Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / ixgb / ixgb_hw.c
diff --git a/kernel/drivers/net/ethernet/intel/ixgb/ixgb_hw.c b/kernel/drivers/net/ethernet/intel/ixgb/ixgb_hw.c
new file mode 100644 (file)
index 0000000..bf9a220
--- /dev/null
@@ -0,0 +1,1263 @@
+/*******************************************************************************
+
+  Intel PRO/10GbE Linux driver
+  Copyright(c) 1999 - 2008 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ixgb_hw.c
+ * Shared functions for accessing and configuring the adapter
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/pci_ids.h>
+#include "ixgb_hw.h"
+#include "ixgb_ids.h"
+
+#include <linux/etherdevice.h>
+
+/*  Local function prototypes */
+
+static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
+
+static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
+
+static void ixgb_get_bus_info(struct ixgb_hw *hw);
+
+static bool ixgb_link_reset(struct ixgb_hw *hw);
+
+static void ixgb_optics_reset(struct ixgb_hw *hw);
+
+static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
+
+static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
+
+static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
+
+static void ixgb_clear_vfta(struct ixgb_hw *hw);
+
+static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
+
+static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
+                                 u32 reg_address,
+                                 u32 phy_address,
+                                 u32 device_type);
+
+static bool ixgb_setup_fc(struct ixgb_hw *hw);
+
+static bool mac_addr_valid(u8 *mac_addr);
+
+static u32 ixgb_mac_reset(struct ixgb_hw *hw)
+{
+       u32 ctrl_reg;
+
+       ctrl_reg =  IXGB_CTRL0_RST |
+                               IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
+                               IXGB_CTRL0_SDP2_DIR |
+                               IXGB_CTRL0_SDP1_DIR |
+                               IXGB_CTRL0_SDP0_DIR |
+                               IXGB_CTRL0_SDP3  |   /* Initial value 1101   */
+                               IXGB_CTRL0_SDP2  |
+                               IXGB_CTRL0_SDP0;
+
+#ifdef HP_ZX1
+       /* Workaround for 82597EX reset errata */
+       IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
+#else
+       IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
+#endif
+
+       /* Delay a few ms just to allow the reset to complete */
+       msleep(IXGB_DELAY_AFTER_RESET);
+       ctrl_reg = IXGB_READ_REG(hw, CTRL0);
+#ifdef DBG
+       /* Make sure the self-clearing global reset bit did self clear */
+       ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
+#endif
+
+       if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) {
+               ctrl_reg =  /* Enable interrupt from XFP and SerDes */
+                          IXGB_CTRL1_GPI0_EN |
+                          IXGB_CTRL1_SDP6_DIR |
+                          IXGB_CTRL1_SDP7_DIR |
+                          IXGB_CTRL1_SDP6 |
+                          IXGB_CTRL1_SDP7;
+               IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
+               ixgb_optics_reset_bcm(hw);
+       }
+
+       if (hw->phy_type == ixgb_phy_type_txn17401)
+               ixgb_optics_reset(hw);
+
+       return ctrl_reg;
+}
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+bool
+ixgb_adapter_stop(struct ixgb_hw *hw)
+{
+       u32 ctrl_reg;
+       u32 icr_reg;
+
+       ENTER();
+
+       /* If we are stopped or resetting exit gracefully and wait to be
+        * started again before accessing the hardware.
+        */
+       if (hw->adapter_stopped) {
+               pr_debug("Exiting because the adapter is already stopped!!!\n");
+               return false;
+       }
+
+       /* Set the Adapter Stopped flag so other driver functions stop
+        * touching the Hardware.
+        */
+       hw->adapter_stopped = true;
+
+       /* Clear interrupt mask to stop board from generating interrupts */
+       pr_debug("Masking off all interrupts\n");
+       IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
+
+       /* Disable the Transmit and Receive units.  Then delay to allow
+        * any pending transactions to complete before we hit the MAC with
+        * the global reset.
+        */
+       IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
+       IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
+       IXGB_WRITE_FLUSH(hw);
+       msleep(IXGB_DELAY_BEFORE_RESET);
+
+       /* Issue a global reset to the MAC.  This will reset the chip's
+        * transmit, receive, DMA, and link units.  It will not effect
+        * the current PCI configuration.  The global reset bit is self-
+        * clearing, and should clear within a microsecond.
+        */
+       pr_debug("Issuing a global reset to MAC\n");
+
+       ctrl_reg = ixgb_mac_reset(hw);
+
+       /* Clear interrupt mask to stop board from generating interrupts */
+       pr_debug("Masking off all interrupts\n");
+       IXGB_WRITE_REG(hw, IMC, 0xffffffff);
+
+       /* Clear any pending interrupt events. */
+       icr_reg = IXGB_READ_REG(hw, ICR);
+
+       return ctrl_reg & IXGB_CTRL0_RST;
+}
+
+
+/******************************************************************************
+ * Identifies the vendor of the optics module on the adapter.  The SR adapters
+ * support two different types of XPAK optics, so it is necessary to determine
+ * which optics are present before applying any optics-specific workarounds.
+ *
+ * hw - Struct containing variables accessed by shared code.
+ *
+ * Returns: the vendor of the XPAK optics module.
+ *****************************************************************************/
+static ixgb_xpak_vendor
+ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
+{
+       u32 i;
+       u16 vendor_name[5];
+       ixgb_xpak_vendor xpak_vendor;
+
+       ENTER();
+
+       /* Read the first few bytes of the vendor string from the XPAK NVR
+        * registers.  These are standard XENPAK/XPAK registers, so all XPAK
+        * devices should implement them. */
+       for (i = 0; i < 5; i++) {
+               vendor_name[i] = ixgb_read_phy_reg(hw,
+                                                  MDIO_PMA_PMD_XPAK_VENDOR_NAME
+                                                  + i, IXGB_PHY_ADDRESS,
+                                                  MDIO_MMD_PMAPMD);
+       }
+
+       /* Determine the actual vendor */
+       if (vendor_name[0] == 'I' &&
+           vendor_name[1] == 'N' &&
+           vendor_name[2] == 'T' &&
+           vendor_name[3] == 'E' && vendor_name[4] == 'L') {
+               xpak_vendor = ixgb_xpak_vendor_intel;
+       } else {
+               xpak_vendor = ixgb_xpak_vendor_infineon;
+       }
+
+       return xpak_vendor;
+}
+
+/******************************************************************************
+ * Determine the physical layer module on the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code.  The device_id
+ *      field must be (correctly) populated before calling this routine.
+ *
+ * Returns: the phy type of the adapter.
+ *****************************************************************************/
+static ixgb_phy_type
+ixgb_identify_phy(struct ixgb_hw *hw)
+{
+       ixgb_phy_type phy_type;
+       ixgb_xpak_vendor xpak_vendor;
+
+       ENTER();
+
+       /* Infer the transceiver/phy type from the device id */
+       switch (hw->device_id) {
+       case IXGB_DEVICE_ID_82597EX:
+               pr_debug("Identified TXN17401 optics\n");
+               phy_type = ixgb_phy_type_txn17401;
+               break;
+
+       case IXGB_DEVICE_ID_82597EX_SR:
+               /* The SR adapters carry two different types of XPAK optics
+                * modules; read the vendor identifier to determine the exact
+                * type of optics. */
+               xpak_vendor = ixgb_identify_xpak_vendor(hw);
+               if (xpak_vendor == ixgb_xpak_vendor_intel) {
+                       pr_debug("Identified TXN17201 optics\n");
+                       phy_type = ixgb_phy_type_txn17201;
+               } else {
+                       pr_debug("Identified G6005 optics\n");
+                       phy_type = ixgb_phy_type_g6005;
+               }
+               break;
+       case IXGB_DEVICE_ID_82597EX_LR:
+               pr_debug("Identified G6104 optics\n");
+               phy_type = ixgb_phy_type_g6104;
+               break;
+       case IXGB_DEVICE_ID_82597EX_CX4:
+               pr_debug("Identified CX4\n");
+               xpak_vendor = ixgb_identify_xpak_vendor(hw);
+               if (xpak_vendor == ixgb_xpak_vendor_intel) {
+                       pr_debug("Identified TXN17201 optics\n");
+                       phy_type = ixgb_phy_type_txn17201;
+               } else {
+                       pr_debug("Identified G6005 optics\n");
+                       phy_type = ixgb_phy_type_g6005;
+               }
+               break;
+       default:
+               pr_debug("Unknown physical layer module\n");
+               phy_type = ixgb_phy_type_unknown;
+               break;
+       }
+
+       /* update phy type for sun specific board */
+       if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN)
+               phy_type = ixgb_phy_type_bcm;
+
+       return phy_type;
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Resets the controller.
+ * Reads and validates the EEPROM.
+ * Initializes the receive address registers.
+ * Initializes the multicast table.
+ * Clears all on-chip counters.
+ * Calls routine to setup flow control settings.
+ * Leaves the transmit and receive units disabled and uninitialized.
+ *
+ * Returns:
+ *      true if successful,
+ *      false if unrecoverable problems were encountered.
+ *****************************************************************************/
+bool
+ixgb_init_hw(struct ixgb_hw *hw)
+{
+       u32 i;
+       u32 ctrl_reg;
+       bool status;
+
+       ENTER();
+
+       /* Issue a global reset to the MAC.  This will reset the chip's
+        * transmit, receive, DMA, and link units.  It will not effect
+        * the current PCI configuration.  The global reset bit is self-
+        * clearing, and should clear within a microsecond.
+        */
+       pr_debug("Issuing a global reset to MAC\n");
+
+       ctrl_reg = ixgb_mac_reset(hw);
+
+       pr_debug("Issuing an EE reset to MAC\n");
+#ifdef HP_ZX1
+       /* Workaround for 82597EX reset errata */
+       IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
+#else
+       IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
+#endif
+
+       /* Delay a few ms just to allow the reset to complete */
+       msleep(IXGB_DELAY_AFTER_EE_RESET);
+
+       if (!ixgb_get_eeprom_data(hw))
+               return false;
+
+       /* Use the device id to determine the type of phy/transceiver. */
+       hw->device_id = ixgb_get_ee_device_id(hw);
+       hw->phy_type = ixgb_identify_phy(hw);
+
+       /* Setup the receive addresses.
+        * Receive Address Registers (RARs 0 - 15).
+        */
+       ixgb_init_rx_addrs(hw);
+
+       /*
+        * Check that a valid MAC address has been set.
+        * If it is not valid, we fail hardware init.
+        */
+       if (!mac_addr_valid(hw->curr_mac_addr)) {
+               pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
+               return(false);
+       }
+
+       /* tell the routines in this file they can access hardware again */
+       hw->adapter_stopped = false;
+
+       /* Fill in the bus_info structure */
+       ixgb_get_bus_info(hw);
+
+       /* Zero out the Multicast HASH table */
+       pr_debug("Zeroing the MTA\n");
+       for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
+               IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+       /* Zero out the VLAN Filter Table Array */
+       ixgb_clear_vfta(hw);
+
+       /* Zero all of the hardware counters */
+       ixgb_clear_hw_cntrs(hw);
+
+       /* Call a subroutine to setup flow control. */
+       status = ixgb_setup_fc(hw);
+
+       /* 82597EX errata: Call check-for-link in case lane deskew is locked */
+       ixgb_check_for_link(hw);
+
+       return status;
+}
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive address registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+static void
+ixgb_init_rx_addrs(struct ixgb_hw *hw)
+{
+       u32 i;
+
+       ENTER();
+
+       /*
+        * If the current mac address is valid, assume it is a software override
+        * to the permanent address.
+        * Otherwise, use the permanent address from the eeprom.
+        */
+       if (!mac_addr_valid(hw->curr_mac_addr)) {
+
+               /* Get the MAC address from the eeprom for later reference */
+               ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
+
+               pr_debug("Keeping Permanent MAC Addr = %pM\n",
+                        hw->curr_mac_addr);
+       } else {
+
+               /* Setup the receive address. */
+               pr_debug("Overriding MAC Address in RAR[0]\n");
+               pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr);
+
+               ixgb_rar_set(hw, hw->curr_mac_addr, 0);
+       }
+
+       /* Zero out the other 15 receive addresses. */
+       pr_debug("Clearing RAR[1-15]\n");
+       for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
+               /* Write high reg first to disable the AV bit first */
+               IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+               IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+       }
+}
+
+/******************************************************************************
+ * Updates the MAC's list of multicast addresses.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr_list - the list of new multicast addresses
+ * mc_addr_count - number of addresses
+ * pad - number of bytes between addresses in the list
+ *
+ * The given list replaces any existing list. Clears the last 15 receive
+ * address registers and the multicast table. Uses receive address registers
+ * for the first 15 multicast addresses, and hashes the rest into the
+ * multicast table.
+ *****************************************************************************/
+void
+ixgb_mc_addr_list_update(struct ixgb_hw *hw,
+                         u8 *mc_addr_list,
+                         u32 mc_addr_count,
+                         u32 pad)
+{
+       u32 hash_value;
+       u32 i;
+       u32 rar_used_count = 1;         /* RAR[0] is used for our MAC address */
+       u8 *mca;
+
+       ENTER();
+
+       /* Set the new number of MC addresses that we are being requested to use. */
+       hw->num_mc_addrs = mc_addr_count;
+
+       /* Clear RAR[1-15] */
+       pr_debug("Clearing RAR[1-15]\n");
+       for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
+               IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+               IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+       }
+
+       /* Clear the MTA */
+       pr_debug("Clearing MTA\n");
+       for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
+               IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+       /* Add the new addresses */
+       mca = mc_addr_list;
+       for (i = 0; i < mc_addr_count; i++) {
+               pr_debug("Adding the multicast addresses:\n");
+               pr_debug("MC Addr #%d = %pM\n", i, mca);
+
+               /* Place this multicast address in the RAR if there is room, *
+                * else put it in the MTA
+                */
+               if (rar_used_count < IXGB_RAR_ENTRIES) {
+                       ixgb_rar_set(hw, mca, rar_used_count);
+                       pr_debug("Added a multicast address to RAR[%d]\n", i);
+                       rar_used_count++;
+               } else {
+                       hash_value = ixgb_hash_mc_addr(hw, mca);
+
+                       pr_debug("Hash value = 0x%03X\n", hash_value);
+
+                       ixgb_mta_set(hw, hash_value);
+               }
+
+               mca += ETH_ALEN + pad;
+       }
+
+       pr_debug("MC Update Complete\n");
+}
+
+/******************************************************************************
+ * Hashes an address to determine its location in the multicast table
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr - the multicast address to hash
+ *
+ * Returns:
+ *      The hash value
+ *****************************************************************************/
+static u32
+ixgb_hash_mc_addr(struct ixgb_hw *hw,
+                  u8 *mc_addr)
+{
+       u32 hash_value = 0;
+
+       ENTER();
+
+       /* The portion of the address that is used for the hash table is
+        * determined by the mc_filter_type setting.
+        */
+       switch (hw->mc_filter_type) {
+               /* [0] [1] [2] [3] [4] [5]
+                * 01  AA  00  12  34  56
+                * LSB                 MSB - According to H/W docs */
+       case 0:
+               /* [47:36] i.e. 0x563 for above example address */
+               hash_value =
+                   ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
+               break;
+       case 1:         /* [46:35] i.e. 0xAC6 for above example address */
+               hash_value =
+                   ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
+               break;
+       case 2:         /* [45:34] i.e. 0x5D8 for above example address */
+               hash_value =
+                   ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
+               break;
+       case 3:         /* [43:32] i.e. 0x634 for above example address */
+               hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
+               break;
+       default:
+               /* Invalid mc_filter_type, what should we do? */
+               pr_debug("MC filter type param set incorrectly\n");
+               ASSERT(0);
+               break;
+       }
+
+       hash_value &= 0xFFF;
+       return hash_value;
+}
+
+/******************************************************************************
+ * Sets the bit in the multicast table corresponding to the hash value.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * hash_value - Multicast address hash value
+ *****************************************************************************/
+static void
+ixgb_mta_set(struct ixgb_hw *hw,
+                 u32 hash_value)
+{
+       u32 hash_bit, hash_reg;
+       u32 mta_reg;
+
+       /* The MTA is a register array of 128 32-bit registers.
+        * It is treated like an array of 4096 bits.  We want to set
+        * bit BitArray[hash_value]. So we figure out what register
+        * the bit is in, read it, OR in the new bit, then write
+        * back the new value.  The register is determined by the
+        * upper 7 bits of the hash value and the bit within that
+        * register are determined by the lower 5 bits of the value.
+        */
+       hash_reg = (hash_value >> 5) & 0x7F;
+       hash_bit = hash_value & 0x1F;
+
+       mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
+
+       mta_reg |= (1 << hash_bit);
+
+       IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
+}
+
+/******************************************************************************
+ * Puts an ethernet address into a receive address register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * addr - Address to put into receive address register
+ * index - Receive address register to write
+ *****************************************************************************/
+void
+ixgb_rar_set(struct ixgb_hw *hw,
+                 u8 *addr,
+                 u32 index)
+{
+       u32 rar_low, rar_high;
+
+       ENTER();
+
+       /* HW expects these in little endian so we reverse the byte order
+        * from network order (big endian) to little endian
+        */
+       rar_low = ((u32) addr[0] |
+                  ((u32)addr[1] << 8) |
+                  ((u32)addr[2] << 16) |
+                  ((u32)addr[3] << 24));
+
+       rar_high = ((u32) addr[4] |
+                       ((u32)addr[5] << 8) |
+                       IXGB_RAH_AV);
+
+       IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+       IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+}
+
+/******************************************************************************
+ * Writes a value to the specified offset in the VLAN filter table.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - Offset in VLAN filer table to write
+ * value - Value to write into VLAN filter table
+ *****************************************************************************/
+void
+ixgb_write_vfta(struct ixgb_hw *hw,
+                u32 offset,
+                u32 value)
+{
+       IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+ixgb_clear_vfta(struct ixgb_hw *hw)
+{
+       u32 offset;
+
+       for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
+               IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+/******************************************************************************
+ * Configures the flow control settings based on SW configuration.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+
+static bool
+ixgb_setup_fc(struct ixgb_hw *hw)
+{
+       u32 ctrl_reg;
+       u32 pap_reg = 0;   /* by default, assume no pause time */
+       bool status = true;
+
+       ENTER();
+
+       /* Get the current control reg 0 settings */
+       ctrl_reg = IXGB_READ_REG(hw, CTRL0);
+
+       /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
+       ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
+
+       /* The possible values of the "flow_control" parameter are:
+        *      0:  Flow control is completely disabled
+        *      1:  Rx flow control is enabled (we can receive pause frames
+        *          but not send pause frames).
+        *      2:  Tx flow control is enabled (we can send pause frames
+        *          but we do not support receiving pause frames).
+        *      3:  Both Rx and TX flow control (symmetric) are enabled.
+        *  other:  Invalid.
+        */
+       switch (hw->fc.type) {
+       case ixgb_fc_none:      /* 0 */
+               /* Set CMDC bit to disable Rx Flow control */
+               ctrl_reg |= (IXGB_CTRL0_CMDC);
+               break;
+       case ixgb_fc_rx_pause:  /* 1 */
+               /* RX Flow control is enabled, and TX Flow control is
+                * disabled.
+                */
+               ctrl_reg |= (IXGB_CTRL0_RPE);
+               break;
+       case ixgb_fc_tx_pause:  /* 2 */
+               /* TX Flow control is enabled, and RX Flow control is
+                * disabled, by a software over-ride.
+                */
+               ctrl_reg |= (IXGB_CTRL0_TPE);
+               pap_reg = hw->fc.pause_time;
+               break;
+       case ixgb_fc_full:      /* 3 */
+               /* Flow control (both RX and TX) is enabled by a software
+                * over-ride.
+                */
+               ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
+               pap_reg = hw->fc.pause_time;
+               break;
+       default:
+               /* We should never get here.  The value should be 0-3. */
+               pr_debug("Flow control param set incorrectly\n");
+               ASSERT(0);
+               break;
+       }
+
+       /* Write the new settings */
+       IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
+
+       if (pap_reg != 0)
+               IXGB_WRITE_REG(hw, PAP, pap_reg);
+
+       /* Set the flow control receive threshold registers.  Normally,
+        * these registers will be set to a default threshold that may be
+        * adjusted later by the driver's runtime code.  However, if the
+        * ability to transmit pause frames in not enabled, then these
+        * registers will be set to 0.
+        */
+       if (!(hw->fc.type & ixgb_fc_tx_pause)) {
+               IXGB_WRITE_REG(hw, FCRTL, 0);
+               IXGB_WRITE_REG(hw, FCRTH, 0);
+       } else {
+          /* We need to set up the Receive Threshold high and low water
+           * marks as well as (optionally) enabling the transmission of XON
+           * frames. */
+               if (hw->fc.send_xon) {
+                       IXGB_WRITE_REG(hw, FCRTL,
+                               (hw->fc.low_water | IXGB_FCRTL_XONE));
+               } else {
+                       IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
+               }
+               IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
+       }
+       return status;
+}
+
+/******************************************************************************
+ * Reads a word from a device over the Management Data Interface (MDI) bus.
+ * This interface is used to manage Physical layer devices.
+ *
+ * hw          - Struct containing variables accessed by hw code
+ * reg_address - Offset of device register being read.
+ * phy_address - Address of device on MDI.
+ *
+ * Returns:  Data word (16 bits) from MDI device.
+ *
+ * The 82597EX has support for several MDI access methods.  This routine
+ * uses the new protocol MDI Single Command and Address Operation.
+ * This requires that first an address cycle command is sent, followed by a
+ * read command.
+ *****************************************************************************/
+static u16
+ixgb_read_phy_reg(struct ixgb_hw *hw,
+               u32 reg_address,
+               u32 phy_address,
+               u32 device_type)
+{
+       u32 i;
+       u32 data;
+       u32 command = 0;
+
+       ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
+       ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
+       ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
+
+       /* Setup and write the address cycle command */
+       command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
+                  (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
+                  (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
+                  (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
+
+       IXGB_WRITE_REG(hw, MSCA, command);
+
+    /**************************************************************
+    ** Check every 10 usec to see if the address cycle completed
+    ** The COMMAND bit will clear when the operation is complete.
+    ** This may take as long as 64 usecs (we'll wait 100 usecs max)
+    ** from the CPU Write to the Ready bit assertion.
+    **************************************************************/
+
+       for (i = 0; i < 10; i++)
+       {
+               udelay(10);
+
+               command = IXGB_READ_REG(hw, MSCA);
+
+               if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
+                       break;
+       }
+
+       ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
+
+       /* Address cycle complete, setup and write the read command */
+       command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
+                  (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
+                  (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
+                  (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
+
+       IXGB_WRITE_REG(hw, MSCA, command);
+
+    /**************************************************************
+    ** Check every 10 usec to see if the read command completed
+    ** The COMMAND bit will clear when the operation is complete.
+    ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
+    ** from the CPU Write to the Ready bit assertion.
+    **************************************************************/
+
+       for (i = 0; i < 10; i++)
+       {
+               udelay(10);
+
+               command = IXGB_READ_REG(hw, MSCA);
+
+               if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
+                       break;
+       }
+
+       ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
+
+       /* Operation is complete, get the data from the MDIO Read/Write Data
+        * register and return.
+        */
+       data = IXGB_READ_REG(hw, MSRWD);
+       data >>= IXGB_MSRWD_READ_DATA_SHIFT;
+       return((u16) data);
+}
+
+/******************************************************************************
+ * Writes a word to a device over the Management Data Interface (MDI) bus.
+ * This interface is used to manage Physical layer devices.
+ *
+ * hw          - Struct containing variables accessed by hw code
+ * reg_address - Offset of device register being read.
+ * phy_address - Address of device on MDI.
+ * device_type - Also known as the Device ID or DID.
+ * data        - 16-bit value to be written
+ *
+ * Returns:  void.
+ *
+ * The 82597EX has support for several MDI access methods.  This routine
+ * uses the new protocol MDI Single Command and Address Operation.
+ * This requires that first an address cycle command is sent, followed by a
+ * write command.
+ *****************************************************************************/
+static void
+ixgb_write_phy_reg(struct ixgb_hw *hw,
+                       u32 reg_address,
+                       u32 phy_address,
+                       u32 device_type,
+                       u16 data)
+{
+       u32 i;
+       u32 command = 0;
+
+       ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
+       ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
+       ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
+
+       /* Put the data in the MDIO Read/Write Data register */
+       IXGB_WRITE_REG(hw, MSRWD, (u32)data);
+
+       /* Setup and write the address cycle command */
+       command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
+                          (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
+                          (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
+                          (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
+
+       IXGB_WRITE_REG(hw, MSCA, command);
+
+       /**************************************************************
+       ** Check every 10 usec to see if the address cycle completed
+       ** The COMMAND bit will clear when the operation is complete.
+       ** This may take as long as 64 usecs (we'll wait 100 usecs max)
+       ** from the CPU Write to the Ready bit assertion.
+       **************************************************************/
+
+       for (i = 0; i < 10; i++)
+       {
+               udelay(10);
+
+               command = IXGB_READ_REG(hw, MSCA);
+
+               if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
+                       break;
+       }
+
+       ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
+
+       /* Address cycle complete, setup and write the write command */
+       command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
+                          (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
+                          (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
+                          (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
+
+       IXGB_WRITE_REG(hw, MSCA, command);
+
+       /**************************************************************
+       ** Check every 10 usec to see if the read command completed
+       ** The COMMAND bit will clear when the operation is complete.
+       ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
+       ** from the CPU Write to the Ready bit assertion.
+       **************************************************************/
+
+       for (i = 0; i < 10; i++)
+       {
+               udelay(10);
+
+               command = IXGB_READ_REG(hw, MSCA);
+
+               if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
+                       break;
+       }
+
+       ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
+
+       /* Operation is complete, return. */
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by hw code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+void
+ixgb_check_for_link(struct ixgb_hw *hw)
+{
+       u32 status_reg;
+       u32 xpcss_reg;
+
+       ENTER();
+
+       xpcss_reg = IXGB_READ_REG(hw, XPCSS);
+       status_reg = IXGB_READ_REG(hw, STATUS);
+
+       if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
+           (status_reg & IXGB_STATUS_LU)) {
+               hw->link_up = true;
+       } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
+                  (status_reg & IXGB_STATUS_LU)) {
+               pr_debug("XPCSS Not Aligned while Status:LU is set\n");
+               hw->link_up = ixgb_link_reset(hw);
+       } else {
+               /*
+                * 82597EX errata.  Since the lane deskew problem may prevent
+                * link, reset the link before reporting link down.
+                */
+               hw->link_up = ixgb_link_reset(hw);
+       }
+       /*  Anything else for 10 Gig?? */
+}
+
+/******************************************************************************
+ * Check for a bad link condition that may have occurred.
+ * The indication is that the RFC / LFC registers may be incrementing
+ * continually.  A full adapter reset is required to recover.
+ *
+ * hw - Struct containing variables accessed by hw code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
+{
+       u32 newLFC, newRFC;
+       bool bad_link_returncode = false;
+
+       if (hw->phy_type == ixgb_phy_type_txn17401) {
+               newLFC = IXGB_READ_REG(hw, LFC);
+               newRFC = IXGB_READ_REG(hw, RFC);
+               if ((hw->lastLFC + 250 < newLFC)
+                   || (hw->lastRFC + 250 < newRFC)) {
+                       pr_debug("BAD LINK! too many LFC/RFC since last check\n");
+                       bad_link_returncode = true;
+               }
+               hw->lastLFC = newLFC;
+               hw->lastRFC = newRFC;
+       }
+
+       return bad_link_returncode;
+}
+
+/******************************************************************************
+ * Clears all hardware statistics counters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
+{
+       volatile u32 temp_reg;
+
+       ENTER();
+
+       /* if we are stopped or resetting exit gracefully */
+       if (hw->adapter_stopped) {
+               pr_debug("Exiting because the adapter is stopped!!!\n");
+               return;
+       }
+
+       temp_reg = IXGB_READ_REG(hw, TPRL);
+       temp_reg = IXGB_READ_REG(hw, TPRH);
+       temp_reg = IXGB_READ_REG(hw, GPRCL);
+       temp_reg = IXGB_READ_REG(hw, GPRCH);
+       temp_reg = IXGB_READ_REG(hw, BPRCL);
+       temp_reg = IXGB_READ_REG(hw, BPRCH);
+       temp_reg = IXGB_READ_REG(hw, MPRCL);
+       temp_reg = IXGB_READ_REG(hw, MPRCH);
+       temp_reg = IXGB_READ_REG(hw, UPRCL);
+       temp_reg = IXGB_READ_REG(hw, UPRCH);
+       temp_reg = IXGB_READ_REG(hw, VPRCL);
+       temp_reg = IXGB_READ_REG(hw, VPRCH);
+       temp_reg = IXGB_READ_REG(hw, JPRCL);
+       temp_reg = IXGB_READ_REG(hw, JPRCH);
+       temp_reg = IXGB_READ_REG(hw, GORCL);
+       temp_reg = IXGB_READ_REG(hw, GORCH);
+       temp_reg = IXGB_READ_REG(hw, TORL);
+       temp_reg = IXGB_READ_REG(hw, TORH);
+       temp_reg = IXGB_READ_REG(hw, RNBC);
+       temp_reg = IXGB_READ_REG(hw, RUC);
+       temp_reg = IXGB_READ_REG(hw, ROC);
+       temp_reg = IXGB_READ_REG(hw, RLEC);
+       temp_reg = IXGB_READ_REG(hw, CRCERRS);
+       temp_reg = IXGB_READ_REG(hw, ICBC);
+       temp_reg = IXGB_READ_REG(hw, ECBC);
+       temp_reg = IXGB_READ_REG(hw, MPC);
+       temp_reg = IXGB_READ_REG(hw, TPTL);
+       temp_reg = IXGB_READ_REG(hw, TPTH);
+       temp_reg = IXGB_READ_REG(hw, GPTCL);
+       temp_reg = IXGB_READ_REG(hw, GPTCH);
+       temp_reg = IXGB_READ_REG(hw, BPTCL);
+       temp_reg = IXGB_READ_REG(hw, BPTCH);
+       temp_reg = IXGB_READ_REG(hw, MPTCL);
+       temp_reg = IXGB_READ_REG(hw, MPTCH);
+       temp_reg = IXGB_READ_REG(hw, UPTCL);
+       temp_reg = IXGB_READ_REG(hw, UPTCH);
+       temp_reg = IXGB_READ_REG(hw, VPTCL);
+       temp_reg = IXGB_READ_REG(hw, VPTCH);
+       temp_reg = IXGB_READ_REG(hw, JPTCL);
+       temp_reg = IXGB_READ_REG(hw, JPTCH);
+       temp_reg = IXGB_READ_REG(hw, GOTCL);
+       temp_reg = IXGB_READ_REG(hw, GOTCH);
+       temp_reg = IXGB_READ_REG(hw, TOTL);
+       temp_reg = IXGB_READ_REG(hw, TOTH);
+       temp_reg = IXGB_READ_REG(hw, DC);
+       temp_reg = IXGB_READ_REG(hw, PLT64C);
+       temp_reg = IXGB_READ_REG(hw, TSCTC);
+       temp_reg = IXGB_READ_REG(hw, TSCTFC);
+       temp_reg = IXGB_READ_REG(hw, IBIC);
+       temp_reg = IXGB_READ_REG(hw, RFC);
+       temp_reg = IXGB_READ_REG(hw, LFC);
+       temp_reg = IXGB_READ_REG(hw, PFRC);
+       temp_reg = IXGB_READ_REG(hw, PFTC);
+       temp_reg = IXGB_READ_REG(hw, MCFRC);
+       temp_reg = IXGB_READ_REG(hw, MCFTC);
+       temp_reg = IXGB_READ_REG(hw, XONRXC);
+       temp_reg = IXGB_READ_REG(hw, XONTXC);
+       temp_reg = IXGB_READ_REG(hw, XOFFRXC);
+       temp_reg = IXGB_READ_REG(hw, XOFFTXC);
+       temp_reg = IXGB_READ_REG(hw, RJC);
+}
+
+/******************************************************************************
+ * Turns on the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+ixgb_led_on(struct ixgb_hw *hw)
+{
+       u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
+
+       /* To turn on the LED, clear software-definable pin 0 (SDP0). */
+       ctrl0_reg &= ~IXGB_CTRL0_SDP0;
+       IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
+}
+
+/******************************************************************************
+ * Turns off the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+ixgb_led_off(struct ixgb_hw *hw)
+{
+       u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
+
+       /* To turn off the LED, set software-definable pin 0 (SDP0). */
+       ctrl0_reg |= IXGB_CTRL0_SDP0;
+       IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
+}
+
+/******************************************************************************
+ * Gets the current PCI bus type, speed, and width of the hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+ixgb_get_bus_info(struct ixgb_hw *hw)
+{
+       u32 status_reg;
+
+       status_reg = IXGB_READ_REG(hw, STATUS);
+
+       hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
+               ixgb_bus_type_pcix : ixgb_bus_type_pci;
+
+       if (hw->bus.type == ixgb_bus_type_pci) {
+               hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
+                       ixgb_bus_speed_66 : ixgb_bus_speed_33;
+       } else {
+               switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
+               case IXGB_STATUS_PCIX_SPD_66:
+                       hw->bus.speed = ixgb_bus_speed_66;
+                       break;
+               case IXGB_STATUS_PCIX_SPD_100:
+                       hw->bus.speed = ixgb_bus_speed_100;
+                       break;
+               case IXGB_STATUS_PCIX_SPD_133:
+                       hw->bus.speed = ixgb_bus_speed_133;
+                       break;
+               default:
+                       hw->bus.speed = ixgb_bus_speed_reserved;
+                       break;
+               }
+       }
+
+       hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
+               ixgb_bus_width_64 : ixgb_bus_width_32;
+}
+
+/******************************************************************************
+ * Tests a MAC address to ensure it is a valid Individual Address
+ *
+ * mac_addr - pointer to MAC address.
+ *
+ *****************************************************************************/
+static bool
+mac_addr_valid(u8 *mac_addr)
+{
+       bool is_valid = true;
+       ENTER();
+
+       /* Make sure it is not a multicast address */
+       if (is_multicast_ether_addr(mac_addr)) {
+               pr_debug("MAC address is multicast\n");
+               is_valid = false;
+       }
+       /* Not a broadcast address */
+       else if (is_broadcast_ether_addr(mac_addr)) {
+               pr_debug("MAC address is broadcast\n");
+               is_valid = false;
+       }
+       /* Reject the zero address */
+       else if (is_zero_ether_addr(mac_addr)) {
+               pr_debug("MAC address is all zeros\n");
+               is_valid = false;
+       }
+       return is_valid;
+}
+
+/******************************************************************************
+ * Resets the 10GbE link.  Waits the settle time and returns the state of
+ * the link.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static bool
+ixgb_link_reset(struct ixgb_hw *hw)
+{
+       bool link_status = false;
+       u8 wait_retries = MAX_RESET_ITERATIONS;
+       u8 lrst_retries = MAX_RESET_ITERATIONS;
+
+       do {
+               /* Reset the link */
+               IXGB_WRITE_REG(hw, CTRL0,
+                              IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
+
+               /* Wait for link-up and lane re-alignment */
+               do {
+                       udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
+                       link_status =
+                           ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
+                            && (IXGB_READ_REG(hw, XPCSS) &
+                                IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
+               } while (!link_status && --wait_retries);
+
+       } while (!link_status && --lrst_retries);
+
+       return link_status;
+}
+
+/******************************************************************************
+ * Resets the 10GbE optics module.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+ixgb_optics_reset(struct ixgb_hw *hw)
+{
+       if (hw->phy_type == ixgb_phy_type_txn17401) {
+               u16 mdio_reg;
+
+               ixgb_write_phy_reg(hw,
+                                  MDIO_CTRL1,
+                                  IXGB_PHY_ADDRESS,
+                                  MDIO_MMD_PMAPMD,
+                                  MDIO_CTRL1_RESET);
+
+               mdio_reg = ixgb_read_phy_reg(hw,
+                                            MDIO_CTRL1,
+                                            IXGB_PHY_ADDRESS,
+                                            MDIO_MMD_PMAPMD);
+       }
+}
+
+/******************************************************************************
+ * Resets the 10GbE optics module for Sun variant NIC.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+
+#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG         0xC803
+#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL     0x0164
+#define   IXGB_BCM8704_USER_CTRL_REG                0xC800
+#define   IXGB_BCM8704_USER_CTRL_REG_VAL            0x7FBF
+#define   IXGB_BCM8704_USER_DEV3_ADDR               0x0003
+#define   IXGB_SUN_PHY_ADDRESS                      0x0000
+#define   IXGB_SUN_PHY_RESET_DELAY                     305
+
+static void
+ixgb_optics_reset_bcm(struct ixgb_hw *hw)
+{
+       u32 ctrl = IXGB_READ_REG(hw, CTRL0);
+       ctrl &= ~IXGB_CTRL0_SDP2;
+       ctrl |= IXGB_CTRL0_SDP3;
+       IXGB_WRITE_REG(hw, CTRL0, ctrl);
+       IXGB_WRITE_FLUSH(hw);
+
+       /* SerDes needs extra delay */
+       msleep(IXGB_SUN_PHY_RESET_DELAY);
+
+       /* Broadcom 7408L configuration */
+       /* Reference clock config */
+       ixgb_write_phy_reg(hw,
+                          IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
+                          IXGB_SUN_PHY_ADDRESS,
+                          IXGB_BCM8704_USER_DEV3_ADDR,
+                          IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
+       /*  we must read the registers twice */
+       ixgb_read_phy_reg(hw,
+                         IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
+                         IXGB_SUN_PHY_ADDRESS,
+                         IXGB_BCM8704_USER_DEV3_ADDR);
+       ixgb_read_phy_reg(hw,
+                         IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
+                         IXGB_SUN_PHY_ADDRESS,
+                         IXGB_BCM8704_USER_DEV3_ADDR);
+
+       ixgb_write_phy_reg(hw,
+                          IXGB_BCM8704_USER_CTRL_REG,
+                          IXGB_SUN_PHY_ADDRESS,
+                          IXGB_BCM8704_USER_DEV3_ADDR,
+                          IXGB_BCM8704_USER_CTRL_REG_VAL);
+       ixgb_read_phy_reg(hw,
+                         IXGB_BCM8704_USER_CTRL_REG,
+                         IXGB_SUN_PHY_ADDRESS,
+                         IXGB_BCM8704_USER_DEV3_ADDR);
+       ixgb_read_phy_reg(hw,
+                         IXGB_BCM8704_USER_CTRL_REG,
+                         IXGB_SUN_PHY_ADDRESS,
+                         IXGB_BCM8704_USER_DEV3_ADDR);
+
+       /* SerDes needs extra delay */
+       msleep(IXGB_SUN_PHY_RESET_DELAY);
+}