Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / chelsio / cxgb / sge.c
diff --git a/kernel/drivers/net/ethernet/chelsio/cxgb/sge.c b/kernel/drivers/net/ethernet/chelsio/cxgb/sge.c
new file mode 100644 (file)
index 0000000..86f467a
--- /dev/null
@@ -0,0 +1,2123 @@
+/*****************************************************************************
+ *                                                                           *
+ * File: sge.c                                                               *
+ * $Revision: 1.26 $                                                         *
+ * $Date: 2005/06/21 18:29:48 $                                              *
+ * Description:                                                              *
+ *  DMA engine.                                                              *
+ *  part of the Chelsio 10Gb Ethernet Driver.                                *
+ *                                                                           *
+ * This program is free software; you can redistribute it and/or modify      *
+ * it under the terms of the GNU General Public License, version 2, as       *
+ * published by the Free Software Foundation.                                *
+ *                                                                           *
+ * You should have received a copy of the GNU General Public License along   *
+ * with this program; if not, see <http://www.gnu.org/licenses/>.            *
+ *                                                                           *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
+ * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
+ *                                                                           *
+ * http://www.chelsio.com                                                    *
+ *                                                                           *
+ * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
+ * All rights reserved.                                                      *
+ *                                                                           *
+ * Maintainers: maintainers@chelsio.com                                      *
+ *                                                                           *
+ * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
+ *          Tina Yang               <tainay@chelsio.com>                     *
+ *          Felix Marti             <felix@chelsio.com>                      *
+ *          Scott Bardone           <sbardone@chelsio.com>                   *
+ *          Kurt Ottaway            <kottaway@chelsio.com>                   *
+ *          Frank DiMambro          <frank@chelsio.com>                      *
+ *                                                                           *
+ * History:                                                                  *
+ *                                                                           *
+ ****************************************************************************/
+
+#include "common.h"
+
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/pci.h>
+#include <linux/ktime.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/if_vlan.h>
+#include <linux/skbuff.h>
+#include <linux/mm.h>
+#include <linux/tcp.h>
+#include <linux/ip.h>
+#include <linux/in.h>
+#include <linux/if_arp.h>
+#include <linux/slab.h>
+#include <linux/prefetch.h>
+
+#include "cpl5_cmd.h"
+#include "sge.h"
+#include "regs.h"
+#include "espi.h"
+
+/* This belongs in if_ether.h */
+#define ETH_P_CPL5 0xf
+
+#define SGE_CMDQ_N             2
+#define SGE_FREELQ_N           2
+#define SGE_CMDQ0_E_N          1024
+#define SGE_CMDQ1_E_N          128
+#define SGE_FREEL_SIZE         4096
+#define SGE_JUMBO_FREEL_SIZE   512
+#define SGE_FREEL_REFILL_THRESH        16
+#define SGE_RESPQ_E_N          1024
+#define SGE_INTRTIMER_NRES     1000
+#define SGE_RX_SM_BUF_SIZE     1536
+#define SGE_TX_DESC_MAX_PLEN   16384
+
+#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
+
+/*
+ * Period of the TX buffer reclaim timer.  This timer does not need to run
+ * frequently as TX buffers are usually reclaimed by new TX packets.
+ */
+#define TX_RECLAIM_PERIOD (HZ / 4)
+
+#define M_CMD_LEN       0x7fffffff
+#define V_CMD_LEN(v)    (v)
+#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
+#define V_CMD_GEN1(v)   ((v) << 31)
+#define V_CMD_GEN2(v)   (v)
+#define F_CMD_DATAVALID (1 << 1)
+#define F_CMD_SOP       (1 << 2)
+#define V_CMD_EOP(v)    ((v) << 3)
+
+/*
+ * Command queue, receive buffer list, and response queue descriptors.
+ */
+#if defined(__BIG_ENDIAN_BITFIELD)
+struct cmdQ_e {
+       u32 addr_lo;
+       u32 len_gen;
+       u32 flags;
+       u32 addr_hi;
+};
+
+struct freelQ_e {
+       u32 addr_lo;
+       u32 len_gen;
+       u32 gen2;
+       u32 addr_hi;
+};
+
+struct respQ_e {
+       u32 Qsleeping           : 4;
+       u32 Cmdq1CreditReturn   : 5;
+       u32 Cmdq1DmaComplete    : 5;
+       u32 Cmdq0CreditReturn   : 5;
+       u32 Cmdq0DmaComplete    : 5;
+       u32 FreelistQid         : 2;
+       u32 CreditValid         : 1;
+       u32 DataValid           : 1;
+       u32 Offload             : 1;
+       u32 Eop                 : 1;
+       u32 Sop                 : 1;
+       u32 GenerationBit       : 1;
+       u32 BufferLength;
+};
+#elif defined(__LITTLE_ENDIAN_BITFIELD)
+struct cmdQ_e {
+       u32 len_gen;
+       u32 addr_lo;
+       u32 addr_hi;
+       u32 flags;
+};
+
+struct freelQ_e {
+       u32 len_gen;
+       u32 addr_lo;
+       u32 addr_hi;
+       u32 gen2;
+};
+
+struct respQ_e {
+       u32 BufferLength;
+       u32 GenerationBit       : 1;
+       u32 Sop                 : 1;
+       u32 Eop                 : 1;
+       u32 Offload             : 1;
+       u32 DataValid           : 1;
+       u32 CreditValid         : 1;
+       u32 FreelistQid         : 2;
+       u32 Cmdq0DmaComplete    : 5;
+       u32 Cmdq0CreditReturn   : 5;
+       u32 Cmdq1DmaComplete    : 5;
+       u32 Cmdq1CreditReturn   : 5;
+       u32 Qsleeping           : 4;
+} ;
+#endif
+
+/*
+ * SW Context Command and Freelist Queue Descriptors
+ */
+struct cmdQ_ce {
+       struct sk_buff *skb;
+       DEFINE_DMA_UNMAP_ADDR(dma_addr);
+       DEFINE_DMA_UNMAP_LEN(dma_len);
+};
+
+struct freelQ_ce {
+       struct sk_buff *skb;
+       DEFINE_DMA_UNMAP_ADDR(dma_addr);
+       DEFINE_DMA_UNMAP_LEN(dma_len);
+};
+
+/*
+ * SW command, freelist and response rings
+ */
+struct cmdQ {
+       unsigned long   status;         /* HW DMA fetch status */
+       unsigned int    in_use;         /* # of in-use command descriptors */
+       unsigned int    size;           /* # of descriptors */
+       unsigned int    processed;      /* total # of descs HW has processed */
+       unsigned int    cleaned;        /* total # of descs SW has reclaimed */
+       unsigned int    stop_thres;     /* SW TX queue suspend threshold */
+       u16             pidx;           /* producer index (SW) */
+       u16             cidx;           /* consumer index (HW) */
+       u8              genbit;         /* current generation (=valid) bit */
+       u8              sop;            /* is next entry start of packet? */
+       struct cmdQ_e  *entries;        /* HW command descriptor Q */
+       struct cmdQ_ce *centries;       /* SW command context descriptor Q */
+       dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
+       spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
+};
+
+struct freelQ {
+       unsigned int    credits;        /* # of available RX buffers */
+       unsigned int    size;           /* free list capacity */
+       u16             pidx;           /* producer index (SW) */
+       u16             cidx;           /* consumer index (HW) */
+       u16             rx_buffer_size; /* Buffer size on this free list */
+       u16             dma_offset;     /* DMA offset to align IP headers */
+       u16             recycleq_idx;   /* skb recycle q to use */
+       u8              genbit;         /* current generation (=valid) bit */
+       struct freelQ_e *entries;       /* HW freelist descriptor Q */
+       struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
+       dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
+};
+
+struct respQ {
+       unsigned int    credits;        /* credits to be returned to SGE */
+       unsigned int    size;           /* # of response Q descriptors */
+       u16             cidx;           /* consumer index (SW) */
+       u8              genbit;         /* current generation(=valid) bit */
+       struct respQ_e *entries;        /* HW response descriptor Q */
+       dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
+};
+
+/* Bit flags for cmdQ.status */
+enum {
+       CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
+       CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
+};
+
+/* T204 TX SW scheduler */
+
+/* Per T204 TX port */
+struct sched_port {
+       unsigned int    avail;          /* available bits - quota */
+       unsigned int    drain_bits_per_1024ns; /* drain rate */
+       unsigned int    speed;          /* drain rate, mbps */
+       unsigned int    mtu;            /* mtu size */
+       struct sk_buff_head skbq;       /* pending skbs */
+};
+
+/* Per T204 device */
+struct sched {
+       ktime_t         last_updated;   /* last time quotas were computed */
+       unsigned int    max_avail;      /* max bits to be sent to any port */
+       unsigned int    port;           /* port index (round robin ports) */
+       unsigned int    num;            /* num skbs in per port queues */
+       struct sched_port p[MAX_NPORTS];
+       struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
+};
+static void restart_sched(unsigned long);
+
+
+/*
+ * Main SGE data structure
+ *
+ * Interrupts are handled by a single CPU and it is likely that on a MP system
+ * the application is migrated to another CPU. In that scenario, we try to
+ * separate the RX(in irq context) and TX state in order to decrease memory
+ * contention.
+ */
+struct sge {
+       struct adapter *adapter;        /* adapter backpointer */
+       struct net_device *netdev;      /* netdevice backpointer */
+       struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
+       struct respQ    respQ;          /* response Q */
+       unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
+       unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
+       unsigned int    jumbo_fl;       /* jumbo freelist Q index */
+       unsigned int    intrtimer_nres; /* no-resource interrupt timer */
+       unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
+       struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
+       struct timer_list espibug_timer;
+       unsigned long   espibug_timeout;
+       struct sk_buff  *espibug_skb[MAX_NPORTS];
+       u32             sge_control;    /* shadow value of sge control reg */
+       struct sge_intr_counts stats;
+       struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
+       struct sched    *tx_sched;
+       struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
+};
+
+static const u8 ch_mac_addr[ETH_ALEN] = {
+       0x0, 0x7, 0x43, 0x0, 0x0, 0x0
+};
+
+/*
+ * stop tasklet and free all pending skb's
+ */
+static void tx_sched_stop(struct sge *sge)
+{
+       struct sched *s = sge->tx_sched;
+       int i;
+
+       tasklet_kill(&s->sched_tsk);
+
+       for (i = 0; i < MAX_NPORTS; i++)
+               __skb_queue_purge(&s->p[s->port].skbq);
+}
+
+/*
+ * t1_sched_update_parms() is called when the MTU or link speed changes. It
+ * re-computes scheduler parameters to scope with the change.
+ */
+unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
+                                  unsigned int mtu, unsigned int speed)
+{
+       struct sched *s = sge->tx_sched;
+       struct sched_port *p = &s->p[port];
+       unsigned int max_avail_segs;
+
+       pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
+       if (speed)
+               p->speed = speed;
+       if (mtu)
+               p->mtu = mtu;
+
+       if (speed || mtu) {
+               unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
+               do_div(drain, (p->mtu + 50) * 1000);
+               p->drain_bits_per_1024ns = (unsigned int) drain;
+
+               if (p->speed < 1000)
+                       p->drain_bits_per_1024ns =
+                               90 * p->drain_bits_per_1024ns / 100;
+       }
+
+       if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
+               p->drain_bits_per_1024ns -= 16;
+               s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
+               max_avail_segs = max(1U, 4096 / (p->mtu - 40));
+       } else {
+               s->max_avail = 16384;
+               max_avail_segs = max(1U, 9000 / (p->mtu - 40));
+       }
+
+       pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
+                "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
+                p->speed, s->max_avail, max_avail_segs,
+                p->drain_bits_per_1024ns);
+
+       return max_avail_segs * (p->mtu - 40);
+}
+
+#if 0
+
+/*
+ * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
+ * data that can be pushed per port.
+ */
+void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
+{
+       struct sched *s = sge->tx_sched;
+       unsigned int i;
+
+       s->max_avail = val;
+       for (i = 0; i < MAX_NPORTS; i++)
+               t1_sched_update_parms(sge, i, 0, 0);
+}
+
+/*
+ * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
+ * is draining.
+ */
+void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
+                                        unsigned int val)
+{
+       struct sched *s = sge->tx_sched;
+       struct sched_port *p = &s->p[port];
+       p->drain_bits_per_1024ns = val * 1024 / 1000;
+       t1_sched_update_parms(sge, port, 0, 0);
+}
+
+#endif  /*  0  */
+
+/*
+ * tx_sched_init() allocates resources and does basic initialization.
+ */
+static int tx_sched_init(struct sge *sge)
+{
+       struct sched *s;
+       int i;
+
+       s = kzalloc(sizeof (struct sched), GFP_KERNEL);
+       if (!s)
+               return -ENOMEM;
+
+       pr_debug("tx_sched_init\n");
+       tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
+       sge->tx_sched = s;
+
+       for (i = 0; i < MAX_NPORTS; i++) {
+               skb_queue_head_init(&s->p[i].skbq);
+               t1_sched_update_parms(sge, i, 1500, 1000);
+       }
+
+       return 0;
+}
+
+/*
+ * sched_update_avail() computes the delta since the last time it was called
+ * and updates the per port quota (number of bits that can be sent to the any
+ * port).
+ */
+static inline int sched_update_avail(struct sge *sge)
+{
+       struct sched *s = sge->tx_sched;
+       ktime_t now = ktime_get();
+       unsigned int i;
+       long long delta_time_ns;
+
+       delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
+
+       pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
+       if (delta_time_ns < 15000)
+               return 0;
+
+       for (i = 0; i < MAX_NPORTS; i++) {
+               struct sched_port *p = &s->p[i];
+               unsigned int delta_avail;
+
+               delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
+               p->avail = min(p->avail + delta_avail, s->max_avail);
+       }
+
+       s->last_updated = now;
+
+       return 1;
+}
+
+/*
+ * sched_skb() is called from two different places. In the tx path, any
+ * packet generating load on an output port will call sched_skb()
+ * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
+ * context (skb == NULL).
+ * The scheduler only returns a skb (which will then be sent) if the
+ * length of the skb is <= the current quota of the output port.
+ */
+static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
+                               unsigned int credits)
+{
+       struct sched *s = sge->tx_sched;
+       struct sk_buff_head *skbq;
+       unsigned int i, len, update = 1;
+
+       pr_debug("sched_skb %p\n", skb);
+       if (!skb) {
+               if (!s->num)
+                       return NULL;
+       } else {
+               skbq = &s->p[skb->dev->if_port].skbq;
+               __skb_queue_tail(skbq, skb);
+               s->num++;
+               skb = NULL;
+       }
+
+       if (credits < MAX_SKB_FRAGS + 1)
+               goto out;
+
+again:
+       for (i = 0; i < MAX_NPORTS; i++) {
+               s->port = (s->port + 1) & (MAX_NPORTS - 1);
+               skbq = &s->p[s->port].skbq;
+
+               skb = skb_peek(skbq);
+
+               if (!skb)
+                       continue;
+
+               len = skb->len;
+               if (len <= s->p[s->port].avail) {
+                       s->p[s->port].avail -= len;
+                       s->num--;
+                       __skb_unlink(skb, skbq);
+                       goto out;
+               }
+               skb = NULL;
+       }
+
+       if (update-- && sched_update_avail(sge))
+               goto again;
+
+out:
+       /* If there are more pending skbs, we use the hardware to schedule us
+        * again.
+        */
+       if (s->num && !skb) {
+               struct cmdQ *q = &sge->cmdQ[0];
+               clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+               if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
+                       set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+                       writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
+               }
+       }
+       pr_debug("sched_skb ret %p\n", skb);
+
+       return skb;
+}
+
+/*
+ * PIO to indicate that memory mapped Q contains valid descriptor(s).
+ */
+static inline void doorbell_pio(struct adapter *adapter, u32 val)
+{
+       wmb();
+       writel(val, adapter->regs + A_SG_DOORBELL);
+}
+
+/*
+ * Frees all RX buffers on the freelist Q. The caller must make sure that
+ * the SGE is turned off before calling this function.
+ */
+static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
+{
+       unsigned int cidx = q->cidx;
+
+       while (q->credits--) {
+               struct freelQ_ce *ce = &q->centries[cidx];
+
+               pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
+                                dma_unmap_len(ce, dma_len),
+                                PCI_DMA_FROMDEVICE);
+               dev_kfree_skb(ce->skb);
+               ce->skb = NULL;
+               if (++cidx == q->size)
+                       cidx = 0;
+       }
+}
+
+/*
+ * Free RX free list and response queue resources.
+ */
+static void free_rx_resources(struct sge *sge)
+{
+       struct pci_dev *pdev = sge->adapter->pdev;
+       unsigned int size, i;
+
+       if (sge->respQ.entries) {
+               size = sizeof(struct respQ_e) * sge->respQ.size;
+               pci_free_consistent(pdev, size, sge->respQ.entries,
+                                   sge->respQ.dma_addr);
+       }
+
+       for (i = 0; i < SGE_FREELQ_N; i++) {
+               struct freelQ *q = &sge->freelQ[i];
+
+               if (q->centries) {
+                       free_freelQ_buffers(pdev, q);
+                       kfree(q->centries);
+               }
+               if (q->entries) {
+                       size = sizeof(struct freelQ_e) * q->size;
+                       pci_free_consistent(pdev, size, q->entries,
+                                           q->dma_addr);
+               }
+       }
+}
+
+/*
+ * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
+ * response queue.
+ */
+static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
+{
+       struct pci_dev *pdev = sge->adapter->pdev;
+       unsigned int size, i;
+
+       for (i = 0; i < SGE_FREELQ_N; i++) {
+               struct freelQ *q = &sge->freelQ[i];
+
+               q->genbit = 1;
+               q->size = p->freelQ_size[i];
+               q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
+               size = sizeof(struct freelQ_e) * q->size;
+               q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
+               if (!q->entries)
+                       goto err_no_mem;
+
+               size = sizeof(struct freelQ_ce) * q->size;
+               q->centries = kzalloc(size, GFP_KERNEL);
+               if (!q->centries)
+                       goto err_no_mem;
+       }
+
+       /*
+        * Calculate the buffer sizes for the two free lists.  FL0 accommodates
+        * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
+        * including all the sk_buff overhead.
+        *
+        * Note: For T2 FL0 and FL1 are reversed.
+        */
+       sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
+               sizeof(struct cpl_rx_data) +
+               sge->freelQ[!sge->jumbo_fl].dma_offset;
+
+               size = (16 * 1024) -
+                   SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
+
+       sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
+
+       /*
+        * Setup which skb recycle Q should be used when recycling buffers from
+        * each free list.
+        */
+       sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
+       sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
+
+       sge->respQ.genbit = 1;
+       sge->respQ.size = SGE_RESPQ_E_N;
+       sge->respQ.credits = 0;
+       size = sizeof(struct respQ_e) * sge->respQ.size;
+       sge->respQ.entries =
+               pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
+       if (!sge->respQ.entries)
+               goto err_no_mem;
+       return 0;
+
+err_no_mem:
+       free_rx_resources(sge);
+       return -ENOMEM;
+}
+
+/*
+ * Reclaims n TX descriptors and frees the buffers associated with them.
+ */
+static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
+{
+       struct cmdQ_ce *ce;
+       struct pci_dev *pdev = sge->adapter->pdev;
+       unsigned int cidx = q->cidx;
+
+       q->in_use -= n;
+       ce = &q->centries[cidx];
+       while (n--) {
+               if (likely(dma_unmap_len(ce, dma_len))) {
+                       pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
+                                        dma_unmap_len(ce, dma_len),
+                                        PCI_DMA_TODEVICE);
+                       if (q->sop)
+                               q->sop = 0;
+               }
+               if (ce->skb) {
+                       dev_kfree_skb_any(ce->skb);
+                       q->sop = 1;
+               }
+               ce++;
+               if (++cidx == q->size) {
+                       cidx = 0;
+                       ce = q->centries;
+               }
+       }
+       q->cidx = cidx;
+}
+
+/*
+ * Free TX resources.
+ *
+ * Assumes that SGE is stopped and all interrupts are disabled.
+ */
+static void free_tx_resources(struct sge *sge)
+{
+       struct pci_dev *pdev = sge->adapter->pdev;
+       unsigned int size, i;
+
+       for (i = 0; i < SGE_CMDQ_N; i++) {
+               struct cmdQ *q = &sge->cmdQ[i];
+
+               if (q->centries) {
+                       if (q->in_use)
+                               free_cmdQ_buffers(sge, q, q->in_use);
+                       kfree(q->centries);
+               }
+               if (q->entries) {
+                       size = sizeof(struct cmdQ_e) * q->size;
+                       pci_free_consistent(pdev, size, q->entries,
+                                           q->dma_addr);
+               }
+       }
+}
+
+/*
+ * Allocates basic TX resources, consisting of memory mapped command Qs.
+ */
+static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
+{
+       struct pci_dev *pdev = sge->adapter->pdev;
+       unsigned int size, i;
+
+       for (i = 0; i < SGE_CMDQ_N; i++) {
+               struct cmdQ *q = &sge->cmdQ[i];
+
+               q->genbit = 1;
+               q->sop = 1;
+               q->size = p->cmdQ_size[i];
+               q->in_use = 0;
+               q->status = 0;
+               q->processed = q->cleaned = 0;
+               q->stop_thres = 0;
+               spin_lock_init(&q->lock);
+               size = sizeof(struct cmdQ_e) * q->size;
+               q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
+               if (!q->entries)
+                       goto err_no_mem;
+
+               size = sizeof(struct cmdQ_ce) * q->size;
+               q->centries = kzalloc(size, GFP_KERNEL);
+               if (!q->centries)
+                       goto err_no_mem;
+       }
+
+       /*
+        * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
+        * only.  For queue 0 set the stop threshold so we can handle one more
+        * packet from each port, plus reserve an additional 24 entries for
+        * Ethernet packets only.  Queue 1 never suspends nor do we reserve
+        * space for Ethernet packets.
+        */
+       sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
+               (MAX_SKB_FRAGS + 1);
+       return 0;
+
+err_no_mem:
+       free_tx_resources(sge);
+       return -ENOMEM;
+}
+
+static inline void setup_ring_params(struct adapter *adapter, u64 addr,
+                                    u32 size, int base_reg_lo,
+                                    int base_reg_hi, int size_reg)
+{
+       writel((u32)addr, adapter->regs + base_reg_lo);
+       writel(addr >> 32, adapter->regs + base_reg_hi);
+       writel(size, adapter->regs + size_reg);
+}
+
+/*
+ * Enable/disable VLAN acceleration.
+ */
+void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
+{
+       struct sge *sge = adapter->sge;
+
+       if (features & NETIF_F_HW_VLAN_CTAG_RX)
+               sge->sge_control |= F_VLAN_XTRACT;
+       else
+               sge->sge_control &= ~F_VLAN_XTRACT;
+       if (adapter->open_device_map) {
+               writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
+               readl(adapter->regs + A_SG_CONTROL);   /* flush */
+       }
+}
+
+/*
+ * Programs the various SGE registers. However, the engine is not yet enabled,
+ * but sge->sge_control is setup and ready to go.
+ */
+static void configure_sge(struct sge *sge, struct sge_params *p)
+{
+       struct adapter *ap = sge->adapter;
+
+       writel(0, ap->regs + A_SG_CONTROL);
+       setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
+                         A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
+       setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
+                         A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
+       setup_ring_params(ap, sge->freelQ[0].dma_addr,
+                         sge->freelQ[0].size, A_SG_FL0BASELWR,
+                         A_SG_FL0BASEUPR, A_SG_FL0SIZE);
+       setup_ring_params(ap, sge->freelQ[1].dma_addr,
+                         sge->freelQ[1].size, A_SG_FL1BASELWR,
+                         A_SG_FL1BASEUPR, A_SG_FL1SIZE);
+
+       /* The threshold comparison uses <. */
+       writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
+
+       setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
+                         A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
+       writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
+
+       sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
+               F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
+               V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
+               V_RX_PKT_OFFSET(sge->rx_pkt_pad);
+
+#if defined(__BIG_ENDIAN_BITFIELD)
+       sge->sge_control |= F_ENABLE_BIG_ENDIAN;
+#endif
+
+       /* Initialize no-resource timer */
+       sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
+
+       t1_sge_set_coalesce_params(sge, p);
+}
+
+/*
+ * Return the payload capacity of the jumbo free-list buffers.
+ */
+static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
+{
+       return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
+               sge->freelQ[sge->jumbo_fl].dma_offset -
+               sizeof(struct cpl_rx_data);
+}
+
+/*
+ * Frees all SGE related resources and the sge structure itself
+ */
+void t1_sge_destroy(struct sge *sge)
+{
+       int i;
+
+       for_each_port(sge->adapter, i)
+               free_percpu(sge->port_stats[i]);
+
+       kfree(sge->tx_sched);
+       free_tx_resources(sge);
+       free_rx_resources(sge);
+       kfree(sge);
+}
+
+/*
+ * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
+ * context Q) until the Q is full or alloc_skb fails.
+ *
+ * It is possible that the generation bits already match, indicating that the
+ * buffer is already valid and nothing needs to be done. This happens when we
+ * copied a received buffer into a new sk_buff during the interrupt processing.
+ *
+ * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
+ * we specify a RX_OFFSET in order to make sure that the IP header is 4B
+ * aligned.
+ */
+static void refill_free_list(struct sge *sge, struct freelQ *q)
+{
+       struct pci_dev *pdev = sge->adapter->pdev;
+       struct freelQ_ce *ce = &q->centries[q->pidx];
+       struct freelQ_e *e = &q->entries[q->pidx];
+       unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
+
+       while (q->credits < q->size) {
+               struct sk_buff *skb;
+               dma_addr_t mapping;
+
+               skb = dev_alloc_skb(q->rx_buffer_size);
+               if (!skb)
+                       break;
+
+               skb_reserve(skb, q->dma_offset);
+               mapping = pci_map_single(pdev, skb->data, dma_len,
+                                        PCI_DMA_FROMDEVICE);
+               skb_reserve(skb, sge->rx_pkt_pad);
+
+               ce->skb = skb;
+               dma_unmap_addr_set(ce, dma_addr, mapping);
+               dma_unmap_len_set(ce, dma_len, dma_len);
+               e->addr_lo = (u32)mapping;
+               e->addr_hi = (u64)mapping >> 32;
+               e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
+               wmb();
+               e->gen2 = V_CMD_GEN2(q->genbit);
+
+               e++;
+               ce++;
+               if (++q->pidx == q->size) {
+                       q->pidx = 0;
+                       q->genbit ^= 1;
+                       ce = q->centries;
+                       e = q->entries;
+               }
+               q->credits++;
+       }
+}
+
+/*
+ * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
+ * of both rings, we go into 'few interrupt mode' in order to give the system
+ * time to free up resources.
+ */
+static void freelQs_empty(struct sge *sge)
+{
+       struct adapter *adapter = sge->adapter;
+       u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
+       u32 irqholdoff_reg;
+
+       refill_free_list(sge, &sge->freelQ[0]);
+       refill_free_list(sge, &sge->freelQ[1]);
+
+       if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
+           sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
+               irq_reg |= F_FL_EXHAUSTED;
+               irqholdoff_reg = sge->fixed_intrtimer;
+       } else {
+               /* Clear the F_FL_EXHAUSTED interrupts for now */
+               irq_reg &= ~F_FL_EXHAUSTED;
+               irqholdoff_reg = sge->intrtimer_nres;
+       }
+       writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
+       writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
+
+       /* We reenable the Qs to force a freelist GTS interrupt later */
+       doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
+}
+
+#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
+#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
+#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
+                       F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
+
+/*
+ * Disable SGE Interrupts
+ */
+void t1_sge_intr_disable(struct sge *sge)
+{
+       u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
+
+       writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
+       writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
+}
+
+/*
+ * Enable SGE interrupts.
+ */
+void t1_sge_intr_enable(struct sge *sge)
+{
+       u32 en = SGE_INT_ENABLE;
+       u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
+
+       if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
+               en &= ~F_PACKET_TOO_BIG;
+       writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
+       writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
+}
+
+/*
+ * Clear SGE interrupts.
+ */
+void t1_sge_intr_clear(struct sge *sge)
+{
+       writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
+       writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
+}
+
+/*
+ * SGE 'Error' interrupt handler
+ */
+int t1_sge_intr_error_handler(struct sge *sge)
+{
+       struct adapter *adapter = sge->adapter;
+       u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
+
+       if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
+               cause &= ~F_PACKET_TOO_BIG;
+       if (cause & F_RESPQ_EXHAUSTED)
+               sge->stats.respQ_empty++;
+       if (cause & F_RESPQ_OVERFLOW) {
+               sge->stats.respQ_overflow++;
+               pr_alert("%s: SGE response queue overflow\n",
+                        adapter->name);
+       }
+       if (cause & F_FL_EXHAUSTED) {
+               sge->stats.freelistQ_empty++;
+               freelQs_empty(sge);
+       }
+       if (cause & F_PACKET_TOO_BIG) {
+               sge->stats.pkt_too_big++;
+               pr_alert("%s: SGE max packet size exceeded\n",
+                        adapter->name);
+       }
+       if (cause & F_PACKET_MISMATCH) {
+               sge->stats.pkt_mismatch++;
+               pr_alert("%s: SGE packet mismatch\n", adapter->name);
+       }
+       if (cause & SGE_INT_FATAL)
+               t1_fatal_err(adapter);
+
+       writel(cause, adapter->regs + A_SG_INT_CAUSE);
+       return 0;
+}
+
+const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
+{
+       return &sge->stats;
+}
+
+void t1_sge_get_port_stats(const struct sge *sge, int port,
+                          struct sge_port_stats *ss)
+{
+       int cpu;
+
+       memset(ss, 0, sizeof(*ss));
+       for_each_possible_cpu(cpu) {
+               struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
+
+               ss->rx_cso_good += st->rx_cso_good;
+               ss->tx_cso += st->tx_cso;
+               ss->tx_tso += st->tx_tso;
+               ss->tx_need_hdrroom += st->tx_need_hdrroom;
+               ss->vlan_xtract += st->vlan_xtract;
+               ss->vlan_insert += st->vlan_insert;
+       }
+}
+
+/**
+ *     recycle_fl_buf - recycle a free list buffer
+ *     @fl: the free list
+ *     @idx: index of buffer to recycle
+ *
+ *     Recycles the specified buffer on the given free list by adding it at
+ *     the next available slot on the list.
+ */
+static void recycle_fl_buf(struct freelQ *fl, int idx)
+{
+       struct freelQ_e *from = &fl->entries[idx];
+       struct freelQ_e *to = &fl->entries[fl->pidx];
+
+       fl->centries[fl->pidx] = fl->centries[idx];
+       to->addr_lo = from->addr_lo;
+       to->addr_hi = from->addr_hi;
+       to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
+       wmb();
+       to->gen2 = V_CMD_GEN2(fl->genbit);
+       fl->credits++;
+
+       if (++fl->pidx == fl->size) {
+               fl->pidx = 0;
+               fl->genbit ^= 1;
+       }
+}
+
+static int copybreak __read_mostly = 256;
+module_param(copybreak, int, 0);
+MODULE_PARM_DESC(copybreak, "Receive copy threshold");
+
+/**
+ *     get_packet - return the next ingress packet buffer
+ *     @adapter: the adapter that received the packet
+ *     @fl: the SGE free list holding the packet
+ *     @len: the actual packet length, excluding any SGE padding
+ *
+ *     Get the next packet from a free list and complete setup of the
+ *     sk_buff.  If the packet is small we make a copy and recycle the
+ *     original buffer, otherwise we use the original buffer itself.  If a
+ *     positive drop threshold is supplied packets are dropped and their
+ *     buffers recycled if (a) the number of remaining buffers is under the
+ *     threshold and the packet is too big to copy, or (b) the packet should
+ *     be copied but there is no memory for the copy.
+ */
+static inline struct sk_buff *get_packet(struct adapter *adapter,
+                                        struct freelQ *fl, unsigned int len)
+{
+       const struct freelQ_ce *ce = &fl->centries[fl->cidx];
+       struct pci_dev *pdev = adapter->pdev;
+       struct sk_buff *skb;
+
+       if (len < copybreak) {
+               skb = napi_alloc_skb(&adapter->napi, len);
+               if (!skb)
+                       goto use_orig_buf;
+
+               skb_put(skb, len);
+               pci_dma_sync_single_for_cpu(pdev,
+                                           dma_unmap_addr(ce, dma_addr),
+                                           dma_unmap_len(ce, dma_len),
+                                           PCI_DMA_FROMDEVICE);
+               skb_copy_from_linear_data(ce->skb, skb->data, len);
+               pci_dma_sync_single_for_device(pdev,
+                                              dma_unmap_addr(ce, dma_addr),
+                                              dma_unmap_len(ce, dma_len),
+                                              PCI_DMA_FROMDEVICE);
+               recycle_fl_buf(fl, fl->cidx);
+               return skb;
+       }
+
+use_orig_buf:
+       if (fl->credits < 2) {
+               recycle_fl_buf(fl, fl->cidx);
+               return NULL;
+       }
+
+       pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
+                        dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
+       skb = ce->skb;
+       prefetch(skb->data);
+
+       skb_put(skb, len);
+       return skb;
+}
+
+/**
+ *     unexpected_offload - handle an unexpected offload packet
+ *     @adapter: the adapter
+ *     @fl: the free list that received the packet
+ *
+ *     Called when we receive an unexpected offload packet (e.g., the TOE
+ *     function is disabled or the card is a NIC).  Prints a message and
+ *     recycles the buffer.
+ */
+static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
+{
+       struct freelQ_ce *ce = &fl->centries[fl->cidx];
+       struct sk_buff *skb = ce->skb;
+
+       pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
+                           dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
+       pr_err("%s: unexpected offload packet, cmd %u\n",
+              adapter->name, *skb->data);
+       recycle_fl_buf(fl, fl->cidx);
+}
+
+/*
+ * T1/T2 SGE limits the maximum DMA size per TX descriptor to
+ * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
+ * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
+ * Note that the *_large_page_tx_descs stuff will be optimized out when
+ * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
+ *
+ * compute_large_page_descs() computes how many additional descriptors are
+ * required to break down the stack's request.
+ */
+static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
+{
+       unsigned int count = 0;
+
+       if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
+               unsigned int nfrags = skb_shinfo(skb)->nr_frags;
+               unsigned int i, len = skb_headlen(skb);
+               while (len > SGE_TX_DESC_MAX_PLEN) {
+                       count++;
+                       len -= SGE_TX_DESC_MAX_PLEN;
+               }
+               for (i = 0; nfrags--; i++) {
+                       const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
+                       len = skb_frag_size(frag);
+                       while (len > SGE_TX_DESC_MAX_PLEN) {
+                               count++;
+                               len -= SGE_TX_DESC_MAX_PLEN;
+                       }
+               }
+       }
+       return count;
+}
+
+/*
+ * Write a cmdQ entry.
+ *
+ * Since this function writes the 'flags' field, it must not be used to
+ * write the first cmdQ entry.
+ */
+static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
+                                unsigned int len, unsigned int gen,
+                                unsigned int eop)
+{
+       BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
+
+       e->addr_lo = (u32)mapping;
+       e->addr_hi = (u64)mapping >> 32;
+       e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
+       e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
+}
+
+/*
+ * See comment for previous function.
+ *
+ * write_tx_descs_large_page() writes additional SGE tx descriptors if
+ * *desc_len exceeds HW's capability.
+ */
+static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
+                                                    struct cmdQ_e **e,
+                                                    struct cmdQ_ce **ce,
+                                                    unsigned int *gen,
+                                                    dma_addr_t *desc_mapping,
+                                                    unsigned int *desc_len,
+                                                    unsigned int nfrags,
+                                                    struct cmdQ *q)
+{
+       if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
+               struct cmdQ_e *e1 = *e;
+               struct cmdQ_ce *ce1 = *ce;
+
+               while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
+                       *desc_len -= SGE_TX_DESC_MAX_PLEN;
+                       write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
+                                     *gen, nfrags == 0 && *desc_len == 0);
+                       ce1->skb = NULL;
+                       dma_unmap_len_set(ce1, dma_len, 0);
+                       *desc_mapping += SGE_TX_DESC_MAX_PLEN;
+                       if (*desc_len) {
+                               ce1++;
+                               e1++;
+                               if (++pidx == q->size) {
+                                       pidx = 0;
+                                       *gen ^= 1;
+                                       ce1 = q->centries;
+                                       e1 = q->entries;
+                               }
+                       }
+               }
+               *e = e1;
+               *ce = ce1;
+       }
+       return pidx;
+}
+
+/*
+ * Write the command descriptors to transmit the given skb starting at
+ * descriptor pidx with the given generation.
+ */
+static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
+                                 unsigned int pidx, unsigned int gen,
+                                 struct cmdQ *q)
+{
+       dma_addr_t mapping, desc_mapping;
+       struct cmdQ_e *e, *e1;
+       struct cmdQ_ce *ce;
+       unsigned int i, flags, first_desc_len, desc_len,
+           nfrags = skb_shinfo(skb)->nr_frags;
+
+       e = e1 = &q->entries[pidx];
+       ce = &q->centries[pidx];
+
+       mapping = pci_map_single(adapter->pdev, skb->data,
+                                skb_headlen(skb), PCI_DMA_TODEVICE);
+
+       desc_mapping = mapping;
+       desc_len = skb_headlen(skb);
+
+       flags = F_CMD_DATAVALID | F_CMD_SOP |
+           V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
+           V_CMD_GEN2(gen);
+       first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
+           desc_len : SGE_TX_DESC_MAX_PLEN;
+       e->addr_lo = (u32)desc_mapping;
+       e->addr_hi = (u64)desc_mapping >> 32;
+       e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
+       ce->skb = NULL;
+       dma_unmap_len_set(ce, dma_len, 0);
+
+       if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
+           desc_len > SGE_TX_DESC_MAX_PLEN) {
+               desc_mapping += first_desc_len;
+               desc_len -= first_desc_len;
+               e1++;
+               ce++;
+               if (++pidx == q->size) {
+                       pidx = 0;
+                       gen ^= 1;
+                       e1 = q->entries;
+                       ce = q->centries;
+               }
+               pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
+                                                &desc_mapping, &desc_len,
+                                                nfrags, q);
+
+               if (likely(desc_len))
+                       write_tx_desc(e1, desc_mapping, desc_len, gen,
+                                     nfrags == 0);
+       }
+
+       ce->skb = NULL;
+       dma_unmap_addr_set(ce, dma_addr, mapping);
+       dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
+
+       for (i = 0; nfrags--; i++) {
+               skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
+               e1++;
+               ce++;
+               if (++pidx == q->size) {
+                       pidx = 0;
+                       gen ^= 1;
+                       e1 = q->entries;
+                       ce = q->centries;
+               }
+
+               mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
+                                          skb_frag_size(frag), DMA_TO_DEVICE);
+               desc_mapping = mapping;
+               desc_len = skb_frag_size(frag);
+
+               pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
+                                                &desc_mapping, &desc_len,
+                                                nfrags, q);
+               if (likely(desc_len))
+                       write_tx_desc(e1, desc_mapping, desc_len, gen,
+                                     nfrags == 0);
+               ce->skb = NULL;
+               dma_unmap_addr_set(ce, dma_addr, mapping);
+               dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
+       }
+       ce->skb = skb;
+       wmb();
+       e->flags = flags;
+}
+
+/*
+ * Clean up completed Tx buffers.
+ */
+static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
+{
+       unsigned int reclaim = q->processed - q->cleaned;
+
+       if (reclaim) {
+               pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
+                        q->processed, q->cleaned);
+               free_cmdQ_buffers(sge, q, reclaim);
+               q->cleaned += reclaim;
+       }
+}
+
+/*
+ * Called from tasklet. Checks the scheduler for any
+ * pending skbs that can be sent.
+ */
+static void restart_sched(unsigned long arg)
+{
+       struct sge *sge = (struct sge *) arg;
+       struct adapter *adapter = sge->adapter;
+       struct cmdQ *q = &sge->cmdQ[0];
+       struct sk_buff *skb;
+       unsigned int credits, queued_skb = 0;
+
+       spin_lock(&q->lock);
+       reclaim_completed_tx(sge, q);
+
+       credits = q->size - q->in_use;
+       pr_debug("restart_sched credits=%d\n", credits);
+       while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
+               unsigned int genbit, pidx, count;
+               count = 1 + skb_shinfo(skb)->nr_frags;
+               count += compute_large_page_tx_descs(skb);
+               q->in_use += count;
+               genbit = q->genbit;
+               pidx = q->pidx;
+               q->pidx += count;
+               if (q->pidx >= q->size) {
+                       q->pidx -= q->size;
+                       q->genbit ^= 1;
+               }
+               write_tx_descs(adapter, skb, pidx, genbit, q);
+               credits = q->size - q->in_use;
+               queued_skb = 1;
+       }
+
+       if (queued_skb) {
+               clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+               if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
+                       set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+                       writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
+               }
+       }
+       spin_unlock(&q->lock);
+}
+
+/**
+ *     sge_rx - process an ingress ethernet packet
+ *     @sge: the sge structure
+ *     @fl: the free list that contains the packet buffer
+ *     @len: the packet length
+ *
+ *     Process an ingress ethernet pakcet and deliver it to the stack.
+ */
+static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
+{
+       struct sk_buff *skb;
+       const struct cpl_rx_pkt *p;
+       struct adapter *adapter = sge->adapter;
+       struct sge_port_stats *st;
+       struct net_device *dev;
+
+       skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
+       if (unlikely(!skb)) {
+               sge->stats.rx_drops++;
+               return;
+       }
+
+       p = (const struct cpl_rx_pkt *) skb->data;
+       if (p->iff >= adapter->params.nports) {
+               kfree_skb(skb);
+               return;
+       }
+       __skb_pull(skb, sizeof(*p));
+
+       st = this_cpu_ptr(sge->port_stats[p->iff]);
+       dev = adapter->port[p->iff].dev;
+
+       skb->protocol = eth_type_trans(skb, dev);
+       if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
+           skb->protocol == htons(ETH_P_IP) &&
+           (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
+               ++st->rx_cso_good;
+               skb->ip_summed = CHECKSUM_UNNECESSARY;
+       } else
+               skb_checksum_none_assert(skb);
+
+       if (p->vlan_valid) {
+               st->vlan_xtract++;
+               __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
+       }
+       netif_receive_skb(skb);
+}
+
+/*
+ * Returns true if a command queue has enough available descriptors that
+ * we can resume Tx operation after temporarily disabling its packet queue.
+ */
+static inline int enough_free_Tx_descs(const struct cmdQ *q)
+{
+       unsigned int r = q->processed - q->cleaned;
+
+       return q->in_use - r < (q->size >> 1);
+}
+
+/*
+ * Called when sufficient space has become available in the SGE command queues
+ * after the Tx packet schedulers have been suspended to restart the Tx path.
+ */
+static void restart_tx_queues(struct sge *sge)
+{
+       struct adapter *adap = sge->adapter;
+       int i;
+
+       if (!enough_free_Tx_descs(&sge->cmdQ[0]))
+               return;
+
+       for_each_port(adap, i) {
+               struct net_device *nd = adap->port[i].dev;
+
+               if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
+                   netif_running(nd)) {
+                       sge->stats.cmdQ_restarted[2]++;
+                       netif_wake_queue(nd);
+               }
+       }
+}
+
+/*
+ * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
+ * information.
+ */
+static unsigned int update_tx_info(struct adapter *adapter,
+                                         unsigned int flags,
+                                         unsigned int pr0)
+{
+       struct sge *sge = adapter->sge;
+       struct cmdQ *cmdq = &sge->cmdQ[0];
+
+       cmdq->processed += pr0;
+       if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
+               freelQs_empty(sge);
+               flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
+       }
+       if (flags & F_CMDQ0_ENABLE) {
+               clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
+
+               if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
+                   !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
+                       set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
+                       writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
+               }
+               if (sge->tx_sched)
+                       tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
+
+               flags &= ~F_CMDQ0_ENABLE;
+       }
+
+       if (unlikely(sge->stopped_tx_queues != 0))
+               restart_tx_queues(sge);
+
+       return flags;
+}
+
+/*
+ * Process SGE responses, up to the supplied budget.  Returns the number of
+ * responses processed.  A negative budget is effectively unlimited.
+ */
+static int process_responses(struct adapter *adapter, int budget)
+{
+       struct sge *sge = adapter->sge;
+       struct respQ *q = &sge->respQ;
+       struct respQ_e *e = &q->entries[q->cidx];
+       int done = 0;
+       unsigned int flags = 0;
+       unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
+
+       while (done < budget && e->GenerationBit == q->genbit) {
+               flags |= e->Qsleeping;
+
+               cmdq_processed[0] += e->Cmdq0CreditReturn;
+               cmdq_processed[1] += e->Cmdq1CreditReturn;
+
+               /* We batch updates to the TX side to avoid cacheline
+                * ping-pong of TX state information on MP where the sender
+                * might run on a different CPU than this function...
+                */
+               if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
+                       flags = update_tx_info(adapter, flags, cmdq_processed[0]);
+                       cmdq_processed[0] = 0;
+               }
+
+               if (unlikely(cmdq_processed[1] > 16)) {
+                       sge->cmdQ[1].processed += cmdq_processed[1];
+                       cmdq_processed[1] = 0;
+               }
+
+               if (likely(e->DataValid)) {
+                       struct freelQ *fl = &sge->freelQ[e->FreelistQid];
+
+                       BUG_ON(!e->Sop || !e->Eop);
+                       if (unlikely(e->Offload))
+                               unexpected_offload(adapter, fl);
+                       else
+                               sge_rx(sge, fl, e->BufferLength);
+
+                       ++done;
+
+                       /*
+                        * Note: this depends on each packet consuming a
+                        * single free-list buffer; cf. the BUG above.
+                        */
+                       if (++fl->cidx == fl->size)
+                               fl->cidx = 0;
+                       prefetch(fl->centries[fl->cidx].skb);
+
+                       if (unlikely(--fl->credits <
+                                    fl->size - SGE_FREEL_REFILL_THRESH))
+                               refill_free_list(sge, fl);
+               } else
+                       sge->stats.pure_rsps++;
+
+               e++;
+               if (unlikely(++q->cidx == q->size)) {
+                       q->cidx = 0;
+                       q->genbit ^= 1;
+                       e = q->entries;
+               }
+               prefetch(e);
+
+               if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
+                       writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
+                       q->credits = 0;
+               }
+       }
+
+       flags = update_tx_info(adapter, flags, cmdq_processed[0]);
+       sge->cmdQ[1].processed += cmdq_processed[1];
+
+       return done;
+}
+
+static inline int responses_pending(const struct adapter *adapter)
+{
+       const struct respQ *Q = &adapter->sge->respQ;
+       const struct respQ_e *e = &Q->entries[Q->cidx];
+
+       return e->GenerationBit == Q->genbit;
+}
+
+/*
+ * A simpler version of process_responses() that handles only pure (i.e.,
+ * non data-carrying) responses.  Such respones are too light-weight to justify
+ * calling a softirq when using NAPI, so we handle them specially in hard
+ * interrupt context.  The function is called with a pointer to a response,
+ * which the caller must ensure is a valid pure response.  Returns 1 if it
+ * encounters a valid data-carrying response, 0 otherwise.
+ */
+static int process_pure_responses(struct adapter *adapter)
+{
+       struct sge *sge = adapter->sge;
+       struct respQ *q = &sge->respQ;
+       struct respQ_e *e = &q->entries[q->cidx];
+       const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
+       unsigned int flags = 0;
+       unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
+
+       prefetch(fl->centries[fl->cidx].skb);
+       if (e->DataValid)
+               return 1;
+
+       do {
+               flags |= e->Qsleeping;
+
+               cmdq_processed[0] += e->Cmdq0CreditReturn;
+               cmdq_processed[1] += e->Cmdq1CreditReturn;
+
+               e++;
+               if (unlikely(++q->cidx == q->size)) {
+                       q->cidx = 0;
+                       q->genbit ^= 1;
+                       e = q->entries;
+               }
+               prefetch(e);
+
+               if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
+                       writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
+                       q->credits = 0;
+               }
+               sge->stats.pure_rsps++;
+       } while (e->GenerationBit == q->genbit && !e->DataValid);
+
+       flags = update_tx_info(adapter, flags, cmdq_processed[0]);
+       sge->cmdQ[1].processed += cmdq_processed[1];
+
+       return e->GenerationBit == q->genbit;
+}
+
+/*
+ * Handler for new data events when using NAPI.  This does not need any locking
+ * or protection from interrupts as data interrupts are off at this point and
+ * other adapter interrupts do not interfere.
+ */
+int t1_poll(struct napi_struct *napi, int budget)
+{
+       struct adapter *adapter = container_of(napi, struct adapter, napi);
+       int work_done = process_responses(adapter, budget);
+
+       if (likely(work_done < budget)) {
+               napi_complete(napi);
+               writel(adapter->sge->respQ.cidx,
+                      adapter->regs + A_SG_SLEEPING);
+       }
+       return work_done;
+}
+
+irqreturn_t t1_interrupt(int irq, void *data)
+{
+       struct adapter *adapter = data;
+       struct sge *sge = adapter->sge;
+       int handled;
+
+       if (likely(responses_pending(adapter))) {
+               writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
+
+               if (napi_schedule_prep(&adapter->napi)) {
+                       if (process_pure_responses(adapter))
+                               __napi_schedule(&adapter->napi);
+                       else {
+                               /* no data, no NAPI needed */
+                               writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
+                               /* undo schedule_prep */
+                               napi_enable(&adapter->napi);
+                       }
+               }
+               return IRQ_HANDLED;
+       }
+
+       spin_lock(&adapter->async_lock);
+       handled = t1_slow_intr_handler(adapter);
+       spin_unlock(&adapter->async_lock);
+
+       if (!handled)
+               sge->stats.unhandled_irqs++;
+
+       return IRQ_RETVAL(handled != 0);
+}
+
+/*
+ * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
+ *
+ * The code figures out how many entries the sk_buff will require in the
+ * cmdQ and updates the cmdQ data structure with the state once the enqueue
+ * has complete. Then, it doesn't access the global structure anymore, but
+ * uses the corresponding fields on the stack. In conjunction with a spinlock
+ * around that code, we can make the function reentrant without holding the
+ * lock when we actually enqueue (which might be expensive, especially on
+ * architectures with IO MMUs).
+ *
+ * This runs with softirqs disabled.
+ */
+static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
+                    unsigned int qid, struct net_device *dev)
+{
+       struct sge *sge = adapter->sge;
+       struct cmdQ *q = &sge->cmdQ[qid];
+       unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
+
+       spin_lock(&q->lock);
+
+       reclaim_completed_tx(sge, q);
+
+       pidx = q->pidx;
+       credits = q->size - q->in_use;
+       count = 1 + skb_shinfo(skb)->nr_frags;
+       count += compute_large_page_tx_descs(skb);
+
+       /* Ethernet packet */
+       if (unlikely(credits < count)) {
+               if (!netif_queue_stopped(dev)) {
+                       netif_stop_queue(dev);
+                       set_bit(dev->if_port, &sge->stopped_tx_queues);
+                       sge->stats.cmdQ_full[2]++;
+                       pr_err("%s: Tx ring full while queue awake!\n",
+                              adapter->name);
+               }
+               spin_unlock(&q->lock);
+               return NETDEV_TX_BUSY;
+       }
+
+       if (unlikely(credits - count < q->stop_thres)) {
+               netif_stop_queue(dev);
+               set_bit(dev->if_port, &sge->stopped_tx_queues);
+               sge->stats.cmdQ_full[2]++;
+       }
+
+       /* T204 cmdQ0 skbs that are destined for a certain port have to go
+        * through the scheduler.
+        */
+       if (sge->tx_sched && !qid && skb->dev) {
+use_sched:
+               use_sched_skb = 1;
+               /* Note that the scheduler might return a different skb than
+                * the one passed in.
+                */
+               skb = sched_skb(sge, skb, credits);
+               if (!skb) {
+                       spin_unlock(&q->lock);
+                       return NETDEV_TX_OK;
+               }
+               pidx = q->pidx;
+               count = 1 + skb_shinfo(skb)->nr_frags;
+               count += compute_large_page_tx_descs(skb);
+       }
+
+       q->in_use += count;
+       genbit = q->genbit;
+       pidx = q->pidx;
+       q->pidx += count;
+       if (q->pidx >= q->size) {
+               q->pidx -= q->size;
+               q->genbit ^= 1;
+       }
+       spin_unlock(&q->lock);
+
+       write_tx_descs(adapter, skb, pidx, genbit, q);
+
+       /*
+        * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
+        * the doorbell if the Q is asleep. There is a natural race, where
+        * the hardware is going to sleep just after we checked, however,
+        * then the interrupt handler will detect the outstanding TX packet
+        * and ring the doorbell for us.
+        */
+       if (qid)
+               doorbell_pio(adapter, F_CMDQ1_ENABLE);
+       else {
+               clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+               if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
+                       set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
+                       writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
+               }
+       }
+
+       if (use_sched_skb) {
+               if (spin_trylock(&q->lock)) {
+                       credits = q->size - q->in_use;
+                       skb = NULL;
+                       goto use_sched;
+               }
+       }
+       return NETDEV_TX_OK;
+}
+
+#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
+
+/*
+ *     eth_hdr_len - return the length of an Ethernet header
+ *     @data: pointer to the start of the Ethernet header
+ *
+ *     Returns the length of an Ethernet header, including optional VLAN tag.
+ */
+static inline int eth_hdr_len(const void *data)
+{
+       const struct ethhdr *e = data;
+
+       return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
+}
+
+/*
+ * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
+ */
+netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+       struct adapter *adapter = dev->ml_priv;
+       struct sge *sge = adapter->sge;
+       struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
+       struct cpl_tx_pkt *cpl;
+       struct sk_buff *orig_skb = skb;
+       int ret;
+
+       if (skb->protocol == htons(ETH_P_CPL5))
+               goto send;
+
+       /*
+        * We are using a non-standard hard_header_len.
+        * Allocate more header room in the rare cases it is not big enough.
+        */
+       if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
+               skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
+               ++st->tx_need_hdrroom;
+               dev_kfree_skb_any(orig_skb);
+               if (!skb)
+                       return NETDEV_TX_OK;
+       }
+
+       if (skb_shinfo(skb)->gso_size) {
+               int eth_type;
+               struct cpl_tx_pkt_lso *hdr;
+
+               ++st->tx_tso;
+
+               eth_type = skb_network_offset(skb) == ETH_HLEN ?
+                       CPL_ETH_II : CPL_ETH_II_VLAN;
+
+               hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
+               hdr->opcode = CPL_TX_PKT_LSO;
+               hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
+               hdr->ip_hdr_words = ip_hdr(skb)->ihl;
+               hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
+               hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
+                                                         skb_shinfo(skb)->gso_size));
+               hdr->len = htonl(skb->len - sizeof(*hdr));
+               cpl = (struct cpl_tx_pkt *)hdr;
+       } else {
+               /*
+                * Packets shorter than ETH_HLEN can break the MAC, drop them
+                * early.  Also, we may get oversized packets because some
+                * parts of the kernel don't handle our unusual hard_header_len
+                * right, drop those too.
+                */
+               if (unlikely(skb->len < ETH_HLEN ||
+                            skb->len > dev->mtu + eth_hdr_len(skb->data))) {
+                       netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
+                                  skb->len, eth_hdr_len(skb->data), dev->mtu);
+                       dev_kfree_skb_any(skb);
+                       return NETDEV_TX_OK;
+               }
+
+               if (skb->ip_summed == CHECKSUM_PARTIAL &&
+                   ip_hdr(skb)->protocol == IPPROTO_UDP) {
+                       if (unlikely(skb_checksum_help(skb))) {
+                               netdev_dbg(dev, "unable to do udp checksum\n");
+                               dev_kfree_skb_any(skb);
+                               return NETDEV_TX_OK;
+                       }
+               }
+
+               /* Hmmm, assuming to catch the gratious arp... and we'll use
+                * it to flush out stuck espi packets...
+                */
+               if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
+                       if (skb->protocol == htons(ETH_P_ARP) &&
+                           arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
+                               adapter->sge->espibug_skb[dev->if_port] = skb;
+                               /* We want to re-use this skb later. We
+                                * simply bump the reference count and it
+                                * will not be freed...
+                                */
+                               skb = skb_get(skb);
+                       }
+               }
+
+               cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
+               cpl->opcode = CPL_TX_PKT;
+               cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
+               cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
+               /* the length field isn't used so don't bother setting it */
+
+               st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
+       }
+       cpl->iff = dev->if_port;
+
+       if (skb_vlan_tag_present(skb)) {
+               cpl->vlan_valid = 1;
+               cpl->vlan = htons(skb_vlan_tag_get(skb));
+               st->vlan_insert++;
+       } else
+               cpl->vlan_valid = 0;
+
+send:
+       ret = t1_sge_tx(skb, adapter, 0, dev);
+
+       /* If transmit busy, and we reallocated skb's due to headroom limit,
+        * then silently discard to avoid leak.
+        */
+       if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
+               dev_kfree_skb_any(skb);
+               ret = NETDEV_TX_OK;
+       }
+       return ret;
+}
+
+/*
+ * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
+ */
+static void sge_tx_reclaim_cb(unsigned long data)
+{
+       int i;
+       struct sge *sge = (struct sge *)data;
+
+       for (i = 0; i < SGE_CMDQ_N; ++i) {
+               struct cmdQ *q = &sge->cmdQ[i];
+
+               if (!spin_trylock(&q->lock))
+                       continue;
+
+               reclaim_completed_tx(sge, q);
+               if (i == 0 && q->in_use) {    /* flush pending credits */
+                       writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
+               }
+               spin_unlock(&q->lock);
+       }
+       mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
+}
+
+/*
+ * Propagate changes of the SGE coalescing parameters to the HW.
+ */
+int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
+{
+       sge->fixed_intrtimer = p->rx_coalesce_usecs *
+               core_ticks_per_usec(sge->adapter);
+       writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
+       return 0;
+}
+
+/*
+ * Allocates both RX and TX resources and configures the SGE. However,
+ * the hardware is not enabled yet.
+ */
+int t1_sge_configure(struct sge *sge, struct sge_params *p)
+{
+       if (alloc_rx_resources(sge, p))
+               return -ENOMEM;
+       if (alloc_tx_resources(sge, p)) {
+               free_rx_resources(sge);
+               return -ENOMEM;
+       }
+       configure_sge(sge, p);
+
+       /*
+        * Now that we have sized the free lists calculate the payload
+        * capacity of the large buffers.  Other parts of the driver use
+        * this to set the max offload coalescing size so that RX packets
+        * do not overflow our large buffers.
+        */
+       p->large_buf_capacity = jumbo_payload_capacity(sge);
+       return 0;
+}
+
+/*
+ * Disables the DMA engine.
+ */
+void t1_sge_stop(struct sge *sge)
+{
+       int i;
+       writel(0, sge->adapter->regs + A_SG_CONTROL);
+       readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
+
+       if (is_T2(sge->adapter))
+               del_timer_sync(&sge->espibug_timer);
+
+       del_timer_sync(&sge->tx_reclaim_timer);
+       if (sge->tx_sched)
+               tx_sched_stop(sge);
+
+       for (i = 0; i < MAX_NPORTS; i++)
+               kfree_skb(sge->espibug_skb[i]);
+}
+
+/*
+ * Enables the DMA engine.
+ */
+void t1_sge_start(struct sge *sge)
+{
+       refill_free_list(sge, &sge->freelQ[0]);
+       refill_free_list(sge, &sge->freelQ[1]);
+
+       writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
+       doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
+       readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
+
+       mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
+
+       if (is_T2(sge->adapter))
+               mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
+}
+
+/*
+ * Callback for the T2 ESPI 'stuck packet feature' workaorund
+ */
+static void espibug_workaround_t204(unsigned long data)
+{
+       struct adapter *adapter = (struct adapter *)data;
+       struct sge *sge = adapter->sge;
+       unsigned int nports = adapter->params.nports;
+       u32 seop[MAX_NPORTS];
+
+       if (adapter->open_device_map & PORT_MASK) {
+               int i;
+
+               if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
+                       return;
+
+               for (i = 0; i < nports; i++) {
+                       struct sk_buff *skb = sge->espibug_skb[i];
+
+                       if (!netif_running(adapter->port[i].dev) ||
+                           netif_queue_stopped(adapter->port[i].dev) ||
+                           !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
+                               continue;
+
+                       if (!skb->cb[0]) {
+                               skb_copy_to_linear_data_offset(skb,
+                                                   sizeof(struct cpl_tx_pkt),
+                                                              ch_mac_addr,
+                                                              ETH_ALEN);
+                               skb_copy_to_linear_data_offset(skb,
+                                                              skb->len - 10,
+                                                              ch_mac_addr,
+                                                              ETH_ALEN);
+                               skb->cb[0] = 0xff;
+                       }
+
+                       /* bump the reference count to avoid freeing of
+                        * the skb once the DMA has completed.
+                        */
+                       skb = skb_get(skb);
+                       t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
+               }
+       }
+       mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
+}
+
+static void espibug_workaround(unsigned long data)
+{
+       struct adapter *adapter = (struct adapter *)data;
+       struct sge *sge = adapter->sge;
+
+       if (netif_running(adapter->port[0].dev)) {
+               struct sk_buff *skb = sge->espibug_skb[0];
+               u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
+
+               if ((seop & 0xfff0fff) == 0xfff && skb) {
+                       if (!skb->cb[0]) {
+                               skb_copy_to_linear_data_offset(skb,
+                                                    sizeof(struct cpl_tx_pkt),
+                                                              ch_mac_addr,
+                                                              ETH_ALEN);
+                               skb_copy_to_linear_data_offset(skb,
+                                                              skb->len - 10,
+                                                              ch_mac_addr,
+                                                              ETH_ALEN);
+                               skb->cb[0] = 0xff;
+                       }
+
+                       /* bump the reference count to avoid freeing of the
+                        * skb once the DMA has completed.
+                        */
+                       skb = skb_get(skb);
+                       t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
+               }
+       }
+       mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
+}
+
+/*
+ * Creates a t1_sge structure and returns suggested resource parameters.
+ */
+struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
+{
+       struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
+       int i;
+
+       if (!sge)
+               return NULL;
+
+       sge->adapter = adapter;
+       sge->netdev = adapter->port[0].dev;
+       sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
+       sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
+
+       for_each_port(adapter, i) {
+               sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
+               if (!sge->port_stats[i])
+                       goto nomem_port;
+       }
+
+       init_timer(&sge->tx_reclaim_timer);
+       sge->tx_reclaim_timer.data = (unsigned long)sge;
+       sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
+
+       if (is_T2(sge->adapter)) {
+               init_timer(&sge->espibug_timer);
+
+               if (adapter->params.nports > 1) {
+                       tx_sched_init(sge);
+                       sge->espibug_timer.function = espibug_workaround_t204;
+               } else
+                       sge->espibug_timer.function = espibug_workaround;
+               sge->espibug_timer.data = (unsigned long)sge->adapter;
+
+               sge->espibug_timeout = 1;
+               /* for T204, every 10ms */
+               if (adapter->params.nports > 1)
+                       sge->espibug_timeout = HZ/100;
+       }
+
+
+       p->cmdQ_size[0] = SGE_CMDQ0_E_N;
+       p->cmdQ_size[1] = SGE_CMDQ1_E_N;
+       p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
+       p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
+       if (sge->tx_sched) {
+               if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
+                       p->rx_coalesce_usecs = 15;
+               else
+                       p->rx_coalesce_usecs = 50;
+       } else
+               p->rx_coalesce_usecs = 50;
+
+       p->coalesce_enable = 0;
+       p->sample_interval_usecs = 0;
+
+       return sge;
+nomem_port:
+       while (i >= 0) {
+               free_percpu(sge->port_stats[i]);
+               --i;
+       }
+       kfree(sge);
+       return NULL;
+
+}