Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / sh_flctl.c
diff --git a/kernel/drivers/mtd/nand/sh_flctl.c b/kernel/drivers/mtd/nand/sh_flctl.c
new file mode 100644 (file)
index 0000000..c3ce81c
--- /dev/null
@@ -0,0 +1,1200 @@
+/*
+ * SuperH FLCTL nand controller
+ *
+ * Copyright (c) 2008 Renesas Solutions Corp.
+ * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
+ *
+ * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/completion.h>
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/of_mtd.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/sh_dma.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/sh_flctl.h>
+
+static struct nand_ecclayout flctl_4secc_oob_16 = {
+       .eccbytes = 10,
+       .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
+       .oobfree = {
+               {.offset = 12,
+               . length = 4} },
+};
+
+static struct nand_ecclayout flctl_4secc_oob_64 = {
+       .eccbytes = 4 * 10,
+       .eccpos = {
+                6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
+               22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+               38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+               54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
+       .oobfree = {
+               {.offset =  2, .length = 4},
+               {.offset = 16, .length = 6},
+               {.offset = 32, .length = 6},
+               {.offset = 48, .length = 6} },
+};
+
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr flctl_4secc_smallpage = {
+       .options = NAND_BBT_SCAN2NDPAGE,
+       .offs = 11,
+       .len = 1,
+       .pattern = scan_ff_pattern,
+};
+
+static struct nand_bbt_descr flctl_4secc_largepage = {
+       .options = NAND_BBT_SCAN2NDPAGE,
+       .offs = 0,
+       .len = 2,
+       .pattern = scan_ff_pattern,
+};
+
+static void empty_fifo(struct sh_flctl *flctl)
+{
+       writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
+       writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
+}
+
+static void start_translation(struct sh_flctl *flctl)
+{
+       writeb(TRSTRT, FLTRCR(flctl));
+}
+
+static void timeout_error(struct sh_flctl *flctl, const char *str)
+{
+       dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
+}
+
+static void wait_completion(struct sh_flctl *flctl)
+{
+       uint32_t timeout = LOOP_TIMEOUT_MAX;
+
+       while (timeout--) {
+               if (readb(FLTRCR(flctl)) & TREND) {
+                       writeb(0x0, FLTRCR(flctl));
+                       return;
+               }
+               udelay(1);
+       }
+
+       timeout_error(flctl, __func__);
+       writeb(0x0, FLTRCR(flctl));
+}
+
+static void flctl_dma_complete(void *param)
+{
+       struct sh_flctl *flctl = param;
+
+       complete(&flctl->dma_complete);
+}
+
+static void flctl_release_dma(struct sh_flctl *flctl)
+{
+       if (flctl->chan_fifo0_rx) {
+               dma_release_channel(flctl->chan_fifo0_rx);
+               flctl->chan_fifo0_rx = NULL;
+       }
+       if (flctl->chan_fifo0_tx) {
+               dma_release_channel(flctl->chan_fifo0_tx);
+               flctl->chan_fifo0_tx = NULL;
+       }
+}
+
+static void flctl_setup_dma(struct sh_flctl *flctl)
+{
+       dma_cap_mask_t mask;
+       struct dma_slave_config cfg;
+       struct platform_device *pdev = flctl->pdev;
+       struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
+       int ret;
+
+       if (!pdata)
+               return;
+
+       if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
+               return;
+
+       /* We can only either use DMA for both Tx and Rx or not use it at all */
+       dma_cap_zero(mask);
+       dma_cap_set(DMA_SLAVE, mask);
+
+       flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
+                               (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
+       dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
+               flctl->chan_fifo0_tx);
+
+       if (!flctl->chan_fifo0_tx)
+               return;
+
+       memset(&cfg, 0, sizeof(cfg));
+       cfg.direction = DMA_MEM_TO_DEV;
+       cfg.dst_addr = (dma_addr_t)FLDTFIFO(flctl);
+       cfg.src_addr = 0;
+       ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
+       if (ret < 0)
+               goto err;
+
+       flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
+                               (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
+       dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
+               flctl->chan_fifo0_rx);
+
+       if (!flctl->chan_fifo0_rx)
+               goto err;
+
+       cfg.direction = DMA_DEV_TO_MEM;
+       cfg.dst_addr = 0;
+       cfg.src_addr = (dma_addr_t)FLDTFIFO(flctl);
+       ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
+       if (ret < 0)
+               goto err;
+
+       init_completion(&flctl->dma_complete);
+
+       return;
+
+err:
+       flctl_release_dma(flctl);
+}
+
+static void set_addr(struct mtd_info *mtd, int column, int page_addr)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       uint32_t addr = 0;
+
+       if (column == -1) {
+               addr = page_addr;       /* ERASE1 */
+       } else if (page_addr != -1) {
+               /* SEQIN, READ0, etc.. */
+               if (flctl->chip.options & NAND_BUSWIDTH_16)
+                       column >>= 1;
+               if (flctl->page_size) {
+                       addr = column & 0x0FFF;
+                       addr |= (page_addr & 0xff) << 16;
+                       addr |= ((page_addr >> 8) & 0xff) << 24;
+                       /* big than 128MB */
+                       if (flctl->rw_ADRCNT == ADRCNT2_E) {
+                               uint32_t        addr2;
+                               addr2 = (page_addr >> 16) & 0xff;
+                               writel(addr2, FLADR2(flctl));
+                       }
+               } else {
+                       addr = column;
+                       addr |= (page_addr & 0xff) << 8;
+                       addr |= ((page_addr >> 8) & 0xff) << 16;
+                       addr |= ((page_addr >> 16) & 0xff) << 24;
+               }
+       }
+       writel(addr, FLADR(flctl));
+}
+
+static void wait_rfifo_ready(struct sh_flctl *flctl)
+{
+       uint32_t timeout = LOOP_TIMEOUT_MAX;
+
+       while (timeout--) {
+               uint32_t val;
+               /* check FIFO */
+               val = readl(FLDTCNTR(flctl)) >> 16;
+               if (val & 0xFF)
+                       return;
+               udelay(1);
+       }
+       timeout_error(flctl, __func__);
+}
+
+static void wait_wfifo_ready(struct sh_flctl *flctl)
+{
+       uint32_t len, timeout = LOOP_TIMEOUT_MAX;
+
+       while (timeout--) {
+               /* check FIFO */
+               len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
+               if (len >= 4)
+                       return;
+               udelay(1);
+       }
+       timeout_error(flctl, __func__);
+}
+
+static enum flctl_ecc_res_t wait_recfifo_ready
+               (struct sh_flctl *flctl, int sector_number)
+{
+       uint32_t timeout = LOOP_TIMEOUT_MAX;
+       void __iomem *ecc_reg[4];
+       int i;
+       int state = FL_SUCCESS;
+       uint32_t data, size;
+
+       /*
+        * First this loops checks in FLDTCNTR if we are ready to read out the
+        * oob data. This is the case if either all went fine without errors or
+        * if the bottom part of the loop corrected the errors or marked them as
+        * uncorrectable and the controller is given time to push the data into
+        * the FIFO.
+        */
+       while (timeout--) {
+               /* check if all is ok and we can read out the OOB */
+               size = readl(FLDTCNTR(flctl)) >> 24;
+               if ((size & 0xFF) == 4)
+                       return state;
+
+               /* check if a correction code has been calculated */
+               if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
+                       /*
+                        * either we wait for the fifo to be filled or a
+                        * correction pattern is being generated
+                        */
+                       udelay(1);
+                       continue;
+               }
+
+               /* check for an uncorrectable error */
+               if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
+                       /* check if we face a non-empty page */
+                       for (i = 0; i < 512; i++) {
+                               if (flctl->done_buff[i] != 0xff) {
+                                       state = FL_ERROR; /* can't correct */
+                                       break;
+                               }
+                       }
+
+                       if (state == FL_SUCCESS)
+                               dev_dbg(&flctl->pdev->dev,
+                               "reading empty sector %d, ecc error ignored\n",
+                               sector_number);
+
+                       writel(0, FL4ECCCR(flctl));
+                       continue;
+               }
+
+               /* start error correction */
+               ecc_reg[0] = FL4ECCRESULT0(flctl);
+               ecc_reg[1] = FL4ECCRESULT1(flctl);
+               ecc_reg[2] = FL4ECCRESULT2(flctl);
+               ecc_reg[3] = FL4ECCRESULT3(flctl);
+
+               for (i = 0; i < 3; i++) {
+                       uint8_t org;
+                       unsigned int index;
+
+                       data = readl(ecc_reg[i]);
+
+                       if (flctl->page_size)
+                               index = (512 * sector_number) +
+                                       (data >> 16);
+                       else
+                               index = data >> 16;
+
+                       org = flctl->done_buff[index];
+                       flctl->done_buff[index] = org ^ (data & 0xFF);
+               }
+               state = FL_REPAIRABLE;
+               writel(0, FL4ECCCR(flctl));
+       }
+
+       timeout_error(flctl, __func__);
+       return FL_TIMEOUT;      /* timeout */
+}
+
+static void wait_wecfifo_ready(struct sh_flctl *flctl)
+{
+       uint32_t timeout = LOOP_TIMEOUT_MAX;
+       uint32_t len;
+
+       while (timeout--) {
+               /* check FLECFIFO */
+               len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
+               if (len >= 4)
+                       return;
+               udelay(1);
+       }
+       timeout_error(flctl, __func__);
+}
+
+static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
+                                       int len, enum dma_data_direction dir)
+{
+       struct dma_async_tx_descriptor *desc = NULL;
+       struct dma_chan *chan;
+       enum dma_transfer_direction tr_dir;
+       dma_addr_t dma_addr;
+       dma_cookie_t cookie = -EINVAL;
+       uint32_t reg;
+       int ret;
+
+       if (dir == DMA_FROM_DEVICE) {
+               chan = flctl->chan_fifo0_rx;
+               tr_dir = DMA_DEV_TO_MEM;
+       } else {
+               chan = flctl->chan_fifo0_tx;
+               tr_dir = DMA_MEM_TO_DEV;
+       }
+
+       dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
+
+       if (dma_addr)
+               desc = dmaengine_prep_slave_single(chan, dma_addr, len,
+                       tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+
+       if (desc) {
+               reg = readl(FLINTDMACR(flctl));
+               reg |= DREQ0EN;
+               writel(reg, FLINTDMACR(flctl));
+
+               desc->callback = flctl_dma_complete;
+               desc->callback_param = flctl;
+               cookie = dmaengine_submit(desc);
+
+               dma_async_issue_pending(chan);
+       } else {
+               /* DMA failed, fall back to PIO */
+               flctl_release_dma(flctl);
+               dev_warn(&flctl->pdev->dev,
+                        "DMA failed, falling back to PIO\n");
+               ret = -EIO;
+               goto out;
+       }
+
+       ret =
+       wait_for_completion_timeout(&flctl->dma_complete,
+                               msecs_to_jiffies(3000));
+
+       if (ret <= 0) {
+               dmaengine_terminate_all(chan);
+               dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
+       }
+
+out:
+       reg = readl(FLINTDMACR(flctl));
+       reg &= ~DREQ0EN;
+       writel(reg, FLINTDMACR(flctl));
+
+       dma_unmap_single(chan->device->dev, dma_addr, len, dir);
+
+       /* ret > 0 is success */
+       return ret;
+}
+
+static void read_datareg(struct sh_flctl *flctl, int offset)
+{
+       unsigned long data;
+       unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+       wait_completion(flctl);
+
+       data = readl(FLDATAR(flctl));
+       *buf = le32_to_cpu(data);
+}
+
+static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
+{
+       int i, len_4align;
+       unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+       len_4align = (rlen + 3) / 4;
+
+       /* initiate DMA transfer */
+       if (flctl->chan_fifo0_rx && rlen >= 32 &&
+               flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
+                       goto convert;   /* DMA success */
+
+       /* do polling transfer */
+       for (i = 0; i < len_4align; i++) {
+               wait_rfifo_ready(flctl);
+               buf[i] = readl(FLDTFIFO(flctl));
+       }
+
+convert:
+       for (i = 0; i < len_4align; i++)
+               buf[i] = be32_to_cpu(buf[i]);
+}
+
+static enum flctl_ecc_res_t read_ecfiforeg
+               (struct sh_flctl *flctl, uint8_t *buff, int sector)
+{
+       int i;
+       enum flctl_ecc_res_t res;
+       unsigned long *ecc_buf = (unsigned long *)buff;
+
+       res = wait_recfifo_ready(flctl , sector);
+
+       if (res != FL_ERROR) {
+               for (i = 0; i < 4; i++) {
+                       ecc_buf[i] = readl(FLECFIFO(flctl));
+                       ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
+               }
+       }
+
+       return res;
+}
+
+static void write_fiforeg(struct sh_flctl *flctl, int rlen,
+                                               unsigned int offset)
+{
+       int i, len_4align;
+       unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+       len_4align = (rlen + 3) / 4;
+       for (i = 0; i < len_4align; i++) {
+               wait_wfifo_ready(flctl);
+               writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
+       }
+}
+
+static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
+                                               unsigned int offset)
+{
+       int i, len_4align;
+       unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+       len_4align = (rlen + 3) / 4;
+
+       for (i = 0; i < len_4align; i++)
+               buf[i] = cpu_to_be32(buf[i]);
+
+       /* initiate DMA transfer */
+       if (flctl->chan_fifo0_tx && rlen >= 32 &&
+               flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
+                       return; /* DMA success */
+
+       /* do polling transfer */
+       for (i = 0; i < len_4align; i++) {
+               wait_wecfifo_ready(flctl);
+               writel(buf[i], FLECFIFO(flctl));
+       }
+}
+
+static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
+       uint32_t flcmdcr_val, addr_len_bytes = 0;
+
+       /* Set SNAND bit if page size is 2048byte */
+       if (flctl->page_size)
+               flcmncr_val |= SNAND_E;
+       else
+               flcmncr_val &= ~SNAND_E;
+
+       /* default FLCMDCR val */
+       flcmdcr_val = DOCMD1_E | DOADR_E;
+
+       /* Set for FLCMDCR */
+       switch (cmd) {
+       case NAND_CMD_ERASE1:
+               addr_len_bytes = flctl->erase_ADRCNT;
+               flcmdcr_val |= DOCMD2_E;
+               break;
+       case NAND_CMD_READ0:
+       case NAND_CMD_READOOB:
+       case NAND_CMD_RNDOUT:
+               addr_len_bytes = flctl->rw_ADRCNT;
+               flcmdcr_val |= CDSRC_E;
+               if (flctl->chip.options & NAND_BUSWIDTH_16)
+                       flcmncr_val |= SEL_16BIT;
+               break;
+       case NAND_CMD_SEQIN:
+               /* This case is that cmd is READ0 or READ1 or READ00 */
+               flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
+               break;
+       case NAND_CMD_PAGEPROG:
+               addr_len_bytes = flctl->rw_ADRCNT;
+               flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
+               if (flctl->chip.options & NAND_BUSWIDTH_16)
+                       flcmncr_val |= SEL_16BIT;
+               break;
+       case NAND_CMD_READID:
+               flcmncr_val &= ~SNAND_E;
+               flcmdcr_val |= CDSRC_E;
+               addr_len_bytes = ADRCNT_1;
+               break;
+       case NAND_CMD_STATUS:
+       case NAND_CMD_RESET:
+               flcmncr_val &= ~SNAND_E;
+               flcmdcr_val &= ~(DOADR_E | DOSR_E);
+               break;
+       default:
+               break;
+       }
+
+       /* Set address bytes parameter */
+       flcmdcr_val |= addr_len_bytes;
+
+       /* Now actually write */
+       writel(flcmncr_val, FLCMNCR(flctl));
+       writel(flcmdcr_val, FLCMDCR(flctl));
+       writel(flcmcdr_val, FLCMCDR(flctl));
+}
+
+static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+                               uint8_t *buf, int oob_required, int page)
+{
+       chip->read_buf(mtd, buf, mtd->writesize);
+       if (oob_required)
+               chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+       return 0;
+}
+
+static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+                                  const uint8_t *buf, int oob_required)
+{
+       chip->write_buf(mtd, buf, mtd->writesize);
+       chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+       return 0;
+}
+
+static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       int sector, page_sectors;
+       enum flctl_ecc_res_t ecc_result;
+
+       page_sectors = flctl->page_size ? 4 : 1;
+
+       set_cmd_regs(mtd, NAND_CMD_READ0,
+               (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
+
+       writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
+                FLCMNCR(flctl));
+       writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
+       writel(page_addr << 2, FLADR(flctl));
+
+       empty_fifo(flctl);
+       start_translation(flctl);
+
+       for (sector = 0; sector < page_sectors; sector++) {
+               read_fiforeg(flctl, 512, 512 * sector);
+
+               ecc_result = read_ecfiforeg(flctl,
+                       &flctl->done_buff[mtd->writesize + 16 * sector],
+                       sector);
+
+               switch (ecc_result) {
+               case FL_REPAIRABLE:
+                       dev_info(&flctl->pdev->dev,
+                               "applied ecc on page 0x%x", page_addr);
+                       flctl->mtd.ecc_stats.corrected++;
+                       break;
+               case FL_ERROR:
+                       dev_warn(&flctl->pdev->dev,
+                               "page 0x%x contains corrupted data\n",
+                               page_addr);
+                       flctl->mtd.ecc_stats.failed++;
+                       break;
+               default:
+                       ;
+               }
+       }
+
+       wait_completion(flctl);
+
+       writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
+                       FLCMNCR(flctl));
+}
+
+static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       int page_sectors = flctl->page_size ? 4 : 1;
+       int i;
+
+       set_cmd_regs(mtd, NAND_CMD_READ0,
+               (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
+
+       empty_fifo(flctl);
+
+       for (i = 0; i < page_sectors; i++) {
+               set_addr(mtd, (512 + 16) * i + 512 , page_addr);
+               writel(16, FLDTCNTR(flctl));
+
+               start_translation(flctl);
+               read_fiforeg(flctl, 16, 16 * i);
+               wait_completion(flctl);
+       }
+}
+
+static void execmd_write_page_sector(struct mtd_info *mtd)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       int page_addr = flctl->seqin_page_addr;
+       int sector, page_sectors;
+
+       page_sectors = flctl->page_size ? 4 : 1;
+
+       set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
+                       (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
+
+       empty_fifo(flctl);
+       writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
+       writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
+       writel(page_addr << 2, FLADR(flctl));
+       start_translation(flctl);
+
+       for (sector = 0; sector < page_sectors; sector++) {
+               write_fiforeg(flctl, 512, 512 * sector);
+               write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
+       }
+
+       wait_completion(flctl);
+       writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
+}
+
+static void execmd_write_oob(struct mtd_info *mtd)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       int page_addr = flctl->seqin_page_addr;
+       int sector, page_sectors;
+
+       page_sectors = flctl->page_size ? 4 : 1;
+
+       set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
+                       (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
+
+       for (sector = 0; sector < page_sectors; sector++) {
+               empty_fifo(flctl);
+               set_addr(mtd, sector * 528 + 512, page_addr);
+               writel(16, FLDTCNTR(flctl));    /* set read size */
+
+               start_translation(flctl);
+               write_fiforeg(flctl, 16, 16 * sector);
+               wait_completion(flctl);
+       }
+}
+
+static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
+                       int column, int page_addr)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       uint32_t read_cmd = 0;
+
+       pm_runtime_get_sync(&flctl->pdev->dev);
+
+       flctl->read_bytes = 0;
+       if (command != NAND_CMD_PAGEPROG)
+               flctl->index = 0;
+
+       switch (command) {
+       case NAND_CMD_READ1:
+       case NAND_CMD_READ0:
+               if (flctl->hwecc) {
+                       /* read page with hwecc */
+                       execmd_read_page_sector(mtd, page_addr);
+                       break;
+               }
+               if (flctl->page_size)
+                       set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
+                               | command);
+               else
+                       set_cmd_regs(mtd, command, command);
+
+               set_addr(mtd, 0, page_addr);
+
+               flctl->read_bytes = mtd->writesize + mtd->oobsize;
+               if (flctl->chip.options & NAND_BUSWIDTH_16)
+                       column >>= 1;
+               flctl->index += column;
+               goto read_normal_exit;
+
+       case NAND_CMD_READOOB:
+               if (flctl->hwecc) {
+                       /* read page with hwecc */
+                       execmd_read_oob(mtd, page_addr);
+                       break;
+               }
+
+               if (flctl->page_size) {
+                       set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
+                               | NAND_CMD_READ0);
+                       set_addr(mtd, mtd->writesize, page_addr);
+               } else {
+                       set_cmd_regs(mtd, command, command);
+                       set_addr(mtd, 0, page_addr);
+               }
+               flctl->read_bytes = mtd->oobsize;
+               goto read_normal_exit;
+
+       case NAND_CMD_RNDOUT:
+               if (flctl->hwecc)
+                       break;
+
+               if (flctl->page_size)
+                       set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
+                               | command);
+               else
+                       set_cmd_regs(mtd, command, command);
+
+               set_addr(mtd, column, 0);
+
+               flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
+               goto read_normal_exit;
+
+       case NAND_CMD_READID:
+               set_cmd_regs(mtd, command, command);
+
+               /* READID is always performed using an 8-bit bus */
+               if (flctl->chip.options & NAND_BUSWIDTH_16)
+                       column <<= 1;
+               set_addr(mtd, column, 0);
+
+               flctl->read_bytes = 8;
+               writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
+               empty_fifo(flctl);
+               start_translation(flctl);
+               read_fiforeg(flctl, flctl->read_bytes, 0);
+               wait_completion(flctl);
+               break;
+
+       case NAND_CMD_ERASE1:
+               flctl->erase1_page_addr = page_addr;
+               break;
+
+       case NAND_CMD_ERASE2:
+               set_cmd_regs(mtd, NAND_CMD_ERASE1,
+                       (command << 8) | NAND_CMD_ERASE1);
+               set_addr(mtd, -1, flctl->erase1_page_addr);
+               start_translation(flctl);
+               wait_completion(flctl);
+               break;
+
+       case NAND_CMD_SEQIN:
+               if (!flctl->page_size) {
+                       /* output read command */
+                       if (column >= mtd->writesize) {
+                               column -= mtd->writesize;
+                               read_cmd = NAND_CMD_READOOB;
+                       } else if (column < 256) {
+                               read_cmd = NAND_CMD_READ0;
+                       } else {
+                               column -= 256;
+                               read_cmd = NAND_CMD_READ1;
+                       }
+               }
+               flctl->seqin_column = column;
+               flctl->seqin_page_addr = page_addr;
+               flctl->seqin_read_cmd = read_cmd;
+               break;
+
+       case NAND_CMD_PAGEPROG:
+               empty_fifo(flctl);
+               if (!flctl->page_size) {
+                       set_cmd_regs(mtd, NAND_CMD_SEQIN,
+                                       flctl->seqin_read_cmd);
+                       set_addr(mtd, -1, -1);
+                       writel(0, FLDTCNTR(flctl));     /* set 0 size */
+                       start_translation(flctl);
+                       wait_completion(flctl);
+               }
+               if (flctl->hwecc) {
+                       /* write page with hwecc */
+                       if (flctl->seqin_column == mtd->writesize)
+                               execmd_write_oob(mtd);
+                       else if (!flctl->seqin_column)
+                               execmd_write_page_sector(mtd);
+                       else
+                               printk(KERN_ERR "Invalid address !?\n");
+                       break;
+               }
+               set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
+               set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
+               writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
+               start_translation(flctl);
+               write_fiforeg(flctl, flctl->index, 0);
+               wait_completion(flctl);
+               break;
+
+       case NAND_CMD_STATUS:
+               set_cmd_regs(mtd, command, command);
+               set_addr(mtd, -1, -1);
+
+               flctl->read_bytes = 1;
+               writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
+               start_translation(flctl);
+               read_datareg(flctl, 0); /* read and end */
+               break;
+
+       case NAND_CMD_RESET:
+               set_cmd_regs(mtd, command, command);
+               set_addr(mtd, -1, -1);
+
+               writel(0, FLDTCNTR(flctl));     /* set 0 size */
+               start_translation(flctl);
+               wait_completion(flctl);
+               break;
+
+       default:
+               break;
+       }
+       goto runtime_exit;
+
+read_normal_exit:
+       writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
+       empty_fifo(flctl);
+       start_translation(flctl);
+       read_fiforeg(flctl, flctl->read_bytes, 0);
+       wait_completion(flctl);
+runtime_exit:
+       pm_runtime_put_sync(&flctl->pdev->dev);
+       return;
+}
+
+static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       int ret;
+
+       switch (chipnr) {
+       case -1:
+               flctl->flcmncr_base &= ~CE0_ENABLE;
+
+               pm_runtime_get_sync(&flctl->pdev->dev);
+               writel(flctl->flcmncr_base, FLCMNCR(flctl));
+
+               if (flctl->qos_request) {
+                       dev_pm_qos_remove_request(&flctl->pm_qos);
+                       flctl->qos_request = 0;
+               }
+
+               pm_runtime_put_sync(&flctl->pdev->dev);
+               break;
+       case 0:
+               flctl->flcmncr_base |= CE0_ENABLE;
+
+               if (!flctl->qos_request) {
+                       ret = dev_pm_qos_add_request(&flctl->pdev->dev,
+                                                       &flctl->pm_qos,
+                                                       DEV_PM_QOS_RESUME_LATENCY,
+                                                       100);
+                       if (ret < 0)
+                               dev_err(&flctl->pdev->dev,
+                                       "PM QoS request failed: %d\n", ret);
+                       flctl->qos_request = 1;
+               }
+
+               if (flctl->holden) {
+                       pm_runtime_get_sync(&flctl->pdev->dev);
+                       writel(HOLDEN, FLHOLDCR(flctl));
+                       pm_runtime_put_sync(&flctl->pdev->dev);
+               }
+               break;
+       default:
+               BUG();
+       }
+}
+
+static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+
+       memcpy(&flctl->done_buff[flctl->index], buf, len);
+       flctl->index += len;
+}
+
+static uint8_t flctl_read_byte(struct mtd_info *mtd)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       uint8_t data;
+
+       data = flctl->done_buff[flctl->index];
+       flctl->index++;
+       return data;
+}
+
+static uint16_t flctl_read_word(struct mtd_info *mtd)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
+
+       flctl->index += 2;
+       return *buf;
+}
+
+static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+
+       memcpy(buf, &flctl->done_buff[flctl->index], len);
+       flctl->index += len;
+}
+
+static int flctl_chip_init_tail(struct mtd_info *mtd)
+{
+       struct sh_flctl *flctl = mtd_to_flctl(mtd);
+       struct nand_chip *chip = &flctl->chip;
+
+       if (mtd->writesize == 512) {
+               flctl->page_size = 0;
+               if (chip->chipsize > (32 << 20)) {
+                       /* big than 32MB */
+                       flctl->rw_ADRCNT = ADRCNT_4;
+                       flctl->erase_ADRCNT = ADRCNT_3;
+               } else if (chip->chipsize > (2 << 16)) {
+                       /* big than 128KB */
+                       flctl->rw_ADRCNT = ADRCNT_3;
+                       flctl->erase_ADRCNT = ADRCNT_2;
+               } else {
+                       flctl->rw_ADRCNT = ADRCNT_2;
+                       flctl->erase_ADRCNT = ADRCNT_1;
+               }
+       } else {
+               flctl->page_size = 1;
+               if (chip->chipsize > (128 << 20)) {
+                       /* big than 128MB */
+                       flctl->rw_ADRCNT = ADRCNT2_E;
+                       flctl->erase_ADRCNT = ADRCNT_3;
+               } else if (chip->chipsize > (8 << 16)) {
+                       /* big than 512KB */
+                       flctl->rw_ADRCNT = ADRCNT_4;
+                       flctl->erase_ADRCNT = ADRCNT_2;
+               } else {
+                       flctl->rw_ADRCNT = ADRCNT_3;
+                       flctl->erase_ADRCNT = ADRCNT_1;
+               }
+       }
+
+       if (flctl->hwecc) {
+               if (mtd->writesize == 512) {
+                       chip->ecc.layout = &flctl_4secc_oob_16;
+                       chip->badblock_pattern = &flctl_4secc_smallpage;
+               } else {
+                       chip->ecc.layout = &flctl_4secc_oob_64;
+                       chip->badblock_pattern = &flctl_4secc_largepage;
+               }
+
+               chip->ecc.size = 512;
+               chip->ecc.bytes = 10;
+               chip->ecc.strength = 4;
+               chip->ecc.read_page = flctl_read_page_hwecc;
+               chip->ecc.write_page = flctl_write_page_hwecc;
+               chip->ecc.mode = NAND_ECC_HW;
+
+               /* 4 symbols ECC enabled */
+               flctl->flcmncr_base |= _4ECCEN;
+       } else {
+               chip->ecc.mode = NAND_ECC_SOFT;
+       }
+
+       return 0;
+}
+
+static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
+{
+       struct sh_flctl *flctl = dev_id;
+
+       dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
+       writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
+
+       return IRQ_HANDLED;
+}
+
+struct flctl_soc_config {
+       unsigned long flcmncr_val;
+       unsigned has_hwecc:1;
+       unsigned use_holden:1;
+};
+
+static struct flctl_soc_config flctl_sh7372_config = {
+       .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
+       .has_hwecc = 1,
+       .use_holden = 1,
+};
+
+static const struct of_device_id of_flctl_match[] = {
+       { .compatible = "renesas,shmobile-flctl-sh7372",
+                               .data = &flctl_sh7372_config },
+       {},
+};
+MODULE_DEVICE_TABLE(of, of_flctl_match);
+
+static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
+{
+       const struct of_device_id *match;
+       struct flctl_soc_config *config;
+       struct sh_flctl_platform_data *pdata;
+       struct device_node *dn = dev->of_node;
+       int ret;
+
+       match = of_match_device(of_flctl_match, dev);
+       if (match)
+               config = (struct flctl_soc_config *)match->data;
+       else {
+               dev_err(dev, "%s: no OF configuration attached\n", __func__);
+               return NULL;
+       }
+
+       pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
+                                                               GFP_KERNEL);
+       if (!pdata)
+               return NULL;
+
+       /* set SoC specific options */
+       pdata->flcmncr_val = config->flcmncr_val;
+       pdata->has_hwecc = config->has_hwecc;
+       pdata->use_holden = config->use_holden;
+
+       /* parse user defined options */
+       ret = of_get_nand_bus_width(dn);
+       if (ret == 16)
+               pdata->flcmncr_val |= SEL_16BIT;
+       else if (ret != 8) {
+               dev_err(dev, "%s: invalid bus width\n", __func__);
+               return NULL;
+       }
+
+       return pdata;
+}
+
+static int flctl_probe(struct platform_device *pdev)
+{
+       struct resource *res;
+       struct sh_flctl *flctl;
+       struct mtd_info *flctl_mtd;
+       struct nand_chip *nand;
+       struct sh_flctl_platform_data *pdata;
+       int ret;
+       int irq;
+       struct mtd_part_parser_data ppdata = {};
+
+       flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
+       if (!flctl)
+               return -ENOMEM;
+
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       flctl->reg = devm_ioremap_resource(&pdev->dev, res);
+       if (IS_ERR(flctl->reg))
+               return PTR_ERR(flctl->reg);
+
+       irq = platform_get_irq(pdev, 0);
+       if (irq < 0) {
+               dev_err(&pdev->dev, "failed to get flste irq data\n");
+               return -ENXIO;
+       }
+
+       ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
+                              "flste", flctl);
+       if (ret) {
+               dev_err(&pdev->dev, "request interrupt failed.\n");
+               return ret;
+       }
+
+       if (pdev->dev.of_node)
+               pdata = flctl_parse_dt(&pdev->dev);
+       else
+               pdata = dev_get_platdata(&pdev->dev);
+
+       if (!pdata) {
+               dev_err(&pdev->dev, "no setup data defined\n");
+               return -EINVAL;
+       }
+
+       platform_set_drvdata(pdev, flctl);
+       flctl_mtd = &flctl->mtd;
+       nand = &flctl->chip;
+       flctl_mtd->priv = nand;
+       flctl->pdev = pdev;
+       flctl->hwecc = pdata->has_hwecc;
+       flctl->holden = pdata->use_holden;
+       flctl->flcmncr_base = pdata->flcmncr_val;
+       flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
+
+       /* Set address of hardware control function */
+       /* 20 us command delay time */
+       nand->chip_delay = 20;
+
+       nand->read_byte = flctl_read_byte;
+       nand->write_buf = flctl_write_buf;
+       nand->read_buf = flctl_read_buf;
+       nand->select_chip = flctl_select_chip;
+       nand->cmdfunc = flctl_cmdfunc;
+
+       if (pdata->flcmncr_val & SEL_16BIT) {
+               nand->options |= NAND_BUSWIDTH_16;
+               nand->read_word = flctl_read_word;
+       }
+
+       pm_runtime_enable(&pdev->dev);
+       pm_runtime_resume(&pdev->dev);
+
+       flctl_setup_dma(flctl);
+
+       ret = nand_scan_ident(flctl_mtd, 1, NULL);
+       if (ret)
+               goto err_chip;
+
+       ret = flctl_chip_init_tail(flctl_mtd);
+       if (ret)
+               goto err_chip;
+
+       ret = nand_scan_tail(flctl_mtd);
+       if (ret)
+               goto err_chip;
+
+       ppdata.of_node = pdev->dev.of_node;
+       ret = mtd_device_parse_register(flctl_mtd, NULL, &ppdata, pdata->parts,
+                       pdata->nr_parts);
+
+       return 0;
+
+err_chip:
+       flctl_release_dma(flctl);
+       pm_runtime_disable(&pdev->dev);
+       return ret;
+}
+
+static int flctl_remove(struct platform_device *pdev)
+{
+       struct sh_flctl *flctl = platform_get_drvdata(pdev);
+
+       flctl_release_dma(flctl);
+       nand_release(&flctl->mtd);
+       pm_runtime_disable(&pdev->dev);
+
+       return 0;
+}
+
+static struct platform_driver flctl_driver = {
+       .remove         = flctl_remove,
+       .driver = {
+               .name   = "sh_flctl",
+               .of_match_table = of_match_ptr(of_flctl_match),
+       },
+};
+
+module_platform_driver_probe(flctl_driver, flctl_probe);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Yoshihiro Shimoda");
+MODULE_DESCRIPTION("SuperH FLCTL driver");
+MODULE_ALIAS("platform:sh_flctl");