Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / docg4.c
diff --git a/kernel/drivers/mtd/nand/docg4.c b/kernel/drivers/mtd/nand/docg4.c
new file mode 100644 (file)
index 0000000..e5d7bca
--- /dev/null
@@ -0,0 +1,1393 @@
+/*
+ *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
+ *
+ * mtd nand driver for M-Systems DiskOnChip G4
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
+ * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
+ * Should work on these as well.  Let me know!
+ *
+ * TODO:
+ *
+ *  Mechanism for management of password-protected areas
+ *
+ *  Hamming ecc when reading oob only
+ *
+ *  According to the M-Sys documentation, this device is also available in a
+ *  "dual-die" configuration having a 256MB capacity, but no mechanism for
+ *  detecting this variant is documented.  Currently this driver assumes 128MB
+ *  capacity.
+ *
+ *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
+ *  contain multiple G4s in a cascaded configuration, if any.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/export.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/bitops.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/bch.h>
+#include <linux/bitrev.h>
+#include <linux/jiffies.h>
+
+/*
+ * In "reliable mode" consecutive 2k pages are used in parallel (in some
+ * fashion) to store the same data.  The data can be read back from the
+ * even-numbered pages in the normal manner; odd-numbered pages will appear to
+ * contain junk.  Systems that boot from the docg4 typically write the secondary
+ * program loader (SPL) code in this mode.  The SPL is loaded by the initial
+ * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
+ * to the reset vector address).  This module parameter enables you to use this
+ * driver to write the SPL.  When in this mode, no more than 2k of data can be
+ * written at a time, because the addresses do not increment in the normal
+ * manner, and the starting offset must be within an even-numbered 2k region;
+ * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
+ * 0x1a00, ...  Reliable mode is a special case and should not be used unless
+ * you know what you're doing.
+ */
+static bool reliable_mode;
+module_param(reliable_mode, bool, 0);
+MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
+
+/*
+ * You'll want to ignore badblocks if you're reading a partition that contains
+ * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
+ * it does not use mtd nand's method for marking bad blocks (using oob area).
+ * This will also skip the check of the "page written" flag.
+ */
+static bool ignore_badblocks;
+module_param(ignore_badblocks, bool, 0);
+MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
+
+struct docg4_priv {
+       struct mtd_info *mtd;
+       struct device *dev;
+       void __iomem *virtadr;
+       int status;
+       struct {
+               unsigned int command;
+               int column;
+               int page;
+       } last_command;
+       uint8_t oob_buf[16];
+       uint8_t ecc_buf[7];
+       int oob_page;
+       struct bch_control *bch;
+};
+
+/*
+ * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
+ * shared with other diskonchip devices (P3, G3 at least).
+ *
+ * Functions with names prefixed with docg4_ are mtd / nand interface functions
+ * (though they may also be called internally).  All others are internal.
+ */
+
+#define DOC_IOSPACE_DATA               0x0800
+
+/* register offsets */
+#define DOC_CHIPID                     0x1000
+#define DOC_DEVICESELECT               0x100a
+#define DOC_ASICMODE                   0x100c
+#define DOC_DATAEND                    0x101e
+#define DOC_NOP                                0x103e
+
+#define DOC_FLASHSEQUENCE              0x1032
+#define DOC_FLASHCOMMAND               0x1034
+#define DOC_FLASHADDRESS               0x1036
+#define DOC_FLASHCONTROL               0x1038
+#define DOC_ECCCONF0                   0x1040
+#define DOC_ECCCONF1                   0x1042
+#define DOC_HAMMINGPARITY              0x1046
+#define DOC_BCH_SYNDROM(idx)           (0x1048 + idx)
+
+#define DOC_ASICMODECONFIRM            0x1072
+#define DOC_CHIPID_INV                 0x1074
+#define DOC_POWERMODE                  0x107c
+
+#define DOCG4_MYSTERY_REG              0x1050
+
+/* apparently used only to write oob bytes 6 and 7 */
+#define DOCG4_OOB_6_7                  0x1052
+
+/* DOC_FLASHSEQUENCE register commands */
+#define DOC_SEQ_RESET                  0x00
+#define DOCG4_SEQ_PAGE_READ            0x03
+#define DOCG4_SEQ_FLUSH                        0x29
+#define DOCG4_SEQ_PAGEWRITE            0x16
+#define DOCG4_SEQ_PAGEPROG             0x1e
+#define DOCG4_SEQ_BLOCKERASE           0x24
+#define DOCG4_SEQ_SETMODE              0x45
+
+/* DOC_FLASHCOMMAND register commands */
+#define DOCG4_CMD_PAGE_READ             0x00
+#define DOC_CMD_ERASECYCLE2            0xd0
+#define DOCG4_CMD_FLUSH                 0x70
+#define DOCG4_CMD_READ2                 0x30
+#define DOC_CMD_PROG_BLOCK_ADDR                0x60
+#define DOCG4_CMD_PAGEWRITE            0x80
+#define DOC_CMD_PROG_CYCLE2            0x10
+#define DOCG4_CMD_FAST_MODE            0xa3 /* functionality guessed */
+#define DOC_CMD_RELIABLE_MODE          0x22
+#define DOC_CMD_RESET                  0xff
+
+/* DOC_POWERMODE register bits */
+#define DOC_POWERDOWN_READY            0x80
+
+/* DOC_FLASHCONTROL register bits */
+#define DOC_CTRL_CE                    0x10
+#define DOC_CTRL_UNKNOWN               0x40
+#define DOC_CTRL_FLASHREADY            0x01
+
+/* DOC_ECCCONF0 register bits */
+#define DOC_ECCCONF0_READ_MODE         0x8000
+#define DOC_ECCCONF0_UNKNOWN           0x2000
+#define DOC_ECCCONF0_ECC_ENABLE                0x1000
+#define DOC_ECCCONF0_DATA_BYTES_MASK   0x07ff
+
+/* DOC_ECCCONF1 register bits */
+#define DOC_ECCCONF1_BCH_SYNDROM_ERR   0x80
+#define DOC_ECCCONF1_ECC_ENABLE         0x07
+#define DOC_ECCCONF1_PAGE_IS_WRITTEN   0x20
+
+/* DOC_ASICMODE register bits */
+#define DOC_ASICMODE_RESET             0x00
+#define DOC_ASICMODE_NORMAL            0x01
+#define DOC_ASICMODE_POWERDOWN         0x02
+#define DOC_ASICMODE_MDWREN            0x04
+#define DOC_ASICMODE_BDETCT_RESET      0x08
+#define DOC_ASICMODE_RSTIN_RESET       0x10
+#define DOC_ASICMODE_RAM_WE            0x20
+
+/* good status values read after read/write/erase operations */
+#define DOCG4_PROGSTATUS_GOOD          0x51
+#define DOCG4_PROGSTATUS_GOOD_2        0xe0
+
+/*
+ * On read operations (page and oob-only), the first byte read from I/O reg is a
+ * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
+ * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
+ */
+#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
+
+/* anatomy of the device */
+#define DOCG4_CHIP_SIZE        0x8000000
+#define DOCG4_PAGE_SIZE        0x200
+#define DOCG4_PAGES_PER_BLOCK  0x200
+#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
+#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
+#define DOCG4_OOB_SIZE         0x10
+#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
+#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
+#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
+
+/* all but the last byte is included in ecc calculation */
+#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
+
+#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
+
+/* expected values from the ID registers */
+#define DOCG4_IDREG1_VALUE     0x0400
+#define DOCG4_IDREG2_VALUE     0xfbff
+
+/* primitive polynomial used to build the Galois field used by hw ecc gen */
+#define DOCG4_PRIMITIVE_POLY   0x4443
+
+#define DOCG4_M                14  /* Galois field is of order 2^14 */
+#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
+
+#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
+#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
+
+/*
+ * Bytes 0, 1 are used as badblock marker.
+ * Bytes 2 - 6 are available to the user.
+ * Byte 7 is hamming ecc for first 7 oob bytes only.
+ * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
+ * Byte 15 (the last) is used by the driver as a "page written" flag.
+ */
+static struct nand_ecclayout docg4_oobinfo = {
+       .eccbytes = 9,
+       .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
+       .oobavail = 5,
+       .oobfree = { {.offset = 2, .length = 5} }
+};
+
+/*
+ * The device has a nop register which M-Sys claims is for the purpose of
+ * inserting precise delays.  But beware; at least some operations fail if the
+ * nop writes are replaced with a generic delay!
+ */
+static inline void write_nop(void __iomem *docptr)
+{
+       writew(0, docptr + DOC_NOP);
+}
+
+static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+       int i;
+       struct nand_chip *nand = mtd->priv;
+       uint16_t *p = (uint16_t *) buf;
+       len >>= 1;
+
+       for (i = 0; i < len; i++)
+               p[i] = readw(nand->IO_ADDR_R);
+}
+
+static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+       int i;
+       struct nand_chip *nand = mtd->priv;
+       uint16_t *p = (uint16_t *) buf;
+       len >>= 1;
+
+       for (i = 0; i < len; i++)
+               writew(p[i], nand->IO_ADDR_W);
+}
+
+static int poll_status(struct docg4_priv *doc)
+{
+       /*
+        * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
+        * register.  Operations known to take a long time (e.g., block erase)
+        * should sleep for a while before calling this.
+        */
+
+       uint16_t flash_status;
+       unsigned long timeo;
+       void __iomem *docptr = doc->virtadr;
+
+       dev_dbg(doc->dev, "%s...\n", __func__);
+
+       /* hardware quirk requires reading twice initially */
+       flash_status = readw(docptr + DOC_FLASHCONTROL);
+
+       timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
+       do {
+               cpu_relax();
+               flash_status = readb(docptr + DOC_FLASHCONTROL);
+       } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
+                time_before(jiffies, timeo));
+
+       if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
+               dev_err(doc->dev, "%s: timed out!\n", __func__);
+               return NAND_STATUS_FAIL;
+       }
+
+       return 0;
+}
+
+
+static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
+{
+
+       struct docg4_priv *doc = nand->priv;
+       int status = NAND_STATUS_WP;       /* inverse logic?? */
+       dev_dbg(doc->dev, "%s...\n", __func__);
+
+       /* report any previously unreported error */
+       if (doc->status) {
+               status |= doc->status;
+               doc->status = 0;
+               return status;
+       }
+
+       status |= poll_status(doc);
+       return status;
+}
+
+static void docg4_select_chip(struct mtd_info *mtd, int chip)
+{
+       /*
+        * Select among multiple cascaded chips ("floors").  Multiple floors are
+        * not yet supported, so the only valid non-negative value is 0.
+        */
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+
+       dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
+
+       if (chip < 0)
+               return;         /* deselected */
+
+       if (chip > 0)
+               dev_warn(doc->dev, "multiple floors currently unsupported\n");
+
+       writew(0, docptr + DOC_DEVICESELECT);
+}
+
+static void reset(struct mtd_info *mtd)
+{
+       /* full device reset */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+
+       writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
+              docptr + DOC_ASICMODE);
+       writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
+              docptr + DOC_ASICMODECONFIRM);
+       write_nop(docptr);
+
+       writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
+              docptr + DOC_ASICMODE);
+       writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
+              docptr + DOC_ASICMODECONFIRM);
+
+       writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
+
+       poll_status(doc);
+}
+
+static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
+{
+       /* read the 7 hw-generated ecc bytes */
+
+       int i;
+       for (i = 0; i < 7; i++) { /* hw quirk; read twice */
+               ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
+               ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
+       }
+}
+
+static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+       /*
+        * Called after a page read when hardware reports bitflips.
+        * Up to four bitflips can be corrected.
+        */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+       int i, numerrs, errpos[4];
+       const uint8_t blank_read_hwecc[8] = {
+               0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
+
+       read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
+
+       /* check if read error is due to a blank page */
+       if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
+               return 0;       /* yes */
+
+       /* skip additional check of "written flag" if ignore_badblocks */
+       if (ignore_badblocks == false) {
+
+               /*
+                * If the hw ecc bytes are not those of a blank page, there's
+                * still a chance that the page is blank, but was read with
+                * errors.  Check the "written flag" in last oob byte, which
+                * is set to zero when a page is written.  If more than half
+                * the bits are set, assume a blank page.  Unfortunately, the
+                * bit flips(s) are not reported in stats.
+                */
+
+               if (nand->oob_poi[15]) {
+                       int bit, numsetbits = 0;
+                       unsigned long written_flag = nand->oob_poi[15];
+                       for_each_set_bit(bit, &written_flag, 8)
+                               numsetbits++;
+                       if (numsetbits > 4) { /* assume blank */
+                               dev_warn(doc->dev,
+                                        "error(s) in blank page "
+                                        "at offset %08x\n",
+                                        page * DOCG4_PAGE_SIZE);
+                               return 0;
+                       }
+               }
+       }
+
+       /*
+        * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
+        * algorithm is used to decode this.  However the hw operates on page
+        * data in a bit order that is the reverse of that of the bch alg,
+        * requiring that the bits be reversed on the result.  Thanks to Ivan
+        * Djelic for his analysis!
+        */
+       for (i = 0; i < 7; i++)
+               doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
+
+       numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
+                            doc->ecc_buf, NULL, errpos);
+
+       if (numerrs == -EBADMSG) {
+               dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
+                        page * DOCG4_PAGE_SIZE);
+               return -EBADMSG;
+       }
+
+       BUG_ON(numerrs < 0);    /* -EINVAL, or anything other than -EBADMSG */
+
+       /* undo last step in BCH alg (modulo mirroring not needed) */
+       for (i = 0; i < numerrs; i++)
+               errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
+
+       /* fix the errors */
+       for (i = 0; i < numerrs; i++) {
+
+               /* ignore if error within oob ecc bytes */
+               if (errpos[i] > DOCG4_USERDATA_LEN * 8)
+                       continue;
+
+               /* if error within oob area preceeding ecc bytes... */
+               if (errpos[i] > DOCG4_PAGE_SIZE * 8)
+                       change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
+                                  (unsigned long *)nand->oob_poi);
+
+               else    /* error in page data */
+                       change_bit(errpos[i], (unsigned long *)buf);
+       }
+
+       dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
+                  numerrs, page * DOCG4_PAGE_SIZE);
+
+       return numerrs;
+}
+
+static uint8_t docg4_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+
+       dev_dbg(doc->dev, "%s\n", __func__);
+
+       if (doc->last_command.command == NAND_CMD_STATUS) {
+               int status;
+
+               /*
+                * Previous nand command was status request, so nand
+                * infrastructure code expects to read the status here.  If an
+                * error occurred in a previous operation, report it.
+                */
+               doc->last_command.command = 0;
+
+               if (doc->status) {
+                       status = doc->status;
+                       doc->status = 0;
+               }
+
+               /* why is NAND_STATUS_WP inverse logic?? */
+               else
+                       status = NAND_STATUS_WP | NAND_STATUS_READY;
+
+               return status;
+       }
+
+       dev_warn(doc->dev, "unexpected call to read_byte()\n");
+
+       return 0;
+}
+
+static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
+{
+       /* write the four address bytes packed in docg4_addr to the device */
+
+       void __iomem *docptr = doc->virtadr;
+       writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+       docg4_addr >>= 8;
+       writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+       docg4_addr >>= 8;
+       writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+       docg4_addr >>= 8;
+       writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+}
+
+static int read_progstatus(struct docg4_priv *doc)
+{
+       /*
+        * This apparently checks the status of programming.  Done after an
+        * erasure, and after page data is written.  On error, the status is
+        * saved, to be later retrieved by the nand infrastructure code.
+        */
+       void __iomem *docptr = doc->virtadr;
+
+       /* status is read from the I/O reg */
+       uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
+       uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
+       uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
+
+       dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
+             __func__, status1, status2, status3);
+
+       if (status1 != DOCG4_PROGSTATUS_GOOD
+           || status2 != DOCG4_PROGSTATUS_GOOD_2
+           || status3 != DOCG4_PROGSTATUS_GOOD_2) {
+               doc->status = NAND_STATUS_FAIL;
+               dev_warn(doc->dev, "read_progstatus failed: "
+                        "%02x, %02x, %02x\n", status1, status2, status3);
+               return -EIO;
+       }
+       return 0;
+}
+
+static int pageprog(struct mtd_info *mtd)
+{
+       /*
+        * Final step in writing a page.  Writes the contents of its
+        * internal buffer out to the flash array, or some such.
+        */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+       int retval = 0;
+
+       dev_dbg(doc->dev, "docg4: %s\n", __func__);
+
+       writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
+       writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
+       write_nop(docptr);
+       write_nop(docptr);
+
+       /* Just busy-wait; usleep_range() slows things down noticeably. */
+       poll_status(doc);
+
+       writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
+       writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
+       writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+
+       retval = read_progstatus(doc);
+       writew(0, docptr + DOC_DATAEND);
+       write_nop(docptr);
+       poll_status(doc);
+       write_nop(docptr);
+
+       return retval;
+}
+
+static void sequence_reset(struct mtd_info *mtd)
+{
+       /* common starting sequence for all operations */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+
+       writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
+       writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
+       writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
+       write_nop(docptr);
+       write_nop(docptr);
+       poll_status(doc);
+       write_nop(docptr);
+}
+
+static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
+{
+       /* first step in reading a page */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+
+       dev_dbg(doc->dev,
+             "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
+
+       sequence_reset(mtd);
+
+       writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
+       writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
+       write_nop(docptr);
+
+       write_addr(doc, docg4_addr);
+
+       write_nop(docptr);
+       writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
+       write_nop(docptr);
+       write_nop(docptr);
+
+       poll_status(doc);
+}
+
+static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
+{
+       /* first step in writing a page */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+
+       dev_dbg(doc->dev,
+             "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
+       sequence_reset(mtd);
+
+       if (unlikely(reliable_mode)) {
+               writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
+               writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
+               writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
+               write_nop(docptr);
+       }
+
+       writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
+       writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
+       write_nop(docptr);
+       write_addr(doc, docg4_addr);
+       write_nop(docptr);
+       write_nop(docptr);
+       poll_status(doc);
+}
+
+static uint32_t mtd_to_docg4_address(int page, int column)
+{
+       /*
+        * Convert mtd address to format used by the device, 32 bit packed.
+        *
+        * Some notes on G4 addressing... The M-Sys documentation on this device
+        * claims that pages are 2K in length, and indeed, the format of the
+        * address used by the device reflects that.  But within each page are
+        * four 512 byte "sub-pages", each with its own oob data that is
+        * read/written immediately after the 512 bytes of page data.  This oob
+        * data contains the ecc bytes for the preceeding 512 bytes.
+        *
+        * Rather than tell the mtd nand infrastructure that page size is 2k,
+        * with four sub-pages each, we engage in a little subterfuge and tell
+        * the infrastructure code that pages are 512 bytes in size.  This is
+        * done because during the course of reverse-engineering the device, I
+        * never observed an instance where an entire 2K "page" was read or
+        * written as a unit.  Each "sub-page" is always addressed individually,
+        * its data read/written, and ecc handled before the next "sub-page" is
+        * addressed.
+        *
+        * This requires us to convert addresses passed by the mtd nand
+        * infrastructure code to those used by the device.
+        *
+        * The address that is written to the device consists of four bytes: the
+        * first two are the 2k page number, and the second is the index into
+        * the page.  The index is in terms of 16-bit half-words and includes
+        * the preceeding oob data, so e.g., the index into the second
+        * "sub-page" is 0x108, and the full device address of the start of mtd
+        * page 0x201 is 0x00800108.
+        */
+       int g4_page = page / 4;                       /* device's 2K page */
+       int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
+       return (g4_page << 16) | g4_index;            /* pack */
+}
+
+static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
+                         int page_addr)
+{
+       /* handle standard nand commands */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
+
+       dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
+             __func__, command, page_addr, column);
+
+       /*
+        * Save the command and its arguments.  This enables emulation of
+        * standard flash devices, and also some optimizations.
+        */
+       doc->last_command.command = command;
+       doc->last_command.column = column;
+       doc->last_command.page = page_addr;
+
+       switch (command) {
+
+       case NAND_CMD_RESET:
+               reset(mtd);
+               break;
+
+       case NAND_CMD_READ0:
+               read_page_prologue(mtd, g4_addr);
+               break;
+
+       case NAND_CMD_STATUS:
+               /* next call to read_byte() will expect a status */
+               break;
+
+       case NAND_CMD_SEQIN:
+               if (unlikely(reliable_mode)) {
+                       uint16_t g4_page = g4_addr >> 16;
+
+                       /* writes to odd-numbered 2k pages are invalid */
+                       if (g4_page & 0x01)
+                               dev_warn(doc->dev,
+                                        "invalid reliable mode address\n");
+               }
+
+               write_page_prologue(mtd, g4_addr);
+
+               /* hack for deferred write of oob bytes */
+               if (doc->oob_page == page_addr)
+                       memcpy(nand->oob_poi, doc->oob_buf, 16);
+               break;
+
+       case NAND_CMD_PAGEPROG:
+               pageprog(mtd);
+               break;
+
+       /* we don't expect these, based on review of nand_base.c */
+       case NAND_CMD_READOOB:
+       case NAND_CMD_READID:
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+               dev_warn(doc->dev, "docg4_command: "
+                        "unexpected nand command 0x%x\n", command);
+               break;
+
+       }
+}
+
+static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
+                    uint8_t *buf, int page, bool use_ecc)
+{
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+       uint16_t status, edc_err, *buf16;
+       int bits_corrected = 0;
+
+       dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
+
+       writew(DOC_ECCCONF0_READ_MODE |
+              DOC_ECCCONF0_ECC_ENABLE |
+              DOC_ECCCONF0_UNKNOWN |
+              DOCG4_BCH_SIZE,
+              docptr + DOC_ECCCONF0);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+
+       /* the 1st byte from the I/O reg is a status; the rest is page data */
+       status = readw(docptr + DOC_IOSPACE_DATA);
+       if (status & DOCG4_READ_ERROR) {
+               dev_err(doc->dev,
+                       "docg4_read_page: bad status: 0x%02x\n", status);
+               writew(0, docptr + DOC_DATAEND);
+               return -EIO;
+       }
+
+       dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
+
+       docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
+
+       /* this device always reads oob after page data */
+       /* first 14 oob bytes read from I/O reg */
+       docg4_read_buf(mtd, nand->oob_poi, 14);
+
+       /* last 2 read from another reg */
+       buf16 = (uint16_t *)(nand->oob_poi + 14);
+       *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
+
+       write_nop(docptr);
+
+       if (likely(use_ecc == true)) {
+
+               /* read the register that tells us if bitflip(s) detected  */
+               edc_err = readw(docptr + DOC_ECCCONF1);
+               edc_err = readw(docptr + DOC_ECCCONF1);
+               dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
+
+               /* If bitflips are reported, attempt to correct with ecc */
+               if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
+                       bits_corrected = correct_data(mtd, buf, page);
+                       if (bits_corrected == -EBADMSG)
+                               mtd->ecc_stats.failed++;
+                       else
+                               mtd->ecc_stats.corrected += bits_corrected;
+               }
+       }
+
+       writew(0, docptr + DOC_DATAEND);
+       if (bits_corrected == -EBADMSG)   /* uncorrectable errors */
+               return 0;
+       return bits_corrected;
+}
+
+
+static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
+                              uint8_t *buf, int oob_required, int page)
+{
+       return read_page(mtd, nand, buf, page, false);
+}
+
+static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+                          uint8_t *buf, int oob_required, int page)
+{
+       return read_page(mtd, nand, buf, page, true);
+}
+
+static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+                         int page)
+{
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+       uint16_t status;
+
+       dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
+
+       docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
+
+       writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+
+       /* the 1st byte from the I/O reg is a status; the rest is oob data */
+       status = readw(docptr + DOC_IOSPACE_DATA);
+       if (status & DOCG4_READ_ERROR) {
+               dev_warn(doc->dev,
+                        "docg4_read_oob failed: status = 0x%02x\n", status);
+               return -EIO;
+       }
+
+       dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
+
+       docg4_read_buf(mtd, nand->oob_poi, 16);
+
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       writew(0, docptr + DOC_DATAEND);
+       write_nop(docptr);
+
+       return 0;
+}
+
+static int docg4_erase_block(struct mtd_info *mtd, int page)
+{
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+       uint16_t g4_page;
+
+       dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
+
+       sequence_reset(mtd);
+
+       writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
+       writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
+       write_nop(docptr);
+
+       /* only 2 bytes of address are written to specify erase block */
+       g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
+       writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
+       g4_page >>= 8;
+       writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
+       write_nop(docptr);
+
+       /* start the erasure */
+       writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
+       write_nop(docptr);
+       write_nop(docptr);
+
+       usleep_range(500, 1000); /* erasure is long; take a snooze */
+       poll_status(doc);
+       writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
+       writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
+       writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+       write_nop(docptr);
+
+       read_progstatus(doc);
+
+       writew(0, docptr + DOC_DATAEND);
+       write_nop(docptr);
+       poll_status(doc);
+       write_nop(docptr);
+
+       return nand->waitfunc(mtd, nand);
+}
+
+static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
+                      const uint8_t *buf, bool use_ecc)
+{
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+       uint8_t ecc_buf[8];
+
+       dev_dbg(doc->dev, "%s...\n", __func__);
+
+       writew(DOC_ECCCONF0_ECC_ENABLE |
+              DOC_ECCCONF0_UNKNOWN |
+              DOCG4_BCH_SIZE,
+              docptr + DOC_ECCCONF0);
+       write_nop(docptr);
+
+       /* write the page data */
+       docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
+
+       /* oob bytes 0 through 5 are written to I/O reg */
+       docg4_write_buf16(mtd, nand->oob_poi, 6);
+
+       /* oob byte 6 written to a separate reg */
+       writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
+
+       write_nop(docptr);
+       write_nop(docptr);
+
+       /* write hw-generated ecc bytes to oob */
+       if (likely(use_ecc == true)) {
+               /* oob byte 7 is hamming code */
+               uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
+               hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
+               writew(hamming, docptr + DOCG4_OOB_6_7);
+               write_nop(docptr);
+
+               /* read the 7 bch bytes from ecc regs */
+               read_hw_ecc(docptr, ecc_buf);
+               ecc_buf[7] = 0;         /* clear the "page written" flag */
+       }
+
+       /* write user-supplied bytes to oob */
+       else {
+               writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
+               write_nop(docptr);
+               memcpy(ecc_buf, &nand->oob_poi[8], 8);
+       }
+
+       docg4_write_buf16(mtd, ecc_buf, 8);
+       write_nop(docptr);
+       write_nop(docptr);
+       writew(0, docptr + DOC_DATAEND);
+       write_nop(docptr);
+
+       return 0;
+}
+
+static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
+                                const uint8_t *buf, int oob_required)
+{
+       return write_page(mtd, nand, buf, false);
+}
+
+static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
+                            const uint8_t *buf, int oob_required)
+{
+       return write_page(mtd, nand, buf, true);
+}
+
+static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
+                          int page)
+{
+       /*
+        * Writing oob-only is not really supported, because MLC nand must write
+        * oob bytes at the same time as page data.  Nonetheless, we save the
+        * oob buffer contents here, and then write it along with the page data
+        * if the same page is subsequently written.  This allows user space
+        * utilities that write the oob data prior to the page data to work
+        * (e.g., nandwrite).  The disdvantage is that, if the intention was to
+        * write oob only, the operation is quietly ignored.  Also, oob can get
+        * corrupted if two concurrent processes are running nandwrite.
+        */
+
+       /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
+       struct docg4_priv *doc = nand->priv;
+       doc->oob_page = page;
+       memcpy(doc->oob_buf, nand->oob_poi, 16);
+       return 0;
+}
+
+static int __init read_factory_bbt(struct mtd_info *mtd)
+{
+       /*
+        * The device contains a read-only factory bad block table.  Read it and
+        * update the memory-based bbt accordingly.
+        */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
+       uint8_t *buf;
+       int i, block;
+       __u32 eccfailed_stats = mtd->ecc_stats.failed;
+
+       buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
+       if (buf == NULL)
+               return -ENOMEM;
+
+       read_page_prologue(mtd, g4_addr);
+       docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
+
+       /*
+        * If no memory-based bbt was created, exit.  This will happen if module
+        * parameter ignore_badblocks is set.  Then why even call this function?
+        * For an unknown reason, block erase always fails if it's the first
+        * operation after device power-up.  The above read ensures it never is.
+        * Ugly, I know.
+        */
+       if (nand->bbt == NULL)  /* no memory-based bbt */
+               goto exit;
+
+       if (mtd->ecc_stats.failed > eccfailed_stats) {
+               /*
+                * Whoops, an ecc failure ocurred reading the factory bbt.
+                * It is stored redundantly, so we get another chance.
+                */
+               eccfailed_stats = mtd->ecc_stats.failed;
+               docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
+               if (mtd->ecc_stats.failed > eccfailed_stats) {
+                       dev_warn(doc->dev,
+                                "The factory bbt could not be read!\n");
+                       goto exit;
+               }
+       }
+
+       /*
+        * Parse factory bbt and update memory-based bbt.  Factory bbt format is
+        * simple: one bit per block, block numbers increase left to right (msb
+        * to lsb).  Bit clear means bad block.
+        */
+       for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
+               int bitnum;
+               unsigned long bits = ~buf[i];
+               for_each_set_bit(bitnum, &bits, 8) {
+                       int badblock = block + 7 - bitnum;
+                       nand->bbt[badblock / 4] |=
+                               0x03 << ((badblock % 4) * 2);
+                       mtd->ecc_stats.badblocks++;
+                       dev_notice(doc->dev, "factory-marked bad block: %d\n",
+                                  badblock);
+               }
+       }
+ exit:
+       kfree(buf);
+       return 0;
+}
+
+static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+       /*
+        * Mark a block as bad.  Bad blocks are marked in the oob area of the
+        * first page of the block.  The default scan_bbt() in the nand
+        * infrastructure code works fine for building the memory-based bbt
+        * during initialization, as does the nand infrastructure function that
+        * checks if a block is bad by reading the bbt.  This function replaces
+        * the nand default because writes to oob-only are not supported.
+        */
+
+       int ret, i;
+       uint8_t *buf;
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       struct nand_bbt_descr *bbtd = nand->badblock_pattern;
+       int page = (int)(ofs >> nand->page_shift);
+       uint32_t g4_addr = mtd_to_docg4_address(page, 0);
+
+       dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
+
+       if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
+               dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
+                        __func__, ofs);
+
+       /* allocate blank buffer for page data */
+       buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
+       if (buf == NULL)
+               return -ENOMEM;
+
+       /* write bit-wise negation of pattern to oob buffer */
+       memset(nand->oob_poi, 0xff, mtd->oobsize);
+       for (i = 0; i < bbtd->len; i++)
+               nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
+
+       /* write first page of block */
+       write_page_prologue(mtd, g4_addr);
+       docg4_write_page(mtd, nand, buf, 1);
+       ret = pageprog(mtd);
+
+       kfree(buf);
+
+       return ret;
+}
+
+static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+       /* only called when module_param ignore_badblocks is set */
+       return 0;
+}
+
+static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
+{
+       /*
+        * Put the device into "deep power-down" mode.  Note that CE# must be
+        * deasserted for this to take effect.  The xscale, e.g., can be
+        * configured to float this signal when the processor enters power-down,
+        * and a suitable pull-up ensures its deassertion.
+        */
+
+       int i;
+       uint8_t pwr_down;
+       struct docg4_priv *doc = platform_get_drvdata(pdev);
+       void __iomem *docptr = doc->virtadr;
+
+       dev_dbg(doc->dev, "%s...\n", __func__);
+
+       /* poll the register that tells us we're ready to go to sleep */
+       for (i = 0; i < 10; i++) {
+               pwr_down = readb(docptr + DOC_POWERMODE);
+               if (pwr_down & DOC_POWERDOWN_READY)
+                       break;
+               usleep_range(1000, 4000);
+       }
+
+       if (pwr_down & DOC_POWERDOWN_READY) {
+               dev_err(doc->dev, "suspend failed; "
+                       "timeout polling DOC_POWERDOWN_READY\n");
+               return -EIO;
+       }
+
+       writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
+              docptr + DOC_ASICMODE);
+       writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
+              docptr + DOC_ASICMODECONFIRM);
+
+       write_nop(docptr);
+
+       return 0;
+}
+
+static int docg4_resume(struct platform_device *pdev)
+{
+
+       /*
+        * Exit power-down.  Twelve consecutive reads of the address below
+        * accomplishes this, assuming CE# has been asserted.
+        */
+
+       struct docg4_priv *doc = platform_get_drvdata(pdev);
+       void __iomem *docptr = doc->virtadr;
+       int i;
+
+       dev_dbg(doc->dev, "%s...\n", __func__);
+
+       for (i = 0; i < 12; i++)
+               readb(docptr + 0x1fff);
+
+       return 0;
+}
+
+static void __init init_mtd_structs(struct mtd_info *mtd)
+{
+       /* initialize mtd and nand data structures */
+
+       /*
+        * Note that some of the following initializations are not usually
+        * required within a nand driver because they are performed by the nand
+        * infrastructure code as part of nand_scan().  In this case they need
+        * to be initialized here because we skip call to nand_scan_ident() (the
+        * first half of nand_scan()).  The call to nand_scan_ident() is skipped
+        * because for this device the chip id is not read in the manner of a
+        * standard nand device.  Unfortunately, nand_scan_ident() does other
+        * things as well, such as call nand_set_defaults().
+        */
+
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+
+       mtd->size = DOCG4_CHIP_SIZE;
+       mtd->name = "Msys_Diskonchip_G4";
+       mtd->writesize = DOCG4_PAGE_SIZE;
+       mtd->erasesize = DOCG4_BLOCK_SIZE;
+       mtd->oobsize = DOCG4_OOB_SIZE;
+       nand->chipsize = DOCG4_CHIP_SIZE;
+       nand->chip_shift = DOCG4_CHIP_SHIFT;
+       nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
+       nand->chip_delay = 20;
+       nand->page_shift = DOCG4_PAGE_SHIFT;
+       nand->pagemask = 0x3ffff;
+       nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
+       nand->badblockbits = 8;
+       nand->ecc.layout = &docg4_oobinfo;
+       nand->ecc.mode = NAND_ECC_HW_SYNDROME;
+       nand->ecc.size = DOCG4_PAGE_SIZE;
+       nand->ecc.prepad = 8;
+       nand->ecc.bytes = 8;
+       nand->ecc.strength = DOCG4_T;
+       nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
+       nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
+       nand->controller = &nand->hwcontrol;
+       spin_lock_init(&nand->controller->lock);
+       init_waitqueue_head(&nand->controller->wq);
+
+       /* methods */
+       nand->cmdfunc = docg4_command;
+       nand->waitfunc = docg4_wait;
+       nand->select_chip = docg4_select_chip;
+       nand->read_byte = docg4_read_byte;
+       nand->block_markbad = docg4_block_markbad;
+       nand->read_buf = docg4_read_buf;
+       nand->write_buf = docg4_write_buf16;
+       nand->erase = docg4_erase_block;
+       nand->ecc.read_page = docg4_read_page;
+       nand->ecc.write_page = docg4_write_page;
+       nand->ecc.read_page_raw = docg4_read_page_raw;
+       nand->ecc.write_page_raw = docg4_write_page_raw;
+       nand->ecc.read_oob = docg4_read_oob;
+       nand->ecc.write_oob = docg4_write_oob;
+
+       /*
+        * The way the nand infrastructure code is written, a memory-based bbt
+        * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
+        * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
+        * scan and define a dummy block_bad() which always returns 0.
+        */
+       if (ignore_badblocks) {
+               nand->options |= NAND_SKIP_BBTSCAN;
+               nand->block_bad = docg4_block_neverbad;
+       }
+
+}
+
+static int __init read_id_reg(struct mtd_info *mtd)
+{
+       struct nand_chip *nand = mtd->priv;
+       struct docg4_priv *doc = nand->priv;
+       void __iomem *docptr = doc->virtadr;
+       uint16_t id1, id2;
+
+       /* check for presence of g4 chip by reading id registers */
+       id1 = readw(docptr + DOC_CHIPID);
+       id1 = readw(docptr + DOCG4_MYSTERY_REG);
+       id2 = readw(docptr + DOC_CHIPID_INV);
+       id2 = readw(docptr + DOCG4_MYSTERY_REG);
+
+       if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
+               dev_info(doc->dev,
+                        "NAND device: 128MiB Diskonchip G4 detected\n");
+               return 0;
+       }
+
+       return -ENODEV;
+}
+
+static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
+
+static int __init probe_docg4(struct platform_device *pdev)
+{
+       struct mtd_info *mtd;
+       struct nand_chip *nand;
+       void __iomem *virtadr;
+       struct docg4_priv *doc;
+       int len, retval;
+       struct resource *r;
+       struct device *dev = &pdev->dev;
+
+       r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       if (r == NULL) {
+               dev_err(dev, "no io memory resource defined!\n");
+               return -ENODEV;
+       }
+
+       virtadr = ioremap(r->start, resource_size(r));
+       if (!virtadr) {
+               dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
+               return -EIO;
+       }
+
+       len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
+               sizeof(struct docg4_priv);
+       mtd = kzalloc(len, GFP_KERNEL);
+       if (mtd == NULL) {
+               retval = -ENOMEM;
+               goto fail;
+       }
+       nand = (struct nand_chip *) (mtd + 1);
+       doc = (struct docg4_priv *) (nand + 1);
+       mtd->priv = nand;
+       nand->priv = doc;
+       mtd->owner = THIS_MODULE;
+       doc->virtadr = virtadr;
+       doc->dev = dev;
+
+       init_mtd_structs(mtd);
+
+       /* initialize kernel bch algorithm */
+       doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
+       if (doc->bch == NULL) {
+               retval = -EINVAL;
+               goto fail;
+       }
+
+       platform_set_drvdata(pdev, doc);
+
+       reset(mtd);
+       retval = read_id_reg(mtd);
+       if (retval == -ENODEV) {
+               dev_warn(dev, "No diskonchip G4 device found.\n");
+               goto fail;
+       }
+
+       retval = nand_scan_tail(mtd);
+       if (retval)
+               goto fail;
+
+       retval = read_factory_bbt(mtd);
+       if (retval)
+               goto fail;
+
+       retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+       if (retval)
+               goto fail;
+
+       doc->mtd = mtd;
+       return 0;
+
+ fail:
+       iounmap(virtadr);
+       if (mtd) {
+               /* re-declarations avoid compiler warning */
+               struct nand_chip *nand = mtd->priv;
+               struct docg4_priv *doc = nand->priv;
+               nand_release(mtd); /* deletes partitions and mtd devices */
+               free_bch(doc->bch);
+               kfree(mtd);
+       }
+
+       return retval;
+}
+
+static int __exit cleanup_docg4(struct platform_device *pdev)
+{
+       struct docg4_priv *doc = platform_get_drvdata(pdev);
+       nand_release(doc->mtd);
+       free_bch(doc->bch);
+       kfree(doc->mtd);
+       iounmap(doc->virtadr);
+       return 0;
+}
+
+static struct platform_driver docg4_driver = {
+       .driver         = {
+               .name   = "docg4",
+       },
+       .suspend        = docg4_suspend,
+       .resume         = docg4_resume,
+       .remove         = __exit_p(cleanup_docg4),
+};
+
+module_platform_driver_probe(docg4_driver, probe_docg4);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mike Dunn");
+MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");