Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / can / m_can / m_can.c
diff --git a/kernel/drivers/net/can/m_can/m_can.c b/kernel/drivers/net/can/m_can/m_can.c
new file mode 100644 (file)
index 0000000..ef65517
--- /dev/null
@@ -0,0 +1,1321 @@
+/*
+ * CAN bus driver for Bosch M_CAN controller
+ *
+ * Copyright (C) 2014 Freescale Semiconductor, Inc.
+ *     Dong Aisheng <b29396@freescale.com>
+ *
+ * Bosch M_CAN user manual can be obtained from:
+ * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
+ * mcan_users_manual_v302.pdf
+ *
+ * This file is licensed under the terms of the GNU General Public
+ * License version 2. This program is licensed "as is" without any
+ * warranty of any kind, whether express or implied.
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/netdevice.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+
+#include <linux/can/dev.h>
+
+/* napi related */
+#define M_CAN_NAPI_WEIGHT      64
+
+/* message ram configuration data length */
+#define MRAM_CFG_LEN   8
+
+/* registers definition */
+enum m_can_reg {
+       M_CAN_CREL      = 0x0,
+       M_CAN_ENDN      = 0x4,
+       M_CAN_CUST      = 0x8,
+       M_CAN_FBTP      = 0xc,
+       M_CAN_TEST      = 0x10,
+       M_CAN_RWD       = 0x14,
+       M_CAN_CCCR      = 0x18,
+       M_CAN_BTP       = 0x1c,
+       M_CAN_TSCC      = 0x20,
+       M_CAN_TSCV      = 0x24,
+       M_CAN_TOCC      = 0x28,
+       M_CAN_TOCV      = 0x2c,
+       M_CAN_ECR       = 0x40,
+       M_CAN_PSR       = 0x44,
+       M_CAN_IR        = 0x50,
+       M_CAN_IE        = 0x54,
+       M_CAN_ILS       = 0x58,
+       M_CAN_ILE       = 0x5c,
+       M_CAN_GFC       = 0x80,
+       M_CAN_SIDFC     = 0x84,
+       M_CAN_XIDFC     = 0x88,
+       M_CAN_XIDAM     = 0x90,
+       M_CAN_HPMS      = 0x94,
+       M_CAN_NDAT1     = 0x98,
+       M_CAN_NDAT2     = 0x9c,
+       M_CAN_RXF0C     = 0xa0,
+       M_CAN_RXF0S     = 0xa4,
+       M_CAN_RXF0A     = 0xa8,
+       M_CAN_RXBC      = 0xac,
+       M_CAN_RXF1C     = 0xb0,
+       M_CAN_RXF1S     = 0xb4,
+       M_CAN_RXF1A     = 0xb8,
+       M_CAN_RXESC     = 0xbc,
+       M_CAN_TXBC      = 0xc0,
+       M_CAN_TXFQS     = 0xc4,
+       M_CAN_TXESC     = 0xc8,
+       M_CAN_TXBRP     = 0xcc,
+       M_CAN_TXBAR     = 0xd0,
+       M_CAN_TXBCR     = 0xd4,
+       M_CAN_TXBTO     = 0xd8,
+       M_CAN_TXBCF     = 0xdc,
+       M_CAN_TXBTIE    = 0xe0,
+       M_CAN_TXBCIE    = 0xe4,
+       M_CAN_TXEFC     = 0xf0,
+       M_CAN_TXEFS     = 0xf4,
+       M_CAN_TXEFA     = 0xf8,
+};
+
+/* m_can lec values */
+enum m_can_lec_type {
+       LEC_NO_ERROR = 0,
+       LEC_STUFF_ERROR,
+       LEC_FORM_ERROR,
+       LEC_ACK_ERROR,
+       LEC_BIT1_ERROR,
+       LEC_BIT0_ERROR,
+       LEC_CRC_ERROR,
+       LEC_UNUSED,
+};
+
+enum m_can_mram_cfg {
+       MRAM_SIDF = 0,
+       MRAM_XIDF,
+       MRAM_RXF0,
+       MRAM_RXF1,
+       MRAM_RXB,
+       MRAM_TXE,
+       MRAM_TXB,
+       MRAM_CFG_NUM,
+};
+
+/* Fast Bit Timing & Prescaler Register (FBTP) */
+#define FBTR_FBRP_MASK         0x1f
+#define FBTR_FBRP_SHIFT                16
+#define FBTR_FTSEG1_SHIFT      8
+#define FBTR_FTSEG1_MASK       (0xf << FBTR_FTSEG1_SHIFT)
+#define FBTR_FTSEG2_SHIFT      4
+#define FBTR_FTSEG2_MASK       (0x7 << FBTR_FTSEG2_SHIFT)
+#define FBTR_FSJW_SHIFT                0
+#define FBTR_FSJW_MASK         0x3
+
+/* Test Register (TEST) */
+#define TEST_LBCK      BIT(4)
+
+/* CC Control Register(CCCR) */
+#define CCCR_TEST              BIT(7)
+#define CCCR_CMR_MASK          0x3
+#define CCCR_CMR_SHIFT         10
+#define CCCR_CMR_CANFD         0x1
+#define CCCR_CMR_CANFD_BRS     0x2
+#define CCCR_CMR_CAN           0x3
+#define CCCR_CME_MASK          0x3
+#define CCCR_CME_SHIFT         8
+#define CCCR_CME_CAN           0
+#define CCCR_CME_CANFD         0x1
+#define CCCR_CME_CANFD_BRS     0x2
+#define CCCR_TEST              BIT(7)
+#define CCCR_MON               BIT(5)
+#define CCCR_CCE               BIT(1)
+#define CCCR_INIT              BIT(0)
+#define CCCR_CANFD             0x10
+
+/* Bit Timing & Prescaler Register (BTP) */
+#define BTR_BRP_MASK           0x3ff
+#define BTR_BRP_SHIFT          16
+#define BTR_TSEG1_SHIFT                8
+#define BTR_TSEG1_MASK         (0x3f << BTR_TSEG1_SHIFT)
+#define BTR_TSEG2_SHIFT                4
+#define BTR_TSEG2_MASK         (0xf << BTR_TSEG2_SHIFT)
+#define BTR_SJW_SHIFT          0
+#define BTR_SJW_MASK           0xf
+
+/* Error Counter Register(ECR) */
+#define ECR_RP                 BIT(15)
+#define ECR_REC_SHIFT          8
+#define ECR_REC_MASK           (0x7f << ECR_REC_SHIFT)
+#define ECR_TEC_SHIFT          0
+#define ECR_TEC_MASK           0xff
+
+/* Protocol Status Register(PSR) */
+#define PSR_BO         BIT(7)
+#define PSR_EW         BIT(6)
+#define PSR_EP         BIT(5)
+#define PSR_LEC_MASK   0x7
+
+/* Interrupt Register(IR) */
+#define IR_ALL_INT     0xffffffff
+#define IR_STE         BIT(31)
+#define IR_FOE         BIT(30)
+#define IR_ACKE                BIT(29)
+#define IR_BE          BIT(28)
+#define IR_CRCE                BIT(27)
+#define IR_WDI         BIT(26)
+#define IR_BO          BIT(25)
+#define IR_EW          BIT(24)
+#define IR_EP          BIT(23)
+#define IR_ELO         BIT(22)
+#define IR_BEU         BIT(21)
+#define IR_BEC         BIT(20)
+#define IR_DRX         BIT(19)
+#define IR_TOO         BIT(18)
+#define IR_MRAF                BIT(17)
+#define IR_TSW         BIT(16)
+#define IR_TEFL                BIT(15)
+#define IR_TEFF                BIT(14)
+#define IR_TEFW                BIT(13)
+#define IR_TEFN                BIT(12)
+#define IR_TFE         BIT(11)
+#define IR_TCF         BIT(10)
+#define IR_TC          BIT(9)
+#define IR_HPM         BIT(8)
+#define IR_RF1L                BIT(7)
+#define IR_RF1F                BIT(6)
+#define IR_RF1W                BIT(5)
+#define IR_RF1N                BIT(4)
+#define IR_RF0L                BIT(3)
+#define IR_RF0F                BIT(2)
+#define IR_RF0W                BIT(1)
+#define IR_RF0N                BIT(0)
+#define IR_ERR_STATE   (IR_BO | IR_EW | IR_EP)
+#define IR_ERR_LEC     (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
+#define IR_ERR_BUS     (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
+                        IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
+                        IR_RF1L | IR_RF0L)
+#define IR_ERR_ALL     (IR_ERR_STATE | IR_ERR_BUS)
+
+/* Interrupt Line Select (ILS) */
+#define ILS_ALL_INT0   0x0
+#define ILS_ALL_INT1   0xFFFFFFFF
+
+/* Interrupt Line Enable (ILE) */
+#define ILE_EINT0      BIT(0)
+#define ILE_EINT1      BIT(1)
+
+/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
+#define RXFC_FWM_OFF   24
+#define RXFC_FWM_MASK  0x7f
+#define RXFC_FWM_1     (1 << RXFC_FWM_OFF)
+#define RXFC_FS_OFF    16
+#define RXFC_FS_MASK   0x7f
+
+/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
+#define RXFS_RFL       BIT(25)
+#define RXFS_FF                BIT(24)
+#define RXFS_FPI_OFF   16
+#define RXFS_FPI_MASK  0x3f0000
+#define RXFS_FGI_OFF   8
+#define RXFS_FGI_MASK  0x3f00
+#define RXFS_FFL_MASK  0x7f
+
+/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
+#define M_CAN_RXESC_8BYTES     0x0
+#define M_CAN_RXESC_64BYTES    0x777
+
+/* Tx Buffer Configuration(TXBC) */
+#define TXBC_NDTB_OFF          16
+#define TXBC_NDTB_MASK         0x3f
+
+/* Tx Buffer Element Size Configuration(TXESC) */
+#define TXESC_TBDS_8BYTES      0x0
+#define TXESC_TBDS_64BYTES     0x7
+
+/* Tx Event FIFO Con.guration (TXEFC) */
+#define TXEFC_EFS_OFF          16
+#define TXEFC_EFS_MASK         0x3f
+
+/* Message RAM Configuration (in bytes) */
+#define SIDF_ELEMENT_SIZE      4
+#define XIDF_ELEMENT_SIZE      8
+#define RXF0_ELEMENT_SIZE      72
+#define RXF1_ELEMENT_SIZE      72
+#define RXB_ELEMENT_SIZE       16
+#define TXE_ELEMENT_SIZE       8
+#define TXB_ELEMENT_SIZE       72
+
+/* Message RAM Elements */
+#define M_CAN_FIFO_ID          0x0
+#define M_CAN_FIFO_DLC         0x4
+#define M_CAN_FIFO_DATA(n)     (0x8 + ((n) << 2))
+
+/* Rx Buffer Element */
+/* R0 */
+#define RX_BUF_ESI             BIT(31)
+#define RX_BUF_XTD             BIT(30)
+#define RX_BUF_RTR             BIT(29)
+/* R1 */
+#define RX_BUF_ANMF            BIT(31)
+#define RX_BUF_EDL             BIT(21)
+#define RX_BUF_BRS             BIT(20)
+
+/* Tx Buffer Element */
+/* R0 */
+#define TX_BUF_XTD             BIT(30)
+#define TX_BUF_RTR             BIT(29)
+
+/* address offset and element number for each FIFO/Buffer in the Message RAM */
+struct mram_cfg {
+       u16 off;
+       u8  num;
+};
+
+/* m_can private data structure */
+struct m_can_priv {
+       struct can_priv can;    /* must be the first member */
+       struct napi_struct napi;
+       struct net_device *dev;
+       struct device *device;
+       struct clk *hclk;
+       struct clk *cclk;
+       void __iomem *base;
+       u32 irqstatus;
+
+       /* message ram configuration */
+       void __iomem *mram_base;
+       struct mram_cfg mcfg[MRAM_CFG_NUM];
+};
+
+static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
+{
+       return readl(priv->base + reg);
+}
+
+static inline void m_can_write(const struct m_can_priv *priv,
+                              enum m_can_reg reg, u32 val)
+{
+       writel(val, priv->base + reg);
+}
+
+static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
+                                 u32 fgi, unsigned int offset)
+{
+       return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
+                    fgi * RXF0_ELEMENT_SIZE + offset);
+}
+
+static inline void m_can_fifo_write(const struct m_can_priv *priv,
+                                   u32 fpi, unsigned int offset, u32 val)
+{
+       writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
+              fpi * TXB_ELEMENT_SIZE + offset);
+}
+
+static inline void m_can_config_endisable(const struct m_can_priv *priv,
+                                         bool enable)
+{
+       u32 cccr = m_can_read(priv, M_CAN_CCCR);
+       u32 timeout = 10;
+       u32 val = 0;
+
+       if (enable) {
+               /* enable m_can configuration */
+               m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
+               udelay(5);
+               /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
+               m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
+       } else {
+               m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
+       }
+
+       /* there's a delay for module initialization */
+       if (enable)
+               val = CCCR_INIT | CCCR_CCE;
+
+       while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
+               if (timeout == 0) {
+                       netdev_warn(priv->dev, "Failed to init module\n");
+                       return;
+               }
+               timeout--;
+               udelay(1);
+       }
+}
+
+static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
+{
+       m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
+}
+
+static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
+{
+       m_can_write(priv, M_CAN_ILE, 0x0);
+}
+
+static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
+{
+       struct net_device_stats *stats = &dev->stats;
+       struct m_can_priv *priv = netdev_priv(dev);
+       struct canfd_frame *cf;
+       struct sk_buff *skb;
+       u32 id, fgi, dlc;
+       int i;
+
+       /* calculate the fifo get index for where to read data */
+       fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
+       dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
+       if (dlc & RX_BUF_EDL)
+               skb = alloc_canfd_skb(dev, &cf);
+       else
+               skb = alloc_can_skb(dev, (struct can_frame **)&cf);
+       if (!skb) {
+               stats->rx_dropped++;
+               return;
+       }
+
+       if (dlc & RX_BUF_EDL)
+               cf->len = can_dlc2len((dlc >> 16) & 0x0F);
+       else
+               cf->len = get_can_dlc((dlc >> 16) & 0x0F);
+
+       id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
+       if (id & RX_BUF_XTD)
+               cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
+       else
+               cf->can_id = (id >> 18) & CAN_SFF_MASK;
+
+       if (id & RX_BUF_ESI) {
+               cf->flags |= CANFD_ESI;
+               netdev_dbg(dev, "ESI Error\n");
+       }
+
+       if (!(dlc & RX_BUF_EDL) && (id & RX_BUF_RTR)) {
+               cf->can_id |= CAN_RTR_FLAG;
+       } else {
+               if (dlc & RX_BUF_BRS)
+                       cf->flags |= CANFD_BRS;
+
+               for (i = 0; i < cf->len; i += 4)
+                       *(u32 *)(cf->data + i) =
+                               m_can_fifo_read(priv, fgi,
+                                               M_CAN_FIFO_DATA(i / 4));
+       }
+
+       /* acknowledge rx fifo 0 */
+       m_can_write(priv, M_CAN_RXF0A, fgi);
+
+       stats->rx_packets++;
+       stats->rx_bytes += cf->len;
+
+       netif_receive_skb(skb);
+}
+
+static int m_can_do_rx_poll(struct net_device *dev, int quota)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       u32 pkts = 0;
+       u32 rxfs;
+
+       rxfs = m_can_read(priv, M_CAN_RXF0S);
+       if (!(rxfs & RXFS_FFL_MASK)) {
+               netdev_dbg(dev, "no messages in fifo0\n");
+               return 0;
+       }
+
+       while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
+               if (rxfs & RXFS_RFL)
+                       netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
+
+               m_can_read_fifo(dev, rxfs);
+
+               quota--;
+               pkts++;
+               rxfs = m_can_read(priv, M_CAN_RXF0S);
+       }
+
+       if (pkts)
+               can_led_event(dev, CAN_LED_EVENT_RX);
+
+       return pkts;
+}
+
+static int m_can_handle_lost_msg(struct net_device *dev)
+{
+       struct net_device_stats *stats = &dev->stats;
+       struct sk_buff *skb;
+       struct can_frame *frame;
+
+       netdev_err(dev, "msg lost in rxf0\n");
+
+       stats->rx_errors++;
+       stats->rx_over_errors++;
+
+       skb = alloc_can_err_skb(dev, &frame);
+       if (unlikely(!skb))
+               return 0;
+
+       frame->can_id |= CAN_ERR_CRTL;
+       frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
+
+       netif_receive_skb(skb);
+
+       return 1;
+}
+
+static int m_can_handle_lec_err(struct net_device *dev,
+                               enum m_can_lec_type lec_type)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       struct net_device_stats *stats = &dev->stats;
+       struct can_frame *cf;
+       struct sk_buff *skb;
+
+       priv->can.can_stats.bus_error++;
+       stats->rx_errors++;
+
+       /* propagate the error condition to the CAN stack */
+       skb = alloc_can_err_skb(dev, &cf);
+       if (unlikely(!skb))
+               return 0;
+
+       /* check for 'last error code' which tells us the
+        * type of the last error to occur on the CAN bus
+        */
+       cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
+       cf->data[2] |= CAN_ERR_PROT_UNSPEC;
+
+       switch (lec_type) {
+       case LEC_STUFF_ERROR:
+               netdev_dbg(dev, "stuff error\n");
+               cf->data[2] |= CAN_ERR_PROT_STUFF;
+               break;
+       case LEC_FORM_ERROR:
+               netdev_dbg(dev, "form error\n");
+               cf->data[2] |= CAN_ERR_PROT_FORM;
+               break;
+       case LEC_ACK_ERROR:
+               netdev_dbg(dev, "ack error\n");
+               cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
+                               CAN_ERR_PROT_LOC_ACK_DEL);
+               break;
+       case LEC_BIT1_ERROR:
+               netdev_dbg(dev, "bit1 error\n");
+               cf->data[2] |= CAN_ERR_PROT_BIT1;
+               break;
+       case LEC_BIT0_ERROR:
+               netdev_dbg(dev, "bit0 error\n");
+               cf->data[2] |= CAN_ERR_PROT_BIT0;
+               break;
+       case LEC_CRC_ERROR:
+               netdev_dbg(dev, "CRC error\n");
+               cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
+                               CAN_ERR_PROT_LOC_CRC_DEL);
+               break;
+       default:
+               break;
+       }
+
+       stats->rx_packets++;
+       stats->rx_bytes += cf->can_dlc;
+       netif_receive_skb(skb);
+
+       return 1;
+}
+
+static int __m_can_get_berr_counter(const struct net_device *dev,
+                                   struct can_berr_counter *bec)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       unsigned int ecr;
+
+       ecr = m_can_read(priv, M_CAN_ECR);
+       bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
+       bec->txerr = ecr & ECR_TEC_MASK;
+
+       return 0;
+}
+
+static int m_can_get_berr_counter(const struct net_device *dev,
+                                 struct can_berr_counter *bec)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       int err;
+
+       err = clk_prepare_enable(priv->hclk);
+       if (err)
+               return err;
+
+       err = clk_prepare_enable(priv->cclk);
+       if (err) {
+               clk_disable_unprepare(priv->hclk);
+               return err;
+       }
+
+       __m_can_get_berr_counter(dev, bec);
+
+       clk_disable_unprepare(priv->cclk);
+       clk_disable_unprepare(priv->hclk);
+
+       return 0;
+}
+
+static int m_can_handle_state_change(struct net_device *dev,
+                                    enum can_state new_state)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       struct net_device_stats *stats = &dev->stats;
+       struct can_frame *cf;
+       struct sk_buff *skb;
+       struct can_berr_counter bec;
+       unsigned int ecr;
+
+       switch (new_state) {
+       case CAN_STATE_ERROR_ACTIVE:
+               /* error warning state */
+               priv->can.can_stats.error_warning++;
+               priv->can.state = CAN_STATE_ERROR_WARNING;
+               break;
+       case CAN_STATE_ERROR_PASSIVE:
+               /* error passive state */
+               priv->can.can_stats.error_passive++;
+               priv->can.state = CAN_STATE_ERROR_PASSIVE;
+               break;
+       case CAN_STATE_BUS_OFF:
+               /* bus-off state */
+               priv->can.state = CAN_STATE_BUS_OFF;
+               m_can_disable_all_interrupts(priv);
+               priv->can.can_stats.bus_off++;
+               can_bus_off(dev);
+               break;
+       default:
+               break;
+       }
+
+       /* propagate the error condition to the CAN stack */
+       skb = alloc_can_err_skb(dev, &cf);
+       if (unlikely(!skb))
+               return 0;
+
+       __m_can_get_berr_counter(dev, &bec);
+
+       switch (new_state) {
+       case CAN_STATE_ERROR_ACTIVE:
+               /* error warning state */
+               cf->can_id |= CAN_ERR_CRTL;
+               cf->data[1] = (bec.txerr > bec.rxerr) ?
+                       CAN_ERR_CRTL_TX_WARNING :
+                       CAN_ERR_CRTL_RX_WARNING;
+               cf->data[6] = bec.txerr;
+               cf->data[7] = bec.rxerr;
+               break;
+       case CAN_STATE_ERROR_PASSIVE:
+               /* error passive state */
+               cf->can_id |= CAN_ERR_CRTL;
+               ecr = m_can_read(priv, M_CAN_ECR);
+               if (ecr & ECR_RP)
+                       cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
+               if (bec.txerr > 127)
+                       cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
+               cf->data[6] = bec.txerr;
+               cf->data[7] = bec.rxerr;
+               break;
+       case CAN_STATE_BUS_OFF:
+               /* bus-off state */
+               cf->can_id |= CAN_ERR_BUSOFF;
+               break;
+       default:
+               break;
+       }
+
+       stats->rx_packets++;
+       stats->rx_bytes += cf->can_dlc;
+       netif_receive_skb(skb);
+
+       return 1;
+}
+
+static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       int work_done = 0;
+
+       if ((psr & PSR_EW) &&
+           (priv->can.state != CAN_STATE_ERROR_WARNING)) {
+               netdev_dbg(dev, "entered error warning state\n");
+               work_done += m_can_handle_state_change(dev,
+                                                      CAN_STATE_ERROR_WARNING);
+       }
+
+       if ((psr & PSR_EP) &&
+           (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
+               netdev_dbg(dev, "entered error passive state\n");
+               work_done += m_can_handle_state_change(dev,
+                                                      CAN_STATE_ERROR_PASSIVE);
+       }
+
+       if ((psr & PSR_BO) &&
+           (priv->can.state != CAN_STATE_BUS_OFF)) {
+               netdev_dbg(dev, "entered error bus off state\n");
+               work_done += m_can_handle_state_change(dev,
+                                                      CAN_STATE_BUS_OFF);
+       }
+
+       return work_done;
+}
+
+static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
+{
+       if (irqstatus & IR_WDI)
+               netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
+       if (irqstatus & IR_ELO)
+               netdev_err(dev, "Error Logging Overflow\n");
+       if (irqstatus & IR_BEU)
+               netdev_err(dev, "Bit Error Uncorrected\n");
+       if (irqstatus & IR_BEC)
+               netdev_err(dev, "Bit Error Corrected\n");
+       if (irqstatus & IR_TOO)
+               netdev_err(dev, "Timeout reached\n");
+       if (irqstatus & IR_MRAF)
+               netdev_err(dev, "Message RAM access failure occurred\n");
+}
+
+static inline bool is_lec_err(u32 psr)
+{
+       psr &= LEC_UNUSED;
+
+       return psr && (psr != LEC_UNUSED);
+}
+
+static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
+                                  u32 psr)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       int work_done = 0;
+
+       if (irqstatus & IR_RF0L)
+               work_done += m_can_handle_lost_msg(dev);
+
+       /* handle lec errors on the bus */
+       if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
+           is_lec_err(psr))
+               work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
+
+       /* other unproccessed error interrupts */
+       m_can_handle_other_err(dev, irqstatus);
+
+       return work_done;
+}
+
+static int m_can_poll(struct napi_struct *napi, int quota)
+{
+       struct net_device *dev = napi->dev;
+       struct m_can_priv *priv = netdev_priv(dev);
+       int work_done = 0;
+       u32 irqstatus, psr;
+
+       irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
+       if (!irqstatus)
+               goto end;
+
+       psr = m_can_read(priv, M_CAN_PSR);
+       if (irqstatus & IR_ERR_STATE)
+               work_done += m_can_handle_state_errors(dev, psr);
+
+       if (irqstatus & IR_ERR_BUS)
+               work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
+
+       if (irqstatus & IR_RF0N)
+               work_done += m_can_do_rx_poll(dev, (quota - work_done));
+
+       if (work_done < quota) {
+               napi_complete(napi);
+               m_can_enable_all_interrupts(priv);
+       }
+
+end:
+       return work_done;
+}
+
+static irqreturn_t m_can_isr(int irq, void *dev_id)
+{
+       struct net_device *dev = (struct net_device *)dev_id;
+       struct m_can_priv *priv = netdev_priv(dev);
+       struct net_device_stats *stats = &dev->stats;
+       u32 ir;
+
+       ir = m_can_read(priv, M_CAN_IR);
+       if (!ir)
+               return IRQ_NONE;
+
+       /* ACK all irqs */
+       if (ir & IR_ALL_INT)
+               m_can_write(priv, M_CAN_IR, ir);
+
+       /* schedule NAPI in case of
+        * - rx IRQ
+        * - state change IRQ
+        * - bus error IRQ and bus error reporting
+        */
+       if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
+               priv->irqstatus = ir;
+               m_can_disable_all_interrupts(priv);
+               napi_schedule(&priv->napi);
+       }
+
+       /* transmission complete interrupt */
+       if (ir & IR_TC) {
+               stats->tx_bytes += can_get_echo_skb(dev, 0);
+               stats->tx_packets++;
+               can_led_event(dev, CAN_LED_EVENT_TX);
+               netif_wake_queue(dev);
+       }
+
+       return IRQ_HANDLED;
+}
+
+static const struct can_bittiming_const m_can_bittiming_const = {
+       .name = KBUILD_MODNAME,
+       .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
+       .tseg1_max = 64,
+       .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
+       .tseg2_max = 16,
+       .sjw_max = 16,
+       .brp_min = 1,
+       .brp_max = 1024,
+       .brp_inc = 1,
+};
+
+static const struct can_bittiming_const m_can_data_bittiming_const = {
+       .name = KBUILD_MODNAME,
+       .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
+       .tseg1_max = 16,
+       .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
+       .tseg2_max = 8,
+       .sjw_max = 4,
+       .brp_min = 1,
+       .brp_max = 32,
+       .brp_inc = 1,
+};
+
+static int m_can_set_bittiming(struct net_device *dev)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       const struct can_bittiming *bt = &priv->can.bittiming;
+       const struct can_bittiming *dbt = &priv->can.data_bittiming;
+       u16 brp, sjw, tseg1, tseg2;
+       u32 reg_btp;
+
+       brp = bt->brp - 1;
+       sjw = bt->sjw - 1;
+       tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
+       tseg2 = bt->phase_seg2 - 1;
+       reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
+                       (tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
+       m_can_write(priv, M_CAN_BTP, reg_btp);
+
+       if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
+               brp = dbt->brp - 1;
+               sjw = dbt->sjw - 1;
+               tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
+               tseg2 = dbt->phase_seg2 - 1;
+               reg_btp = (brp << FBTR_FBRP_SHIFT) | (sjw << FBTR_FSJW_SHIFT) |
+                               (tseg1 << FBTR_FTSEG1_SHIFT) |
+                               (tseg2 << FBTR_FTSEG2_SHIFT);
+               m_can_write(priv, M_CAN_FBTP, reg_btp);
+       }
+
+       return 0;
+}
+
+/* Configure M_CAN chip:
+ * - set rx buffer/fifo element size
+ * - configure rx fifo
+ * - accept non-matching frame into fifo 0
+ * - configure tx buffer
+ * - configure mode
+ * - setup bittiming
+ */
+static void m_can_chip_config(struct net_device *dev)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       u32 cccr, test;
+
+       m_can_config_endisable(priv, true);
+
+       /* RX Buffer/FIFO Element Size 64 bytes data field */
+       m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
+
+       /* Accept Non-matching Frames Into FIFO 0 */
+       m_can_write(priv, M_CAN_GFC, 0x0);
+
+       /* only support one Tx Buffer currently */
+       m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
+                   priv->mcfg[MRAM_TXB].off);
+
+       /* support 64 bytes payload */
+       m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
+
+       m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
+                   priv->mcfg[MRAM_TXE].off);
+
+       /* rx fifo configuration, blocking mode, fifo size 1 */
+       m_can_write(priv, M_CAN_RXF0C,
+                   (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
+                   RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
+
+       m_can_write(priv, M_CAN_RXF1C,
+                   (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
+                   RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
+
+       cccr = m_can_read(priv, M_CAN_CCCR);
+       cccr &= ~(CCCR_TEST | CCCR_MON | (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
+               (CCCR_CME_MASK << CCCR_CME_SHIFT));
+       test = m_can_read(priv, M_CAN_TEST);
+       test &= ~TEST_LBCK;
+
+       if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
+               cccr |= CCCR_MON;
+
+       if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
+               cccr |= CCCR_TEST;
+               test |= TEST_LBCK;
+       }
+
+       if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
+               cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
+
+       m_can_write(priv, M_CAN_CCCR, cccr);
+       m_can_write(priv, M_CAN_TEST, test);
+
+       /* enable interrupts */
+       m_can_write(priv, M_CAN_IR, IR_ALL_INT);
+       if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
+               m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
+       else
+               m_can_write(priv, M_CAN_IE, IR_ALL_INT);
+
+       /* route all interrupts to INT0 */
+       m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
+
+       /* set bittiming params */
+       m_can_set_bittiming(dev);
+
+       m_can_config_endisable(priv, false);
+}
+
+static void m_can_start(struct net_device *dev)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+
+       /* basic m_can configuration */
+       m_can_chip_config(dev);
+
+       priv->can.state = CAN_STATE_ERROR_ACTIVE;
+
+       m_can_enable_all_interrupts(priv);
+}
+
+static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
+{
+       switch (mode) {
+       case CAN_MODE_START:
+               m_can_start(dev);
+               netif_wake_queue(dev);
+               break;
+       default:
+               return -EOPNOTSUPP;
+       }
+
+       return 0;
+}
+
+static void free_m_can_dev(struct net_device *dev)
+{
+       free_candev(dev);
+}
+
+static struct net_device *alloc_m_can_dev(void)
+{
+       struct net_device *dev;
+       struct m_can_priv *priv;
+
+       dev = alloc_candev(sizeof(*priv), 1);
+       if (!dev)
+               return NULL;
+
+       priv = netdev_priv(dev);
+       netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
+
+       priv->dev = dev;
+       priv->can.bittiming_const = &m_can_bittiming_const;
+       priv->can.data_bittiming_const = &m_can_data_bittiming_const;
+       priv->can.do_set_mode = m_can_set_mode;
+       priv->can.do_get_berr_counter = m_can_get_berr_counter;
+
+       /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.1 */
+       priv->can.ctrlmode = CAN_CTRLMODE_FD_NON_ISO;
+
+       /* CAN_CTRLMODE_FD_NON_ISO can not be changed with M_CAN IP v3.0.1 */
+       priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
+                                       CAN_CTRLMODE_LISTENONLY |
+                                       CAN_CTRLMODE_BERR_REPORTING |
+                                       CAN_CTRLMODE_FD;
+
+       return dev;
+}
+
+static int m_can_open(struct net_device *dev)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       int err;
+
+       err = clk_prepare_enable(priv->hclk);
+       if (err)
+               return err;
+
+       err = clk_prepare_enable(priv->cclk);
+       if (err)
+               goto exit_disable_hclk;
+
+       /* open the can device */
+       err = open_candev(dev);
+       if (err) {
+               netdev_err(dev, "failed to open can device\n");
+               goto exit_disable_cclk;
+       }
+
+       /* register interrupt handler */
+       err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
+                         dev);
+       if (err < 0) {
+               netdev_err(dev, "failed to request interrupt\n");
+               goto exit_irq_fail;
+       }
+
+       /* start the m_can controller */
+       m_can_start(dev);
+
+       can_led_event(dev, CAN_LED_EVENT_OPEN);
+       napi_enable(&priv->napi);
+       netif_start_queue(dev);
+
+       return 0;
+
+exit_irq_fail:
+       close_candev(dev);
+exit_disable_cclk:
+       clk_disable_unprepare(priv->cclk);
+exit_disable_hclk:
+       clk_disable_unprepare(priv->hclk);
+       return err;
+}
+
+static void m_can_stop(struct net_device *dev)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+
+       /* disable all interrupts */
+       m_can_disable_all_interrupts(priv);
+
+       clk_disable_unprepare(priv->hclk);
+       clk_disable_unprepare(priv->cclk);
+
+       /* set the state as STOPPED */
+       priv->can.state = CAN_STATE_STOPPED;
+}
+
+static int m_can_close(struct net_device *dev)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+
+       netif_stop_queue(dev);
+       napi_disable(&priv->napi);
+       m_can_stop(dev);
+       free_irq(dev->irq, dev);
+       close_candev(dev);
+       can_led_event(dev, CAN_LED_EVENT_STOP);
+
+       return 0;
+}
+
+static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
+                                   struct net_device *dev)
+{
+       struct m_can_priv *priv = netdev_priv(dev);
+       struct canfd_frame *cf = (struct canfd_frame *)skb->data;
+       u32 id, cccr;
+       int i;
+
+       if (can_dropped_invalid_skb(dev, skb))
+               return NETDEV_TX_OK;
+
+       netif_stop_queue(dev);
+
+       if (cf->can_id & CAN_EFF_FLAG) {
+               id = cf->can_id & CAN_EFF_MASK;
+               id |= TX_BUF_XTD;
+       } else {
+               id = ((cf->can_id & CAN_SFF_MASK) << 18);
+       }
+
+       if (cf->can_id & CAN_RTR_FLAG)
+               id |= TX_BUF_RTR;
+
+       /* message ram configuration */
+       m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
+       m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, can_len2dlc(cf->len) << 16);
+
+       for (i = 0; i < cf->len; i += 4)
+               m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(i / 4),
+                                *(u32 *)(cf->data + i));
+
+       can_put_echo_skb(skb, dev, 0);
+
+       if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
+               cccr = m_can_read(priv, M_CAN_CCCR);
+               cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
+               if (can_is_canfd_skb(skb)) {
+                       if (cf->flags & CANFD_BRS)
+                               cccr |= CCCR_CMR_CANFD_BRS << CCCR_CMR_SHIFT;
+                       else
+                               cccr |= CCCR_CMR_CANFD << CCCR_CMR_SHIFT;
+               } else {
+                       cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
+               }
+               m_can_write(priv, M_CAN_CCCR, cccr);
+       }
+
+       /* enable first TX buffer to start transfer  */
+       m_can_write(priv, M_CAN_TXBTIE, 0x1);
+       m_can_write(priv, M_CAN_TXBAR, 0x1);
+
+       return NETDEV_TX_OK;
+}
+
+static const struct net_device_ops m_can_netdev_ops = {
+       .ndo_open = m_can_open,
+       .ndo_stop = m_can_close,
+       .ndo_start_xmit = m_can_start_xmit,
+       .ndo_change_mtu = can_change_mtu,
+};
+
+static int register_m_can_dev(struct net_device *dev)
+{
+       dev->flags |= IFF_ECHO; /* we support local echo */
+       dev->netdev_ops = &m_can_netdev_ops;
+
+       return register_candev(dev);
+}
+
+static int m_can_of_parse_mram(struct platform_device *pdev,
+                              struct m_can_priv *priv)
+{
+       struct device_node *np = pdev->dev.of_node;
+       struct resource *res;
+       void __iomem *addr;
+       u32 out_val[MRAM_CFG_LEN];
+       int i, start, end, ret;
+
+       /* message ram could be shared */
+       res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
+       if (!res)
+               return -ENODEV;
+
+       addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
+       if (!addr)
+               return -ENOMEM;
+
+       /* get message ram configuration */
+       ret = of_property_read_u32_array(np, "bosch,mram-cfg",
+                                        out_val, sizeof(out_val) / 4);
+       if (ret) {
+               dev_err(&pdev->dev, "can not get message ram configuration\n");
+               return -ENODEV;
+       }
+
+       priv->mram_base = addr;
+       priv->mcfg[MRAM_SIDF].off = out_val[0];
+       priv->mcfg[MRAM_SIDF].num = out_val[1];
+       priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
+                       priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
+       priv->mcfg[MRAM_XIDF].num = out_val[2];
+       priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
+                       priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
+       priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
+       priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
+                       priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
+       priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
+       priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
+                       priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
+       priv->mcfg[MRAM_RXB].num = out_val[5];
+       priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
+                       priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
+       priv->mcfg[MRAM_TXE].num = out_val[6];
+       priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
+                       priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
+       priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
+
+       dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
+               priv->mram_base,
+               priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
+               priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
+               priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
+               priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
+               priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
+               priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
+               priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
+
+       /* initialize the entire Message RAM in use to avoid possible
+        * ECC/parity checksum errors when reading an uninitialized buffer
+        */
+       start = priv->mcfg[MRAM_SIDF].off;
+       end = priv->mcfg[MRAM_TXB].off +
+               priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
+       for (i = start; i < end; i += 4)
+               writel(0x0, priv->mram_base + i);
+
+       return 0;
+}
+
+static int m_can_plat_probe(struct platform_device *pdev)
+{
+       struct net_device *dev;
+       struct m_can_priv *priv;
+       struct resource *res;
+       void __iomem *addr;
+       struct clk *hclk, *cclk;
+       int irq, ret;
+
+       hclk = devm_clk_get(&pdev->dev, "hclk");
+       cclk = devm_clk_get(&pdev->dev, "cclk");
+       if (IS_ERR(hclk) || IS_ERR(cclk)) {
+               dev_err(&pdev->dev, "no clock find\n");
+               return -ENODEV;
+       }
+
+       res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
+       addr = devm_ioremap_resource(&pdev->dev, res);
+       irq = platform_get_irq_byname(pdev, "int0");
+       if (IS_ERR(addr) || irq < 0)
+               return -EINVAL;
+
+       /* allocate the m_can device */
+       dev = alloc_m_can_dev();
+       if (!dev)
+               return -ENOMEM;
+
+       priv = netdev_priv(dev);
+       dev->irq = irq;
+       priv->base = addr;
+       priv->device = &pdev->dev;
+       priv->hclk = hclk;
+       priv->cclk = cclk;
+       priv->can.clock.freq = clk_get_rate(cclk);
+
+       ret = m_can_of_parse_mram(pdev, priv);
+       if (ret)
+               goto failed_free_dev;
+
+       platform_set_drvdata(pdev, dev);
+       SET_NETDEV_DEV(dev, &pdev->dev);
+
+       ret = register_m_can_dev(dev);
+       if (ret) {
+               dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
+                       KBUILD_MODNAME, ret);
+               goto failed_free_dev;
+       }
+
+       devm_can_led_init(dev);
+
+       dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
+                KBUILD_MODNAME, priv->base, dev->irq);
+
+       return 0;
+
+failed_free_dev:
+       free_m_can_dev(dev);
+       return ret;
+}
+
+static __maybe_unused int m_can_suspend(struct device *dev)
+{
+       struct net_device *ndev = dev_get_drvdata(dev);
+       struct m_can_priv *priv = netdev_priv(ndev);
+
+       if (netif_running(ndev)) {
+               netif_stop_queue(ndev);
+               netif_device_detach(ndev);
+       }
+
+       /* TODO: enter low power */
+
+       priv->can.state = CAN_STATE_SLEEPING;
+
+       return 0;
+}
+
+static __maybe_unused int m_can_resume(struct device *dev)
+{
+       struct net_device *ndev = dev_get_drvdata(dev);
+       struct m_can_priv *priv = netdev_priv(ndev);
+
+       /* TODO: exit low power */
+
+       priv->can.state = CAN_STATE_ERROR_ACTIVE;
+
+       if (netif_running(ndev)) {
+               netif_device_attach(ndev);
+               netif_start_queue(ndev);
+       }
+
+       return 0;
+}
+
+static void unregister_m_can_dev(struct net_device *dev)
+{
+       unregister_candev(dev);
+}
+
+static int m_can_plat_remove(struct platform_device *pdev)
+{
+       struct net_device *dev = platform_get_drvdata(pdev);
+
+       unregister_m_can_dev(dev);
+       platform_set_drvdata(pdev, NULL);
+
+       free_m_can_dev(dev);
+
+       return 0;
+}
+
+static const struct dev_pm_ops m_can_pmops = {
+       SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
+};
+
+static const struct of_device_id m_can_of_table[] = {
+       { .compatible = "bosch,m_can", .data = NULL },
+       { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, m_can_of_table);
+
+static struct platform_driver m_can_plat_driver = {
+       .driver = {
+               .name = KBUILD_MODNAME,
+               .of_match_table = m_can_of_table,
+               .pm     = &m_can_pmops,
+       },
+       .probe = m_can_plat_probe,
+       .remove = m_can_plat_remove,
+};
+
+module_platform_driver(m_can_plat_driver);
+
+MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");