Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / chelsio / cxgb4vf / sge.c
diff --git a/kernel/drivers/net/ethernet/chelsio/cxgb4vf/sge.c b/kernel/drivers/net/ethernet/chelsio/cxgb4vf/sge.c
new file mode 100644 (file)
index 0000000..482f6de
--- /dev/null
@@ -0,0 +1,2655 @@
+/*
+ * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
+ * driver for Linux.
+ *
+ * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/skbuff.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/if_vlan.h>
+#include <linux/ip.h>
+#include <net/ipv6.h>
+#include <net/tcp.h>
+#include <linux/dma-mapping.h>
+#include <linux/prefetch.h>
+
+#include "t4vf_common.h"
+#include "t4vf_defs.h"
+
+#include "../cxgb4/t4_regs.h"
+#include "../cxgb4/t4_values.h"
+#include "../cxgb4/t4fw_api.h"
+#include "../cxgb4/t4_msg.h"
+
+/*
+ * Constants ...
+ */
+enum {
+       /*
+        * Egress Queue sizes, producer and consumer indices are all in units
+        * of Egress Context Units bytes.  Note that as far as the hardware is
+        * concerned, the free list is an Egress Queue (the host produces free
+        * buffers which the hardware consumes) and free list entries are
+        * 64-bit PCI DMA addresses.
+        */
+       EQ_UNIT = SGE_EQ_IDXSIZE,
+       FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
+       TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
+
+       /*
+        * Max number of TX descriptors we clean up at a time.  Should be
+        * modest as freeing skbs isn't cheap and it happens while holding
+        * locks.  We just need to free packets faster than they arrive, we
+        * eventually catch up and keep the amortized cost reasonable.
+        */
+       MAX_TX_RECLAIM = 16,
+
+       /*
+        * Max number of Rx buffers we replenish at a time.  Again keep this
+        * modest, allocating buffers isn't cheap either.
+        */
+       MAX_RX_REFILL = 16,
+
+       /*
+        * Period of the Rx queue check timer.  This timer is infrequent as it
+        * has something to do only when the system experiences severe memory
+        * shortage.
+        */
+       RX_QCHECK_PERIOD = (HZ / 2),
+
+       /*
+        * Period of the TX queue check timer and the maximum number of TX
+        * descriptors to be reclaimed by the TX timer.
+        */
+       TX_QCHECK_PERIOD = (HZ / 2),
+       MAX_TIMER_TX_RECLAIM = 100,
+
+       /*
+        * Suspend an Ethernet TX queue with fewer available descriptors than
+        * this.  We always want to have room for a maximum sized packet:
+        * inline immediate data + MAX_SKB_FRAGS. This is the same as
+        * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
+        * (see that function and its helpers for a description of the
+        * calculation).
+        */
+       ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
+       ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
+                                  ((ETHTXQ_MAX_FRAGS-1) & 1) +
+                                  2),
+       ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
+                         sizeof(struct cpl_tx_pkt_lso_core) +
+                         sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
+       ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
+
+       ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
+
+       /*
+        * Max TX descriptor space we allow for an Ethernet packet to be
+        * inlined into a WR.  This is limited by the maximum value which
+        * we can specify for immediate data in the firmware Ethernet TX
+        * Work Request.
+        */
+       MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
+
+       /*
+        * Max size of a WR sent through a control TX queue.
+        */
+       MAX_CTRL_WR_LEN = 256,
+
+       /*
+        * Maximum amount of data which we'll ever need to inline into a
+        * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
+        */
+       MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
+                         ? MAX_IMM_TX_PKT_LEN
+                         : MAX_CTRL_WR_LEN),
+
+       /*
+        * For incoming packets less than RX_COPY_THRES, we copy the data into
+        * an skb rather than referencing the data.  We allocate enough
+        * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
+        * of the data (header).
+        */
+       RX_COPY_THRES = 256,
+       RX_PULL_LEN = 128,
+
+       /*
+        * Main body length for sk_buffs used for RX Ethernet packets with
+        * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
+        * pskb_may_pull() some room.
+        */
+       RX_SKB_LEN = 512,
+};
+
+/*
+ * Software state per TX descriptor.
+ */
+struct tx_sw_desc {
+       struct sk_buff *skb;            /* socket buffer of TX data source */
+       struct ulptx_sgl *sgl;          /* scatter/gather list in TX Queue */
+};
+
+/*
+ * Software state per RX Free List descriptor.  We keep track of the allocated
+ * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
+ * page size and its PCI DMA mapped state are stored in the low bits of the
+ * PCI DMA address as per below.
+ */
+struct rx_sw_desc {
+       struct page *page;              /* Free List page buffer */
+       dma_addr_t dma_addr;            /* PCI DMA address (if mapped) */
+                                       /*   and flags (see below) */
+};
+
+/*
+ * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
+ * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
+ * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
+ * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
+ * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
+ * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
+ * maintained in an inverse sense so the hardware never sees that bit high.
+ */
+enum {
+       RX_LARGE_BUF    = 1 << 0,       /* buffer is SGE_FL_BUFFER_SIZE[1] */
+       RX_UNMAPPED_BUF = 1 << 1,       /* buffer is not mapped */
+};
+
+/**
+ *     get_buf_addr - return DMA buffer address of software descriptor
+ *     @sdesc: pointer to the software buffer descriptor
+ *
+ *     Return the DMA buffer address of a software descriptor (stripping out
+ *     our low-order flag bits).
+ */
+static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
+{
+       return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
+}
+
+/**
+ *     is_buf_mapped - is buffer mapped for DMA?
+ *     @sdesc: pointer to the software buffer descriptor
+ *
+ *     Determine whether the buffer associated with a software descriptor in
+ *     mapped for DMA or not.
+ */
+static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
+{
+       return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
+}
+
+/**
+ *     need_skb_unmap - does the platform need unmapping of sk_buffs?
+ *
+ *     Returns true if the platform needs sk_buff unmapping.  The compiler
+ *     optimizes away unnecessary code if this returns true.
+ */
+static inline int need_skb_unmap(void)
+{
+#ifdef CONFIG_NEED_DMA_MAP_STATE
+       return 1;
+#else
+       return 0;
+#endif
+}
+
+/**
+ *     txq_avail - return the number of available slots in a TX queue
+ *     @tq: the TX queue
+ *
+ *     Returns the number of available descriptors in a TX queue.
+ */
+static inline unsigned int txq_avail(const struct sge_txq *tq)
+{
+       return tq->size - 1 - tq->in_use;
+}
+
+/**
+ *     fl_cap - return the capacity of a Free List
+ *     @fl: the Free List
+ *
+ *     Returns the capacity of a Free List.  The capacity is less than the
+ *     size because an Egress Queue Index Unit worth of descriptors needs to
+ *     be left unpopulated, otherwise the Producer and Consumer indices PIDX
+ *     and CIDX will match and the hardware will think the FL is empty.
+ */
+static inline unsigned int fl_cap(const struct sge_fl *fl)
+{
+       return fl->size - FL_PER_EQ_UNIT;
+}
+
+/**
+ *     fl_starving - return whether a Free List is starving.
+ *     @adapter: pointer to the adapter
+ *     @fl: the Free List
+ *
+ *     Tests specified Free List to see whether the number of buffers
+ *     available to the hardware has falled below our "starvation"
+ *     threshold.
+ */
+static inline bool fl_starving(const struct adapter *adapter,
+                              const struct sge_fl *fl)
+{
+       const struct sge *s = &adapter->sge;
+
+       return fl->avail - fl->pend_cred <= s->fl_starve_thres;
+}
+
+/**
+ *     map_skb -  map an skb for DMA to the device
+ *     @dev: the egress net device
+ *     @skb: the packet to map
+ *     @addr: a pointer to the base of the DMA mapping array
+ *
+ *     Map an skb for DMA to the device and return an array of DMA addresses.
+ */
+static int map_skb(struct device *dev, const struct sk_buff *skb,
+                  dma_addr_t *addr)
+{
+       const skb_frag_t *fp, *end;
+       const struct skb_shared_info *si;
+
+       *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
+       if (dma_mapping_error(dev, *addr))
+               goto out_err;
+
+       si = skb_shinfo(skb);
+       end = &si->frags[si->nr_frags];
+       for (fp = si->frags; fp < end; fp++) {
+               *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
+                                          DMA_TO_DEVICE);
+               if (dma_mapping_error(dev, *addr))
+                       goto unwind;
+       }
+       return 0;
+
+unwind:
+       while (fp-- > si->frags)
+               dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
+       dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
+
+out_err:
+       return -ENOMEM;
+}
+
+static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
+                     const struct ulptx_sgl *sgl, const struct sge_txq *tq)
+{
+       const struct ulptx_sge_pair *p;
+       unsigned int nfrags = skb_shinfo(skb)->nr_frags;
+
+       if (likely(skb_headlen(skb)))
+               dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
+                                be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
+       else {
+               dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
+                              be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
+               nfrags--;
+       }
+
+       /*
+        * the complexity below is because of the possibility of a wrap-around
+        * in the middle of an SGL
+        */
+       for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
+               if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
+unmap:
+                       dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
+                                      be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
+                       dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
+                                      be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
+                       p++;
+               } else if ((u8 *)p == (u8 *)tq->stat) {
+                       p = (const struct ulptx_sge_pair *)tq->desc;
+                       goto unmap;
+               } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
+                       const __be64 *addr = (const __be64 *)tq->desc;
+
+                       dma_unmap_page(dev, be64_to_cpu(addr[0]),
+                                      be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
+                       dma_unmap_page(dev, be64_to_cpu(addr[1]),
+                                      be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
+                       p = (const struct ulptx_sge_pair *)&addr[2];
+               } else {
+                       const __be64 *addr = (const __be64 *)tq->desc;
+
+                       dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
+                                      be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
+                       dma_unmap_page(dev, be64_to_cpu(addr[0]),
+                                      be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
+                       p = (const struct ulptx_sge_pair *)&addr[1];
+               }
+       }
+       if (nfrags) {
+               __be64 addr;
+
+               if ((u8 *)p == (u8 *)tq->stat)
+                       p = (const struct ulptx_sge_pair *)tq->desc;
+               addr = ((u8 *)p + 16 <= (u8 *)tq->stat
+                       ? p->addr[0]
+                       : *(const __be64 *)tq->desc);
+               dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
+                              DMA_TO_DEVICE);
+       }
+}
+
+/**
+ *     free_tx_desc - reclaims TX descriptors and their buffers
+ *     @adapter: the adapter
+ *     @tq: the TX queue to reclaim descriptors from
+ *     @n: the number of descriptors to reclaim
+ *     @unmap: whether the buffers should be unmapped for DMA
+ *
+ *     Reclaims TX descriptors from an SGE TX queue and frees the associated
+ *     TX buffers.  Called with the TX queue lock held.
+ */
+static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
+                        unsigned int n, bool unmap)
+{
+       struct tx_sw_desc *sdesc;
+       unsigned int cidx = tq->cidx;
+       struct device *dev = adapter->pdev_dev;
+
+       const int need_unmap = need_skb_unmap() && unmap;
+
+       sdesc = &tq->sdesc[cidx];
+       while (n--) {
+               /*
+                * If we kept a reference to the original TX skb, we need to
+                * unmap it from PCI DMA space (if required) and free it.
+                */
+               if (sdesc->skb) {
+                       if (need_unmap)
+                               unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
+                       dev_consume_skb_any(sdesc->skb);
+                       sdesc->skb = NULL;
+               }
+
+               sdesc++;
+               if (++cidx == tq->size) {
+                       cidx = 0;
+                       sdesc = tq->sdesc;
+               }
+       }
+       tq->cidx = cidx;
+}
+
+/*
+ * Return the number of reclaimable descriptors in a TX queue.
+ */
+static inline int reclaimable(const struct sge_txq *tq)
+{
+       int hw_cidx = be16_to_cpu(tq->stat->cidx);
+       int reclaimable = hw_cidx - tq->cidx;
+       if (reclaimable < 0)
+               reclaimable += tq->size;
+       return reclaimable;
+}
+
+/**
+ *     reclaim_completed_tx - reclaims completed TX descriptors
+ *     @adapter: the adapter
+ *     @tq: the TX queue to reclaim completed descriptors from
+ *     @unmap: whether the buffers should be unmapped for DMA
+ *
+ *     Reclaims TX descriptors that the SGE has indicated it has processed,
+ *     and frees the associated buffers if possible.  Called with the TX
+ *     queue locked.
+ */
+static inline void reclaim_completed_tx(struct adapter *adapter,
+                                       struct sge_txq *tq,
+                                       bool unmap)
+{
+       int avail = reclaimable(tq);
+
+       if (avail) {
+               /*
+                * Limit the amount of clean up work we do at a time to keep
+                * the TX lock hold time O(1).
+                */
+               if (avail > MAX_TX_RECLAIM)
+                       avail = MAX_TX_RECLAIM;
+
+               free_tx_desc(adapter, tq, avail, unmap);
+               tq->in_use -= avail;
+       }
+}
+
+/**
+ *     get_buf_size - return the size of an RX Free List buffer.
+ *     @adapter: pointer to the associated adapter
+ *     @sdesc: pointer to the software buffer descriptor
+ */
+static inline int get_buf_size(const struct adapter *adapter,
+                              const struct rx_sw_desc *sdesc)
+{
+       const struct sge *s = &adapter->sge;
+
+       return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
+               ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
+}
+
+/**
+ *     free_rx_bufs - free RX buffers on an SGE Free List
+ *     @adapter: the adapter
+ *     @fl: the SGE Free List to free buffers from
+ *     @n: how many buffers to free
+ *
+ *     Release the next @n buffers on an SGE Free List RX queue.   The
+ *     buffers must be made inaccessible to hardware before calling this
+ *     function.
+ */
+static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
+{
+       while (n--) {
+               struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
+
+               if (is_buf_mapped(sdesc))
+                       dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
+                                      get_buf_size(adapter, sdesc),
+                                      PCI_DMA_FROMDEVICE);
+               put_page(sdesc->page);
+               sdesc->page = NULL;
+               if (++fl->cidx == fl->size)
+                       fl->cidx = 0;
+               fl->avail--;
+       }
+}
+
+/**
+ *     unmap_rx_buf - unmap the current RX buffer on an SGE Free List
+ *     @adapter: the adapter
+ *     @fl: the SGE Free List
+ *
+ *     Unmap the current buffer on an SGE Free List RX queue.   The
+ *     buffer must be made inaccessible to HW before calling this function.
+ *
+ *     This is similar to @free_rx_bufs above but does not free the buffer.
+ *     Do note that the FL still loses any further access to the buffer.
+ *     This is used predominantly to "transfer ownership" of an FL buffer
+ *     to another entity (typically an skb's fragment list).
+ */
+static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
+{
+       struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
+
+       if (is_buf_mapped(sdesc))
+               dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
+                              get_buf_size(adapter, sdesc),
+                              PCI_DMA_FROMDEVICE);
+       sdesc->page = NULL;
+       if (++fl->cidx == fl->size)
+               fl->cidx = 0;
+       fl->avail--;
+}
+
+/**
+ *     ring_fl_db - righ doorbell on free list
+ *     @adapter: the adapter
+ *     @fl: the Free List whose doorbell should be rung ...
+ *
+ *     Tell the Scatter Gather Engine that there are new free list entries
+ *     available.
+ */
+static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
+{
+       u32 val;
+
+       /* The SGE keeps track of its Producer and Consumer Indices in terms
+        * of Egress Queue Units so we can only tell it about integral numbers
+        * of multiples of Free List Entries per Egress Queue Units ...
+        */
+       if (fl->pend_cred >= FL_PER_EQ_UNIT) {
+               if (is_t4(adapter->params.chip))
+                       val = PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
+               else
+                       val = PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT) |
+                             DBTYPE_F;
+               val |= DBPRIO_F;
+
+               /* Make sure all memory writes to the Free List queue are
+                * committed before we tell the hardware about them.
+                */
+               wmb();
+
+               /* If we don't have access to the new User Doorbell (T5+), use
+                * the old doorbell mechanism; otherwise use the new BAR2
+                * mechanism.
+                */
+               if (unlikely(fl->bar2_addr == NULL)) {
+                       t4_write_reg(adapter,
+                                    T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
+                                    QID_V(fl->cntxt_id) | val);
+               } else {
+                       writel(val | QID_V(fl->bar2_qid),
+                              fl->bar2_addr + SGE_UDB_KDOORBELL);
+
+                       /* This Write memory Barrier will force the write to
+                        * the User Doorbell area to be flushed.
+                        */
+                       wmb();
+               }
+               fl->pend_cred %= FL_PER_EQ_UNIT;
+       }
+}
+
+/**
+ *     set_rx_sw_desc - initialize software RX buffer descriptor
+ *     @sdesc: pointer to the softwore RX buffer descriptor
+ *     @page: pointer to the page data structure backing the RX buffer
+ *     @dma_addr: PCI DMA address (possibly with low-bit flags)
+ */
+static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
+                                 dma_addr_t dma_addr)
+{
+       sdesc->page = page;
+       sdesc->dma_addr = dma_addr;
+}
+
+/*
+ * Support for poisoning RX buffers ...
+ */
+#define POISON_BUF_VAL -1
+
+static inline void poison_buf(struct page *page, size_t sz)
+{
+#if POISON_BUF_VAL >= 0
+       memset(page_address(page), POISON_BUF_VAL, sz);
+#endif
+}
+
+/**
+ *     refill_fl - refill an SGE RX buffer ring
+ *     @adapter: the adapter
+ *     @fl: the Free List ring to refill
+ *     @n: the number of new buffers to allocate
+ *     @gfp: the gfp flags for the allocations
+ *
+ *     (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
+ *     allocated with the supplied gfp flags.  The caller must assure that
+ *     @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
+ *     EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
+ *     of buffers allocated.  If afterwards the queue is found critically low,
+ *     mark it as starving in the bitmap of starving FLs.
+ */
+static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
+                             int n, gfp_t gfp)
+{
+       struct sge *s = &adapter->sge;
+       struct page *page;
+       dma_addr_t dma_addr;
+       unsigned int cred = fl->avail;
+       __be64 *d = &fl->desc[fl->pidx];
+       struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
+
+       /*
+        * Sanity: ensure that the result of adding n Free List buffers
+        * won't result in wrapping the SGE's Producer Index around to
+        * it's Consumer Index thereby indicating an empty Free List ...
+        */
+       BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
+
+       gfp |= __GFP_NOWARN;
+
+       /*
+        * If we support large pages, prefer large buffers and fail over to
+        * small pages if we can't allocate large pages to satisfy the refill.
+        * If we don't support large pages, drop directly into the small page
+        * allocation code.
+        */
+       if (s->fl_pg_order == 0)
+               goto alloc_small_pages;
+
+       while (n) {
+               page = __dev_alloc_pages(gfp, s->fl_pg_order);
+               if (unlikely(!page)) {
+                       /*
+                        * We've failed inour attempt to allocate a "large
+                        * page".  Fail over to the "small page" allocation
+                        * below.
+                        */
+                       fl->large_alloc_failed++;
+                       break;
+               }
+               poison_buf(page, PAGE_SIZE << s->fl_pg_order);
+
+               dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
+                                       PAGE_SIZE << s->fl_pg_order,
+                                       PCI_DMA_FROMDEVICE);
+               if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
+                       /*
+                        * We've run out of DMA mapping space.  Free up the
+                        * buffer and return with what we've managed to put
+                        * into the free list.  We don't want to fail over to
+                        * the small page allocation below in this case
+                        * because DMA mapping resources are typically
+                        * critical resources once they become scarse.
+                        */
+                       __free_pages(page, s->fl_pg_order);
+                       goto out;
+               }
+               dma_addr |= RX_LARGE_BUF;
+               *d++ = cpu_to_be64(dma_addr);
+
+               set_rx_sw_desc(sdesc, page, dma_addr);
+               sdesc++;
+
+               fl->avail++;
+               if (++fl->pidx == fl->size) {
+                       fl->pidx = 0;
+                       sdesc = fl->sdesc;
+                       d = fl->desc;
+               }
+               n--;
+       }
+
+alloc_small_pages:
+       while (n--) {
+               page = __dev_alloc_page(gfp);
+               if (unlikely(!page)) {
+                       fl->alloc_failed++;
+                       break;
+               }
+               poison_buf(page, PAGE_SIZE);
+
+               dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
+                                      PCI_DMA_FROMDEVICE);
+               if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
+                       put_page(page);
+                       break;
+               }
+               *d++ = cpu_to_be64(dma_addr);
+
+               set_rx_sw_desc(sdesc, page, dma_addr);
+               sdesc++;
+
+               fl->avail++;
+               if (++fl->pidx == fl->size) {
+                       fl->pidx = 0;
+                       sdesc = fl->sdesc;
+                       d = fl->desc;
+               }
+       }
+
+out:
+       /*
+        * Update our accounting state to incorporate the new Free List
+        * buffers, tell the hardware about them and return the number of
+        * buffers which we were able to allocate.
+        */
+       cred = fl->avail - cred;
+       fl->pend_cred += cred;
+       ring_fl_db(adapter, fl);
+
+       if (unlikely(fl_starving(adapter, fl))) {
+               smp_wmb();
+               set_bit(fl->cntxt_id, adapter->sge.starving_fl);
+       }
+
+       return cred;
+}
+
+/*
+ * Refill a Free List to its capacity or the Maximum Refill Increment,
+ * whichever is smaller ...
+ */
+static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
+{
+       refill_fl(adapter, fl,
+                 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
+                 GFP_ATOMIC);
+}
+
+/**
+ *     alloc_ring - allocate resources for an SGE descriptor ring
+ *     @dev: the PCI device's core device
+ *     @nelem: the number of descriptors
+ *     @hwsize: the size of each hardware descriptor
+ *     @swsize: the size of each software descriptor
+ *     @busaddrp: the physical PCI bus address of the allocated ring
+ *     @swringp: return address pointer for software ring
+ *     @stat_size: extra space in hardware ring for status information
+ *
+ *     Allocates resources for an SGE descriptor ring, such as TX queues,
+ *     free buffer lists, response queues, etc.  Each SGE ring requires
+ *     space for its hardware descriptors plus, optionally, space for software
+ *     state associated with each hardware entry (the metadata).  The function
+ *     returns three values: the virtual address for the hardware ring (the
+ *     return value of the function), the PCI bus address of the hardware
+ *     ring (in *busaddrp), and the address of the software ring (in swringp).
+ *     Both the hardware and software rings are returned zeroed out.
+ */
+static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
+                       size_t swsize, dma_addr_t *busaddrp, void *swringp,
+                       size_t stat_size)
+{
+       /*
+        * Allocate the hardware ring and PCI DMA bus address space for said.
+        */
+       size_t hwlen = nelem * hwsize + stat_size;
+       void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
+
+       if (!hwring)
+               return NULL;
+
+       /*
+        * If the caller wants a software ring, allocate it and return a
+        * pointer to it in *swringp.
+        */
+       BUG_ON((swsize != 0) != (swringp != NULL));
+       if (swsize) {
+               void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
+
+               if (!swring) {
+                       dma_free_coherent(dev, hwlen, hwring, *busaddrp);
+                       return NULL;
+               }
+               *(void **)swringp = swring;
+       }
+
+       /*
+        * Zero out the hardware ring and return its address as our function
+        * value.
+        */
+       memset(hwring, 0, hwlen);
+       return hwring;
+}
+
+/**
+ *     sgl_len - calculates the size of an SGL of the given capacity
+ *     @n: the number of SGL entries
+ *
+ *     Calculates the number of flits (8-byte units) needed for a Direct
+ *     Scatter/Gather List that can hold the given number of entries.
+ */
+static inline unsigned int sgl_len(unsigned int n)
+{
+       /*
+        * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
+        * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
+        * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
+        * repeated sequences of { Length[i], Length[i+1], Address[i],
+        * Address[i+1] } (this ensures that all addresses are on 64-bit
+        * boundaries).  If N is even, then Length[N+1] should be set to 0 and
+        * Address[N+1] is omitted.
+        *
+        * The following calculation incorporates all of the above.  It's
+        * somewhat hard to follow but, briefly: the "+2" accounts for the
+        * first two flits which include the DSGL header, Length0 and
+        * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
+        * flits for every pair of the remaining N) +1 if (n-1) is odd; and
+        * finally the "+((n-1)&1)" adds the one remaining flit needed if
+        * (n-1) is odd ...
+        */
+       n--;
+       return (3 * n) / 2 + (n & 1) + 2;
+}
+
+/**
+ *     flits_to_desc - returns the num of TX descriptors for the given flits
+ *     @flits: the number of flits
+ *
+ *     Returns the number of TX descriptors needed for the supplied number
+ *     of flits.
+ */
+static inline unsigned int flits_to_desc(unsigned int flits)
+{
+       BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
+       return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
+}
+
+/**
+ *     is_eth_imm - can an Ethernet packet be sent as immediate data?
+ *     @skb: the packet
+ *
+ *     Returns whether an Ethernet packet is small enough to fit completely as
+ *     immediate data.
+ */
+static inline int is_eth_imm(const struct sk_buff *skb)
+{
+       /*
+        * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
+        * which does not accommodate immediate data.  We could dike out all
+        * of the support code for immediate data but that would tie our hands
+        * too much if we ever want to enhace the firmware.  It would also
+        * create more differences between the PF and VF Drivers.
+        */
+       return false;
+}
+
+/**
+ *     calc_tx_flits - calculate the number of flits for a packet TX WR
+ *     @skb: the packet
+ *
+ *     Returns the number of flits needed for a TX Work Request for the
+ *     given Ethernet packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
+{
+       unsigned int flits;
+
+       /*
+        * If the skb is small enough, we can pump it out as a work request
+        * with only immediate data.  In that case we just have to have the
+        * TX Packet header plus the skb data in the Work Request.
+        */
+       if (is_eth_imm(skb))
+               return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
+                                   sizeof(__be64));
+
+       /*
+        * Otherwise, we're going to have to construct a Scatter gather list
+        * of the skb body and fragments.  We also include the flits necessary
+        * for the TX Packet Work Request and CPL.  We always have a firmware
+        * Write Header (incorporated as part of the cpl_tx_pkt_lso and
+        * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
+        * message or, if we're doing a Large Send Offload, an LSO CPL message
+        * with an embedded TX Packet Write CPL message.
+        */
+       flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
+       if (skb_shinfo(skb)->gso_size)
+               flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
+                         sizeof(struct cpl_tx_pkt_lso_core) +
+                         sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
+       else
+               flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
+                         sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
+       return flits;
+}
+
+/**
+ *     write_sgl - populate a Scatter/Gather List for a packet
+ *     @skb: the packet
+ *     @tq: the TX queue we are writing into
+ *     @sgl: starting location for writing the SGL
+ *     @end: points right after the end of the SGL
+ *     @start: start offset into skb main-body data to include in the SGL
+ *     @addr: the list of DMA bus addresses for the SGL elements
+ *
+ *     Generates a Scatter/Gather List for the buffers that make up a packet.
+ *     The caller must provide adequate space for the SGL that will be written.
+ *     The SGL includes all of the packet's page fragments and the data in its
+ *     main body except for the first @start bytes.  @pos must be 16-byte
+ *     aligned and within a TX descriptor with available space.  @end points
+ *     write after the end of the SGL but does not account for any potential
+ *     wrap around, i.e., @end > @tq->stat.
+ */
+static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
+                     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
+                     const dma_addr_t *addr)
+{
+       unsigned int i, len;
+       struct ulptx_sge_pair *to;
+       const struct skb_shared_info *si = skb_shinfo(skb);
+       unsigned int nfrags = si->nr_frags;
+       struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
+
+       len = skb_headlen(skb) - start;
+       if (likely(len)) {
+               sgl->len0 = htonl(len);
+               sgl->addr0 = cpu_to_be64(addr[0] + start);
+               nfrags++;
+       } else {
+               sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
+               sgl->addr0 = cpu_to_be64(addr[1]);
+       }
+
+       sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
+                             ULPTX_NSGE_V(nfrags));
+       if (likely(--nfrags == 0))
+               return;
+       /*
+        * Most of the complexity below deals with the possibility we hit the
+        * end of the queue in the middle of writing the SGL.  For this case
+        * only we create the SGL in a temporary buffer and then copy it.
+        */
+       to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
+
+       for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
+               to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
+               to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
+               to->addr[0] = cpu_to_be64(addr[i]);
+               to->addr[1] = cpu_to_be64(addr[++i]);
+       }
+       if (nfrags) {
+               to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
+               to->len[1] = cpu_to_be32(0);
+               to->addr[0] = cpu_to_be64(addr[i + 1]);
+       }
+       if (unlikely((u8 *)end > (u8 *)tq->stat)) {
+               unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
+
+               if (likely(part0))
+                       memcpy(sgl->sge, buf, part0);
+               part1 = (u8 *)end - (u8 *)tq->stat;
+               memcpy(tq->desc, (u8 *)buf + part0, part1);
+               end = (void *)tq->desc + part1;
+       }
+       if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
+               *end = 0;
+}
+
+/**
+ *     check_ring_tx_db - check and potentially ring a TX queue's doorbell
+ *     @adapter: the adapter
+ *     @tq: the TX queue
+ *     @n: number of new descriptors to give to HW
+ *
+ *     Ring the doorbel for a TX queue.
+ */
+static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
+                             int n)
+{
+       /* Make sure that all writes to the TX Descriptors are committed
+        * before we tell the hardware about them.
+        */
+       wmb();
+
+       /* If we don't have access to the new User Doorbell (T5+), use the old
+        * doorbell mechanism; otherwise use the new BAR2 mechanism.
+        */
+       if (unlikely(tq->bar2_addr == NULL)) {
+               u32 val = PIDX_V(n);
+
+               t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
+                            QID_V(tq->cntxt_id) | val);
+       } else {
+               u32 val = PIDX_T5_V(n);
+
+               /* T4 and later chips share the same PIDX field offset within
+                * the doorbell, but T5 and later shrank the field in order to
+                * gain a bit for Doorbell Priority.  The field was absurdly
+                * large in the first place (14 bits) so we just use the T5
+                * and later limits and warn if a Queue ID is too large.
+                */
+               WARN_ON(val & DBPRIO_F);
+
+               /* If we're only writing a single Egress Unit and the BAR2
+                * Queue ID is 0, we can use the Write Combining Doorbell
+                * Gather Buffer; otherwise we use the simple doorbell.
+                */
+               if (n == 1 && tq->bar2_qid == 0) {
+                       unsigned int index = (tq->pidx
+                                             ? (tq->pidx - 1)
+                                             : (tq->size - 1));
+                       __be64 *src = (__be64 *)&tq->desc[index];
+                       __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
+                                                        SGE_UDB_WCDOORBELL);
+                       unsigned int count = EQ_UNIT / sizeof(__be64);
+
+                       /* Copy the TX Descriptor in a tight loop in order to
+                        * try to get it to the adapter in a single Write
+                        * Combined transfer on the PCI-E Bus.  If the Write
+                        * Combine fails (say because of an interrupt, etc.)
+                        * the hardware will simply take the last write as a
+                        * simple doorbell write with a PIDX Increment of 1
+                        * and will fetch the TX Descriptor from memory via
+                        * DMA.
+                        */
+                       while (count) {
+                               /* the (__force u64) is because the compiler
+                                * doesn't understand the endian swizzling
+                                * going on
+                                */
+                               writeq((__force u64)*src, dst);
+                               src++;
+                               dst++;
+                               count--;
+                       }
+               } else
+                       writel(val | QID_V(tq->bar2_qid),
+                              tq->bar2_addr + SGE_UDB_KDOORBELL);
+
+               /* This Write Memory Barrier will force the write to the User
+                * Doorbell area to be flushed.  This is needed to prevent
+                * writes on different CPUs for the same queue from hitting
+                * the adapter out of order.  This is required when some Work
+                * Requests take the Write Combine Gather Buffer path (user
+                * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
+                * take the traditional path where we simply increment the
+                * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
+                * hardware DMA read the actual Work Request.
+                */
+               wmb();
+       }
+}
+
+/**
+ *     inline_tx_skb - inline a packet's data into TX descriptors
+ *     @skb: the packet
+ *     @tq: the TX queue where the packet will be inlined
+ *     @pos: starting position in the TX queue to inline the packet
+ *
+ *     Inline a packet's contents directly into TX descriptors, starting at
+ *     the given position within the TX DMA ring.
+ *     Most of the complexity of this operation is dealing with wrap arounds
+ *     in the middle of the packet we want to inline.
+ */
+static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
+                         void *pos)
+{
+       u64 *p;
+       int left = (void *)tq->stat - pos;
+
+       if (likely(skb->len <= left)) {
+               if (likely(!skb->data_len))
+                       skb_copy_from_linear_data(skb, pos, skb->len);
+               else
+                       skb_copy_bits(skb, 0, pos, skb->len);
+               pos += skb->len;
+       } else {
+               skb_copy_bits(skb, 0, pos, left);
+               skb_copy_bits(skb, left, tq->desc, skb->len - left);
+               pos = (void *)tq->desc + (skb->len - left);
+       }
+
+       /* 0-pad to multiple of 16 */
+       p = PTR_ALIGN(pos, 8);
+       if ((uintptr_t)p & 8)
+               *p = 0;
+}
+
+/*
+ * Figure out what HW csum a packet wants and return the appropriate control
+ * bits.
+ */
+static u64 hwcsum(const struct sk_buff *skb)
+{
+       int csum_type;
+       const struct iphdr *iph = ip_hdr(skb);
+
+       if (iph->version == 4) {
+               if (iph->protocol == IPPROTO_TCP)
+                       csum_type = TX_CSUM_TCPIP;
+               else if (iph->protocol == IPPROTO_UDP)
+                       csum_type = TX_CSUM_UDPIP;
+               else {
+nocsum:
+                       /*
+                        * unknown protocol, disable HW csum
+                        * and hope a bad packet is detected
+                        */
+                       return TXPKT_L4CSUM_DIS;
+               }
+       } else {
+               /*
+                * this doesn't work with extension headers
+                */
+               const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
+
+               if (ip6h->nexthdr == IPPROTO_TCP)
+                       csum_type = TX_CSUM_TCPIP6;
+               else if (ip6h->nexthdr == IPPROTO_UDP)
+                       csum_type = TX_CSUM_UDPIP6;
+               else
+                       goto nocsum;
+       }
+
+       if (likely(csum_type >= TX_CSUM_TCPIP))
+               return TXPKT_CSUM_TYPE(csum_type) |
+                       TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
+                       TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
+       else {
+               int start = skb_transport_offset(skb);
+
+               return TXPKT_CSUM_TYPE(csum_type) |
+                       TXPKT_CSUM_START(start) |
+                       TXPKT_CSUM_LOC(start + skb->csum_offset);
+       }
+}
+
+/*
+ * Stop an Ethernet TX queue and record that state change.
+ */
+static void txq_stop(struct sge_eth_txq *txq)
+{
+       netif_tx_stop_queue(txq->txq);
+       txq->q.stops++;
+}
+
+/*
+ * Advance our software state for a TX queue by adding n in use descriptors.
+ */
+static inline void txq_advance(struct sge_txq *tq, unsigned int n)
+{
+       tq->in_use += n;
+       tq->pidx += n;
+       if (tq->pidx >= tq->size)
+               tq->pidx -= tq->size;
+}
+
+/**
+ *     t4vf_eth_xmit - add a packet to an Ethernet TX queue
+ *     @skb: the packet
+ *     @dev: the egress net device
+ *
+ *     Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
+ */
+int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+       u32 wr_mid;
+       u64 cntrl, *end;
+       int qidx, credits;
+       unsigned int flits, ndesc;
+       struct adapter *adapter;
+       struct sge_eth_txq *txq;
+       const struct port_info *pi;
+       struct fw_eth_tx_pkt_vm_wr *wr;
+       struct cpl_tx_pkt_core *cpl;
+       const struct skb_shared_info *ssi;
+       dma_addr_t addr[MAX_SKB_FRAGS + 1];
+       const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
+                                       sizeof(wr->ethmacsrc) +
+                                       sizeof(wr->ethtype) +
+                                       sizeof(wr->vlantci));
+
+       /*
+        * The chip minimum packet length is 10 octets but the firmware
+        * command that we are using requires that we copy the Ethernet header
+        * (including the VLAN tag) into the header so we reject anything
+        * smaller than that ...
+        */
+       if (unlikely(skb->len < fw_hdr_copy_len))
+               goto out_free;
+
+       /*
+        * Figure out which TX Queue we're going to use.
+        */
+       pi = netdev_priv(dev);
+       adapter = pi->adapter;
+       qidx = skb_get_queue_mapping(skb);
+       BUG_ON(qidx >= pi->nqsets);
+       txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
+
+       /*
+        * Take this opportunity to reclaim any TX Descriptors whose DMA
+        * transfers have completed.
+        */
+       reclaim_completed_tx(adapter, &txq->q, true);
+
+       /*
+        * Calculate the number of flits and TX Descriptors we're going to
+        * need along with how many TX Descriptors will be left over after
+        * we inject our Work Request.
+        */
+       flits = calc_tx_flits(skb);
+       ndesc = flits_to_desc(flits);
+       credits = txq_avail(&txq->q) - ndesc;
+
+       if (unlikely(credits < 0)) {
+               /*
+                * Not enough room for this packet's Work Request.  Stop the
+                * TX Queue and return a "busy" condition.  The queue will get
+                * started later on when the firmware informs us that space
+                * has opened up.
+                */
+               txq_stop(txq);
+               dev_err(adapter->pdev_dev,
+                       "%s: TX ring %u full while queue awake!\n",
+                       dev->name, qidx);
+               return NETDEV_TX_BUSY;
+       }
+
+       if (!is_eth_imm(skb) &&
+           unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
+               /*
+                * We need to map the skb into PCI DMA space (because it can't
+                * be in-lined directly into the Work Request) and the mapping
+                * operation failed.  Record the error and drop the packet.
+                */
+               txq->mapping_err++;
+               goto out_free;
+       }
+
+       wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
+       if (unlikely(credits < ETHTXQ_STOP_THRES)) {
+               /*
+                * After we're done injecting the Work Request for this
+                * packet, we'll be below our "stop threshold" so stop the TX
+                * Queue now and schedule a request for an SGE Egress Queue
+                * Update message.  The queue will get started later on when
+                * the firmware processes this Work Request and sends us an
+                * Egress Queue Status Update message indicating that space
+                * has opened up.
+                */
+               txq_stop(txq);
+               wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
+       }
+
+       /*
+        * Start filling in our Work Request.  Note that we do _not_ handle
+        * the WR Header wrapping around the TX Descriptor Ring.  If our
+        * maximum header size ever exceeds one TX Descriptor, we'll need to
+        * do something else here.
+        */
+       BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
+       wr = (void *)&txq->q.desc[txq->q.pidx];
+       wr->equiq_to_len16 = cpu_to_be32(wr_mid);
+       wr->r3[0] = cpu_to_be32(0);
+       wr->r3[1] = cpu_to_be32(0);
+       skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
+       end = (u64 *)wr + flits;
+
+       /*
+        * If this is a Large Send Offload packet we'll put in an LSO CPL
+        * message with an encapsulated TX Packet CPL message.  Otherwise we
+        * just use a TX Packet CPL message.
+        */
+       ssi = skb_shinfo(skb);
+       if (ssi->gso_size) {
+               struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
+               bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
+               int l3hdr_len = skb_network_header_len(skb);
+               int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
+
+               wr->op_immdlen =
+                       cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
+                                   FW_WR_IMMDLEN_V(sizeof(*lso) +
+                                                   sizeof(*cpl)));
+               /*
+                * Fill in the LSO CPL message.
+                */
+               lso->lso_ctrl =
+                       cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
+                                   LSO_FIRST_SLICE |
+                                   LSO_LAST_SLICE |
+                                   LSO_IPV6(v6) |
+                                   LSO_ETHHDR_LEN(eth_xtra_len/4) |
+                                   LSO_IPHDR_LEN(l3hdr_len/4) |
+                                   LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
+               lso->ipid_ofst = cpu_to_be16(0);
+               lso->mss = cpu_to_be16(ssi->gso_size);
+               lso->seqno_offset = cpu_to_be32(0);
+               if (is_t4(adapter->params.chip))
+                       lso->len = cpu_to_be32(skb->len);
+               else
+                       lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
+
+               /*
+                * Set up TX Packet CPL pointer, control word and perform
+                * accounting.
+                */
+               cpl = (void *)(lso + 1);
+               cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
+                        TXPKT_IPHDR_LEN(l3hdr_len) |
+                        TXPKT_ETHHDR_LEN(eth_xtra_len));
+               txq->tso++;
+               txq->tx_cso += ssi->gso_segs;
+       } else {
+               int len;
+
+               len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
+               wr->op_immdlen =
+                       cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
+                                   FW_WR_IMMDLEN_V(len));
+
+               /*
+                * Set up TX Packet CPL pointer, control word and perform
+                * accounting.
+                */
+               cpl = (void *)(wr + 1);
+               if (skb->ip_summed == CHECKSUM_PARTIAL) {
+                       cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
+                       txq->tx_cso++;
+               } else
+                       cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
+       }
+
+       /*
+        * If there's a VLAN tag present, add that to the list of things to
+        * do in this Work Request.
+        */
+       if (skb_vlan_tag_present(skb)) {
+               txq->vlan_ins++;
+               cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
+       }
+
+       /*
+        * Fill in the TX Packet CPL message header.
+        */
+       cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
+                                TXPKT_INTF(pi->port_id) |
+                                TXPKT_PF(0));
+       cpl->pack = cpu_to_be16(0);
+       cpl->len = cpu_to_be16(skb->len);
+       cpl->ctrl1 = cpu_to_be64(cntrl);
+
+#ifdef T4_TRACE
+       T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
+                 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
+                 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
+#endif
+
+       /*
+        * Fill in the body of the TX Packet CPL message with either in-lined
+        * data or a Scatter/Gather List.
+        */
+       if (is_eth_imm(skb)) {
+               /*
+                * In-line the packet's data and free the skb since we don't
+                * need it any longer.
+                */
+               inline_tx_skb(skb, &txq->q, cpl + 1);
+               dev_consume_skb_any(skb);
+       } else {
+               /*
+                * Write the skb's Scatter/Gather list into the TX Packet CPL
+                * message and retain a pointer to the skb so we can free it
+                * later when its DMA completes.  (We store the skb pointer
+                * in the Software Descriptor corresponding to the last TX
+                * Descriptor used by the Work Request.)
+                *
+                * The retained skb will be freed when the corresponding TX
+                * Descriptors are reclaimed after their DMAs complete.
+                * However, this could take quite a while since, in general,
+                * the hardware is set up to be lazy about sending DMA
+                * completion notifications to us and we mostly perform TX
+                * reclaims in the transmit routine.
+                *
+                * This is good for performamce but means that we rely on new
+                * TX packets arriving to run the destructors of completed
+                * packets, which open up space in their sockets' send queues.
+                * Sometimes we do not get such new packets causing TX to
+                * stall.  A single UDP transmitter is a good example of this
+                * situation.  We have a clean up timer that periodically
+                * reclaims completed packets but it doesn't run often enough
+                * (nor do we want it to) to prevent lengthy stalls.  A
+                * solution to this problem is to run the destructor early,
+                * after the packet is queued but before it's DMAd.  A con is
+                * that we lie to socket memory accounting, but the amount of
+                * extra memory is reasonable (limited by the number of TX
+                * descriptors), the packets do actually get freed quickly by
+                * new packets almost always, and for protocols like TCP that
+                * wait for acks to really free up the data the extra memory
+                * is even less.  On the positive side we run the destructors
+                * on the sending CPU rather than on a potentially different
+                * completing CPU, usually a good thing.
+                *
+                * Run the destructor before telling the DMA engine about the
+                * packet to make sure it doesn't complete and get freed
+                * prematurely.
+                */
+               struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
+               struct sge_txq *tq = &txq->q;
+               int last_desc;
+
+               /*
+                * If the Work Request header was an exact multiple of our TX
+                * Descriptor length, then it's possible that the starting SGL
+                * pointer lines up exactly with the end of our TX Descriptor
+                * ring.  If that's the case, wrap around to the beginning
+                * here ...
+                */
+               if (unlikely((void *)sgl == (void *)tq->stat)) {
+                       sgl = (void *)tq->desc;
+                       end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
+               }
+
+               write_sgl(skb, tq, sgl, end, 0, addr);
+               skb_orphan(skb);
+
+               last_desc = tq->pidx + ndesc - 1;
+               if (last_desc >= tq->size)
+                       last_desc -= tq->size;
+               tq->sdesc[last_desc].skb = skb;
+               tq->sdesc[last_desc].sgl = sgl;
+       }
+
+       /*
+        * Advance our internal TX Queue state, tell the hardware about
+        * the new TX descriptors and return success.
+        */
+       txq_advance(&txq->q, ndesc);
+       dev->trans_start = jiffies;
+       ring_tx_db(adapter, &txq->q, ndesc);
+       return NETDEV_TX_OK;
+
+out_free:
+       /*
+        * An error of some sort happened.  Free the TX skb and tell the
+        * OS that we've "dealt" with the packet ...
+        */
+       dev_kfree_skb_any(skb);
+       return NETDEV_TX_OK;
+}
+
+/**
+ *     copy_frags - copy fragments from gather list into skb_shared_info
+ *     @skb: destination skb
+ *     @gl: source internal packet gather list
+ *     @offset: packet start offset in first page
+ *
+ *     Copy an internal packet gather list into a Linux skb_shared_info
+ *     structure.
+ */
+static inline void copy_frags(struct sk_buff *skb,
+                             const struct pkt_gl *gl,
+                             unsigned int offset)
+{
+       int i;
+
+       /* usually there's just one frag */
+       __skb_fill_page_desc(skb, 0, gl->frags[0].page,
+                            gl->frags[0].offset + offset,
+                            gl->frags[0].size - offset);
+       skb_shinfo(skb)->nr_frags = gl->nfrags;
+       for (i = 1; i < gl->nfrags; i++)
+               __skb_fill_page_desc(skb, i, gl->frags[i].page,
+                                    gl->frags[i].offset,
+                                    gl->frags[i].size);
+
+       /* get a reference to the last page, we don't own it */
+       get_page(gl->frags[gl->nfrags - 1].page);
+}
+
+/**
+ *     t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
+ *     @gl: the gather list
+ *     @skb_len: size of sk_buff main body if it carries fragments
+ *     @pull_len: amount of data to move to the sk_buff's main body
+ *
+ *     Builds an sk_buff from the given packet gather list.  Returns the
+ *     sk_buff or %NULL if sk_buff allocation failed.
+ */
+static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
+                                        unsigned int skb_len,
+                                        unsigned int pull_len)
+{
+       struct sk_buff *skb;
+
+       /*
+        * If the ingress packet is small enough, allocate an skb large enough
+        * for all of the data and copy it inline.  Otherwise, allocate an skb
+        * with enough room to pull in the header and reference the rest of
+        * the data via the skb fragment list.
+        *
+        * Below we rely on RX_COPY_THRES being less than the smallest Rx
+        * buff!  size, which is expected since buffers are at least
+        * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
+        * fragment.
+        */
+       if (gl->tot_len <= RX_COPY_THRES) {
+               /* small packets have only one fragment */
+               skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
+               if (unlikely(!skb))
+                       goto out;
+               __skb_put(skb, gl->tot_len);
+               skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
+       } else {
+               skb = alloc_skb(skb_len, GFP_ATOMIC);
+               if (unlikely(!skb))
+                       goto out;
+               __skb_put(skb, pull_len);
+               skb_copy_to_linear_data(skb, gl->va, pull_len);
+
+               copy_frags(skb, gl, pull_len);
+               skb->len = gl->tot_len;
+               skb->data_len = skb->len - pull_len;
+               skb->truesize += skb->data_len;
+       }
+
+out:
+       return skb;
+}
+
+/**
+ *     t4vf_pktgl_free - free a packet gather list
+ *     @gl: the gather list
+ *
+ *     Releases the pages of a packet gather list.  We do not own the last
+ *     page on the list and do not free it.
+ */
+static void t4vf_pktgl_free(const struct pkt_gl *gl)
+{
+       int frag;
+
+       frag = gl->nfrags - 1;
+       while (frag--)
+               put_page(gl->frags[frag].page);
+}
+
+/**
+ *     do_gro - perform Generic Receive Offload ingress packet processing
+ *     @rxq: ingress RX Ethernet Queue
+ *     @gl: gather list for ingress packet
+ *     @pkt: CPL header for last packet fragment
+ *
+ *     Perform Generic Receive Offload (GRO) ingress packet processing.
+ *     We use the standard Linux GRO interfaces for this.
+ */
+static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
+                  const struct cpl_rx_pkt *pkt)
+{
+       struct adapter *adapter = rxq->rspq.adapter;
+       struct sge *s = &adapter->sge;
+       int ret;
+       struct sk_buff *skb;
+
+       skb = napi_get_frags(&rxq->rspq.napi);
+       if (unlikely(!skb)) {
+               t4vf_pktgl_free(gl);
+               rxq->stats.rx_drops++;
+               return;
+       }
+
+       copy_frags(skb, gl, s->pktshift);
+       skb->len = gl->tot_len - s->pktshift;
+       skb->data_len = skb->len;
+       skb->truesize += skb->data_len;
+       skb->ip_summed = CHECKSUM_UNNECESSARY;
+       skb_record_rx_queue(skb, rxq->rspq.idx);
+
+       if (pkt->vlan_ex) {
+               __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
+                                       be16_to_cpu(pkt->vlan));
+               rxq->stats.vlan_ex++;
+       }
+       ret = napi_gro_frags(&rxq->rspq.napi);
+
+       if (ret == GRO_HELD)
+               rxq->stats.lro_pkts++;
+       else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
+               rxq->stats.lro_merged++;
+       rxq->stats.pkts++;
+       rxq->stats.rx_cso++;
+}
+
+/**
+ *     t4vf_ethrx_handler - process an ingress ethernet packet
+ *     @rspq: the response queue that received the packet
+ *     @rsp: the response queue descriptor holding the RX_PKT message
+ *     @gl: the gather list of packet fragments
+ *
+ *     Process an ingress ethernet packet and deliver it to the stack.
+ */
+int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
+                      const struct pkt_gl *gl)
+{
+       struct sk_buff *skb;
+       const struct cpl_rx_pkt *pkt = (void *)rsp;
+       bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
+                      (rspq->netdev->features & NETIF_F_RXCSUM);
+       struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
+       struct adapter *adapter = rspq->adapter;
+       struct sge *s = &adapter->sge;
+
+       /*
+        * If this is a good TCP packet and we have Generic Receive Offload
+        * enabled, handle the packet in the GRO path.
+        */
+       if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
+           (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
+           !pkt->ip_frag) {
+               do_gro(rxq, gl, pkt);
+               return 0;
+       }
+
+       /*
+        * Convert the Packet Gather List into an skb.
+        */
+       skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
+       if (unlikely(!skb)) {
+               t4vf_pktgl_free(gl);
+               rxq->stats.rx_drops++;
+               return 0;
+       }
+       __skb_pull(skb, s->pktshift);
+       skb->protocol = eth_type_trans(skb, rspq->netdev);
+       skb_record_rx_queue(skb, rspq->idx);
+       rxq->stats.pkts++;
+
+       if (csum_ok && !pkt->err_vec &&
+           (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
+               if (!pkt->ip_frag)
+                       skb->ip_summed = CHECKSUM_UNNECESSARY;
+               else {
+                       __sum16 c = (__force __sum16)pkt->csum;
+                       skb->csum = csum_unfold(c);
+                       skb->ip_summed = CHECKSUM_COMPLETE;
+               }
+               rxq->stats.rx_cso++;
+       } else
+               skb_checksum_none_assert(skb);
+
+       if (pkt->vlan_ex) {
+               rxq->stats.vlan_ex++;
+               __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
+       }
+
+       netif_receive_skb(skb);
+
+       return 0;
+}
+
+/**
+ *     is_new_response - check if a response is newly written
+ *     @rc: the response control descriptor
+ *     @rspq: the response queue
+ *
+ *     Returns true if a response descriptor contains a yet unprocessed
+ *     response.
+ */
+static inline bool is_new_response(const struct rsp_ctrl *rc,
+                                  const struct sge_rspq *rspq)
+{
+       return RSPD_GEN(rc->type_gen) == rspq->gen;
+}
+
+/**
+ *     restore_rx_bufs - put back a packet's RX buffers
+ *     @gl: the packet gather list
+ *     @fl: the SGE Free List
+ *     @nfrags: how many fragments in @si
+ *
+ *     Called when we find out that the current packet, @si, can't be
+ *     processed right away for some reason.  This is a very rare event and
+ *     there's no effort to make this suspension/resumption process
+ *     particularly efficient.
+ *
+ *     We implement the suspension by putting all of the RX buffers associated
+ *     with the current packet back on the original Free List.  The buffers
+ *     have already been unmapped and are left unmapped, we mark them as
+ *     unmapped in order to prevent further unmapping attempts.  (Effectively
+ *     this function undoes the series of @unmap_rx_buf calls which were done
+ *     to create the current packet's gather list.)  This leaves us ready to
+ *     restart processing of the packet the next time we start processing the
+ *     RX Queue ...
+ */
+static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
+                           int frags)
+{
+       struct rx_sw_desc *sdesc;
+
+       while (frags--) {
+               if (fl->cidx == 0)
+                       fl->cidx = fl->size - 1;
+               else
+                       fl->cidx--;
+               sdesc = &fl->sdesc[fl->cidx];
+               sdesc->page = gl->frags[frags].page;
+               sdesc->dma_addr |= RX_UNMAPPED_BUF;
+               fl->avail++;
+       }
+}
+
+/**
+ *     rspq_next - advance to the next entry in a response queue
+ *     @rspq: the queue
+ *
+ *     Updates the state of a response queue to advance it to the next entry.
+ */
+static inline void rspq_next(struct sge_rspq *rspq)
+{
+       rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
+       if (unlikely(++rspq->cidx == rspq->size)) {
+               rspq->cidx = 0;
+               rspq->gen ^= 1;
+               rspq->cur_desc = rspq->desc;
+       }
+}
+
+/**
+ *     process_responses - process responses from an SGE response queue
+ *     @rspq: the ingress response queue to process
+ *     @budget: how many responses can be processed in this round
+ *
+ *     Process responses from a Scatter Gather Engine response queue up to
+ *     the supplied budget.  Responses include received packets as well as
+ *     control messages from firmware or hardware.
+ *
+ *     Additionally choose the interrupt holdoff time for the next interrupt
+ *     on this queue.  If the system is under memory shortage use a fairly
+ *     long delay to help recovery.
+ */
+static int process_responses(struct sge_rspq *rspq, int budget)
+{
+       struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
+       struct adapter *adapter = rspq->adapter;
+       struct sge *s = &adapter->sge;
+       int budget_left = budget;
+
+       while (likely(budget_left)) {
+               int ret, rsp_type;
+               const struct rsp_ctrl *rc;
+
+               rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
+               if (!is_new_response(rc, rspq))
+                       break;
+
+               /*
+                * Figure out what kind of response we've received from the
+                * SGE.
+                */
+               dma_rmb();
+               rsp_type = RSPD_TYPE(rc->type_gen);
+               if (likely(rsp_type == RSP_TYPE_FLBUF)) {
+                       struct page_frag *fp;
+                       struct pkt_gl gl;
+                       const struct rx_sw_desc *sdesc;
+                       u32 bufsz, frag;
+                       u32 len = be32_to_cpu(rc->pldbuflen_qid);
+
+                       /*
+                        * If we get a "new buffer" message from the SGE we
+                        * need to move on to the next Free List buffer.
+                        */
+                       if (len & RSPD_NEWBUF) {
+                               /*
+                                * We get one "new buffer" message when we
+                                * first start up a queue so we need to ignore
+                                * it when our offset into the buffer is 0.
+                                */
+                               if (likely(rspq->offset > 0)) {
+                                       free_rx_bufs(rspq->adapter, &rxq->fl,
+                                                    1);
+                                       rspq->offset = 0;
+                               }
+                               len = RSPD_LEN(len);
+                       }
+                       gl.tot_len = len;
+
+                       /*
+                        * Gather packet fragments.
+                        */
+                       for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
+                               BUG_ON(frag >= MAX_SKB_FRAGS);
+                               BUG_ON(rxq->fl.avail == 0);
+                               sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
+                               bufsz = get_buf_size(adapter, sdesc);
+                               fp->page = sdesc->page;
+                               fp->offset = rspq->offset;
+                               fp->size = min(bufsz, len);
+                               len -= fp->size;
+                               if (!len)
+                                       break;
+                               unmap_rx_buf(rspq->adapter, &rxq->fl);
+                       }
+                       gl.nfrags = frag+1;
+
+                       /*
+                        * Last buffer remains mapped so explicitly make it
+                        * coherent for CPU access and start preloading first
+                        * cache line ...
+                        */
+                       dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
+                                               get_buf_addr(sdesc),
+                                               fp->size, DMA_FROM_DEVICE);
+                       gl.va = (page_address(gl.frags[0].page) +
+                                gl.frags[0].offset);
+                       prefetch(gl.va);
+
+                       /*
+                        * Hand the new ingress packet to the handler for
+                        * this Response Queue.
+                        */
+                       ret = rspq->handler(rspq, rspq->cur_desc, &gl);
+                       if (likely(ret == 0))
+                               rspq->offset += ALIGN(fp->size, s->fl_align);
+                       else
+                               restore_rx_bufs(&gl, &rxq->fl, frag);
+               } else if (likely(rsp_type == RSP_TYPE_CPL)) {
+                       ret = rspq->handler(rspq, rspq->cur_desc, NULL);
+               } else {
+                       WARN_ON(rsp_type > RSP_TYPE_CPL);
+                       ret = 0;
+               }
+
+               if (unlikely(ret)) {
+                       /*
+                        * Couldn't process descriptor, back off for recovery.
+                        * We use the SGE's last timer which has the longest
+                        * interrupt coalescing value ...
+                        */
+                       const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
+                       rspq->next_intr_params =
+                               QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
+                       break;
+               }
+
+               rspq_next(rspq);
+               budget_left--;
+       }
+
+       /*
+        * If this is a Response Queue with an associated Free List and
+        * at least two Egress Queue units available in the Free List
+        * for new buffer pointers, refill the Free List.
+        */
+       if (rspq->offset >= 0 &&
+           rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
+               __refill_fl(rspq->adapter, &rxq->fl);
+       return budget - budget_left;
+}
+
+/**
+ *     napi_rx_handler - the NAPI handler for RX processing
+ *     @napi: the napi instance
+ *     @budget: how many packets we can process in this round
+ *
+ *     Handler for new data events when using NAPI.  This does not need any
+ *     locking or protection from interrupts as data interrupts are off at
+ *     this point and other adapter interrupts do not interfere (the latter
+ *     in not a concern at all with MSI-X as non-data interrupts then have
+ *     a separate handler).
+ */
+static int napi_rx_handler(struct napi_struct *napi, int budget)
+{
+       unsigned int intr_params;
+       struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
+       int work_done = process_responses(rspq, budget);
+       u32 val;
+
+       if (likely(work_done < budget)) {
+               napi_complete(napi);
+               intr_params = rspq->next_intr_params;
+               rspq->next_intr_params = rspq->intr_params;
+       } else
+               intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
+
+       if (unlikely(work_done == 0))
+               rspq->unhandled_irqs++;
+
+       val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
+       if (is_t4(rspq->adapter->params.chip)) {
+               t4_write_reg(rspq->adapter,
+                            T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
+                            val | INGRESSQID_V((u32)rspq->cntxt_id));
+       } else {
+               writel(val | INGRESSQID_V(rspq->bar2_qid),
+                      rspq->bar2_addr + SGE_UDB_GTS);
+               wmb();
+       }
+       return work_done;
+}
+
+/*
+ * The MSI-X interrupt handler for an SGE response queue for the NAPI case
+ * (i.e., response queue serviced by NAPI polling).
+ */
+irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
+{
+       struct sge_rspq *rspq = cookie;
+
+       napi_schedule(&rspq->napi);
+       return IRQ_HANDLED;
+}
+
+/*
+ * Process the indirect interrupt entries in the interrupt queue and kick off
+ * NAPI for each queue that has generated an entry.
+ */
+static unsigned int process_intrq(struct adapter *adapter)
+{
+       struct sge *s = &adapter->sge;
+       struct sge_rspq *intrq = &s->intrq;
+       unsigned int work_done;
+       u32 val;
+
+       spin_lock(&adapter->sge.intrq_lock);
+       for (work_done = 0; ; work_done++) {
+               const struct rsp_ctrl *rc;
+               unsigned int qid, iq_idx;
+               struct sge_rspq *rspq;
+
+               /*
+                * Grab the next response from the interrupt queue and bail
+                * out if it's not a new response.
+                */
+               rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
+               if (!is_new_response(rc, intrq))
+                       break;
+
+               /*
+                * If the response isn't a forwarded interrupt message issue a
+                * error and go on to the next response message.  This should
+                * never happen ...
+                */
+               dma_rmb();
+               if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
+                       dev_err(adapter->pdev_dev,
+                               "Unexpected INTRQ response type %d\n",
+                               RSPD_TYPE(rc->type_gen));
+                       continue;
+               }
+
+               /*
+                * Extract the Queue ID from the interrupt message and perform
+                * sanity checking to make sure it really refers to one of our
+                * Ingress Queues which is active and matches the queue's ID.
+                * None of these error conditions should ever happen so we may
+                * want to either make them fatal and/or conditionalized under
+                * DEBUG.
+                */
+               qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
+               iq_idx = IQ_IDX(s, qid);
+               if (unlikely(iq_idx >= MAX_INGQ)) {
+                       dev_err(adapter->pdev_dev,
+                               "Ingress QID %d out of range\n", qid);
+                       continue;
+               }
+               rspq = s->ingr_map[iq_idx];
+               if (unlikely(rspq == NULL)) {
+                       dev_err(adapter->pdev_dev,
+                               "Ingress QID %d RSPQ=NULL\n", qid);
+                       continue;
+               }
+               if (unlikely(rspq->abs_id != qid)) {
+                       dev_err(adapter->pdev_dev,
+                               "Ingress QID %d refers to RSPQ %d\n",
+                               qid, rspq->abs_id);
+                       continue;
+               }
+
+               /*
+                * Schedule NAPI processing on the indicated Response Queue
+                * and move on to the next entry in the Forwarded Interrupt
+                * Queue.
+                */
+               napi_schedule(&rspq->napi);
+               rspq_next(intrq);
+       }
+
+       val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
+       if (is_t4(adapter->params.chip))
+               t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
+                            val | INGRESSQID_V(intrq->cntxt_id));
+       else {
+               writel(val | INGRESSQID_V(intrq->bar2_qid),
+                      intrq->bar2_addr + SGE_UDB_GTS);
+               wmb();
+       }
+
+       spin_unlock(&adapter->sge.intrq_lock);
+
+       return work_done;
+}
+
+/*
+ * The MSI interrupt handler handles data events from SGE response queues as
+ * well as error and other async events as they all use the same MSI vector.
+ */
+static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
+{
+       struct adapter *adapter = cookie;
+
+       process_intrq(adapter);
+       return IRQ_HANDLED;
+}
+
+/**
+ *     t4vf_intr_handler - select the top-level interrupt handler
+ *     @adapter: the adapter
+ *
+ *     Selects the top-level interrupt handler based on the type of interrupts
+ *     (MSI-X or MSI).
+ */
+irq_handler_t t4vf_intr_handler(struct adapter *adapter)
+{
+       BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
+       if (adapter->flags & USING_MSIX)
+               return t4vf_sge_intr_msix;
+       else
+               return t4vf_intr_msi;
+}
+
+/**
+ *     sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
+ *     @data: the adapter
+ *
+ *     Runs periodically from a timer to perform maintenance of SGE RX queues.
+ *
+ *     a) Replenishes RX queues that have run out due to memory shortage.
+ *     Normally new RX buffers are added when existing ones are consumed but
+ *     when out of memory a queue can become empty.  We schedule NAPI to do
+ *     the actual refill.
+ */
+static void sge_rx_timer_cb(unsigned long data)
+{
+       struct adapter *adapter = (struct adapter *)data;
+       struct sge *s = &adapter->sge;
+       unsigned int i;
+
+       /*
+        * Scan the "Starving Free Lists" flag array looking for any Free
+        * Lists in need of more free buffers.  If we find one and it's not
+        * being actively polled, then bump its "starving" counter and attempt
+        * to refill it.  If we're successful in adding enough buffers to push
+        * the Free List over the starving threshold, then we can clear its
+        * "starving" status.
+        */
+       for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
+               unsigned long m;
+
+               for (m = s->starving_fl[i]; m; m &= m - 1) {
+                       unsigned int id = __ffs(m) + i * BITS_PER_LONG;
+                       struct sge_fl *fl = s->egr_map[id];
+
+                       clear_bit(id, s->starving_fl);
+                       smp_mb__after_atomic();
+
+                       /*
+                        * Since we are accessing fl without a lock there's a
+                        * small probability of a false positive where we
+                        * schedule napi but the FL is no longer starving.
+                        * No biggie.
+                        */
+                       if (fl_starving(adapter, fl)) {
+                               struct sge_eth_rxq *rxq;
+
+                               rxq = container_of(fl, struct sge_eth_rxq, fl);
+                               if (napi_reschedule(&rxq->rspq.napi))
+                                       fl->starving++;
+                               else
+                                       set_bit(id, s->starving_fl);
+                       }
+               }
+       }
+
+       /*
+        * Reschedule the next scan for starving Free Lists ...
+        */
+       mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
+}
+
+/**
+ *     sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
+ *     @data: the adapter
+ *
+ *     Runs periodically from a timer to perform maintenance of SGE TX queues.
+ *
+ *     b) Reclaims completed Tx packets for the Ethernet queues.  Normally
+ *     packets are cleaned up by new Tx packets, this timer cleans up packets
+ *     when no new packets are being submitted.  This is essential for pktgen,
+ *     at least.
+ */
+static void sge_tx_timer_cb(unsigned long data)
+{
+       struct adapter *adapter = (struct adapter *)data;
+       struct sge *s = &adapter->sge;
+       unsigned int i, budget;
+
+       budget = MAX_TIMER_TX_RECLAIM;
+       i = s->ethtxq_rover;
+       do {
+               struct sge_eth_txq *txq = &s->ethtxq[i];
+
+               if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
+                       int avail = reclaimable(&txq->q);
+
+                       if (avail > budget)
+                               avail = budget;
+
+                       free_tx_desc(adapter, &txq->q, avail, true);
+                       txq->q.in_use -= avail;
+                       __netif_tx_unlock(txq->txq);
+
+                       budget -= avail;
+                       if (!budget)
+                               break;
+               }
+
+               i++;
+               if (i >= s->ethqsets)
+                       i = 0;
+       } while (i != s->ethtxq_rover);
+       s->ethtxq_rover = i;
+
+       /*
+        * If we found too many reclaimable packets schedule a timer in the
+        * near future to continue where we left off.  Otherwise the next timer
+        * will be at its normal interval.
+        */
+       mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
+}
+
+/**
+ *     bar2_address - return the BAR2 address for an SGE Queue's Registers
+ *     @adapter: the adapter
+ *     @qid: the SGE Queue ID
+ *     @qtype: the SGE Queue Type (Egress or Ingress)
+ *     @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
+ *
+ *     Returns the BAR2 address for the SGE Queue Registers associated with
+ *     @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
+ *     returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
+ *     Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
+ *     Registers are supported (e.g. the Write Combining Doorbell Buffer).
+ */
+static void __iomem *bar2_address(struct adapter *adapter,
+                                 unsigned int qid,
+                                 enum t4_bar2_qtype qtype,
+                                 unsigned int *pbar2_qid)
+{
+       u64 bar2_qoffset;
+       int ret;
+
+       ret = t4_bar2_sge_qregs(adapter, qid, qtype,
+                               &bar2_qoffset, pbar2_qid);
+       if (ret)
+               return NULL;
+
+       return adapter->bar2 + bar2_qoffset;
+}
+
+/**
+ *     t4vf_sge_alloc_rxq - allocate an SGE RX Queue
+ *     @adapter: the adapter
+ *     @rspq: pointer to to the new rxq's Response Queue to be filled in
+ *     @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
+ *     @dev: the network device associated with the new rspq
+ *     @intr_dest: MSI-X vector index (overriden in MSI mode)
+ *     @fl: pointer to the new rxq's Free List to be filled in
+ *     @hnd: the interrupt handler to invoke for the rspq
+ */
+int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
+                      bool iqasynch, struct net_device *dev,
+                      int intr_dest,
+                      struct sge_fl *fl, rspq_handler_t hnd)
+{
+       struct sge *s = &adapter->sge;
+       struct port_info *pi = netdev_priv(dev);
+       struct fw_iq_cmd cmd, rpl;
+       int ret, iqandst, flsz = 0;
+
+       /*
+        * If we're using MSI interrupts and we're not initializing the
+        * Forwarded Interrupt Queue itself, then set up this queue for
+        * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
+        * the Forwarded Interrupt Queue must be set up before any other
+        * ingress queue ...
+        */
+       if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
+               iqandst = SGE_INTRDST_IQ;
+               intr_dest = adapter->sge.intrq.abs_id;
+       } else
+               iqandst = SGE_INTRDST_PCI;
+
+       /*
+        * Allocate the hardware ring for the Response Queue.  The size needs
+        * to be a multiple of 16 which includes the mandatory status entry
+        * (regardless of whether the Status Page capabilities are enabled or
+        * not).
+        */
+       rspq->size = roundup(rspq->size, 16);
+       rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
+                               0, &rspq->phys_addr, NULL, 0);
+       if (!rspq->desc)
+               return -ENOMEM;
+
+       /*
+        * Fill in the Ingress Queue Command.  Note: Ideally this code would
+        * be in t4vf_hw.c but there are so many parameters and dependencies
+        * on our Linux SGE state that we would end up having to pass tons of
+        * parameters.  We'll have to think about how this might be migrated
+        * into OS-independent common code ...
+        */
+       memset(&cmd, 0, sizeof(cmd));
+       cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
+                                   FW_CMD_REQUEST_F |
+                                   FW_CMD_WRITE_F |
+                                   FW_CMD_EXEC_F);
+       cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
+                                        FW_IQ_CMD_IQSTART_F |
+                                        FW_LEN16(cmd));
+       cmd.type_to_iqandstindex =
+               cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
+                           FW_IQ_CMD_IQASYNCH_V(iqasynch) |
+                           FW_IQ_CMD_VIID_V(pi->viid) |
+                           FW_IQ_CMD_IQANDST_V(iqandst) |
+                           FW_IQ_CMD_IQANUS_V(1) |
+                           FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
+                           FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
+       cmd.iqdroprss_to_iqesize =
+               cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
+                           FW_IQ_CMD_IQGTSMODE_F |
+                           FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
+                           FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
+       cmd.iqsize = cpu_to_be16(rspq->size);
+       cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
+
+       if (fl) {
+               /*
+                * Allocate the ring for the hardware free list (with space
+                * for its status page) along with the associated software
+                * descriptor ring.  The free list size needs to be a multiple
+                * of the Egress Queue Unit.
+                */
+               fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
+               fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
+                                     sizeof(__be64), sizeof(struct rx_sw_desc),
+                                     &fl->addr, &fl->sdesc, s->stat_len);
+               if (!fl->desc) {
+                       ret = -ENOMEM;
+                       goto err;
+               }
+
+               /*
+                * Calculate the size of the hardware free list ring plus
+                * Status Page (which the SGE will place after the end of the
+                * free list ring) in Egress Queue Units.
+                */
+               flsz = (fl->size / FL_PER_EQ_UNIT +
+                       s->stat_len / EQ_UNIT);
+
+               /*
+                * Fill in all the relevant firmware Ingress Queue Command
+                * fields for the free list.
+                */
+               cmd.iqns_to_fl0congen =
+                       cpu_to_be32(
+                               FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
+                               FW_IQ_CMD_FL0PACKEN_F |
+                               FW_IQ_CMD_FL0PADEN_F);
+               cmd.fl0dcaen_to_fl0cidxfthresh =
+                       cpu_to_be16(
+                               FW_IQ_CMD_FL0FBMIN_V(SGE_FETCHBURSTMIN_64B) |
+                               FW_IQ_CMD_FL0FBMAX_V(SGE_FETCHBURSTMAX_512B));
+               cmd.fl0size = cpu_to_be16(flsz);
+               cmd.fl0addr = cpu_to_be64(fl->addr);
+       }
+
+       /*
+        * Issue the firmware Ingress Queue Command and extract the results if
+        * it completes successfully.
+        */
+       ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
+       if (ret)
+               goto err;
+
+       netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
+       rspq->cur_desc = rspq->desc;
+       rspq->cidx = 0;
+       rspq->gen = 1;
+       rspq->next_intr_params = rspq->intr_params;
+       rspq->cntxt_id = be16_to_cpu(rpl.iqid);
+       rspq->bar2_addr = bar2_address(adapter,
+                                      rspq->cntxt_id,
+                                      T4_BAR2_QTYPE_INGRESS,
+                                      &rspq->bar2_qid);
+       rspq->abs_id = be16_to_cpu(rpl.physiqid);
+       rspq->size--;                   /* subtract status entry */
+       rspq->adapter = adapter;
+       rspq->netdev = dev;
+       rspq->handler = hnd;
+
+       /* set offset to -1 to distinguish ingress queues without FL */
+       rspq->offset = fl ? 0 : -1;
+
+       if (fl) {
+               fl->cntxt_id = be16_to_cpu(rpl.fl0id);
+               fl->avail = 0;
+               fl->pend_cred = 0;
+               fl->pidx = 0;
+               fl->cidx = 0;
+               fl->alloc_failed = 0;
+               fl->large_alloc_failed = 0;
+               fl->starving = 0;
+
+               /* Note, we must initialize the BAR2 Free List User Doorbell
+                * information before refilling the Free List!
+                */
+               fl->bar2_addr = bar2_address(adapter,
+                                            fl->cntxt_id,
+                                            T4_BAR2_QTYPE_EGRESS,
+                                            &fl->bar2_qid);
+
+               refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
+       }
+
+       return 0;
+
+err:
+       /*
+        * An error occurred.  Clean up our partial allocation state and
+        * return the error.
+        */
+       if (rspq->desc) {
+               dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
+                                 rspq->desc, rspq->phys_addr);
+               rspq->desc = NULL;
+       }
+       if (fl && fl->desc) {
+               kfree(fl->sdesc);
+               fl->sdesc = NULL;
+               dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
+                                 fl->desc, fl->addr);
+               fl->desc = NULL;
+       }
+       return ret;
+}
+
+/**
+ *     t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
+ *     @adapter: the adapter
+ *     @txq: pointer to the new txq to be filled in
+ *     @devq: the network TX queue associated with the new txq
+ *     @iqid: the relative ingress queue ID to which events relating to
+ *             the new txq should be directed
+ */
+int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
+                          struct net_device *dev, struct netdev_queue *devq,
+                          unsigned int iqid)
+{
+       struct sge *s = &adapter->sge;
+       int ret, nentries;
+       struct fw_eq_eth_cmd cmd, rpl;
+       struct port_info *pi = netdev_priv(dev);
+
+       /*
+        * Calculate the size of the hardware TX Queue (including the Status
+        * Page on the end of the TX Queue) in units of TX Descriptors.
+        */
+       nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
+
+       /*
+        * Allocate the hardware ring for the TX ring (with space for its
+        * status page) along with the associated software descriptor ring.
+        */
+       txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
+                                sizeof(struct tx_desc),
+                                sizeof(struct tx_sw_desc),
+                                &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
+       if (!txq->q.desc)
+               return -ENOMEM;
+
+       /*
+        * Fill in the Egress Queue Command.  Note: As with the direct use of
+        * the firmware Ingress Queue COmmand above in our RXQ allocation
+        * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
+        * have to see if there's some reasonable way to parameterize it
+        * into the common code ...
+        */
+       memset(&cmd, 0, sizeof(cmd));
+       cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
+                                   FW_CMD_REQUEST_F |
+                                   FW_CMD_WRITE_F |
+                                   FW_CMD_EXEC_F);
+       cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
+                                        FW_EQ_ETH_CMD_EQSTART_F |
+                                        FW_LEN16(cmd));
+       cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
+                                  FW_EQ_ETH_CMD_VIID_V(pi->viid));
+       cmd.fetchszm_to_iqid =
+               cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
+                           FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
+                           FW_EQ_ETH_CMD_IQID_V(iqid));
+       cmd.dcaen_to_eqsize =
+               cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) |
+                           FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) |
+                           FW_EQ_ETH_CMD_CIDXFTHRESH_V(
+                                               SGE_CIDXFLUSHTHRESH_32) |
+                           FW_EQ_ETH_CMD_EQSIZE_V(nentries));
+       cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+       /*
+        * Issue the firmware Egress Queue Command and extract the results if
+        * it completes successfully.
+        */
+       ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
+       if (ret) {
+               /*
+                * The girmware Ingress Queue Command failed for some reason.
+                * Free up our partial allocation state and return the error.
+                */
+               kfree(txq->q.sdesc);
+               txq->q.sdesc = NULL;
+               dma_free_coherent(adapter->pdev_dev,
+                                 nentries * sizeof(struct tx_desc),
+                                 txq->q.desc, txq->q.phys_addr);
+               txq->q.desc = NULL;
+               return ret;
+       }
+
+       txq->q.in_use = 0;
+       txq->q.cidx = 0;
+       txq->q.pidx = 0;
+       txq->q.stat = (void *)&txq->q.desc[txq->q.size];
+       txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
+       txq->q.bar2_addr = bar2_address(adapter,
+                                       txq->q.cntxt_id,
+                                       T4_BAR2_QTYPE_EGRESS,
+                                       &txq->q.bar2_qid);
+       txq->q.abs_id =
+               FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
+       txq->txq = devq;
+       txq->tso = 0;
+       txq->tx_cso = 0;
+       txq->vlan_ins = 0;
+       txq->q.stops = 0;
+       txq->q.restarts = 0;
+       txq->mapping_err = 0;
+       return 0;
+}
+
+/*
+ * Free the DMA map resources associated with a TX queue.
+ */
+static void free_txq(struct adapter *adapter, struct sge_txq *tq)
+{
+       struct sge *s = &adapter->sge;
+
+       dma_free_coherent(adapter->pdev_dev,
+                         tq->size * sizeof(*tq->desc) + s->stat_len,
+                         tq->desc, tq->phys_addr);
+       tq->cntxt_id = 0;
+       tq->sdesc = NULL;
+       tq->desc = NULL;
+}
+
+/*
+ * Free the resources associated with a response queue (possibly including a
+ * free list).
+ */
+static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
+                        struct sge_fl *fl)
+{
+       struct sge *s = &adapter->sge;
+       unsigned int flid = fl ? fl->cntxt_id : 0xffff;
+
+       t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
+                    rspq->cntxt_id, flid, 0xffff);
+       dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
+                         rspq->desc, rspq->phys_addr);
+       netif_napi_del(&rspq->napi);
+       rspq->netdev = NULL;
+       rspq->cntxt_id = 0;
+       rspq->abs_id = 0;
+       rspq->desc = NULL;
+
+       if (fl) {
+               free_rx_bufs(adapter, fl, fl->avail);
+               dma_free_coherent(adapter->pdev_dev,
+                                 fl->size * sizeof(*fl->desc) + s->stat_len,
+                                 fl->desc, fl->addr);
+               kfree(fl->sdesc);
+               fl->sdesc = NULL;
+               fl->cntxt_id = 0;
+               fl->desc = NULL;
+       }
+}
+
+/**
+ *     t4vf_free_sge_resources - free SGE resources
+ *     @adapter: the adapter
+ *
+ *     Frees resources used by the SGE queue sets.
+ */
+void t4vf_free_sge_resources(struct adapter *adapter)
+{
+       struct sge *s = &adapter->sge;
+       struct sge_eth_rxq *rxq = s->ethrxq;
+       struct sge_eth_txq *txq = s->ethtxq;
+       struct sge_rspq *evtq = &s->fw_evtq;
+       struct sge_rspq *intrq = &s->intrq;
+       int qs;
+
+       for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
+               if (rxq->rspq.desc)
+                       free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
+               if (txq->q.desc) {
+                       t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
+                       free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
+                       kfree(txq->q.sdesc);
+                       free_txq(adapter, &txq->q);
+               }
+       }
+       if (evtq->desc)
+               free_rspq_fl(adapter, evtq, NULL);
+       if (intrq->desc)
+               free_rspq_fl(adapter, intrq, NULL);
+}
+
+/**
+ *     t4vf_sge_start - enable SGE operation
+ *     @adapter: the adapter
+ *
+ *     Start tasklets and timers associated with the DMA engine.
+ */
+void t4vf_sge_start(struct adapter *adapter)
+{
+       adapter->sge.ethtxq_rover = 0;
+       mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
+       mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
+}
+
+/**
+ *     t4vf_sge_stop - disable SGE operation
+ *     @adapter: the adapter
+ *
+ *     Stop tasklets and timers associated with the DMA engine.  Note that
+ *     this is effective only if measures have been taken to disable any HW
+ *     events that may restart them.
+ */
+void t4vf_sge_stop(struct adapter *adapter)
+{
+       struct sge *s = &adapter->sge;
+
+       if (s->rx_timer.function)
+               del_timer_sync(&s->rx_timer);
+       if (s->tx_timer.function)
+               del_timer_sync(&s->tx_timer);
+}
+
+/**
+ *     t4vf_sge_init - initialize SGE
+ *     @adapter: the adapter
+ *
+ *     Performs SGE initialization needed every time after a chip reset.
+ *     We do not initialize any of the queue sets here, instead the driver
+ *     top-level must request those individually.  We also do not enable DMA
+ *     here, that should be done after the queues have been set up.
+ */
+int t4vf_sge_init(struct adapter *adapter)
+{
+       struct sge_params *sge_params = &adapter->params.sge;
+       u32 fl0 = sge_params->sge_fl_buffer_size[0];
+       u32 fl1 = sge_params->sge_fl_buffer_size[1];
+       struct sge *s = &adapter->sge;
+       unsigned int ingpadboundary, ingpackboundary;
+
+       /*
+        * Start by vetting the basic SGE parameters which have been set up by
+        * the Physical Function Driver.  Ideally we should be able to deal
+        * with _any_ configuration.  Practice is different ...
+        */
+       if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
+               dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
+                       fl0, fl1);
+               return -EINVAL;
+       }
+       if ((sge_params->sge_control & RXPKTCPLMODE_F) == 0) {
+               dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
+               return -EINVAL;
+       }
+
+       /*
+        * Now translate the adapter parameters into our internal forms.
+        */
+       if (fl1)
+               s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
+       s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
+                       ? 128 : 64);
+       s->pktshift = PKTSHIFT_G(sge_params->sge_control);
+
+       /* T4 uses a single control field to specify both the PCIe Padding and
+        * Packing Boundary.  T5 introduced the ability to specify these
+        * separately.  The actual Ingress Packet Data alignment boundary
+        * within Packed Buffer Mode is the maximum of these two
+        * specifications.  (Note that it makes no real practical sense to
+        * have the Pading Boudary be larger than the Packing Boundary but you
+        * could set the chip up that way and, in fact, legacy T4 code would
+        * end doing this because it would initialize the Padding Boundary and
+        * leave the Packing Boundary initialized to 0 (16 bytes).)
+        */
+       ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_params->sge_control) +
+                              INGPADBOUNDARY_SHIFT_X);
+       if (is_t4(adapter->params.chip)) {
+               s->fl_align = ingpadboundary;
+       } else {
+               /* T5 has a different interpretation of one of the PCIe Packing
+                * Boundary values.
+                */
+               ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2);
+               if (ingpackboundary == INGPACKBOUNDARY_16B_X)
+                       ingpackboundary = 16;
+               else
+                       ingpackboundary = 1 << (ingpackboundary +
+                                               INGPACKBOUNDARY_SHIFT_X);
+
+               s->fl_align = max(ingpadboundary, ingpackboundary);
+       }
+
+       /* A FL with <= fl_starve_thres buffers is starving and a periodic
+        * timer will attempt to refill it.  This needs to be larger than the
+        * SGE's Egress Congestion Threshold.  If it isn't, then we can get
+        * stuck waiting for new packets while the SGE is waiting for us to
+        * give it more Free List entries.  (Note that the SGE's Egress
+        * Congestion Threshold is in units of 2 Free List pointers.)
+        */
+       s->fl_starve_thres
+               = EGRTHRESHOLD_G(sge_params->sge_congestion_control)*2 + 1;
+
+       /*
+        * Set up tasklet timers.
+        */
+       setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
+       setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
+
+       /*
+        * Initialize Forwarded Interrupt Queue lock.
+        */
+       spin_lock_init(&s->intrq_lock);
+
+       return 0;
+}