Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / e1000e / nvm.c
diff --git a/kernel/drivers/net/ethernet/intel/e1000e/nvm.c b/kernel/drivers/net/ethernet/intel/e1000e/nvm.c
new file mode 100644 (file)
index 0000000..fa6b103
--- /dev/null
@@ -0,0 +1,633 @@
+/* Intel PRO/1000 Linux driver
+ * Copyright(c) 1999 - 2014 Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * The full GNU General Public License is included in this distribution in
+ * the file called "COPYING".
+ *
+ * Contact Information:
+ * Linux NICS <linux.nics@intel.com>
+ * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+ * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+ */
+
+#include "e1000.h"
+
+/**
+ *  e1000_raise_eec_clk - Raise EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+       *eecd = *eecd | E1000_EECD_SK;
+       ew32(EECD, *eecd);
+       e1e_flush();
+       udelay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_lower_eec_clk - Lower EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+       *eecd = *eecd & ~E1000_EECD_SK;
+       ew32(EECD, *eecd);
+       e1e_flush();
+       udelay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the EEPROM
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
+ *  "data" parameter will be shifted out to the EEPROM one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 eecd = er32(EECD);
+       u32 mask;
+
+       mask = 0x01 << (count - 1);
+       if (nvm->type == e1000_nvm_eeprom_spi)
+               eecd |= E1000_EECD_DO;
+
+       do {
+               eecd &= ~E1000_EECD_DI;
+
+               if (data & mask)
+                       eecd |= E1000_EECD_DI;
+
+               ew32(EECD, eecd);
+               e1e_flush();
+
+               udelay(nvm->delay_usec);
+
+               e1000_raise_eec_clk(hw, &eecd);
+               e1000_lower_eec_clk(hw, &eecd);
+
+               mask >>= 1;
+       } while (mask);
+
+       eecd &= ~E1000_EECD_DI;
+       ew32(EECD, eecd);
+}
+
+/**
+ *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @count: number of bits to shift in
+ *
+ *  In order to read a register from the EEPROM, we need to shift 'count' bits
+ *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
+ *  the EEPROM (setting the SK bit), and then reading the value of the data out
+ *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
+ *  always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+       u32 eecd;
+       u32 i;
+       u16 data;
+
+       eecd = er32(EECD);
+       eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+       data = 0;
+
+       for (i = 0; i < count; i++) {
+               data <<= 1;
+               e1000_raise_eec_clk(hw, &eecd);
+
+               eecd = er32(EECD);
+
+               eecd &= ~E1000_EECD_DI;
+               if (eecd & E1000_EECD_DO)
+                       data |= 1;
+
+               e1000_lower_eec_clk(hw, &eecd);
+       }
+
+       return data;
+}
+
+/**
+ *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ *  @hw: pointer to the HW structure
+ *  @ee_reg: EEPROM flag for polling
+ *
+ *  Polls the EEPROM status bit for either read or write completion based
+ *  upon the value of 'ee_reg'.
+ **/
+s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+       u32 attempts = 100000;
+       u32 i, reg = 0;
+
+       for (i = 0; i < attempts; i++) {
+               if (ee_reg == E1000_NVM_POLL_READ)
+                       reg = er32(EERD);
+               else
+                       reg = er32(EEWR);
+
+               if (reg & E1000_NVM_RW_REG_DONE)
+                       return 0;
+
+               udelay(5);
+       }
+
+       return -E1000_ERR_NVM;
+}
+
+/**
+ *  e1000e_acquire_nvm - Generic request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000e_acquire_nvm(struct e1000_hw *hw)
+{
+       u32 eecd = er32(EECD);
+       s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+
+       ew32(EECD, eecd | E1000_EECD_REQ);
+       eecd = er32(EECD);
+
+       while (timeout) {
+               if (eecd & E1000_EECD_GNT)
+                       break;
+               udelay(5);
+               eecd = er32(EECD);
+               timeout--;
+       }
+
+       if (!timeout) {
+               eecd &= ~E1000_EECD_REQ;
+               ew32(EECD, eecd);
+               e_dbg("Could not acquire NVM grant\n");
+               return -E1000_ERR_NVM;
+       }
+
+       return 0;
+}
+
+/**
+ *  e1000_standby_nvm - Return EEPROM to standby state
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 eecd = er32(EECD);
+
+       if (nvm->type == e1000_nvm_eeprom_spi) {
+               /* Toggle CS to flush commands */
+               eecd |= E1000_EECD_CS;
+               ew32(EECD, eecd);
+               e1e_flush();
+               udelay(nvm->delay_usec);
+               eecd &= ~E1000_EECD_CS;
+               ew32(EECD, eecd);
+               e1e_flush();
+               udelay(nvm->delay_usec);
+       }
+}
+
+/**
+ *  e1000_stop_nvm - Terminate EEPROM command
+ *  @hw: pointer to the HW structure
+ *
+ *  Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+static void e1000_stop_nvm(struct e1000_hw *hw)
+{
+       u32 eecd;
+
+       eecd = er32(EECD);
+       if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+               /* Pull CS high */
+               eecd |= E1000_EECD_CS;
+               e1000_lower_eec_clk(hw, &eecd);
+       }
+}
+
+/**
+ *  e1000e_release_nvm - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000e_release_nvm(struct e1000_hw *hw)
+{
+       u32 eecd;
+
+       e1000_stop_nvm(hw);
+
+       eecd = er32(EECD);
+       eecd &= ~E1000_EECD_REQ;
+       ew32(EECD, eecd);
+}
+
+/**
+ *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 eecd = er32(EECD);
+       u8 spi_stat_reg;
+
+       if (nvm->type == e1000_nvm_eeprom_spi) {
+               u16 timeout = NVM_MAX_RETRY_SPI;
+
+               /* Clear SK and CS */
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+               ew32(EECD, eecd);
+               e1e_flush();
+               udelay(1);
+
+               /* Read "Status Register" repeatedly until the LSB is cleared.
+                * The EEPROM will signal that the command has been completed
+                * by clearing bit 0 of the internal status register.  If it's
+                * not cleared within 'timeout', then error out.
+                */
+               while (timeout) {
+                       e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+                                                hw->nvm.opcode_bits);
+                       spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+                       if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+                               break;
+
+                       udelay(5);
+                       e1000_standby_nvm(hw);
+                       timeout--;
+               }
+
+               if (!timeout) {
+                       e_dbg("SPI NVM Status error\n");
+                       return -E1000_ERR_NVM;
+               }
+       }
+
+       return 0;
+}
+
+/**
+ *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 i, eerd = 0;
+       s32 ret_val = 0;
+
+       /* A check for invalid values:  offset too large, too many words,
+        * too many words for the offset, and not enough words.
+        */
+       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+           (words == 0)) {
+               e_dbg("nvm parameter(s) out of bounds\n");
+               return -E1000_ERR_NVM;
+       }
+
+       for (i = 0; i < words; i++) {
+               eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
+                   E1000_NVM_RW_REG_START;
+
+               ew32(EERD, eerd);
+               ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+               if (ret_val) {
+                       e_dbg("NVM read error: %d\n", ret_val);
+                       break;
+               }
+
+               data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000e_write_nvm_spi - Write to EEPROM using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000e_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       s32 ret_val = -E1000_ERR_NVM;
+       u16 widx = 0;
+
+       /* A check for invalid values:  offset too large, too many words,
+        * and not enough words.
+        */
+       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+           (words == 0)) {
+               e_dbg("nvm parameter(s) out of bounds\n");
+               return -E1000_ERR_NVM;
+       }
+
+       while (widx < words) {
+               u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+               ret_val = nvm->ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = e1000_ready_nvm_eeprom(hw);
+               if (ret_val) {
+                       nvm->ops.release(hw);
+                       return ret_val;
+               }
+
+               e1000_standby_nvm(hw);
+
+               /* Send the WRITE ENABLE command (8 bit opcode) */
+               e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+                                        nvm->opcode_bits);
+
+               e1000_standby_nvm(hw);
+
+               /* Some SPI eeproms use the 8th address bit embedded in the
+                * opcode
+                */
+               if ((nvm->address_bits == 8) && (offset >= 128))
+                       write_opcode |= NVM_A8_OPCODE_SPI;
+
+               /* Send the Write command (8-bit opcode + addr) */
+               e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+               e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+                                        nvm->address_bits);
+
+               /* Loop to allow for up to whole page write of eeprom */
+               while (widx < words) {
+                       u16 word_out = data[widx];
+
+                       word_out = (word_out >> 8) | (word_out << 8);
+                       e1000_shift_out_eec_bits(hw, word_out, 16);
+                       widx++;
+
+                       if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+                               e1000_standby_nvm(hw);
+                               break;
+                       }
+               }
+               usleep_range(10000, 20000);
+               nvm->ops.release(hw);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_read_pba_string_generic - Read device part number
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *  @pba_num_size: size of part number buffer
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ **/
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+                                 u32 pba_num_size)
+{
+       s32 ret_val;
+       u16 nvm_data;
+       u16 pba_ptr;
+       u16 offset;
+       u16 length;
+
+       if (pba_num == NULL) {
+               e_dbg("PBA string buffer was null\n");
+               return -E1000_ERR_INVALID_ARGUMENT;
+       }
+
+       ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+       if (ret_val) {
+               e_dbg("NVM Read Error\n");
+               return ret_val;
+       }
+
+       ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+       if (ret_val) {
+               e_dbg("NVM Read Error\n");
+               return ret_val;
+       }
+
+       /* if nvm_data is not ptr guard the PBA must be in legacy format which
+        * means pba_ptr is actually our second data word for the PBA number
+        * and we can decode it into an ascii string
+        */
+       if (nvm_data != NVM_PBA_PTR_GUARD) {
+               e_dbg("NVM PBA number is not stored as string\n");
+
+               /* make sure callers buffer is big enough to store the PBA */
+               if (pba_num_size < E1000_PBANUM_LENGTH) {
+                       e_dbg("PBA string buffer too small\n");
+                       return E1000_ERR_NO_SPACE;
+               }
+
+               /* extract hex string from data and pba_ptr */
+               pba_num[0] = (nvm_data >> 12) & 0xF;
+               pba_num[1] = (nvm_data >> 8) & 0xF;
+               pba_num[2] = (nvm_data >> 4) & 0xF;
+               pba_num[3] = nvm_data & 0xF;
+               pba_num[4] = (pba_ptr >> 12) & 0xF;
+               pba_num[5] = (pba_ptr >> 8) & 0xF;
+               pba_num[6] = '-';
+               pba_num[7] = 0;
+               pba_num[8] = (pba_ptr >> 4) & 0xF;
+               pba_num[9] = pba_ptr & 0xF;
+
+               /* put a null character on the end of our string */
+               pba_num[10] = '\0';
+
+               /* switch all the data but the '-' to hex char */
+               for (offset = 0; offset < 10; offset++) {
+                       if (pba_num[offset] < 0xA)
+                               pba_num[offset] += '0';
+                       else if (pba_num[offset] < 0x10)
+                               pba_num[offset] += 'A' - 0xA;
+               }
+
+               return 0;
+       }
+
+       ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
+       if (ret_val) {
+               e_dbg("NVM Read Error\n");
+               return ret_val;
+       }
+
+       if (length == 0xFFFF || length == 0) {
+               e_dbg("NVM PBA number section invalid length\n");
+               return -E1000_ERR_NVM_PBA_SECTION;
+       }
+       /* check if pba_num buffer is big enough */
+       if (pba_num_size < (((u32)length * 2) - 1)) {
+               e_dbg("PBA string buffer too small\n");
+               return -E1000_ERR_NO_SPACE;
+       }
+
+       /* trim pba length from start of string */
+       pba_ptr++;
+       length--;
+
+       for (offset = 0; offset < length; offset++) {
+               ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
+               if (ret_val) {
+                       e_dbg("NVM Read Error\n");
+                       return ret_val;
+               }
+               pba_num[offset * 2] = (u8)(nvm_data >> 8);
+               pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
+       }
+       pba_num[offset * 2] = '\0';
+
+       return 0;
+}
+
+/**
+ *  e1000_read_mac_addr_generic - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ *  Since devices with two ports use the same EEPROM, we increment the
+ *  last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+       u32 rar_high;
+       u32 rar_low;
+       u16 i;
+
+       rar_high = er32(RAH(0));
+       rar_low = er32(RAL(0));
+
+       for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+               hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
+
+       for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+               hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
+
+       for (i = 0; i < ETH_ALEN; i++)
+               hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+       return 0;
+}
+
+/**
+ *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 checksum = 0;
+       u16 i, nvm_data;
+
+       for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+               ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+               if (ret_val) {
+                       e_dbg("NVM Read Error\n");
+                       return ret_val;
+               }
+               checksum += nvm_data;
+       }
+
+       if (checksum != (u16)NVM_SUM) {
+               e_dbg("NVM Checksum Invalid\n");
+               return -E1000_ERR_NVM;
+       }
+
+       return 0;
+}
+
+/**
+ *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 checksum = 0;
+       u16 i, nvm_data;
+
+       for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+               ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+               if (ret_val) {
+                       e_dbg("NVM Read Error while updating checksum.\n");
+                       return ret_val;
+               }
+               checksum += nvm_data;
+       }
+       checksum = (u16)NVM_SUM - checksum;
+       ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+       if (ret_val)
+               e_dbg("NVM Write Error while updating checksum.\n");
+
+       return ret_val;
+}
+
+/**
+ *  e1000e_reload_nvm_generic - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+void e1000e_reload_nvm_generic(struct e1000_hw *hw)
+{
+       u32 ctrl_ext;
+
+       usleep_range(10, 20);
+       ctrl_ext = er32(CTRL_EXT);
+       ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+       ew32(CTRL_EXT, ctrl_ext);
+       e1e_flush();
+}