Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / sfc / tx.c
diff --git a/kernel/drivers/net/ethernet/sfc/tx.c b/kernel/drivers/net/ethernet/sfc/tx.c
new file mode 100644 (file)
index 0000000..aaf2987
--- /dev/null
@@ -0,0 +1,1332 @@
+/****************************************************************************
+ * Driver for Solarflare network controllers and boards
+ * Copyright 2005-2006 Fen Systems Ltd.
+ * Copyright 2005-2013 Solarflare Communications Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation, incorporated herein by reference.
+ */
+
+#include <linux/pci.h>
+#include <linux/tcp.h>
+#include <linux/ip.h>
+#include <linux/in.h>
+#include <linux/ipv6.h>
+#include <linux/slab.h>
+#include <net/ipv6.h>
+#include <linux/if_ether.h>
+#include <linux/highmem.h>
+#include <linux/cache.h>
+#include "net_driver.h"
+#include "efx.h"
+#include "io.h"
+#include "nic.h"
+#include "workarounds.h"
+#include "ef10_regs.h"
+
+#ifdef EFX_USE_PIO
+
+#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
+#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
+unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
+
+#endif /* EFX_USE_PIO */
+
+static inline unsigned int
+efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
+{
+       return tx_queue->insert_count & tx_queue->ptr_mask;
+}
+
+static inline struct efx_tx_buffer *
+__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
+{
+       return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
+}
+
+static inline struct efx_tx_buffer *
+efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
+{
+       struct efx_tx_buffer *buffer =
+               __efx_tx_queue_get_insert_buffer(tx_queue);
+
+       EFX_BUG_ON_PARANOID(buffer->len);
+       EFX_BUG_ON_PARANOID(buffer->flags);
+       EFX_BUG_ON_PARANOID(buffer->unmap_len);
+
+       return buffer;
+}
+
+static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
+                              struct efx_tx_buffer *buffer,
+                              unsigned int *pkts_compl,
+                              unsigned int *bytes_compl)
+{
+       if (buffer->unmap_len) {
+               struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
+               dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
+               if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
+                       dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
+                                        DMA_TO_DEVICE);
+               else
+                       dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
+                                      DMA_TO_DEVICE);
+               buffer->unmap_len = 0;
+       }
+
+       if (buffer->flags & EFX_TX_BUF_SKB) {
+               (*pkts_compl)++;
+               (*bytes_compl) += buffer->skb->len;
+               dev_consume_skb_any((struct sk_buff *)buffer->skb);
+               netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
+                          "TX queue %d transmission id %x complete\n",
+                          tx_queue->queue, tx_queue->read_count);
+       } else if (buffer->flags & EFX_TX_BUF_HEAP) {
+               kfree(buffer->heap_buf);
+       }
+
+       buffer->len = 0;
+       buffer->flags = 0;
+}
+
+static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
+                              struct sk_buff *skb);
+
+static inline unsigned
+efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
+{
+       /* Depending on the NIC revision, we can use descriptor
+        * lengths up to 8K or 8K-1.  However, since PCI Express
+        * devices must split read requests at 4K boundaries, there is
+        * little benefit from using descriptors that cross those
+        * boundaries and we keep things simple by not doing so.
+        */
+       unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
+
+       /* Work around hardware bug for unaligned buffers. */
+       if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
+               len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
+
+       return len;
+}
+
+unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
+{
+       /* Header and payload descriptor for each output segment, plus
+        * one for every input fragment boundary within a segment
+        */
+       unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
+
+       /* Possibly one more per segment for the alignment workaround,
+        * or for option descriptors
+        */
+       if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
+               max_descs += EFX_TSO_MAX_SEGS;
+
+       /* Possibly more for PCIe page boundaries within input fragments */
+       if (PAGE_SIZE > EFX_PAGE_SIZE)
+               max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
+                                  DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
+
+       return max_descs;
+}
+
+static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
+{
+       /* We need to consider both queues that the net core sees as one */
+       struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
+       struct efx_nic *efx = txq1->efx;
+       unsigned int fill_level;
+
+       fill_level = max(txq1->insert_count - txq1->old_read_count,
+                        txq2->insert_count - txq2->old_read_count);
+       if (likely(fill_level < efx->txq_stop_thresh))
+               return;
+
+       /* We used the stale old_read_count above, which gives us a
+        * pessimistic estimate of the fill level (which may even
+        * validly be >= efx->txq_entries).  Now try again using
+        * read_count (more likely to be a cache miss).
+        *
+        * If we read read_count and then conditionally stop the
+        * queue, it is possible for the completion path to race with
+        * us and complete all outstanding descriptors in the middle,
+        * after which there will be no more completions to wake it.
+        * Therefore we stop the queue first, then read read_count
+        * (with a memory barrier to ensure the ordering), then
+        * restart the queue if the fill level turns out to be low
+        * enough.
+        */
+       netif_tx_stop_queue(txq1->core_txq);
+       smp_mb();
+       txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
+       txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
+
+       fill_level = max(txq1->insert_count - txq1->old_read_count,
+                        txq2->insert_count - txq2->old_read_count);
+       EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
+       if (likely(fill_level < efx->txq_stop_thresh)) {
+               smp_mb();
+               if (likely(!efx->loopback_selftest))
+                       netif_tx_start_queue(txq1->core_txq);
+       }
+}
+
+#ifdef EFX_USE_PIO
+
+struct efx_short_copy_buffer {
+       int used;
+       u8 buf[L1_CACHE_BYTES];
+};
+
+/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
+ * Advances piobuf pointer. Leaves additional data in the copy buffer.
+ */
+static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
+                                   u8 *data, int len,
+                                   struct efx_short_copy_buffer *copy_buf)
+{
+       int block_len = len & ~(sizeof(copy_buf->buf) - 1);
+
+       __iowrite64_copy(*piobuf, data, block_len >> 3);
+       *piobuf += block_len;
+       len -= block_len;
+
+       if (len) {
+               data += block_len;
+               BUG_ON(copy_buf->used);
+               BUG_ON(len > sizeof(copy_buf->buf));
+               memcpy(copy_buf->buf, data, len);
+               copy_buf->used = len;
+       }
+}
+
+/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
+ * Advances piobuf pointer. Leaves additional data in the copy buffer.
+ */
+static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
+                                      u8 *data, int len,
+                                      struct efx_short_copy_buffer *copy_buf)
+{
+       if (copy_buf->used) {
+               /* if the copy buffer is partially full, fill it up and write */
+               int copy_to_buf =
+                       min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
+
+               memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
+               copy_buf->used += copy_to_buf;
+
+               /* if we didn't fill it up then we're done for now */
+               if (copy_buf->used < sizeof(copy_buf->buf))
+                       return;
+
+               __iowrite64_copy(*piobuf, copy_buf->buf,
+                                sizeof(copy_buf->buf) >> 3);
+               *piobuf += sizeof(copy_buf->buf);
+               data += copy_to_buf;
+               len -= copy_to_buf;
+               copy_buf->used = 0;
+       }
+
+       efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
+}
+
+static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
+                                 struct efx_short_copy_buffer *copy_buf)
+{
+       /* if there's anything in it, write the whole buffer, including junk */
+       if (copy_buf->used)
+               __iowrite64_copy(piobuf, copy_buf->buf,
+                                sizeof(copy_buf->buf) >> 3);
+}
+
+/* Traverse skb structure and copy fragments in to PIO buffer.
+ * Advances piobuf pointer.
+ */
+static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
+                                    u8 __iomem **piobuf,
+                                    struct efx_short_copy_buffer *copy_buf)
+{
+       int i;
+
+       efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
+                               copy_buf);
+
+       for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
+               skb_frag_t *f = &skb_shinfo(skb)->frags[i];
+               u8 *vaddr;
+
+               vaddr = kmap_atomic(skb_frag_page(f));
+
+               efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
+                                          skb_frag_size(f), copy_buf);
+               kunmap_atomic(vaddr);
+       }
+
+       EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
+}
+
+static struct efx_tx_buffer *
+efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
+{
+       struct efx_tx_buffer *buffer =
+               efx_tx_queue_get_insert_buffer(tx_queue);
+       u8 __iomem *piobuf = tx_queue->piobuf;
+
+       /* Copy to PIO buffer. Ensure the writes are padded to the end
+        * of a cache line, as this is required for write-combining to be
+        * effective on at least x86.
+        */
+
+       if (skb_shinfo(skb)->nr_frags) {
+               /* The size of the copy buffer will ensure all writes
+                * are the size of a cache line.
+                */
+               struct efx_short_copy_buffer copy_buf;
+
+               copy_buf.used = 0;
+
+               efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
+                                        &piobuf, &copy_buf);
+               efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
+       } else {
+               /* Pad the write to the size of a cache line.
+                * We can do this because we know the skb_shared_info sruct is
+                * after the source, and the destination buffer is big enough.
+                */
+               BUILD_BUG_ON(L1_CACHE_BYTES >
+                            SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
+               __iowrite64_copy(tx_queue->piobuf, skb->data,
+                                ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
+       }
+
+       EFX_POPULATE_QWORD_5(buffer->option,
+                            ESF_DZ_TX_DESC_IS_OPT, 1,
+                            ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
+                            ESF_DZ_TX_PIO_CONT, 0,
+                            ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
+                            ESF_DZ_TX_PIO_BUF_ADDR,
+                            tx_queue->piobuf_offset);
+       ++tx_queue->pio_packets;
+       ++tx_queue->insert_count;
+       return buffer;
+}
+#endif /* EFX_USE_PIO */
+
+/*
+ * Add a socket buffer to a TX queue
+ *
+ * This maps all fragments of a socket buffer for DMA and adds them to
+ * the TX queue.  The queue's insert pointer will be incremented by
+ * the number of fragments in the socket buffer.
+ *
+ * If any DMA mapping fails, any mapped fragments will be unmapped,
+ * the queue's insert pointer will be restored to its original value.
+ *
+ * This function is split out from efx_hard_start_xmit to allow the
+ * loopback test to direct packets via specific TX queues.
+ *
+ * Returns NETDEV_TX_OK.
+ * You must hold netif_tx_lock() to call this function.
+ */
+netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
+{
+       struct efx_nic *efx = tx_queue->efx;
+       struct device *dma_dev = &efx->pci_dev->dev;
+       struct efx_tx_buffer *buffer;
+       unsigned int old_insert_count = tx_queue->insert_count;
+       skb_frag_t *fragment;
+       unsigned int len, unmap_len = 0;
+       dma_addr_t dma_addr, unmap_addr = 0;
+       unsigned int dma_len;
+       unsigned short dma_flags;
+       int i = 0;
+
+       if (skb_shinfo(skb)->gso_size)
+               return efx_enqueue_skb_tso(tx_queue, skb);
+
+       /* Get size of the initial fragment */
+       len = skb_headlen(skb);
+
+       /* Pad if necessary */
+       if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
+               EFX_BUG_ON_PARANOID(skb->data_len);
+               len = 32 + 1;
+               if (skb_pad(skb, len - skb->len))
+                       return NETDEV_TX_OK;
+       }
+
+       /* Consider using PIO for short packets */
+#ifdef EFX_USE_PIO
+       if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
+           efx_nic_may_tx_pio(tx_queue)) {
+               buffer = efx_enqueue_skb_pio(tx_queue, skb);
+               dma_flags = EFX_TX_BUF_OPTION;
+               goto finish_packet;
+       }
+#endif
+
+       /* Map for DMA.  Use dma_map_single rather than dma_map_page
+        * since this is more efficient on machines with sparse
+        * memory.
+        */
+       dma_flags = EFX_TX_BUF_MAP_SINGLE;
+       dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
+
+       /* Process all fragments */
+       while (1) {
+               if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
+                       goto dma_err;
+
+               /* Store fields for marking in the per-fragment final
+                * descriptor */
+               unmap_len = len;
+               unmap_addr = dma_addr;
+
+               /* Add to TX queue, splitting across DMA boundaries */
+               do {
+                       buffer = efx_tx_queue_get_insert_buffer(tx_queue);
+
+                       dma_len = efx_max_tx_len(efx, dma_addr);
+                       if (likely(dma_len >= len))
+                               dma_len = len;
+
+                       /* Fill out per descriptor fields */
+                       buffer->len = dma_len;
+                       buffer->dma_addr = dma_addr;
+                       buffer->flags = EFX_TX_BUF_CONT;
+                       len -= dma_len;
+                       dma_addr += dma_len;
+                       ++tx_queue->insert_count;
+               } while (len);
+
+               /* Transfer ownership of the unmapping to the final buffer */
+               buffer->flags = EFX_TX_BUF_CONT | dma_flags;
+               buffer->unmap_len = unmap_len;
+               buffer->dma_offset = buffer->dma_addr - unmap_addr;
+               unmap_len = 0;
+
+               /* Get address and size of next fragment */
+               if (i >= skb_shinfo(skb)->nr_frags)
+                       break;
+               fragment = &skb_shinfo(skb)->frags[i];
+               len = skb_frag_size(fragment);
+               i++;
+               /* Map for DMA */
+               dma_flags = 0;
+               dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
+                                           DMA_TO_DEVICE);
+       }
+
+       /* Transfer ownership of the skb to the final buffer */
+#ifdef EFX_USE_PIO
+finish_packet:
+#endif
+       buffer->skb = skb;
+       buffer->flags = EFX_TX_BUF_SKB | dma_flags;
+
+       netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
+
+       efx_tx_maybe_stop_queue(tx_queue);
+
+       /* Pass off to hardware */
+       if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
+               efx_nic_push_buffers(tx_queue);
+
+       tx_queue->tx_packets++;
+
+       return NETDEV_TX_OK;
+
+ dma_err:
+       netif_err(efx, tx_err, efx->net_dev,
+                 " TX queue %d could not map skb with %d bytes %d "
+                 "fragments for DMA\n", tx_queue->queue, skb->len,
+                 skb_shinfo(skb)->nr_frags + 1);
+
+       /* Mark the packet as transmitted, and free the SKB ourselves */
+       dev_kfree_skb_any(skb);
+
+       /* Work backwards until we hit the original insert pointer value */
+       while (tx_queue->insert_count != old_insert_count) {
+               unsigned int pkts_compl = 0, bytes_compl = 0;
+               --tx_queue->insert_count;
+               buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
+               efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
+       }
+
+       /* Free the fragment we were mid-way through pushing */
+       if (unmap_len) {
+               if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
+                       dma_unmap_single(dma_dev, unmap_addr, unmap_len,
+                                        DMA_TO_DEVICE);
+               else
+                       dma_unmap_page(dma_dev, unmap_addr, unmap_len,
+                                      DMA_TO_DEVICE);
+       }
+
+       return NETDEV_TX_OK;
+}
+
+/* Remove packets from the TX queue
+ *
+ * This removes packets from the TX queue, up to and including the
+ * specified index.
+ */
+static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
+                               unsigned int index,
+                               unsigned int *pkts_compl,
+                               unsigned int *bytes_compl)
+{
+       struct efx_nic *efx = tx_queue->efx;
+       unsigned int stop_index, read_ptr;
+
+       stop_index = (index + 1) & tx_queue->ptr_mask;
+       read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
+
+       while (read_ptr != stop_index) {
+               struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
+
+               if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
+                   unlikely(buffer->len == 0)) {
+                       netif_err(efx, tx_err, efx->net_dev,
+                                 "TX queue %d spurious TX completion id %x\n",
+                                 tx_queue->queue, read_ptr);
+                       efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
+                       return;
+               }
+
+               efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
+
+               ++tx_queue->read_count;
+               read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
+       }
+}
+
+/* Initiate a packet transmission.  We use one channel per CPU
+ * (sharing when we have more CPUs than channels).  On Falcon, the TX
+ * completion events will be directed back to the CPU that transmitted
+ * the packet, which should be cache-efficient.
+ *
+ * Context: non-blocking.
+ * Note that returning anything other than NETDEV_TX_OK will cause the
+ * OS to free the skb.
+ */
+netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
+                               struct net_device *net_dev)
+{
+       struct efx_nic *efx = netdev_priv(net_dev);
+       struct efx_tx_queue *tx_queue;
+       unsigned index, type;
+
+       EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
+
+       /* PTP "event" packet */
+       if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
+           unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
+               return efx_ptp_tx(efx, skb);
+       }
+
+       index = skb_get_queue_mapping(skb);
+       type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
+       if (index >= efx->n_tx_channels) {
+               index -= efx->n_tx_channels;
+               type |= EFX_TXQ_TYPE_HIGHPRI;
+       }
+       tx_queue = efx_get_tx_queue(efx, index, type);
+
+       return efx_enqueue_skb(tx_queue, skb);
+}
+
+void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
+{
+       struct efx_nic *efx = tx_queue->efx;
+
+       /* Must be inverse of queue lookup in efx_hard_start_xmit() */
+       tx_queue->core_txq =
+               netdev_get_tx_queue(efx->net_dev,
+                                   tx_queue->queue / EFX_TXQ_TYPES +
+                                   ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
+                                    efx->n_tx_channels : 0));
+}
+
+int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
+{
+       struct efx_nic *efx = netdev_priv(net_dev);
+       struct efx_channel *channel;
+       struct efx_tx_queue *tx_queue;
+       unsigned tc;
+       int rc;
+
+       if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
+               return -EINVAL;
+
+       if (num_tc == net_dev->num_tc)
+               return 0;
+
+       for (tc = 0; tc < num_tc; tc++) {
+               net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
+               net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
+       }
+
+       if (num_tc > net_dev->num_tc) {
+               /* Initialise high-priority queues as necessary */
+               efx_for_each_channel(channel, efx) {
+                       efx_for_each_possible_channel_tx_queue(tx_queue,
+                                                              channel) {
+                               if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
+                                       continue;
+                               if (!tx_queue->buffer) {
+                                       rc = efx_probe_tx_queue(tx_queue);
+                                       if (rc)
+                                               return rc;
+                               }
+                               if (!tx_queue->initialised)
+                                       efx_init_tx_queue(tx_queue);
+                               efx_init_tx_queue_core_txq(tx_queue);
+                       }
+               }
+       } else {
+               /* Reduce number of classes before number of queues */
+               net_dev->num_tc = num_tc;
+       }
+
+       rc = netif_set_real_num_tx_queues(net_dev,
+                                         max_t(int, num_tc, 1) *
+                                         efx->n_tx_channels);
+       if (rc)
+               return rc;
+
+       /* Do not destroy high-priority queues when they become
+        * unused.  We would have to flush them first, and it is
+        * fairly difficult to flush a subset of TX queues.  Leave
+        * it to efx_fini_channels().
+        */
+
+       net_dev->num_tc = num_tc;
+       return 0;
+}
+
+void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
+{
+       unsigned fill_level;
+       struct efx_nic *efx = tx_queue->efx;
+       struct efx_tx_queue *txq2;
+       unsigned int pkts_compl = 0, bytes_compl = 0;
+
+       EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
+
+       efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
+       netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
+
+       if (pkts_compl > 1)
+               ++tx_queue->merge_events;
+
+       /* See if we need to restart the netif queue.  This memory
+        * barrier ensures that we write read_count (inside
+        * efx_dequeue_buffers()) before reading the queue status.
+        */
+       smp_mb();
+       if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
+           likely(efx->port_enabled) &&
+           likely(netif_device_present(efx->net_dev))) {
+               txq2 = efx_tx_queue_partner(tx_queue);
+               fill_level = max(tx_queue->insert_count - tx_queue->read_count,
+                                txq2->insert_count - txq2->read_count);
+               if (fill_level <= efx->txq_wake_thresh)
+                       netif_tx_wake_queue(tx_queue->core_txq);
+       }
+
+       /* Check whether the hardware queue is now empty */
+       if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
+               tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
+               if (tx_queue->read_count == tx_queue->old_write_count) {
+                       smp_mb();
+                       tx_queue->empty_read_count =
+                               tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
+               }
+       }
+}
+
+/* Size of page-based TSO header buffers.  Larger blocks must be
+ * allocated from the heap.
+ */
+#define TSOH_STD_SIZE  128
+#define TSOH_PER_PAGE  (PAGE_SIZE / TSOH_STD_SIZE)
+
+/* At most half the descriptors in the queue at any time will refer to
+ * a TSO header buffer, since they must always be followed by a
+ * payload descriptor referring to an skb.
+ */
+static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
+{
+       return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
+}
+
+int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
+{
+       struct efx_nic *efx = tx_queue->efx;
+       unsigned int entries;
+       int rc;
+
+       /* Create the smallest power-of-two aligned ring */
+       entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
+       EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
+       tx_queue->ptr_mask = entries - 1;
+
+       netif_dbg(efx, probe, efx->net_dev,
+                 "creating TX queue %d size %#x mask %#x\n",
+                 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
+
+       /* Allocate software ring */
+       tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
+                                  GFP_KERNEL);
+       if (!tx_queue->buffer)
+               return -ENOMEM;
+
+       if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
+               tx_queue->tsoh_page =
+                       kcalloc(efx_tsoh_page_count(tx_queue),
+                               sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
+               if (!tx_queue->tsoh_page) {
+                       rc = -ENOMEM;
+                       goto fail1;
+               }
+       }
+
+       /* Allocate hardware ring */
+       rc = efx_nic_probe_tx(tx_queue);
+       if (rc)
+               goto fail2;
+
+       return 0;
+
+fail2:
+       kfree(tx_queue->tsoh_page);
+       tx_queue->tsoh_page = NULL;
+fail1:
+       kfree(tx_queue->buffer);
+       tx_queue->buffer = NULL;
+       return rc;
+}
+
+void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
+{
+       netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
+                 "initialising TX queue %d\n", tx_queue->queue);
+
+       tx_queue->insert_count = 0;
+       tx_queue->write_count = 0;
+       tx_queue->old_write_count = 0;
+       tx_queue->read_count = 0;
+       tx_queue->old_read_count = 0;
+       tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
+
+       /* Set up TX descriptor ring */
+       efx_nic_init_tx(tx_queue);
+
+       tx_queue->initialised = true;
+}
+
+void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
+{
+       struct efx_tx_buffer *buffer;
+
+       netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
+                 "shutting down TX queue %d\n", tx_queue->queue);
+
+       if (!tx_queue->buffer)
+               return;
+
+       /* Free any buffers left in the ring */
+       while (tx_queue->read_count != tx_queue->write_count) {
+               unsigned int pkts_compl = 0, bytes_compl = 0;
+               buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
+               efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
+
+               ++tx_queue->read_count;
+       }
+       netdev_tx_reset_queue(tx_queue->core_txq);
+}
+
+void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
+{
+       int i;
+
+       if (!tx_queue->buffer)
+               return;
+
+       netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
+                 "destroying TX queue %d\n", tx_queue->queue);
+       efx_nic_remove_tx(tx_queue);
+
+       if (tx_queue->tsoh_page) {
+               for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
+                       efx_nic_free_buffer(tx_queue->efx,
+                                           &tx_queue->tsoh_page[i]);
+               kfree(tx_queue->tsoh_page);
+               tx_queue->tsoh_page = NULL;
+       }
+
+       kfree(tx_queue->buffer);
+       tx_queue->buffer = NULL;
+}
+
+
+/* Efx TCP segmentation acceleration.
+ *
+ * Why?  Because by doing it here in the driver we can go significantly
+ * faster than the GSO.
+ *
+ * Requires TX checksum offload support.
+ */
+
+#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
+
+/**
+ * struct tso_state - TSO state for an SKB
+ * @out_len: Remaining length in current segment
+ * @seqnum: Current sequence number
+ * @ipv4_id: Current IPv4 ID, host endian
+ * @packet_space: Remaining space in current packet
+ * @dma_addr: DMA address of current position
+ * @in_len: Remaining length in current SKB fragment
+ * @unmap_len: Length of SKB fragment
+ * @unmap_addr: DMA address of SKB fragment
+ * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
+ * @protocol: Network protocol (after any VLAN header)
+ * @ip_off: Offset of IP header
+ * @tcp_off: Offset of TCP header
+ * @header_len: Number of bytes of header
+ * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
+ * @header_dma_addr: Header DMA address, when using option descriptors
+ * @header_unmap_len: Header DMA mapped length, or 0 if not using option
+ *     descriptors
+ *
+ * The state used during segmentation.  It is put into this data structure
+ * just to make it easy to pass into inline functions.
+ */
+struct tso_state {
+       /* Output position */
+       unsigned out_len;
+       unsigned seqnum;
+       u16 ipv4_id;
+       unsigned packet_space;
+
+       /* Input position */
+       dma_addr_t dma_addr;
+       unsigned in_len;
+       unsigned unmap_len;
+       dma_addr_t unmap_addr;
+       unsigned short dma_flags;
+
+       __be16 protocol;
+       unsigned int ip_off;
+       unsigned int tcp_off;
+       unsigned header_len;
+       unsigned int ip_base_len;
+       dma_addr_t header_dma_addr;
+       unsigned int header_unmap_len;
+};
+
+
+/*
+ * Verify that our various assumptions about sk_buffs and the conditions
+ * under which TSO will be attempted hold true.  Return the protocol number.
+ */
+static __be16 efx_tso_check_protocol(struct sk_buff *skb)
+{
+       __be16 protocol = skb->protocol;
+
+       EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
+                           protocol);
+       if (protocol == htons(ETH_P_8021Q)) {
+               struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
+               protocol = veh->h_vlan_encapsulated_proto;
+       }
+
+       if (protocol == htons(ETH_P_IP)) {
+               EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
+       } else {
+               EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
+               EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
+       }
+       EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
+                            + (tcp_hdr(skb)->doff << 2u)) >
+                           skb_headlen(skb));
+
+       return protocol;
+}
+
+static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
+                              struct efx_tx_buffer *buffer, unsigned int len)
+{
+       u8 *result;
+
+       EFX_BUG_ON_PARANOID(buffer->len);
+       EFX_BUG_ON_PARANOID(buffer->flags);
+       EFX_BUG_ON_PARANOID(buffer->unmap_len);
+
+       if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
+               unsigned index =
+                       (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
+               struct efx_buffer *page_buf =
+                       &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
+               unsigned offset =
+                       TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
+
+               if (unlikely(!page_buf->addr) &&
+                   efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
+                                        GFP_ATOMIC))
+                       return NULL;
+
+               result = (u8 *)page_buf->addr + offset;
+               buffer->dma_addr = page_buf->dma_addr + offset;
+               buffer->flags = EFX_TX_BUF_CONT;
+       } else {
+               tx_queue->tso_long_headers++;
+
+               buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
+               if (unlikely(!buffer->heap_buf))
+                       return NULL;
+               result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
+               buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
+       }
+
+       buffer->len = len;
+
+       return result;
+}
+
+/**
+ * efx_tx_queue_insert - push descriptors onto the TX queue
+ * @tx_queue:          Efx TX queue
+ * @dma_addr:          DMA address of fragment
+ * @len:               Length of fragment
+ * @final_buffer:      The final buffer inserted into the queue
+ *
+ * Push descriptors onto the TX queue.
+ */
+static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
+                               dma_addr_t dma_addr, unsigned len,
+                               struct efx_tx_buffer **final_buffer)
+{
+       struct efx_tx_buffer *buffer;
+       struct efx_nic *efx = tx_queue->efx;
+       unsigned dma_len;
+
+       EFX_BUG_ON_PARANOID(len <= 0);
+
+       while (1) {
+               buffer = efx_tx_queue_get_insert_buffer(tx_queue);
+               ++tx_queue->insert_count;
+
+               EFX_BUG_ON_PARANOID(tx_queue->insert_count -
+                                   tx_queue->read_count >=
+                                   efx->txq_entries);
+
+               buffer->dma_addr = dma_addr;
+
+               dma_len = efx_max_tx_len(efx, dma_addr);
+
+               /* If there is enough space to send then do so */
+               if (dma_len >= len)
+                       break;
+
+               buffer->len = dma_len;
+               buffer->flags = EFX_TX_BUF_CONT;
+               dma_addr += dma_len;
+               len -= dma_len;
+       }
+
+       EFX_BUG_ON_PARANOID(!len);
+       buffer->len = len;
+       *final_buffer = buffer;
+}
+
+
+/*
+ * Put a TSO header into the TX queue.
+ *
+ * This is special-cased because we know that it is small enough to fit in
+ * a single fragment, and we know it doesn't cross a page boundary.  It
+ * also allows us to not worry about end-of-packet etc.
+ */
+static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
+                             struct efx_tx_buffer *buffer, u8 *header)
+{
+       if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
+               buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
+                                                 header, buffer->len,
+                                                 DMA_TO_DEVICE);
+               if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
+                                              buffer->dma_addr))) {
+                       kfree(buffer->heap_buf);
+                       buffer->len = 0;
+                       buffer->flags = 0;
+                       return -ENOMEM;
+               }
+               buffer->unmap_len = buffer->len;
+               buffer->dma_offset = 0;
+               buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
+       }
+
+       ++tx_queue->insert_count;
+       return 0;
+}
+
+
+/* Remove buffers put into a tx_queue.  None of the buffers must have
+ * an skb attached.
+ */
+static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
+                              unsigned int insert_count)
+{
+       struct efx_tx_buffer *buffer;
+
+       /* Work backwards until we hit the original insert pointer value */
+       while (tx_queue->insert_count != insert_count) {
+               --tx_queue->insert_count;
+               buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
+               efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
+       }
+}
+
+
+/* Parse the SKB header and initialise state. */
+static int tso_start(struct tso_state *st, struct efx_nic *efx,
+                    const struct sk_buff *skb)
+{
+       bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
+       struct device *dma_dev = &efx->pci_dev->dev;
+       unsigned int header_len, in_len;
+       dma_addr_t dma_addr;
+
+       st->ip_off = skb_network_header(skb) - skb->data;
+       st->tcp_off = skb_transport_header(skb) - skb->data;
+       header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
+       in_len = skb_headlen(skb) - header_len;
+       st->header_len = header_len;
+       st->in_len = in_len;
+       if (st->protocol == htons(ETH_P_IP)) {
+               st->ip_base_len = st->header_len - st->ip_off;
+               st->ipv4_id = ntohs(ip_hdr(skb)->id);
+       } else {
+               st->ip_base_len = st->header_len - st->tcp_off;
+               st->ipv4_id = 0;
+       }
+       st->seqnum = ntohl(tcp_hdr(skb)->seq);
+
+       EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
+       EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
+       EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
+
+       st->out_len = skb->len - header_len;
+
+       if (!use_opt_desc) {
+               st->header_unmap_len = 0;
+
+               if (likely(in_len == 0)) {
+                       st->dma_flags = 0;
+                       st->unmap_len = 0;
+                       return 0;
+               }
+
+               dma_addr = dma_map_single(dma_dev, skb->data + header_len,
+                                         in_len, DMA_TO_DEVICE);
+               st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
+               st->dma_addr = dma_addr;
+               st->unmap_addr = dma_addr;
+               st->unmap_len = in_len;
+       } else {
+               dma_addr = dma_map_single(dma_dev, skb->data,
+                                         skb_headlen(skb), DMA_TO_DEVICE);
+               st->header_dma_addr = dma_addr;
+               st->header_unmap_len = skb_headlen(skb);
+               st->dma_flags = 0;
+               st->dma_addr = dma_addr + header_len;
+               st->unmap_len = 0;
+       }
+
+       return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
+}
+
+static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
+                           skb_frag_t *frag)
+{
+       st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
+                                         skb_frag_size(frag), DMA_TO_DEVICE);
+       if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
+               st->dma_flags = 0;
+               st->unmap_len = skb_frag_size(frag);
+               st->in_len = skb_frag_size(frag);
+               st->dma_addr = st->unmap_addr;
+               return 0;
+       }
+       return -ENOMEM;
+}
+
+
+/**
+ * tso_fill_packet_with_fragment - form descriptors for the current fragment
+ * @tx_queue:          Efx TX queue
+ * @skb:               Socket buffer
+ * @st:                        TSO state
+ *
+ * Form descriptors for the current fragment, until we reach the end
+ * of fragment or end-of-packet.
+ */
+static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
+                                         const struct sk_buff *skb,
+                                         struct tso_state *st)
+{
+       struct efx_tx_buffer *buffer;
+       int n;
+
+       if (st->in_len == 0)
+               return;
+       if (st->packet_space == 0)
+               return;
+
+       EFX_BUG_ON_PARANOID(st->in_len <= 0);
+       EFX_BUG_ON_PARANOID(st->packet_space <= 0);
+
+       n = min(st->in_len, st->packet_space);
+
+       st->packet_space -= n;
+       st->out_len -= n;
+       st->in_len -= n;
+
+       efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
+
+       if (st->out_len == 0) {
+               /* Transfer ownership of the skb */
+               buffer->skb = skb;
+               buffer->flags = EFX_TX_BUF_SKB;
+       } else if (st->packet_space != 0) {
+               buffer->flags = EFX_TX_BUF_CONT;
+       }
+
+       if (st->in_len == 0) {
+               /* Transfer ownership of the DMA mapping */
+               buffer->unmap_len = st->unmap_len;
+               buffer->dma_offset = buffer->unmap_len - buffer->len;
+               buffer->flags |= st->dma_flags;
+               st->unmap_len = 0;
+       }
+
+       st->dma_addr += n;
+}
+
+
+/**
+ * tso_start_new_packet - generate a new header and prepare for the new packet
+ * @tx_queue:          Efx TX queue
+ * @skb:               Socket buffer
+ * @st:                        TSO state
+ *
+ * Generate a new header and prepare for the new packet.  Return 0 on
+ * success, or -%ENOMEM if failed to alloc header.
+ */
+static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
+                               const struct sk_buff *skb,
+                               struct tso_state *st)
+{
+       struct efx_tx_buffer *buffer =
+               efx_tx_queue_get_insert_buffer(tx_queue);
+       bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
+       u8 tcp_flags_clear;
+
+       if (!is_last) {
+               st->packet_space = skb_shinfo(skb)->gso_size;
+               tcp_flags_clear = 0x09; /* mask out FIN and PSH */
+       } else {
+               st->packet_space = st->out_len;
+               tcp_flags_clear = 0x00;
+       }
+
+       if (!st->header_unmap_len) {
+               /* Allocate and insert a DMA-mapped header buffer. */
+               struct tcphdr *tsoh_th;
+               unsigned ip_length;
+               u8 *header;
+               int rc;
+
+               header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
+               if (!header)
+                       return -ENOMEM;
+
+               tsoh_th = (struct tcphdr *)(header + st->tcp_off);
+
+               /* Copy and update the headers. */
+               memcpy(header, skb->data, st->header_len);
+
+               tsoh_th->seq = htonl(st->seqnum);
+               ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
+
+               ip_length = st->ip_base_len + st->packet_space;
+
+               if (st->protocol == htons(ETH_P_IP)) {
+                       struct iphdr *tsoh_iph =
+                               (struct iphdr *)(header + st->ip_off);
+
+                       tsoh_iph->tot_len = htons(ip_length);
+                       tsoh_iph->id = htons(st->ipv4_id);
+               } else {
+                       struct ipv6hdr *tsoh_iph =
+                               (struct ipv6hdr *)(header + st->ip_off);
+
+                       tsoh_iph->payload_len = htons(ip_length);
+               }
+
+               rc = efx_tso_put_header(tx_queue, buffer, header);
+               if (unlikely(rc))
+                       return rc;
+       } else {
+               /* Send the original headers with a TSO option descriptor
+                * in front
+                */
+               u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
+
+               buffer->flags = EFX_TX_BUF_OPTION;
+               buffer->len = 0;
+               buffer->unmap_len = 0;
+               EFX_POPULATE_QWORD_5(buffer->option,
+                                    ESF_DZ_TX_DESC_IS_OPT, 1,
+                                    ESF_DZ_TX_OPTION_TYPE,
+                                    ESE_DZ_TX_OPTION_DESC_TSO,
+                                    ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
+                                    ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
+                                    ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
+               ++tx_queue->insert_count;
+
+               /* We mapped the headers in tso_start().  Unmap them
+                * when the last segment is completed.
+                */
+               buffer = efx_tx_queue_get_insert_buffer(tx_queue);
+               buffer->dma_addr = st->header_dma_addr;
+               buffer->len = st->header_len;
+               if (is_last) {
+                       buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
+                       buffer->unmap_len = st->header_unmap_len;
+                       buffer->dma_offset = 0;
+                       /* Ensure we only unmap them once in case of a
+                        * later DMA mapping error and rollback
+                        */
+                       st->header_unmap_len = 0;
+               } else {
+                       buffer->flags = EFX_TX_BUF_CONT;
+                       buffer->unmap_len = 0;
+               }
+               ++tx_queue->insert_count;
+       }
+
+       st->seqnum += skb_shinfo(skb)->gso_size;
+
+       /* Linux leaves suitable gaps in the IP ID space for us to fill. */
+       ++st->ipv4_id;
+
+       ++tx_queue->tso_packets;
+
+       ++tx_queue->tx_packets;
+
+       return 0;
+}
+
+
+/**
+ * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
+ * @tx_queue:          Efx TX queue
+ * @skb:               Socket buffer
+ *
+ * Context: You must hold netif_tx_lock() to call this function.
+ *
+ * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
+ * @skb was not enqueued.  In all cases @skb is consumed.  Return
+ * %NETDEV_TX_OK.
+ */
+static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
+                              struct sk_buff *skb)
+{
+       struct efx_nic *efx = tx_queue->efx;
+       unsigned int old_insert_count = tx_queue->insert_count;
+       int frag_i, rc;
+       struct tso_state state;
+
+       /* Find the packet protocol and sanity-check it */
+       state.protocol = efx_tso_check_protocol(skb);
+
+       rc = tso_start(&state, efx, skb);
+       if (rc)
+               goto mem_err;
+
+       if (likely(state.in_len == 0)) {
+               /* Grab the first payload fragment. */
+               EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
+               frag_i = 0;
+               rc = tso_get_fragment(&state, efx,
+                                     skb_shinfo(skb)->frags + frag_i);
+               if (rc)
+                       goto mem_err;
+       } else {
+               /* Payload starts in the header area. */
+               frag_i = -1;
+       }
+
+       if (tso_start_new_packet(tx_queue, skb, &state) < 0)
+               goto mem_err;
+
+       while (1) {
+               tso_fill_packet_with_fragment(tx_queue, skb, &state);
+
+               /* Move onto the next fragment? */
+               if (state.in_len == 0) {
+                       if (++frag_i >= skb_shinfo(skb)->nr_frags)
+                               /* End of payload reached. */
+                               break;
+                       rc = tso_get_fragment(&state, efx,
+                                             skb_shinfo(skb)->frags + frag_i);
+                       if (rc)
+                               goto mem_err;
+               }
+
+               /* Start at new packet? */
+               if (state.packet_space == 0 &&
+                   tso_start_new_packet(tx_queue, skb, &state) < 0)
+                       goto mem_err;
+       }
+
+       netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
+
+       efx_tx_maybe_stop_queue(tx_queue);
+
+       /* Pass off to hardware */
+       if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
+               efx_nic_push_buffers(tx_queue);
+
+       tx_queue->tso_bursts++;
+       return NETDEV_TX_OK;
+
+ mem_err:
+       netif_err(efx, tx_err, efx->net_dev,
+                 "Out of memory for TSO headers, or DMA mapping error\n");
+       dev_kfree_skb_any(skb);
+
+       /* Free the DMA mapping we were in the process of writing out */
+       if (state.unmap_len) {
+               if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
+                       dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
+                                        state.unmap_len, DMA_TO_DEVICE);
+               else
+                       dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
+                                      state.unmap_len, DMA_TO_DEVICE);
+       }
+
+       /* Free the header DMA mapping, if using option descriptors */
+       if (state.header_unmap_len)
+               dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
+                                state.header_unmap_len, DMA_TO_DEVICE);
+
+       efx_enqueue_unwind(tx_queue, old_insert_count);
+       return NETDEV_TX_OK;
+}