DFX_K_FAILURE;
+
+       top_p = bp->kmalloced_dma;      /* get physical address of buffer */
+
+       /*
+        *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
+        *  plus the amount of memory needed was allocated.  The physical address
+        *      is now 8K aligned.  By carving up the memory in a specific order,
+        *  we'll guarantee the alignment requirements for all other structures.
+        *
+        *  Note: If the assumptions change regarding the non-paged, non-cached,
+        *                physically contiguous nature of the memory block or the address
+        *                alignments, then we'll need to implement a different algorithm
+        *                for allocating the needed memory.
+        */
+
+       curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
+       curr_v = top_v + (curr_p - top_p);
+
+       /* Reserve space for descriptor block */
+
+       bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
+       bp->descr_block_phys = curr_p;
+       curr_v += sizeof(PI_DESCR_BLOCK);
+       curr_p += sizeof(PI_DESCR_BLOCK);
+
+       /* Reserve space for command request buffer */
+
+       bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
+       bp->cmd_req_phys = curr_p;
+       curr_v += PI_CMD_REQ_K_SIZE_MAX;
+       curr_p += PI_CMD_REQ_K_SIZE_MAX;
+
+       /* Reserve space for command response buffer */
+
+       bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
+       bp->cmd_rsp_phys = curr_p;
+       curr_v += PI_CMD_RSP_K_SIZE_MAX;
+       curr_p += PI_CMD_RSP_K_SIZE_MAX;
+
+       /* Reserve space for the LLC host receive queue buffers */
+
+       bp->rcv_block_virt = curr_v;
+       bp->rcv_block_phys = curr_p;
+
+#ifndef DYNAMIC_BUFFERS
+       curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
+       curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
+#endif
+
+       /* Reserve space for the consumer block */
+
+       bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
+       bp->cons_block_phys = curr_p;
+
+       /* Display virtual and physical addresses if debug driver */
+
+       DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
+                  print_name, bp->descr_block_virt, &bp->descr_block_phys);
+       DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
+                  print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
+       DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
+                  print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
+       DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
+                  print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
+       DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
+                  print_name, bp->cons_block_virt, &bp->cons_block_phys);
+
+       return DFX_K_SUCCESS;
+}
+
+
+/*
+ * =================
+ * = dfx_adap_init =
+ * =================
+ *
+ * Overview:
+ *   Brings the adapter to the link avail/link unavailable state.
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *   get_buffers - non-zero if buffers to be allocated
+ *
+ * Functional Description:
+ *   Issues the low-level firmware/hardware calls necessary to bring
+ *   the adapter up, or to properly reset and restore adapter during
+ *   run-time.
+ *
+ * Return Codes:
+ *   DFX_K_SUCCESS - Adapter brought up successfully
+ *   DFX_K_FAILURE - Adapter initialization failed
+ *
+ * Assumptions:
+ *   bp->reset_type should be set to a valid reset type value before
+ *   calling this routine.
+ *
+ * Side Effects:
+ *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
+ *   upon a successful return of this routine.
+ */
+
+static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
+       {
+       DBG_printk("In dfx_adap_init...\n");
+
+       /* Disable PDQ interrupts first */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+       /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+       if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
+               {
+               printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
+               return DFX_K_FAILURE;
+               }
+
+       /*
+        * When the PDQ is reset, some false Type 0 interrupts may be pending,
+        * so we'll acknowledge all Type 0 interrupts now before continuing.
+        */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
+
+       /*
+        * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
+        *
+        * Note: We only need to clear host copies of these registers.  The PDQ reset
+        *       takes care of the on-board register values.
+        */
+
+       bp->cmd_req_reg.lword   = 0;
+       bp->cmd_rsp_reg.lword   = 0;
+       bp->rcv_xmt_reg.lword   = 0;
+
+       /* Clear consumer block before going to DMA_AVAILABLE state */
+
+       memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
+
+       /* Initialize the DMA Burst Size */
+
+       if (dfx_hw_port_ctrl_req(bp,
+                                                       PI_PCTRL_M_SUB_CMD,
+                                                       PI_SUB_CMD_K_BURST_SIZE_SET,
+                                                       bp->burst_size,
+                                                       NULL) != DFX_K_SUCCESS)
+               {
+               printk("%s: Could not set adapter burst size!\n", bp->dev->name);
+               return DFX_K_FAILURE;
+               }
+
+       /*
+        * Set base address of Consumer Block
+        *
+        * Assumption: 32-bit physical address of consumer block is 64 byte
+        *                         aligned.  That is, bits 0-5 of the address must be zero.
+        */
+
+       if (dfx_hw_port_ctrl_req(bp,
+                                                       PI_PCTRL_M_CONS_BLOCK,
+                                                       bp->cons_block_phys,
+                                                       0,
+                                                       NULL) != DFX_K_SUCCESS)
+               {
+               printk("%s: Could not set consumer block address!\n", bp->dev->name);
+               return DFX_K_FAILURE;
+               }
+
+       /*
+        * Set the base address of Descriptor Block and bring adapter
+        * to DMA_AVAILABLE state.
+        *
+        * Note: We also set the literal and data swapping requirements
+        *       in this command.
+        *
+        * Assumption: 32-bit physical address of descriptor block
+        *       is 8Kbyte aligned.
+        */
+       if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
+                                (u32)(bp->descr_block_phys |
+                                      PI_PDATA_A_INIT_M_BSWAP_INIT),
+                                0, NULL) != DFX_K_SUCCESS) {
+               printk("%s: Could not set descriptor block address!\n",
+                      bp->dev->name);
+               return DFX_K_FAILURE;
+       }
+
+       /* Set transmit flush timeout value */
+
+       bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
+       bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
+       bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
+       bp->cmd_req_virt->char_set.item[0].item_index   = 0;
+       bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
+       if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+               {
+               printk("%s: DMA command request failed!\n", bp->dev->name);
+               return DFX_K_FAILURE;
+               }
+
+       /* Set the initial values for eFDXEnable and MACTReq MIB objects */
+
+       bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
+       bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
+       bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
+       bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
+       bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
+       bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
+       bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
+       bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
+       if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+               {
+               printk("%s: DMA command request failed!\n", bp->dev->name);
+               return DFX_K_FAILURE;
+               }
+
+       /* Initialize adapter CAM */
+
+       if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
+               {
+               printk("%s: Adapter CAM update failed!\n", bp->dev->name);
+               return DFX_K_FAILURE;
+               }
+
+       /* Initialize adapter filters */
+
+       if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
+               {
+               printk("%s: Adapter filters update failed!\n", bp->dev->name);
+               return DFX_K_FAILURE;
+               }
+
+       /*
+        * Remove any existing dynamic buffers (i.e. if the adapter is being
+        * reinitialized)
+        */
+
+       if (get_buffers)
+               dfx_rcv_flush(bp);
+
+       /* Initialize receive descriptor block and produce buffers */
+
+       if (dfx_rcv_init(bp, get_buffers))
+               {
+               printk("%s: Receive buffer allocation failed\n", bp->dev->name);
+               if (get_buffers)
+                       dfx_rcv_flush(bp);
+               return DFX_K_FAILURE;
+               }
+
+       /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
+
+       bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
+       if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+               {
+               printk("%s: Start command failed\n", bp->dev->name);
+               if (get_buffers)
+                       dfx_rcv_flush(bp);
+               return DFX_K_FAILURE;
+               }
+
+       /* Initialization succeeded, reenable PDQ interrupts */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
+       return DFX_K_SUCCESS;
+       }
+
+
+/*
+ * ============
+ * = dfx_open =
+ * ============
+ *
+ * Overview:
+ *   Opens the adapter
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   dev - pointer to device information
+ *
+ * Functional Description:
+ *   This function brings the adapter to an operational state.
+ *
+ * Return Codes:
+ *   0          - Adapter was successfully opened
+ *   -EAGAIN - Could not register IRQ or adapter initialization failed
+ *
+ * Assumptions:
+ *   This routine should only be called for a device that was
+ *   initialized successfully.
+ *
+ * Side Effects:
+ *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
+ *   if the open is successful.
+ */
+
+static int dfx_open(struct net_device *dev)
+{
+       DFX_board_t *bp = netdev_priv(dev);
+       int ret;
+
+       DBG_printk("In dfx_open...\n");
+
+       /* Register IRQ - support shared interrupts by passing device ptr */
+
+       ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
+                         dev);
+       if (ret) {
+               printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
+               return ret;
+       }
+
+       /*
+        * Set current address to factory MAC address
+        *
+        * Note: We've already done this step in dfx_driver_init.
+        *       However, it's possible that a user has set a node
+        *               address override, then closed and reopened the
+        *               adapter.  Unless we reset the device address field
+        *               now, we'll continue to use the existing modified
+        *               address.
+        */
+
+       memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
+
+       /* Clear local unicast/multicast address tables and counts */
+
+       memset(bp->uc_table, 0, sizeof(bp->uc_table));
+       memset(bp->mc_table, 0, sizeof(bp->mc_table));
+       bp->uc_count = 0;
+       bp->mc_count = 0;
+
+       /* Disable promiscuous filter settings */
+
+       bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
+       bp->group_prom          = PI_FSTATE_K_BLOCK;
+
+       spin_lock_init(&bp->lock);
+
+       /* Reset and initialize adapter */
+
+       bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
+       if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
+       {
+               printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
+               free_irq(dev->irq, dev);
+               return -EAGAIN;
+       }
+
+       /* Set device structure info */
+       netif_start_queue(dev);
+       return 0;
+}
+
+
+/*
+ * =============
+ * = dfx_close =
+ * =============
+ *
+ * Overview:
+ *   Closes the device/module.
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   dev - pointer to device information
+ *
+ * Functional Description:
+ *   This routine closes the adapter and brings it to a safe state.
+ *   The interrupt service routine is deregistered with the OS.
+ *   The adapter can be opened again with another call to dfx_open().
+ *
+ * Return Codes:
+ *   Always return 0.
+ *
+ * Assumptions:
+ *   No further requests for this adapter are made after this routine is
+ *   called.  dfx_open() can be called to reset and reinitialize the
+ *   adapter.
+ *
+ * Side Effects:
+ *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
+ *   routine.
+ */
+
+static int dfx_close(struct net_device *dev)
+{
+       DFX_board_t *bp = netdev_priv(dev);
+
+       DBG_printk("In dfx_close...\n");
+
+       /* Disable PDQ interrupts first */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+       /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+       (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
+
+       /*
+        * Flush any pending transmit buffers
+        *
+        * Note: It's important that we flush the transmit buffers
+        *               BEFORE we clear our copy of the Type 2 register.
+        *               Otherwise, we'll have no idea how many buffers
+        *               we need to free.
+        */
+
+       dfx_xmt_flush(bp);
+
+       /*
+        * Clear Type 1 and Type 2 registers after adapter reset
+        *
+        * Note: Even though we're closing the adapter, it's
+        *       possible that an interrupt will occur after
+        *               dfx_close is called.  Without some assurance to
+        *               the contrary we want to make sure that we don't
+        *               process receive and transmit LLC frames and update
+        *               the Type 2 register with bad information.
+        */
+
+       bp->cmd_req_reg.lword   = 0;
+       bp->cmd_rsp_reg.lword   = 0;
+       bp->rcv_xmt_reg.lword   = 0;
+
+       /* Clear consumer block for the same reason given above */
+
+       memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
+
+       /* Release all dynamically allocate skb in the receive ring. */
+
+       dfx_rcv_flush(bp);
+
+       /* Clear device structure flags */
+
+       netif_stop_queue(dev);
+
+       /* Deregister (free) IRQ */
+
+       free_irq(dev->irq, dev);
+
+       return 0;
+}
+
+
+/*
+ * ======================
+ * = dfx_int_pr_halt_id =
+ * ======================
+ *
+ * Overview:
+ *   Displays halt id's in string form.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   Determine current halt id and display appropriate string.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   None
+ *
+ * Side Effects:
+ *   None
+ */
+
+static void dfx_int_pr_halt_id(DFX_board_t     *bp)
+       {
+       PI_UINT32       port_status;                    /* PDQ port status register value */
+       PI_UINT32       halt_id;                                /* PDQ port status halt ID */
+
+       /* Read the latest port status */
+
+       dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
+
+       /* Display halt state transition information */
+
+       halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
+       switch (halt_id)
+               {
+               case PI_HALT_ID_K_SELFTEST_TIMEOUT:
+                       printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_PARITY_ERROR:
+                       printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_HOST_DIR_HALT:
+                       printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_SW_FAULT:
+                       printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_HW_FAULT:
+                       printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_PC_TRACE:
+                       printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_DMA_ERROR:
+                       printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_IMAGE_CRC_ERROR:
+                       printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
+                       break;
+
+               case PI_HALT_ID_K_BUS_EXCEPTION:
+                       printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
+                       break;
+
+               default:
+                       printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
+                       break;
+               }
+       }
+
+
+/*
+ * ==========================
+ * = dfx_int_type_0_process =
+ * ==========================
+ *
+ * Overview:
+ *   Processes Type 0 interrupts.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
+ *   is a serious fault on the adapter, then an error message is displayed
+ *   and the adapter is reset.
+ *
+ *   One tricky potential timing window is the rapid succession of "link avail"
+ *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
+ *   interrupt must be done before reading the state from the Port Status
+ *   register.  This is true because a state change could occur after reading
+ *   the data, but before acknowledging the interrupt.  If this state change
+ *   does happen, it would be lost because the driver is using the old state,
+ *   and it will never know about the new state because it subsequently
+ *   acknowledges the state change interrupt.
+ *
+ *          INCORRECT                                      CORRECT
+ *      read type 0 int reasons                   read type 0 int reasons
+ *      read adapter state                        ack type 0 interrupts
+ *      ack type 0 interrupts                     read adapter state
+ *      ... process interrupt ...                 ... process interrupt ...
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   None
+ *
+ * Side Effects:
+ *   An adapter reset may occur if the adapter has any Type 0 error interrupts
+ *   or if the port status indicates that the adapter is halted.  The driver
+ *   is responsible for reinitializing the adapter with the current CAM
+ *   contents and adapter filter settings.
+ */
+
+static void dfx_int_type_0_process(DFX_board_t *bp)
+
+       {
+       PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
+       PI_UINT32       state;                          /* current adap state (from port status) */
+
+       /*
+        * Read host interrupt Type 0 register to determine which Type 0
+        * interrupts are pending.  Immediately write it back out to clear
+        * those interrupts.
+        */
+
+       dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
+       dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
+
+       /* Check for Type 0 error interrupts */
+
+       if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
+                                                       PI_TYPE_0_STAT_M_PM_PAR_ERR |
+                                                       PI_TYPE_0_STAT_M_BUS_PAR_ERR))
+               {
+               /* Check for Non-Existent Memory error */
+
+               if (type_0_status & PI_TYPE_0_STAT_M_NXM)
+                       printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
+
+               /* Check for Packet Memory Parity error */
+
+               if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
+                       printk("%s: Packet Memory Parity Error\n", bp->dev->name);
+
+               /* Check for Host Bus Parity error */
+
+               if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
+                       printk("%s: Host Bus Parity Error\n", bp->dev->name);
+
+               /* Reset adapter and bring it back on-line */
+
+               bp->link_available = PI_K_FALSE;        /* link is no longer available */
+               bp->reset_type = 0;                                     /* rerun on-board diagnostics */
+               printk("%s: Resetting adapter...\n", bp->dev->name);
+               if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
+                       {
+                       printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
+                       dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+                       return;
+                       }
+               printk("%s: Adapter reset successful!\n", bp->dev->name);
+               return;
+               }
+
+       /* Check for transmit flush interrupt */
+
+       if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
+               {
+               /* Flush any pending xmt's and acknowledge the flush interrupt */
+
+               bp->link_available = PI_K_FALSE;                /* link is no longer available */
+               dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
+               (void) dfx_hw_port_ctrl_req(bp,
+                                                                       PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
+                                                                       0,
+                                                                       0,
+                                                                       NULL);
+               }
+
+       /* Check for adapter state change */
+
+       if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
+               {
+               /* Get latest adapter state */
+
+               state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
+               if (state == PI_STATE_K_HALTED)
+                       {
+                       /*
+                        * Adapter has transitioned to HALTED state, try to reset
+                        * adapter to bring it back on-line.  If reset fails,
+                        * leave the adapter in the broken state.
+                        */
+
+                       printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
+                       dfx_int_pr_halt_id(bp);                 /* display halt id as string */
+
+                       /* Reset adapter and bring it back on-line */
+
+                       bp->link_available = PI_K_FALSE;        /* link is no longer available */
+                       bp->reset_type = 0;                                     /* rerun on-board diagnostics */
+                       printk("%s: Resetting adapter...\n", bp->dev->name);
+                       if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
+                               {
+                               printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
+                               dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+                               return;
+                               }
+                       printk("%s: Adapter reset successful!\n", bp->dev->name);
+                       }
+               else if (state == PI_STATE_K_LINK_AVAIL)
+                       {
+                       bp->link_available = PI_K_TRUE;         /* set link available flag */
+                       }
+               }
+       }
+
+
+/*
+ * ==================
+ * = dfx_int_common =
+ * ==================
+ *
+ * Overview:
+ *   Interrupt service routine (ISR)
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   This is the ISR which processes incoming adapter interrupts.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   This routine assumes PDQ interrupts have not been disabled.
+ *   When interrupts are disabled at the PDQ, the Port Status register
+ *   is automatically cleared.  This routine uses the Port Status
+ *   register value to determine whether a Type 0 interrupt occurred,
+ *   so it's important that adapter interrupts are not normally
+ *   enabled/disabled at the PDQ.
+ *
+ *   It's vital that this routine is NOT reentered for the
+ *   same board and that the OS is not in another section of
+ *   code (eg. dfx_xmt_queue_pkt) for the same board on a
+ *   different thread.
+ *
+ * Side Effects:
+ *   Pending interrupts are serviced.  Depending on the type of
+ *   interrupt, acknowledging and clearing the interrupt at the
+ *   PDQ involves writing a register to clear the interrupt bit
+ *   or updating completion indices.
+ */
+
+static void dfx_int_common(struct net_device *dev)
+{
+       DFX_board_t *bp = netdev_priv(dev);
+       PI_UINT32       port_status;            /* Port Status register */
+
+       /* Process xmt interrupts - frequent case, so always call this routine */
+
+       if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
+               netif_wake_queue(dev);
+
+       /* Process rcv interrupts - frequent case, so always call this routine */
+
+       dfx_rcv_queue_process(bp);              /* service received LLC frames */
+
+       /*
+        * Transmit and receive producer and completion indices are updated on the
+        * adapter by writing to the Type 2 Producer register.  Since the frequent
+        * case is that we'll be processing either LLC transmit or receive buffers,
+        * we'll optimize I/O writes by doing a single register write here.
+        */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
+
+       /* Read PDQ Port Status register to find out which interrupts need processing */
+
+       dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
+
+       /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
+
+       if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
+               dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
+       }
+
+
+/*
+ * =================
+ * = dfx_interrupt =
+ * =================
+ *
+ * Overview:
+ *   Interrupt processing routine
+ *
+ * Returns:
+ *   Whether a valid interrupt was seen.
+ *
+ * Arguments:
+ *   irq       - interrupt vector
+ *   dev_id    - pointer to device information
+ *
+ * Functional Description:
+ *   This routine calls the interrupt processing routine for this adapter.  It
+ *   disables and reenables adapter interrupts, as appropriate.  We can support
+ *   shared interrupts since the incoming dev_id pointer provides our device
+ *   structure context.
+ *
+ * Return Codes:
+ *   IRQ_HANDLED - an IRQ was handled.
+ *   IRQ_NONE    - no IRQ was handled.
+ *
+ * Assumptions:
+ *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
+ *   on Intel-based systems) is done by the operating system outside this
+ *   routine.
+ *
+ *      System interrupts are enabled through this call.
+ *
+ * Side Effects:
+ *   Interrupts are disabled, then reenabled at the adapter.
+ */
+
+static irqreturn_t dfx_interrupt(int irq, void *dev_id)
+{
+       struct net_device *dev = dev_id;
+       DFX_board_t *bp = netdev_priv(dev);
+       struct device *bdev = bp->bus_dev;
+       int dfx_bus_pci = dev_is_pci(bdev);
+       int dfx_bus_eisa = DFX_BUS_EISA(bdev);
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+
+       /* Service adapter interrupts */
+
+       if (dfx_bus_pci) {
+               u32 status;
+
+               dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
+               if (!(status & PFI_STATUS_M_PDQ_INT))
+                       return IRQ_NONE;
+
+               spin_lock(&bp->lock);
+
+               /* Disable PDQ-PFI interrupts at PFI */
+               dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
+                                   PFI_MODE_M_DMA_ENB);
+
+               /* Call interrupt service routine for this adapter */
+               dfx_int_common(dev);
+
+               /* Clear PDQ interrupt status bit and reenable interrupts */
+               dfx_port_write_long(bp, PFI_K_REG_STATUS,
+                                   PFI_STATUS_M_PDQ_INT);
+               dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
+                                   (PFI_MODE_M_PDQ_INT_ENB |
+                                    PFI_MODE_M_DMA_ENB));
+
+               spin_unlock(&bp->lock);
+       }
+       if (dfx_bus_eisa) {
+               unsigned long base_addr = to_eisa_device(bdev)->base_addr;
+               u8 status;
+
+               status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+               if (!(status & PI_CONFIG_STAT_0_M_PEND))
+                       return IRQ_NONE;
+
+               spin_lock(&bp->lock);
+
+               /* Disable interrupts at the ESIC */
+               status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
+               outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+
+               /* Call interrupt service routine for this adapter */
+               dfx_int_common(dev);
+
+               /* Reenable interrupts at the ESIC */
+               status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+               status |= PI_CONFIG_STAT_0_M_INT_ENB;
+               outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
+
+               spin_unlock(&bp->lock);
+       }
+       if (dfx_bus_tc) {
+               u32 status;
+
+               dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
+               if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
+                               PI_PSTATUS_M_XMT_DATA_PENDING |
+                               PI_PSTATUS_M_SMT_HOST_PENDING |
+                               PI_PSTATUS_M_UNSOL_PENDING |
+                               PI_PSTATUS_M_CMD_RSP_PENDING |
+                               PI_PSTATUS_M_CMD_REQ_PENDING |
+                               PI_PSTATUS_M_TYPE_0_PENDING)))
+                       return IRQ_NONE;
+
+               spin_lock(&bp->lock);
+
+               /* Call interrupt service routine for this adapter */
+               dfx_int_common(dev);
+
+               spin_unlock(&bp->lock);
+       }
+
+       return IRQ_HANDLED;
+}
+
+
+/*
+ * =====================
+ * = dfx_ctl_get_stats =
+ * =====================
+ *
+ * Overview:
+ *   Get statistics for FDDI adapter
+ *
+ * Returns:
+ *   Pointer to FDDI statistics structure
+ *
+ * Arguments:
+ *   dev - pointer to device information
+ *
+ * Functional Description:
+ *   Gets current MIB objects from adapter, then
+ *   returns FDDI statistics structure as defined
+ *   in if_fddi.h.
+ *
+ *   Note: Since the FDDI statistics structure is
+ *   still new and the device structure doesn't
+ *   have an FDDI-specific get statistics handler,
+ *   we'll return the FDDI statistics structure as
+ *   a pointer to an Ethernet statistics structure.
+ *   That way, at least the first part of the statistics
+ *   structure can be decoded properly, and it allows
+ *   "smart" applications to perform a second cast to
+ *   decode the FDDI-specific statistics.
+ *
+ *   We'll have to pay attention to this routine as the
+ *   device structure becomes more mature and LAN media
+ *   independent.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   None
+ *
+ * Side Effects:
+ *   None
+ */
+
+static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
+       {
+       DFX_board_t *bp = netdev_priv(dev);
+
+       /* Fill the bp->stats structure with driver-maintained counters */
+
+       bp->stats.gen.rx_packets = bp->rcv_total_frames;
+       bp->stats.gen.tx_packets = bp->xmt_total_frames;
+       bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
+       bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
+       bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
+                                  bp->rcv_frame_status_errors +
+                                  bp->rcv_length_errors;
+       bp->stats.gen.tx_errors  = bp->xmt_length_errors;
+       bp->stats.gen.rx_dropped = bp->rcv_discards;
+       bp->stats.gen.tx_dropped = bp->xmt_discards;
+       bp->stats.gen.multicast  = bp->rcv_multicast_frames;
+       bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
+
+       /* Get FDDI SMT MIB objects */
+
+       bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
+       if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+               return (struct net_device_stats *)&bp->stats;
+
+       /* Fill the bp->stats structure with the SMT MIB object values */
+
+       memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
+       bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
+       bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
+       bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
+       memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
+       bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
+       bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
+       bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
+       bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
+       bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
+       bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
+       bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
+       bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
+       bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
+       bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
+       bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
+       bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
+       bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
+       bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
+       bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
+       bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
+       bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
+       bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
+       bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
+       bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
+       bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
+       bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
+       bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
+       bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
+       memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
+       memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
+       memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
+       memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
+       bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
+       bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
+       bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
+       memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
+       bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
+       bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
+       bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
+       bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
+       bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
+       bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
+       bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
+       bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
+       bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
+       bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
+       bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
+       bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
+       bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
+       bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
+       bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
+       bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
+       memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
+       bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
+       bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
+       bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
+       bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
+       bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
+       bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
+       bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
+       bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
+       bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
+       bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
+       memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
+       memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
+       bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
+       bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
+       bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
+       bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
+       bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
+       bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
+       bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
+       bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
+       bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
+       bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
+       bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
+       bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
+       bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
+       bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
+       bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
+       bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
+       bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
+       bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
+       bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
+       bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
+       bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
+       bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
+       bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
+       bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
+       bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
+       bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
+
+       /* Get FDDI counters */
+
+       bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
+       if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+               return (struct net_device_stats *)&bp->stats;
+
+       /* Fill the bp->stats structure with the FDDI counter values */
+
+       bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
+       bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
+       bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
+       bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
+       bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
+       bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
+       bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
+       bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
+       bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
+       bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
+       bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
+
+       return (struct net_device_stats *)&bp->stats;
+       }
+
+
+/*
+ * ==============================
+ * = dfx_ctl_set_multicast_list =
+ * ==============================
+ *
+ * Overview:
+ *   Enable/Disable LLC frame promiscuous mode reception
+ *   on the adapter and/or update multicast address table.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   dev - pointer to device information
+ *
+ * Functional Description:
+ *   This routine follows a fairly simple algorithm for setting the
+ *   adapter filters and CAM:
+ *
+ *             if IFF_PROMISC flag is set
+ *                     enable LLC individual/group promiscuous mode
+ *             else
+ *                     disable LLC individual/group promiscuous mode
+ *                     if number of incoming multicast addresses >
+ *                                     (CAM max size - number of unicast addresses in CAM)
+ *                             enable LLC group promiscuous mode
+ *                             set driver-maintained multicast address count to zero
+ *                     else
+ *                             disable LLC group promiscuous mode
+ *                             set driver-maintained multicast address count to incoming count
+ *                     update adapter CAM
+ *             update adapter filters
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   Multicast addresses are presented in canonical (LSB) format.
+ *
+ * Side Effects:
+ *   On-board adapter CAM and filters are updated.
+ */
+
+static void dfx_ctl_set_multicast_list(struct net_device *dev)
+{
+       DFX_board_t *bp = netdev_priv(dev);
+       int                                     i;                      /* used as index in for loop */
+       struct netdev_hw_addr *ha;
+
+       /* Enable LLC frame promiscuous mode, if necessary */
+
+       if (dev->flags & IFF_PROMISC)
+               bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
+
+       /* Else, update multicast address table */
+
+       else
+               {
+               bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
+               /*
+                * Check whether incoming multicast address count exceeds table size
+                *
+                * Note: The adapters utilize an on-board 64 entry CAM for
+                *       supporting perfect filtering of multicast packets
+                *               and bridge functions when adding unicast addresses.
+                *               There is no hash function available.  To support
+                *               additional multicast addresses, the all multicast
+                *               filter (LLC group promiscuous mode) must be enabled.
+                *
+                *               The firmware reserves two CAM entries for SMT-related
+                *               multicast addresses, which leaves 62 entries available.
+                *               The following code ensures that we're not being asked
+                *               to add more than 62 addresses to the CAM.  If we are,
+                *               the driver will enable the all multicast filter.
+                *               Should the number of multicast addresses drop below
+                *               the high water mark, the filter will be disabled and
+                *               perfect filtering will be used.
+                */
+
+               if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
+                       {
+                       bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
+                       bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
+                       }
+               else
+                       {
+                       bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
+                       bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
+                       }
+
+               /* Copy addresses to multicast address table, then update adapter CAM */
+
+               i = 0;
+               netdev_for_each_mc_addr(ha, dev)
+                       memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
+                              ha->addr, FDDI_K_ALEN);
+
+               if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
+                       {
+                       DBG_printk("%s: Could not update multicast address table!\n", dev->name);
+                       }
+               else
+                       {
+                       DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
+                       }
+               }
+
+       /* Update adapter filters */
+
+       if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
+               {
+               DBG_printk("%s: Could not update adapter filters!\n", dev->name);
+               }
+       else
+               {
+               DBG_printk("%s: Adapter filters updated!\n", dev->name);
+               }
+       }
+
+
+/*
+ * ===========================
+ * = dfx_ctl_set_mac_address =
+ * ===========================
+ *
+ * Overview:
+ *   Add node address override (unicast address) to adapter
+ *   CAM and update dev_addr field in device table.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   dev  - pointer to device information
+ *   addr - pointer to sockaddr structure containing unicast address to add
+ *
+ * Functional Description:
+ *   The adapter supports node address overrides by adding one or more
+ *   unicast addresses to the adapter CAM.  This is similar to adding
+ *   multicast addresses.  In this routine we'll update the driver and
+ *   device structures with the new address, then update the adapter CAM
+ *   to ensure that the adapter will copy and strip frames destined and
+ *   sourced by that address.
+ *
+ * Return Codes:
+ *   Always returns zero.
+ *
+ * Assumptions:
+ *   The address pointed to by addr->sa_data is a valid unicast
+ *   address and is presented in canonical (LSB) format.
+ *
+ * Side Effects:
+ *   On-board adapter CAM is updated.  On-board adapter filters
+ *   may be updated.
+ */
+
+static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
+       {
+       struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
+       DFX_board_t *bp = netdev_priv(dev);
+
+       /* Copy unicast address to driver-maintained structs and update count */
+
+       memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
+       memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
+       bp->uc_count = 1;
+
+       /*
+        * Verify we're not exceeding the CAM size by adding unicast address
+        *
+        * Note: It's possible that before entering this routine we've
+        *       already filled the CAM with 62 multicast addresses.
+        *               Since we need to place the node address override into
+        *               the CAM, we have to check to see that we're not
+        *               exceeding the CAM size.  If we are, we have to enable
+        *               the LLC group (multicast) promiscuous mode filter as
+        *               in dfx_ctl_set_multicast_list.
+        */
+
+       if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
+               {
+               bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
+               bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
+
+               /* Update adapter filters */
+
+               if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
+                       {
+                       DBG_printk("%s: Could not update adapter filters!\n", dev->name);
+                       }
+               else
+                       {
+                       DBG_printk("%s: Adapter filters updated!\n", dev->name);
+                       }
+               }
+
+       /* Update adapter CAM with new unicast address */
+
+       if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
+               {
+               DBG_printk("%s: Could not set new MAC address!\n", dev->name);
+               }
+       else
+               {
+               DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
+               }
+       return 0;                       /* always return zero */
+       }
+
+
+/*
+ * ======================
+ * = dfx_ctl_update_cam =
+ * ======================
+ *
+ * Overview:
+ *   Procedure to update adapter CAM (Content Addressable Memory)
+ *   with desired unicast and multicast address entries.
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   Updates adapter CAM with current contents of board structure
+ *   unicast and multicast address tables.  Since there are only 62
+ *   free entries in CAM, this routine ensures that the command
+ *   request buffer is not overrun.
+ *
+ * Return Codes:
+ *   DFX_K_SUCCESS - Request succeeded
+ *   DFX_K_FAILURE - Request failed
+ *
+ * Assumptions:
+ *   All addresses being added (unicast and multicast) are in canonical
+ *   order.
+ *
+ * Side Effects:
+ *   On-board adapter CAM is updated.
+ */
+
+static int dfx_ctl_update_cam(DFX_board_t *bp)
+       {
+       int                     i;                              /* used as index */
+       PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
+
+       /*
+        * Fill in command request information
+        *
+        * Note: Even though both the unicast and multicast address
+        *       table entries are stored as contiguous 6 byte entries,
+        *               the firmware address filter set command expects each
+        *               entry to be two longwords (8 bytes total).  We must be
+        *               careful to only copy the six bytes of each unicast and
+        *               multicast table entry into each command entry.  This
+        *               is also why we must first clear the entire command
+        *               request buffer.
+        */
+
+       memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
+       bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
+       p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
+
+       /* Now add unicast addresses to command request buffer, if any */
+
+       for (i=0; i < (int)bp->uc_count; i++)
+               {
+               if (i < PI_CMD_ADDR_FILTER_K_SIZE)
+                       {
+                       memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
+                       p_addr++;                       /* point to next command entry */
+                       }
+               }
+
+       /* Now add multicast addresses to command request buffer, if any */
+
+       for (i=0; i < (int)bp->mc_count; i++)
+               {
+               if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
+                       {
+                       memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
+                       p_addr++;                       /* point to next command entry */
+                       }
+               }
+
+       /* Issue command to update adapter CAM, then return */
+
+       if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+               return DFX_K_FAILURE;
+       return DFX_K_SUCCESS;
+       }
+
+
+/*
+ * ==========================
+ * = dfx_ctl_update_filters =
+ * ==========================
+ *
+ * Overview:
+ *   Procedure to update adapter filters with desired
+ *   filter settings.
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   Enables or disables filter using current filter settings.
+ *
+ * Return Codes:
+ *   DFX_K_SUCCESS - Request succeeded.
+ *   DFX_K_FAILURE - Request failed.
+ *
+ * Assumptions:
+ *   We must always pass up packets destined to the broadcast
+ *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
+ *   broadcast filter enabled.
+ *
+ * Side Effects:
+ *   On-board adapter filters are updated.
+ */
+
+static int dfx_ctl_update_filters(DFX_board_t *bp)
+       {
+       int     i = 0;                                  /* used as index */
+
+       /* Fill in command request information */
+
+       bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
+
+       /* Initialize Broadcast filter - * ALWAYS ENABLED * */
+
+       bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
+       bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
+
+       /* Initialize LLC Individual/Group Promiscuous filter */
+
+       bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
+       bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
+
+       /* Initialize LLC Group Promiscuous filter */
+
+       bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
+       bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
+
+       /* Terminate the item code list */
+
+       bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
+
+       /* Issue command to update adapter filters, then return */
+
+       if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
+               return DFX_K_FAILURE;
+       return DFX_K_SUCCESS;
+       }
+
+
+/*
+ * ======================
+ * = dfx_hw_dma_cmd_req =
+ * ======================
+ *
+ * Overview:
+ *   Sends PDQ DMA command to adapter firmware
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   The command request and response buffers are posted to the adapter in the manner
+ *   described in the PDQ Port Specification:
+ *
+ *             1. Command Response Buffer is posted to adapter.
+ *             2. Command Request Buffer is posted to adapter.
+ *             3. Command Request consumer index is polled until it indicates that request
+ *         buffer has been DMA'd to adapter.
+ *             4. Command Response consumer index is polled until it indicates that response
+ *         buffer has been DMA'd from adapter.
+ *
+ *   This ordering ensures that a response buffer is already available for the firmware
+ *   to use once it's done processing the request buffer.
+ *
+ * Return Codes:
+ *   DFX_K_SUCCESS       - DMA command succeeded
+ *      DFX_K_OUTSTATE   - Adapter is NOT in proper state
+ *   DFX_K_HW_TIMEOUT - DMA command timed out
+ *
+ * Assumptions:
+ *   Command request buffer has already been filled with desired DMA command.
+ *
+ * Side Effects:
+ *   None
+ */
+
+static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
+       {
+       int status;                     /* adapter status */
+       int timeout_cnt;        /* used in for loops */
+
+       /* Make sure the adapter is in a state that we can issue the DMA command in */
+
+       status = dfx_hw_adap_state_rd(bp);
+       if ((status == PI_STATE_K_RESET)                ||
+               (status == PI_STATE_K_HALTED)           ||
+               (status == PI_STATE_K_DMA_UNAVAIL)      ||
+               (status == PI_STATE_K_UPGRADE))
+               return DFX_K_OUTSTATE;
+
+       /* Put response buffer on the command response queue */
+
+       bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
+                       ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
+       bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
+
+       /* Bump (and wrap) the producer index and write out to register */
+
+       bp->cmd_rsp_reg.index.prod += 1;
+       bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
+       dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
+
+       /* Put request buffer on the command request queue */
+
+       bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
+                       PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
+       bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
+
+       /* Bump (and wrap) the producer index and write out to register */
+
+       bp->cmd_req_reg.index.prod += 1;
+       bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
+       dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
+
+       /*
+        * Here we wait for the command request consumer index to be equal
+        * to the producer, indicating that the adapter has DMAed the request.
+        */
+
+       for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
+               {
+               if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
+                       break;
+               udelay(100);                    /* wait for 100 microseconds */
+               }
+       if (timeout_cnt == 0)
+               return DFX_K_HW_TIMEOUT;
+
+       /* Bump (and wrap) the completion index and write out to register */
+
+       bp->cmd_req_reg.index.comp += 1;
+       bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
+       dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
+
+       /*
+        * Here we wait for the command response consumer index to be equal
+        * to the producer, indicating that the adapter has DMAed the response.
+        */
+
+       for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
+               {
+               if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
+                       break;
+               udelay(100);                    /* wait for 100 microseconds */
+               }
+       if (timeout_cnt == 0)
+               return DFX_K_HW_TIMEOUT;
+
+       /* Bump (and wrap) the completion index and write out to register */
+
+       bp->cmd_rsp_reg.index.comp += 1;
+       bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
+       dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
+       return DFX_K_SUCCESS;
+       }
+
+
+/*
+ * ========================
+ * = dfx_hw_port_ctrl_req =
+ * ========================
+ *
+ * Overview:
+ *   Sends PDQ port control command to adapter firmware
+ *
+ * Returns:
+ *   Host data register value in host_data if ptr is not NULL
+ *
+ * Arguments:
+ *   bp                        - pointer to board information
+ *      command        - port control command
+ *      data_a         - port data A register value
+ *      data_b         - port data B register value
+ *      host_data      - ptr to host data register value
+ *
+ * Functional Description:
+ *   Send generic port control command to adapter by writing
+ *   to various PDQ port registers, then polling for completion.
+ *
+ * Return Codes:
+ *   DFX_K_SUCCESS       - port control command succeeded
+ *   DFX_K_HW_TIMEOUT - port control command timed out
+ *
+ * Assumptions:
+ *   None
+ *
+ * Side Effects:
+ *   None
+ */
+
+static int dfx_hw_port_ctrl_req(
+       DFX_board_t     *bp,
+       PI_UINT32       command,
+       PI_UINT32       data_a,
+       PI_UINT32       data_b,
+       PI_UINT32       *host_data
+       )
+
+       {
+       PI_UINT32       port_cmd;               /* Port Control command register value */
+       int                     timeout_cnt;    /* used in for loops */
+
+       /* Set Command Error bit in command longword */
+
+       port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
+
+       /* Issue port command to the adapter */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
+       dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
+       dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
+
+       /* Now wait for command to complete */
+
+       if (command == PI_PCTRL_M_BLAST_FLASH)
+               timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
+       else
+               timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
+
+       for (; timeout_cnt > 0; timeout_cnt--)
+               {
+               dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
+               if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
+                       break;
+               udelay(100);                    /* wait for 100 microseconds */
+               }
+       if (timeout_cnt == 0)
+               return DFX_K_HW_TIMEOUT;
+
+       /*
+        * If the address of host_data is non-zero, assume caller has supplied a
+        * non NULL pointer, and return the contents of the HOST_DATA register in
+        * it.
+        */
+
+       if (host_data != NULL)
+               dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
+       return DFX_K_SUCCESS;
+       }
+
+
+/*
+ * =====================
+ * = dfx_hw_adap_reset =
+ * =====================
+ *
+ * Overview:
+ *   Resets adapter
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp   - pointer to board information
+ *   type - type of reset to perform
+ *
+ * Functional Description:
+ *   Issue soft reset to adapter by writing to PDQ Port Reset
+ *   register.  Use incoming reset type to tell adapter what
+ *   kind of reset operation to perform.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   This routine merely issues a soft reset to the adapter.
+ *   It is expected that after this routine returns, the caller
+ *   will appropriately poll the Port Status register for the
+ *   adapter to enter the proper state.
+ *
+ * Side Effects:
+ *   Internal adapter registers are cleared.
+ */
+
+static void dfx_hw_adap_reset(
+       DFX_board_t     *bp,
+       PI_UINT32       type
+       )
+
+       {
+       /* Set Reset type and assert reset */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
+       dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
+
+       /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
+
+       udelay(20);
+
+       /* Deassert reset */
+
+       dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
+       }
+
+
+/*
+ * ========================
+ * = dfx_hw_adap_state_rd =
+ * ========================
+ *
+ * Overview:
+ *   Returns current adapter state
+ *
+ * Returns:
+ *   Adapter state per PDQ Port Specification
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   Reads PDQ Port Status register and returns adapter state.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   None
+ *
+ * Side Effects:
+ *   None
+ */
+
+static int dfx_hw_adap_state_rd(DFX_board_t *bp)
+       {
+       PI_UINT32 port_status;          /* Port Status register value */
+
+       dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
+       return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
+       }
+
+
+/*
+ * =====================
+ * = dfx_hw_dma_uninit =
+ * =====================
+ *
+ * Overview:
+ *   Brings adapter to DMA_UNAVAILABLE state
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   bp   - pointer to board information
+ *   type - type of reset to perform
+ *
+ * Functional Description:
+ *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
+ *             1. Set reset type bit in Port Data A Register then reset adapter.
+ *             2. Check that adapter is in DMA_UNAVAILABLE state.
+ *
+ * Return Codes:
+ *   DFX_K_SUCCESS       - adapter is in DMA_UNAVAILABLE state
+ *   DFX_K_HW_TIMEOUT - adapter did not reset properly
+ *
+ * Assumptions:
+ *   None
+ *
+ * Side Effects:
+ *   Internal adapter registers are cleared.
+ */
+
+static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
+       {
+       int timeout_cnt;        /* used in for loops */
+
+       /* Set reset type bit and reset adapter */
+
+       dfx_hw_adap_reset(bp, type);
+
+       /* Now wait for adapter to enter DMA_UNAVAILABLE state */
+
+       for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
+               {
+               if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
+                       break;
+               udelay(100);                                    /* wait for 100 microseconds */
+               }
+       if (timeout_cnt == 0)
+               return DFX_K_HW_TIMEOUT;
+       return DFX_K_SUCCESS;
+       }
+
+/*
+ *     Align an sk_buff to a boundary power of 2
+ *
+ */
+#ifdef DYNAMIC_BUFFERS
+static void my_skb_align(struct sk_buff *skb, int n)
+{
+       unsigned long x = (unsigned long)skb->data;
+       unsigned long v;
+
+       v = ALIGN(x, n);        /* Where we want to be */
+
+       skb_reserve(skb, v - x);
+}
+#endif
+
+/*
+ * ================
+ * = dfx_rcv_init =
+ * ================
+ *
+ * Overview:
+ *   Produces buffers to adapter LLC Host receive descriptor block
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *   get_buffers - non-zero if buffers to be allocated
+ *
+ * Functional Description:
+ *   This routine can be called during dfx_adap_init() or during an adapter
+ *      reset.  It initializes the descriptor block and produces all allocated
+ *   LLC Host queue receive buffers.
+ *
+ * Return Codes:
+ *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
+ *   dynamic buffer allocation). If the buffer allocation failed, the
+ *   already allocated buffers will not be released and the caller should do
+ *   this.
+ *
+ * Assumptions:
+ *   The PDQ has been reset and the adapter and driver maintained Type 2
+ *   register indices are cleared.
+ *
+ * Side Effects:
+ *   Receive buffers are posted to the adapter LLC queue and the adapter
+ *   is notified.
+ */
+
+static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
+       {
+       int     i, j;                                   /* used in for loop */
+
+       /*
+        *  Since each receive buffer is a single fragment of same length, initialize
+        *  first longword in each receive descriptor for entire LLC Host descriptor
+        *  block.  Also initialize second longword in each receive descriptor with
+        *  physical address of receive buffer.  We'll always allocate receive
+        *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
+        *  block and produce new receive buffers by simply updating the receive
+        *  producer index.
+        *
+        *      Assumptions:
+        *              To support all shipping versions of PDQ, the receive buffer size
+        *              must be mod 128 in length and the physical address must be 128 byte
+        *              aligned.  In other words, bits 0-6 of the length and address must
+        *              be zero for the following descriptor field entries to be correct on
+        *              all PDQ-based boards.  We guaranteed both requirements during
+        *              driver initialization when we allocated memory for the receive buffers.
+        */
+
+       if (get_buffers) {
+#ifdef DYNAMIC_BUFFERS
+       for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
+               for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
+               {
+                       struct sk_buff *newskb;
+                       dma_addr_t dma_addr;
+
+                       newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
+                                                   GFP_NOIO);
+                       if (!newskb)
+                               return -ENOMEM;
+                       /*
+                        * align to 128 bytes for compatibility with
+                        * the old EISA boards.
+                        */
+
+                       my_skb_align(newskb, 128);
+                       dma_addr = dma_map_single(bp->bus_dev,
+                                                 newskb->data,
+                                                 PI_RCV_DATA_K_SIZE_MAX,
+                                                 DMA_FROM_DEVICE);
+                       if (dma_mapping_error(bp->bus_dev, dma_addr)) {
+                               dev_kfree_skb(newskb);
+                               return -ENOMEM;
+                       }
+                       bp->descr_block_virt->rcv_data[i + j].long_0 =
+                               (u32)(PI_RCV_DESCR_M_SOP |
+                                     ((PI_RCV_DATA_K_SIZE_MAX /
+                                       PI_ALIGN_K_RCV_DATA_BUFF) <<
+                                      PI_RCV_DESCR_V_SEG_LEN));
+                       bp->descr_block_virt->rcv_data[i + j].long_1 =
+                               (u32)dma_addr;
+
+                       /*
+                        * p_rcv_buff_va is only used inside the
+                        * kernel so we put the skb pointer here.
+                        */
+                       bp->p_rcv_buff_va[i+j] = (char *) newskb;
+               }
+#else
+       for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
+               for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
+                       {
+                       bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
+                               ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
+                       bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
+                       bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
+                       }
+#endif
+       }
+
+       /* Update receive producer and Type 2 register */
+
+       bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
+       dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
+       return 0;
+       }
+
+
+/*
+ * =========================
+ * = dfx_rcv_queue_process =
+ * =========================
+ *
+ * Overview:
+ *   Process received LLC frames.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   Received LLC frames are processed until there are no more consumed frames.
+ *   Once all frames are processed, the receive buffers are returned to the
+ *   adapter.  Note that this algorithm fixes the length of time that can be spent
+ *   in this routine, because there are a fixed number of receive buffers to
+ *   process and buffers are not produced until this routine exits and returns
+ *   to the ISR.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   None
+ *
+ * Side Effects:
+ *   None
+ */
+
+static void dfx_rcv_queue_process(
+       DFX_board_t *bp
+       )
+
+       {
+       PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
+       char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
+       u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
+       struct sk_buff          *skb = NULL;                    /* pointer to a sk_buff to hold incoming packet data */
+
+       /* Service all consumed LLC receive frames */
+
+       p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
+       while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
+               {
+               /* Process any errors */
+               dma_addr_t dma_addr;
+               int entry;
+
+               entry = bp->rcv_xmt_reg.index.rcv_comp;
+#ifdef DYNAMIC_BUFFERS
+               p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
+#else
+               p_buff = bp->p_rcv_buff_va[entry];
+#endif
+               dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
+               dma_sync_single_for_cpu(bp->bus_dev,
+                                       dma_addr + RCV_BUFF_K_DESCR,
+                                       sizeof(u32),
+                                       DMA_FROM_DEVICE);
+               memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
+
+               if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
+                       {
+                       if (descr & PI_FMC_DESCR_M_RCC_CRC)
+                               bp->rcv_crc_errors++;
+                       else
+                               bp->rcv_frame_status_errors++;
+                       }
+               else
+               {
+                       int rx_in_place = 0;
+
+                       /* The frame was received without errors - verify packet length */
+
+                       pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
+                       pkt_len -= 4;                           /* subtract 4 byte CRC */
+                       if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
+                               bp->rcv_length_errors++;
+                       else{
+#ifdef DYNAMIC_BUFFERS
+                               struct sk_buff *newskb = NULL;
+
+                               if (pkt_len > SKBUFF_RX_COPYBREAK) {
+                                       dma_addr_t new_dma_addr;
+
+                                       newskb = netdev_alloc_skb(bp->dev,
+                                                                 NEW_SKB_SIZE);
+                                       if (newskb){
+                                               my_skb_align(newskb, 128);
+                                               new_dma_addr = dma_map_single(
+                                                               bp->bus_dev,
+                                                               newskb->data,
+                                                               PI_RCV_DATA_K_SIZE_MAX,
+                                                               DMA_FROM_DEVICE);
+                                               if (dma_mapping_error(
+                                                               bp->bus_dev,
+                                                               new_dma_addr)) {
+                                                       dev_kfree_skb(newskb);
+                                                       newskb = NULL;
+                                               }
+                                       }
+                                       if (newskb) {
+                                               rx_in_place = 1;
+
+                                               skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
+                                               dma_unmap_single(bp->bus_dev,
+                                                       dma_addr,
+                                                       PI_RCV_DATA_K_SIZE_MAX,
+                                                       DMA_FROM_DEVICE);
+                                               skb_reserve(skb, RCV_BUFF_K_PADDING);
+                                               bp->p_rcv_buff_va[entry] = (char *)newskb;
+                                               bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
+                                       }
+                               }
+                               if (!newskb)
+#endif
+                                       /* Alloc new buffer to pass up,
+                                        * add room for PRH. */
+                                       skb = netdev_alloc_skb(bp->dev,
+                                                              pkt_len + 3);
+                               if (skb == NULL)
+                                       {
+                                       printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
+                                       bp->rcv_discards++;
+                                       break;
+                                       }
+                               else {
+                                       if (!rx_in_place) {
+                                               /* Receive buffer allocated, pass receive packet up */
+                                               dma_sync_single_for_cpu(
+                                                       bp->bus_dev,
+                                                       dma_addr +
+                                                       RCV_BUFF_K_PADDING,
+                                                       pkt_len + 3,
+                                                       DMA_FROM_DEVICE);
+
+                                               skb_copy_to_linear_data(skb,
+                                                              p_buff + RCV_BUFF_K_PADDING,
+                                                              pkt_len + 3);
+                                       }
+
+                                       skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
+                                       skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
+                                       skb->protocol = fddi_type_trans(skb, bp->dev);
+                                       bp->rcv_total_bytes += skb->len;
+                                       netif_rx(skb);
+
+                                       /* Update the rcv counters */
+                                       bp->rcv_total_frames++;
+                                       if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
+                                               bp->rcv_multicast_frames++;
+                               }
+                       }
+                       }
+
+               /*
+                * Advance the producer (for recycling) and advance the completion
+                * (for servicing received frames).  Note that it is okay to
+                * advance the producer without checking that it passes the
+                * completion index because they are both advanced at the same
+                * rate.
+                */
+
+               bp->rcv_xmt_reg.index.rcv_prod += 1;
+               bp->rcv_xmt_reg.index.rcv_comp += 1;
+               }
+       }
+
+
+/*
+ * =====================
+ * = dfx_xmt_queue_pkt =
+ * =====================
+ *
+ * Overview:
+ *   Queues packets for transmission
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   skb - pointer to sk_buff to queue for transmission
+ *   dev - pointer to device information
+ *
+ * Functional Description:
+ *   Here we assume that an incoming skb transmit request
+ *   is contained in a single physically contiguous buffer
+ *   in which the virtual address of the start of packet
+ *   (skb->data) can be converted to a physical address
+ *   by using pci_map_single().
+ *
+ *   Since the adapter architecture requires a three byte
+ *   packet request header to prepend the start of packet,
+ *   we'll write the three byte field immediately prior to
+ *   the FC byte.  This assumption is valid because we've
+ *   ensured that dev->hard_header_len includes three pad
+ *   bytes.  By posting a single fragment to the adapter,
+ *   we'll reduce the number of descriptor fetches and
+ *   bus traffic needed to send the request.
+ *
+ *   Also, we can't free the skb until after it's been DMA'd
+ *   out by the adapter, so we'll queue it in the driver and
+ *   return it in dfx_xmt_done.
+ *
+ * Return Codes:
+ *   0 - driver queued packet, link is unavailable, or skbuff was bad
+ *      1 - caller should requeue the sk_buff for later transmission
+ *
+ * Assumptions:
+ *      First and foremost, we assume the incoming skb pointer
+ *   is NOT NULL and is pointing to a valid sk_buff structure.
+ *
+ *   The outgoing packet is complete, starting with the
+ *   frame control byte including the last byte of data,
+ *   but NOT including the 4 byte CRC.  We'll let the
+ *   adapter hardware generate and append the CRC.
+ *
+ *   The entire packet is stored in one physically
+ *   contiguous buffer which is not cached and whose
+ *   32-bit physical address can be determined.
+ *
+ *   It's vital that this routine is NOT reentered for the
+ *   same board and that the OS is not in another section of
+ *   code (eg. dfx_int_common) for the same board on a
+ *   different thread.
+ *
+ * Side Effects:
+ *   None
+ */
+
+static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
+                                    struct net_device *dev)
+       {
+       DFX_board_t             *bp = netdev_priv(dev);
+       u8                      prod;                           /* local transmit producer index */
+       PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
+       XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
+       dma_addr_t              dma_addr;
+       unsigned long           flags;
+
+       netif_stop_queue(dev);
+
+       /*
+        * Verify that incoming transmit request is OK
+        *
+        * Note: The packet size check is consistent with other
+        *               Linux device drivers, although the correct packet
+        *               size should be verified before calling the
+        *               transmit routine.
+        */
+
+       if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
+       {
+               printk("%s: Invalid packet length - %u bytes\n",
+                       dev->name, skb->len);
+               bp->xmt_length_errors++;                /* bump error counter */
+               netif_wake_queue(dev);
+               dev_kfree_skb(skb);
+               return NETDEV_TX_OK;                    /* return "success" */
+       }
+       /*
+        * See if adapter link is available, if not, free buffer
+        *
+        * Note: If the link isn't available, free buffer and return 0
+        *               rather than tell the upper layer to requeue the packet.
+        *               The methodology here is that by the time the link
+        *               becomes available, the packet to be sent will be
+        *               fairly stale.  By simply dropping the packet, the
+        *               higher layer protocols will eventually time out
+        *               waiting for response packets which it won't receive.
+        */
+
+       if (bp->link_available == PI_K_FALSE)
+               {
+               if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
+                       bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
+               else
+                       {
+                       bp->xmt_discards++;                                     /* bump error counter */
+                       dev_kfree_skb(skb);             /* free sk_buff now */
+                       netif_wake_queue(dev);
+                       return NETDEV_TX_OK;            /* return "success" */
+                       }
+               }
+
+       /* Write the three PRH bytes immediately before the FC byte */
+
+       skb_push(skb, 3);
+       skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
+       skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
+       skb->data[2] = DFX_PRH2_BYTE;   /* specification */
+
+       dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
+                                 DMA_TO_DEVICE);
+       if (dma_mapping_error(bp->bus_dev, dma_addr)) {
+               skb_pull(skb, 3);
+               return NETDEV_TX_BUSY;
+       }
+
+       spin_lock_irqsave(&bp->lock, flags);
+
+       /* Get the current producer and the next free xmt data descriptor */
+
+       prod            = bp->rcv_xmt_reg.index.xmt_prod;
+       p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
+
+       /*
+        * Get pointer to auxiliary queue entry to contain information
+        * for this packet.
+        *
+        * Note: The current xmt producer index will become the
+        *       current xmt completion index when we complete this
+        *       packet later on.  So, we'll get the pointer to the
+        *       next auxiliary queue entry now before we bump the
+        *       producer index.
+        */
+
+       p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
+
+       /*
+        * Write the descriptor with buffer info and bump producer
+        *
+        * Note: Since we need to start DMA from the packet request
+        *               header, we'll add 3 bytes to the DMA buffer length,
+        *               and we'll determine the physical address of the
+        *               buffer from the PRH, not skb->data.
+        *
+        * Assumptions:
+        *               1. Packet starts with the frame control (FC) byte
+        *                  at skb->data.
+        *               2. The 4-byte CRC is not appended to the buffer or
+        *                      included in the length.
+        *               3. Packet length (skb->len) is from FC to end of
+        *                      data, inclusive.
+        *               4. The packet length does not exceed the maximum
+        *                      FDDI LLC frame length of 4491 bytes.
+        *               5. The entire packet is contained in a physically
+        *                      contiguous, non-cached, locked memory space
+        *                      comprised of a single buffer pointed to by
+        *                      skb->data.
+        *               6. The physical address of the start of packet
+        *                      can be determined from the virtual address
+        *                      by using pci_map_single() and is only 32-bits
+        *                      wide.
+        */
+
+       p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
+       p_xmt_descr->long_1 = (u32)dma_addr;
+
+       /*
+        * Verify that descriptor is actually available
+        *
+        * Note: If descriptor isn't available, return 1 which tells
+        *       the upper layer to requeue the packet for later
+        *       transmission.
+        *
+        *       We need to ensure that the producer never reaches the
+        *       completion, except to indicate that the queue is empty.
+        */
+
+       if (prod == bp->rcv_xmt_reg.index.xmt_comp)
+       {
+               skb_pull(skb,3);
+               spin_unlock_irqrestore(&bp->lock, flags);
+               return NETDEV_TX_BUSY;  /* requeue packet for later */
+       }
+
+       /*
+        * Save info for this packet for xmt done indication routine
+        *
+        * Normally, we'd save the producer index in the p_xmt_drv_descr
+        * structure so that we'd have it handy when we complete this
+        * packet later (in dfx_xmt_done).  However, since the current
+        * transmit architecture guarantees a single fragment for the
+        * entire packet, we can simply bump the completion index by
+        * one (1) for each completed packet.
+        *
+        * Note: If this assumption changes and we're presented with
+        *       an inconsistent number of transmit fragments for packet
+        *       data, we'll need to modify this code to save the current
+        *       transmit producer index.
+        */
+
+       p_xmt_drv_descr->p_skb = skb;
+
+       /* Update Type 2 register */
+
+       bp->rcv_xmt_reg.index.xmt_prod = prod;
+       dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
+       spin_unlock_irqrestore(&bp->lock, flags);
+       netif_wake_queue(dev);
+       return NETDEV_TX_OK;    /* packet queued to adapter */
+       }
+
+
+/*
+ * ================
+ * = dfx_xmt_done =
+ * ================
+ *
+ * Overview:
+ *   Processes all frames that have been transmitted.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   For all consumed transmit descriptors that have not
+ *   yet been completed, we'll free the skb we were holding
+ *   onto using dev_kfree_skb and bump the appropriate
+ *   counters.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   The Type 2 register is not updated in this routine.  It is
+ *   assumed that it will be updated in the ISR when dfx_xmt_done
+ *   returns.
+ *
+ * Side Effects:
+ *   None
+ */
+
+static int dfx_xmt_done(DFX_board_t *bp)
+       {
+       XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
+       PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
+       u8                      comp;                   /* local transmit completion index */
+       int                     freed = 0;              /* buffers freed */
+
+       /* Service all consumed transmit frames */
+
+       p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
+       while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
+               {
+               /* Get pointer to the transmit driver descriptor block information */
+
+               p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
+
+               /* Increment transmit counters */
+
+               bp->xmt_total_frames++;
+               bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
+
+               /* Return skb to operating system */
+               comp = bp->rcv_xmt_reg.index.xmt_comp;
+               dma_unmap_single(bp->bus_dev,
+                                bp->descr_block_virt->xmt_data[comp].long_1,
+                                p_xmt_drv_descr->p_skb->len,
+                                DMA_TO_DEVICE);
+               dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
+
+               /*
+                * Move to start of next packet by updating completion index
+                *
+                * Here we assume that a transmit packet request is always
+                * serviced by posting one fragment.  We can therefore
+                * simplify the completion code by incrementing the
+                * completion index by one.  This code will need to be
+                * modified if this assumption changes.  See comments
+                * in dfx_xmt_queue_pkt for more details.
+                */
+
+               bp->rcv_xmt_reg.index.xmt_comp += 1;
+               freed++;
+               }
+       return freed;
+       }
+
+
+/*
+ * =================
+ * = dfx_rcv_flush =
+ * =================
+ *
+ * Overview:
+ *   Remove all skb's in the receive ring.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   Free's all the dynamically allocated skb's that are
+ *   currently attached to the device receive ring. This
+ *   function is typically only used when the device is
+ *   initialized or reinitialized.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Side Effects:
+ *   None
+ */
+#ifdef DYNAMIC_BUFFERS
+static void dfx_rcv_flush( DFX_board_t *bp )
+       {
+       int i, j;
+
+       for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
+               for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
+               {
+                       struct sk_buff *skb;
+                       skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
+                       if (skb) {
+                               dma_unmap_single(bp->bus_dev,
+                                                bp->descr_block_virt->rcv_data[i+j].long_1,
+                                                PI_RCV_DATA_K_SIZE_MAX,
+                                                DMA_FROM_DEVICE);
+                               dev_kfree_skb(skb);
+                       }
+                       bp->p_rcv_buff_va[i+j] = NULL;
+               }
+
+       }
+#endif /* DYNAMIC_BUFFERS */
+
+/*
+ * =================
+ * = dfx_xmt_flush =
+ * =================
+ *
+ * Overview:
+ *   Processes all frames whether they've been transmitted
+ *   or not.
+ *
+ * Returns:
+ *   None
+ *
+ * Arguments:
+ *   bp - pointer to board information
+ *
+ * Functional Description:
+ *   For all produced transmit descriptors that have not
+ *   yet been completed, we'll free the skb we were holding
+ *   onto using dev_kfree_skb and bump the appropriate
+ *   counters.  Of course, it's possible that some of
+ *   these transmit requests actually did go out, but we
+ *   won't make that distinction here.  Finally, we'll
+ *   update the consumer index to match the producer.
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   This routine does NOT update the Type 2 register.  It
+ *   is assumed that this routine is being called during a
+ *   transmit flush interrupt, or a shutdown or close routine.
+ *
+ * Side Effects:
+ *   None
+ */
+
+static void dfx_xmt_flush( DFX_board_t *bp )
+       {
+       u32                     prod_cons;              /* rcv/xmt consumer block longword */
+       XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
+       u8                      comp;                   /* local transmit completion index */
+
+       /* Flush all outstanding transmit frames */
+
+       while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
+               {
+               /* Get pointer to the transmit driver descriptor block information */
+
+               p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
+
+               /* Return skb to operating system */
+               comp = bp->rcv_xmt_reg.index.xmt_comp;
+               dma_unmap_single(bp->bus_dev,
+                                bp->descr_block_virt->xmt_data[comp].long_1,
+                                p_xmt_drv_descr->p_skb->len,
+                                DMA_TO_DEVICE);
+               dev_kfree_skb(p_xmt_drv_descr->p_skb);
+
+               /* Increment transmit error counter */
+
+               bp->xmt_discards++;
+
+               /*
+                * Move to start of next packet by updating completion index
+                *
+                * Here we assume that a transmit packet request is always
+                * serviced by posting one fragment.  We can therefore
+                * simplify the completion code by incrementing the
+                * completion index by one.  This code will need to be
+                * modified if this assumption changes.  See comments
+                * in dfx_xmt_queue_pkt for more details.
+                */
+
+               bp->rcv_xmt_reg.index.xmt_comp += 1;
+               }
+
+       /* Update the transmit consumer index in the consumer block */
+
+       prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
+       prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
+       bp->cons_block_virt->xmt_rcv_data = prod_cons;
+       }
+
+/*
+ * ==================
+ * = dfx_unregister =
+ * ==================
+ *
+ * Overview:
+ *   Shuts down an FDDI controller
+ *
+ * Returns:
+ *   Condition code
+ *
+ * Arguments:
+ *   bdev - pointer to device information
+ *
+ * Functional Description:
+ *
+ * Return Codes:
+ *   None
+ *
+ * Assumptions:
+ *   It compiles so it should work :-( (PCI cards do :-)
+ *
+ * Side Effects:
+ *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
+ *   freed.
+ */
+static void dfx_unregister(struct device *bdev)
+{
+       struct net_device *dev = dev_get_drvdata(bdev);
+       DFX_board_t *bp = netdev_priv(dev);
+       int dfx_bus_pci = dev_is_pci(bdev);
+       int dfx_bus_tc = DFX_BUS_TC(bdev);
+       int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
+       resource_size_t bar_start[3];           /* pointers to ports */
+       resource_size_t bar_len[3];             /* resource lengths */
+       int             alloc_size;             /* total buffer size used */
+
+       unregister_netdev(dev);
+
+       alloc_size = sizeof(PI_DESCR_BLOCK) +
+                    PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+                    (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+                    sizeof(PI_CONSUMER_BLOCK) +
+                    (PI_ALIGN_K_DESC_BLK - 1);
+       if (bp->kmalloced)
+               dma_free_coherent(bdev, alloc_size,
+                                 bp->kmalloced, bp->kmalloced_dma);
+
+       dfx_bus_uninit(dev);
+
+       dfx_get_bars(bdev, bar_start, bar_len);
+       if (bar_start[2] != 0)
+               release_region(bar_start[2], bar_len[2]);
+       if (bar_start[1] != 0)
+               release_region(bar_start[1], bar_len[1]);
+       if (dfx_use_mmio) {
+               iounmap(bp->base.mem);
+               release_mem_region(bar_start[0], bar_len[0]);
+       } else
+               release_region(bar_start[0], bar_len[0]);
+
+       if (dfx_bus_pci)
+               pci_disable_device(to_pci_dev(bdev));
+
+       free_netdev(dev);
+}
+
+
+static int __maybe_unused dfx_dev_register(struct device *);
+static int __maybe_unused dfx_dev_unregister(struct device *);
+
+#ifdef CONFIG_PCI
+static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
+static void dfx_pci_unregister(struct pci_dev *);
+
+static const struct pci_device_id dfx_pci_table[] = {
+       { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
+       { }
+};
+MODULE_DEVICE_TABLE(pci, dfx_pci_table);
+
+static struct pci_driver dfx_pci_driver = {
+       .name           = "defxx",
+       .id_table       = dfx_pci_table,
+       .probe          = dfx_pci_register,
+       .remove         = dfx_pci_unregister,
+};
+
+static int dfx_pci_register(struct pci_dev *pdev,
+                           const struct pci_device_id *ent)
+{
+       return dfx_register(&pdev->dev);
+}
+
+static void dfx_pci_unregister(struct pci_dev *pdev)
+{
+       dfx_unregister(&pdev->dev);
+}
+#endif /* CONFIG_PCI */
+
+#ifdef CONFIG_EISA
+static struct eisa_device_id dfx_eisa_table[] = {
+        { "DEC3001", DEFEA_PROD_ID_1 },
+        { "DEC3002", DEFEA_PROD_ID_2 },
+        { "DEC3003", DEFEA_PROD_ID_3 },
+        { "DEC3004", DEFEA_PROD_ID_4 },
+        { }
+};
+MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
+
+static struct eisa_driver dfx_eisa_driver = {
+       .id_table       = dfx_eisa_table,
+       .driver         = {
+               .name   = "defxx",
+               .bus    = &eisa_bus_type,
+               .probe  = dfx_dev_register,
+               .remove = dfx_dev_unregister,
+       },
+};
+#endif /* CONFIG_EISA */
+
+#ifdef CONFIG_TC
+static struct tc_device_id const dfx_tc_table[] = {
+       { "DEC     ", "PMAF-FA " },
+       { "DEC     ", "PMAF-FD " },
+       { "DEC     ", "PMAF-FS " },
+       { "DEC     ", "PMAF-FU " },
+       { }
+};
+MODULE_DEVICE_TABLE(tc, dfx_tc_table);
+
+static struct tc_driver dfx_tc_driver = {
+       .id_table       = dfx_tc_table,
+       .driver         = {
+               .name   = "defxx",
+               .bus    = &tc_bus_type,
+               .probe  = dfx_dev_register,
+               .remove = dfx_dev_unregister,
+       },
+};
+#endif /* CONFIG_TC */
+
+static int __maybe_unused dfx_dev_register(struct device *dev)
+{
+       int status;
+
+       status = dfx_register(dev);
+       if (!status)
+               get_device(dev);
+       return status;
+}
+
+static int __maybe_unused dfx_dev_unregister(struct device *dev)
+{
+       put_device(dev);
+       dfx_unregister(dev);
+       return 0;
+}
+
+
+static int dfx_init(void)
+{
+       int status;
+
+       status = pci_register_driver(&dfx_pci_driver);
+       if (!status)
+               status = eisa_driver_register(&dfx_eisa_driver);
+       if (!status)
+               status = tc_register_driver(&dfx_tc_driver);
+       return status;
+}
+
+static void dfx_cleanup(void)
+{
+       tc_unregister_driver(&dfx_tc_driver);
+       eisa_driver_unregister(&dfx_eisa_driver);
+       pci_unregister_driver(&dfx_pci_driver);
+}
+
+module_init(dfx_init);
+module_exit(dfx_cleanup);
+MODULE_AUTHOR("Lawrence V. Stefani");
+MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
+                  DRV_VERSION " " DRV_RELDATE);
+MODULE_LICENSE("GPL");