Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / chips / cfi_cmdset_0020.c
diff --git a/kernel/drivers/mtd/chips/cfi_cmdset_0020.c b/kernel/drivers/mtd/chips/cfi_cmdset_0020.c
new file mode 100644 (file)
index 0000000..9a1a6ff
--- /dev/null
@@ -0,0 +1,1400 @@
+/*
+ * Common Flash Interface support:
+ *   ST Advanced Architecture Command Set (ID 0x0020)
+ *
+ * (C) 2000 Red Hat. GPL'd
+ *
+ * 10/10/2000  Nicolas Pitre <nico@fluxnic.net>
+ *     - completely revamped method functions so they are aware and
+ *       independent of the flash geometry (buswidth, interleave, etc.)
+ *     - scalability vs code size is completely set at compile-time
+ *       (see include/linux/mtd/cfi.h for selection)
+ *     - optimized write buffer method
+ * 06/21/2002  Joern Engel <joern@wh.fh-wedel.de> and others
+ *     - modified Intel Command Set 0x0001 to support ST Advanced Architecture
+ *       (command set 0x0020)
+ *     - added a writev function
+ * 07/13/2005  Joern Engel <joern@wh.fh-wedel.de>
+ *     - Plugged memory leak in cfi_staa_writev().
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/mtd.h>
+
+
+static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
+               unsigned long count, loff_t to, size_t *retlen);
+static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
+static void cfi_staa_sync (struct mtd_info *);
+static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
+static int cfi_staa_suspend (struct mtd_info *);
+static void cfi_staa_resume (struct mtd_info *);
+
+static void cfi_staa_destroy(struct mtd_info *);
+
+struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
+
+static struct mtd_info *cfi_staa_setup (struct map_info *);
+
+static struct mtd_chip_driver cfi_staa_chipdrv = {
+       .probe          = NULL, /* Not usable directly */
+       .destroy        = cfi_staa_destroy,
+       .name           = "cfi_cmdset_0020",
+       .module         = THIS_MODULE
+};
+
+/* #define DEBUG_LOCK_BITS */
+//#define DEBUG_CFI_FEATURES
+
+#ifdef DEBUG_CFI_FEATURES
+static void cfi_tell_features(struct cfi_pri_intelext *extp)
+{
+        int i;
+        printk("  Feature/Command Support: %4.4X\n", extp->FeatureSupport);
+       printk("     - Chip Erase:         %s\n", extp->FeatureSupport&1?"supported":"unsupported");
+       printk("     - Suspend Erase:      %s\n", extp->FeatureSupport&2?"supported":"unsupported");
+       printk("     - Suspend Program:    %s\n", extp->FeatureSupport&4?"supported":"unsupported");
+       printk("     - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
+       printk("     - Queued Erase:       %s\n", extp->FeatureSupport&16?"supported":"unsupported");
+       printk("     - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
+       printk("     - Protection Bits:    %s\n", extp->FeatureSupport&64?"supported":"unsupported");
+       printk("     - Page-mode read:     %s\n", extp->FeatureSupport&128?"supported":"unsupported");
+       printk("     - Synchronous read:   %s\n", extp->FeatureSupport&256?"supported":"unsupported");
+       for (i=9; i<32; i++) {
+               if (extp->FeatureSupport & (1<<i))
+                       printk("     - Unknown Bit %X:      supported\n", i);
+       }
+
+       printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
+       printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
+       for (i=1; i<8; i++) {
+               if (extp->SuspendCmdSupport & (1<<i))
+                       printk("     - Unknown Bit %X:               supported\n", i);
+       }
+
+       printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
+       printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
+       printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
+       for (i=2; i<16; i++) {
+               if (extp->BlkStatusRegMask & (1<<i))
+                       printk("     - Unknown Bit %X Active: yes\n",i);
+       }
+
+       printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
+              extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
+       if (extp->VppOptimal)
+               printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
+                      extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
+}
+#endif
+
+/* This routine is made available to other mtd code via
+ * inter_module_register.  It must only be accessed through
+ * inter_module_get which will bump the use count of this module.  The
+ * addresses passed back in cfi are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
+{
+       struct cfi_private *cfi = map->fldrv_priv;
+       int i;
+
+       if (cfi->cfi_mode) {
+               /*
+                * It's a real CFI chip, not one for which the probe
+                * routine faked a CFI structure. So we read the feature
+                * table from it.
+                */
+               __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
+               struct cfi_pri_intelext *extp;
+
+               extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
+               if (!extp)
+                       return NULL;
+
+               if (extp->MajorVersion != '1' ||
+                   (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
+                       printk(KERN_ERR "  Unknown ST Microelectronics"
+                              " Extended Query version %c.%c.\n",
+                              extp->MajorVersion, extp->MinorVersion);
+                       kfree(extp);
+                       return NULL;
+               }
+
+               /* Do some byteswapping if necessary */
+               extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport);
+               extp->BlkStatusRegMask = cfi32_to_cpu(map,
+                                               extp->BlkStatusRegMask);
+
+#ifdef DEBUG_CFI_FEATURES
+               /* Tell the user about it in lots of lovely detail */
+               cfi_tell_features(extp);
+#endif
+
+               /* Install our own private info structure */
+               cfi->cmdset_priv = extp;
+       }
+
+       for (i=0; i< cfi->numchips; i++) {
+               cfi->chips[i].word_write_time = 128;
+               cfi->chips[i].buffer_write_time = 128;
+               cfi->chips[i].erase_time = 1024;
+               cfi->chips[i].ref_point_counter = 0;
+               init_waitqueue_head(&(cfi->chips[i].wq));
+       }
+
+       return cfi_staa_setup(map);
+}
+EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
+
+static struct mtd_info *cfi_staa_setup(struct map_info *map)
+{
+       struct cfi_private *cfi = map->fldrv_priv;
+       struct mtd_info *mtd;
+       unsigned long offset = 0;
+       int i,j;
+       unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
+
+       mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
+       //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
+
+       if (!mtd) {
+               kfree(cfi->cmdset_priv);
+               return NULL;
+       }
+
+       mtd->priv = map;
+       mtd->type = MTD_NORFLASH;
+       mtd->size = devsize * cfi->numchips;
+
+       mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
+       mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
+                       * mtd->numeraseregions, GFP_KERNEL);
+       if (!mtd->eraseregions) {
+               kfree(cfi->cmdset_priv);
+               kfree(mtd);
+               return NULL;
+       }
+
+       for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
+               unsigned long ernum, ersize;
+               ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
+               ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
+
+               if (mtd->erasesize < ersize) {
+                       mtd->erasesize = ersize;
+               }
+               for (j=0; j<cfi->numchips; j++) {
+                       mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
+                       mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
+                       mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
+               }
+               offset += (ersize * ernum);
+       }
+
+       if (offset != devsize) {
+               /* Argh */
+               printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
+               kfree(mtd->eraseregions);
+               kfree(cfi->cmdset_priv);
+               kfree(mtd);
+               return NULL;
+       }
+
+       for (i=0; i<mtd->numeraseregions;i++){
+               printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
+                      i, (unsigned long long)mtd->eraseregions[i].offset,
+                      mtd->eraseregions[i].erasesize,
+                      mtd->eraseregions[i].numblocks);
+       }
+
+       /* Also select the correct geometry setup too */
+       mtd->_erase = cfi_staa_erase_varsize;
+       mtd->_read = cfi_staa_read;
+       mtd->_write = cfi_staa_write_buffers;
+       mtd->_writev = cfi_staa_writev;
+       mtd->_sync = cfi_staa_sync;
+       mtd->_lock = cfi_staa_lock;
+       mtd->_unlock = cfi_staa_unlock;
+       mtd->_suspend = cfi_staa_suspend;
+       mtd->_resume = cfi_staa_resume;
+       mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
+       mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
+       mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+       map->fldrv = &cfi_staa_chipdrv;
+       __module_get(THIS_MODULE);
+       mtd->name = map->name;
+       return mtd;
+}
+
+
+static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
+{
+       map_word status, status_OK;
+       unsigned long timeo;
+       DECLARE_WAITQUEUE(wait, current);
+       int suspended = 0;
+       unsigned long cmd_addr;
+       struct cfi_private *cfi = map->fldrv_priv;
+
+       adr += chip->start;
+
+       /* Ensure cmd read/writes are aligned. */
+       cmd_addr = adr & ~(map_bankwidth(map)-1);
+
+       /* Let's determine this according to the interleave only once */
+       status_OK = CMD(0x80);
+
+       timeo = jiffies + HZ;
+ retry:
+       mutex_lock(&chip->mutex);
+
+       /* Check that the chip's ready to talk to us.
+        * If it's in FL_ERASING state, suspend it and make it talk now.
+        */
+       switch (chip->state) {
+       case FL_ERASING:
+               if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
+                       goto sleep; /* We don't support erase suspend */
+
+               map_write (map, CMD(0xb0), cmd_addr);
+               /* If the flash has finished erasing, then 'erase suspend'
+                * appears to make some (28F320) flash devices switch to
+                * 'read' mode.  Make sure that we switch to 'read status'
+                * mode so we get the right data. --rmk
+                */
+               map_write(map, CMD(0x70), cmd_addr);
+               chip->oldstate = FL_ERASING;
+               chip->state = FL_ERASE_SUSPENDING;
+               //              printk("Erase suspending at 0x%lx\n", cmd_addr);
+               for (;;) {
+                       status = map_read(map, cmd_addr);
+                       if (map_word_andequal(map, status, status_OK, status_OK))
+                               break;
+
+                       if (time_after(jiffies, timeo)) {
+                               /* Urgh */
+                               map_write(map, CMD(0xd0), cmd_addr);
+                               /* make sure we're in 'read status' mode */
+                               map_write(map, CMD(0x70), cmd_addr);
+                               chip->state = FL_ERASING;
+                               wake_up(&chip->wq);
+                               mutex_unlock(&chip->mutex);
+                               printk(KERN_ERR "Chip not ready after erase "
+                                      "suspended: status = 0x%lx\n", status.x[0]);
+                               return -EIO;
+                       }
+
+                       mutex_unlock(&chip->mutex);
+                       cfi_udelay(1);
+                       mutex_lock(&chip->mutex);
+               }
+
+               suspended = 1;
+               map_write(map, CMD(0xff), cmd_addr);
+               chip->state = FL_READY;
+               break;
+
+#if 0
+       case FL_WRITING:
+               /* Not quite yet */
+#endif
+
+       case FL_READY:
+               break;
+
+       case FL_CFI_QUERY:
+       case FL_JEDEC_QUERY:
+               map_write(map, CMD(0x70), cmd_addr);
+               chip->state = FL_STATUS;
+
+       case FL_STATUS:
+               status = map_read(map, cmd_addr);
+               if (map_word_andequal(map, status, status_OK, status_OK)) {
+                       map_write(map, CMD(0xff), cmd_addr);
+                       chip->state = FL_READY;
+                       break;
+               }
+
+               /* Urgh. Chip not yet ready to talk to us. */
+               if (time_after(jiffies, timeo)) {
+                       mutex_unlock(&chip->mutex);
+                       printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               goto retry;
+
+       default:
+       sleep:
+               /* Stick ourselves on a wait queue to be woken when
+                  someone changes the status */
+               set_current_state(TASK_UNINTERRUPTIBLE);
+               add_wait_queue(&chip->wq, &wait);
+               mutex_unlock(&chip->mutex);
+               schedule();
+               remove_wait_queue(&chip->wq, &wait);
+               timeo = jiffies + HZ;
+               goto retry;
+       }
+
+       map_copy_from(map, buf, adr, len);
+
+       if (suspended) {
+               chip->state = chip->oldstate;
+               /* What if one interleaved chip has finished and the
+                  other hasn't? The old code would leave the finished
+                  one in READY mode. That's bad, and caused -EROFS
+                  errors to be returned from do_erase_oneblock because
+                  that's the only bit it checked for at the time.
+                  As the state machine appears to explicitly allow
+                  sending the 0x70 (Read Status) command to an erasing
+                  chip and expecting it to be ignored, that's what we
+                  do. */
+               map_write(map, CMD(0xd0), cmd_addr);
+               map_write(map, CMD(0x70), cmd_addr);
+       }
+
+       wake_up(&chip->wq);
+       mutex_unlock(&chip->mutex);
+       return 0;
+}
+
+static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       unsigned long ofs;
+       int chipnum;
+       int ret = 0;
+
+       /* ofs: offset within the first chip that the first read should start */
+       chipnum = (from >> cfi->chipshift);
+       ofs = from - (chipnum <<  cfi->chipshift);
+
+       while (len) {
+               unsigned long thislen;
+
+               if (chipnum >= cfi->numchips)
+                       break;
+
+               if ((len + ofs -1) >> cfi->chipshift)
+                       thislen = (1<<cfi->chipshift) - ofs;
+               else
+                       thislen = len;
+
+               ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
+               if (ret)
+                       break;
+
+               *retlen += thislen;
+               len -= thislen;
+               buf += thislen;
+
+               ofs = 0;
+               chipnum++;
+       }
+       return ret;
+}
+
+static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
+                                 unsigned long adr, const u_char *buf, int len)
+{
+       struct cfi_private *cfi = map->fldrv_priv;
+       map_word status, status_OK;
+       unsigned long cmd_adr, timeo;
+       DECLARE_WAITQUEUE(wait, current);
+       int wbufsize, z;
+
+        /* M58LW064A requires bus alignment for buffer wriets -- saw */
+        if (adr & (map_bankwidth(map)-1))
+            return -EINVAL;
+
+        wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+        adr += chip->start;
+       cmd_adr = adr & ~(wbufsize-1);
+
+       /* Let's determine this according to the interleave only once */
+        status_OK = CMD(0x80);
+
+       timeo = jiffies + HZ;
+ retry:
+
+#ifdef DEBUG_CFI_FEATURES
+       printk("%s: chip->state[%d]\n", __func__, chip->state);
+#endif
+       mutex_lock(&chip->mutex);
+
+       /* Check that the chip's ready to talk to us.
+        * Later, we can actually think about interrupting it
+        * if it's in FL_ERASING state.
+        * Not just yet, though.
+        */
+       switch (chip->state) {
+       case FL_READY:
+               break;
+
+       case FL_CFI_QUERY:
+       case FL_JEDEC_QUERY:
+               map_write(map, CMD(0x70), cmd_adr);
+                chip->state = FL_STATUS;
+#ifdef DEBUG_CFI_FEATURES
+       printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
+#endif
+
+       case FL_STATUS:
+               status = map_read(map, cmd_adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+               /* Urgh. Chip not yet ready to talk to us. */
+               if (time_after(jiffies, timeo)) {
+                       mutex_unlock(&chip->mutex);
+                        printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
+                               status.x[0], map_read(map, cmd_adr).x[0]);
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               goto retry;
+
+       default:
+               /* Stick ourselves on a wait queue to be woken when
+                  someone changes the status */
+               set_current_state(TASK_UNINTERRUPTIBLE);
+               add_wait_queue(&chip->wq, &wait);
+               mutex_unlock(&chip->mutex);
+               schedule();
+               remove_wait_queue(&chip->wq, &wait);
+               timeo = jiffies + HZ;
+               goto retry;
+       }
+
+       ENABLE_VPP(map);
+       map_write(map, CMD(0xe8), cmd_adr);
+       chip->state = FL_WRITING_TO_BUFFER;
+
+       z = 0;
+       for (;;) {
+               status = map_read(map, cmd_adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               mutex_lock(&chip->mutex);
+
+               if (++z > 100) {
+                       /* Argh. Not ready for write to buffer */
+                       DISABLE_VPP(map);
+                        map_write(map, CMD(0x70), cmd_adr);
+                       chip->state = FL_STATUS;
+                       mutex_unlock(&chip->mutex);
+                       printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
+                       return -EIO;
+               }
+       }
+
+       /* Write length of data to come */
+       map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
+
+       /* Write data */
+       for (z = 0; z < len;
+            z += map_bankwidth(map), buf += map_bankwidth(map)) {
+               map_word d;
+               d = map_word_load(map, buf);
+               map_write(map, d, adr+z);
+       }
+       /* GO GO GO */
+       map_write(map, CMD(0xd0), cmd_adr);
+       chip->state = FL_WRITING;
+
+       mutex_unlock(&chip->mutex);
+       cfi_udelay(chip->buffer_write_time);
+       mutex_lock(&chip->mutex);
+
+       timeo = jiffies + (HZ/2);
+       z = 0;
+       for (;;) {
+               if (chip->state != FL_WRITING) {
+                       /* Someone's suspended the write. Sleep */
+                       set_current_state(TASK_UNINTERRUPTIBLE);
+                       add_wait_queue(&chip->wq, &wait);
+                       mutex_unlock(&chip->mutex);
+                       schedule();
+                       remove_wait_queue(&chip->wq, &wait);
+                       timeo = jiffies + (HZ / 2); /* FIXME */
+                       mutex_lock(&chip->mutex);
+                       continue;
+               }
+
+               status = map_read(map, cmd_adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               /* OK Still waiting */
+               if (time_after(jiffies, timeo)) {
+                        /* clear status */
+                        map_write(map, CMD(0x50), cmd_adr);
+                        /* put back into read status register mode */
+                        map_write(map, CMD(0x70), adr);
+                       chip->state = FL_STATUS;
+                       DISABLE_VPP(map);
+                       mutex_unlock(&chip->mutex);
+                       printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               z++;
+               mutex_lock(&chip->mutex);
+       }
+       if (!z) {
+               chip->buffer_write_time--;
+               if (!chip->buffer_write_time)
+                       chip->buffer_write_time++;
+       }
+       if (z > 1)
+               chip->buffer_write_time++;
+
+       /* Done and happy. */
+       DISABLE_VPP(map);
+       chip->state = FL_STATUS;
+
+        /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
+        if (map_word_bitsset(map, status, CMD(0x3a))) {
+#ifdef DEBUG_CFI_FEATURES
+               printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
+#endif
+               /* clear status */
+               map_write(map, CMD(0x50), cmd_adr);
+               /* put back into read status register mode */
+               map_write(map, CMD(0x70), adr);
+               wake_up(&chip->wq);
+               mutex_unlock(&chip->mutex);
+               return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
+       }
+       wake_up(&chip->wq);
+       mutex_unlock(&chip->mutex);
+
+        return 0;
+}
+
+static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
+                                      size_t len, size_t *retlen, const u_char *buf)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
+       int ret = 0;
+       int chipnum;
+       unsigned long ofs;
+
+       chipnum = to >> cfi->chipshift;
+       ofs = to  - (chipnum << cfi->chipshift);
+
+#ifdef DEBUG_CFI_FEATURES
+       printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
+       printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
+       printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
+#endif
+
+        /* Write buffer is worth it only if more than one word to write... */
+        while (len > 0) {
+               /* We must not cross write block boundaries */
+               int size = wbufsize - (ofs & (wbufsize-1));
+
+                if (size > len)
+                    size = len;
+
+                ret = do_write_buffer(map, &cfi->chips[chipnum],
+                                     ofs, buf, size);
+               if (ret)
+                       return ret;
+
+               ofs += size;
+               buf += size;
+               (*retlen) += size;
+               len -= size;
+
+               if (ofs >> cfi->chipshift) {
+                       chipnum ++;
+                       ofs = 0;
+                       if (chipnum == cfi->numchips)
+                               return 0;
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * Writev for ECC-Flashes is a little more complicated. We need to maintain
+ * a small buffer for this.
+ * XXX: If the buffer size is not a multiple of 2, this will break
+ */
+#define ECCBUF_SIZE (mtd->writesize)
+#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
+#define ECCBUF_MOD(x) ((x) &  (ECCBUF_SIZE - 1))
+static int
+cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
+               unsigned long count, loff_t to, size_t *retlen)
+{
+       unsigned long i;
+       size_t   totlen = 0, thislen;
+       int      ret = 0;
+       size_t   buflen = 0;
+       static char *buffer;
+
+       if (!ECCBUF_SIZE) {
+               /* We should fall back to a general writev implementation.
+                * Until that is written, just break.
+                */
+               return -EIO;
+       }
+       buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
+       if (!buffer)
+               return -ENOMEM;
+
+       for (i=0; i<count; i++) {
+               size_t elem_len = vecs[i].iov_len;
+               void *elem_base = vecs[i].iov_base;
+               if (!elem_len) /* FIXME: Might be unnecessary. Check that */
+                       continue;
+               if (buflen) { /* cut off head */
+                       if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
+                               memcpy(buffer+buflen, elem_base, elem_len);
+                               buflen += elem_len;
+                               continue;
+                       }
+                       memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
+                       ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen,
+                                       buffer);
+                       totlen += thislen;
+                       if (ret || thislen != ECCBUF_SIZE)
+                               goto write_error;
+                       elem_len -= thislen-buflen;
+                       elem_base += thislen-buflen;
+                       to += ECCBUF_SIZE;
+               }
+               if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
+                       ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len),
+                                       &thislen, elem_base);
+                       totlen += thislen;
+                       if (ret || thislen != ECCBUF_DIV(elem_len))
+                               goto write_error;
+                       to += thislen;
+               }
+               buflen = ECCBUF_MOD(elem_len); /* cut off tail */
+               if (buflen) {
+                       memset(buffer, 0xff, ECCBUF_SIZE);
+                       memcpy(buffer, elem_base + thislen, buflen);
+               }
+       }
+       if (buflen) { /* flush last page, even if not full */
+               /* This is sometimes intended behaviour, really */
+               ret = mtd_write(mtd, to, buflen, &thislen, buffer);
+               totlen += thislen;
+               if (ret || thislen != ECCBUF_SIZE)
+                       goto write_error;
+       }
+write_error:
+       if (retlen)
+               *retlen = totlen;
+       kfree(buffer);
+       return ret;
+}
+
+
+static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+       struct cfi_private *cfi = map->fldrv_priv;
+       map_word status, status_OK;
+       unsigned long timeo;
+       int retries = 3;
+       DECLARE_WAITQUEUE(wait, current);
+       int ret = 0;
+
+       adr += chip->start;
+
+       /* Let's determine this according to the interleave only once */
+       status_OK = CMD(0x80);
+
+       timeo = jiffies + HZ;
+retry:
+       mutex_lock(&chip->mutex);
+
+       /* Check that the chip's ready to talk to us. */
+       switch (chip->state) {
+       case FL_CFI_QUERY:
+       case FL_JEDEC_QUERY:
+       case FL_READY:
+               map_write(map, CMD(0x70), adr);
+               chip->state = FL_STATUS;
+
+       case FL_STATUS:
+               status = map_read(map, adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               /* Urgh. Chip not yet ready to talk to us. */
+               if (time_after(jiffies, timeo)) {
+                       mutex_unlock(&chip->mutex);
+                       printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               goto retry;
+
+       default:
+               /* Stick ourselves on a wait queue to be woken when
+                  someone changes the status */
+               set_current_state(TASK_UNINTERRUPTIBLE);
+               add_wait_queue(&chip->wq, &wait);
+               mutex_unlock(&chip->mutex);
+               schedule();
+               remove_wait_queue(&chip->wq, &wait);
+               timeo = jiffies + HZ;
+               goto retry;
+       }
+
+       ENABLE_VPP(map);
+       /* Clear the status register first */
+       map_write(map, CMD(0x50), adr);
+
+       /* Now erase */
+       map_write(map, CMD(0x20), adr);
+       map_write(map, CMD(0xD0), adr);
+       chip->state = FL_ERASING;
+
+       mutex_unlock(&chip->mutex);
+       msleep(1000);
+       mutex_lock(&chip->mutex);
+
+       /* FIXME. Use a timer to check this, and return immediately. */
+       /* Once the state machine's known to be working I'll do that */
+
+       timeo = jiffies + (HZ*20);
+       for (;;) {
+               if (chip->state != FL_ERASING) {
+                       /* Someone's suspended the erase. Sleep */
+                       set_current_state(TASK_UNINTERRUPTIBLE);
+                       add_wait_queue(&chip->wq, &wait);
+                       mutex_unlock(&chip->mutex);
+                       schedule();
+                       remove_wait_queue(&chip->wq, &wait);
+                       timeo = jiffies + (HZ*20); /* FIXME */
+                       mutex_lock(&chip->mutex);
+                       continue;
+               }
+
+               status = map_read(map, adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               /* OK Still waiting */
+               if (time_after(jiffies, timeo)) {
+                       map_write(map, CMD(0x70), adr);
+                       chip->state = FL_STATUS;
+                       printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+                       DISABLE_VPP(map);
+                       mutex_unlock(&chip->mutex);
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               mutex_lock(&chip->mutex);
+       }
+
+       DISABLE_VPP(map);
+       ret = 0;
+
+       /* We've broken this before. It doesn't hurt to be safe */
+       map_write(map, CMD(0x70), adr);
+       chip->state = FL_STATUS;
+       status = map_read(map, adr);
+
+       /* check for lock bit */
+       if (map_word_bitsset(map, status, CMD(0x3a))) {
+               unsigned char chipstatus = status.x[0];
+               if (!map_word_equal(map, status, CMD(chipstatus))) {
+                       int i, w;
+                       for (w=0; w<map_words(map); w++) {
+                               for (i = 0; i<cfi_interleave(cfi); i++) {
+                                       chipstatus |= status.x[w] >> (cfi->device_type * 8);
+                               }
+                       }
+                       printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
+                              status.x[0], chipstatus);
+               }
+               /* Reset the error bits */
+               map_write(map, CMD(0x50), adr);
+               map_write(map, CMD(0x70), adr);
+
+               if ((chipstatus & 0x30) == 0x30) {
+                       printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
+                       ret = -EIO;
+               } else if (chipstatus & 0x02) {
+                       /* Protection bit set */
+                       ret = -EROFS;
+               } else if (chipstatus & 0x8) {
+                       /* Voltage */
+                       printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
+                       ret = -EIO;
+               } else if (chipstatus & 0x20) {
+                       if (retries--) {
+                               printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
+                               timeo = jiffies + HZ;
+                               chip->state = FL_STATUS;
+                               mutex_unlock(&chip->mutex);
+                               goto retry;
+                       }
+                       printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
+                       ret = -EIO;
+               }
+       }
+
+       wake_up(&chip->wq);
+       mutex_unlock(&chip->mutex);
+       return ret;
+}
+
+static int cfi_staa_erase_varsize(struct mtd_info *mtd,
+                                 struct erase_info *instr)
+{      struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       unsigned long adr, len;
+       int chipnum, ret = 0;
+       int i, first;
+       struct mtd_erase_region_info *regions = mtd->eraseregions;
+
+       /* Check that both start and end of the requested erase are
+        * aligned with the erasesize at the appropriate addresses.
+        */
+
+       i = 0;
+
+       /* Skip all erase regions which are ended before the start of
+          the requested erase. Actually, to save on the calculations,
+          we skip to the first erase region which starts after the
+          start of the requested erase, and then go back one.
+       */
+
+       while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
+              i++;
+       i--;
+
+       /* OK, now i is pointing at the erase region in which this
+          erase request starts. Check the start of the requested
+          erase range is aligned with the erase size which is in
+          effect here.
+       */
+
+       if (instr->addr & (regions[i].erasesize-1))
+               return -EINVAL;
+
+       /* Remember the erase region we start on */
+       first = i;
+
+       /* Next, check that the end of the requested erase is aligned
+        * with the erase region at that address.
+        */
+
+       while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
+               i++;
+
+       /* As before, drop back one to point at the region in which
+          the address actually falls
+       */
+       i--;
+
+       if ((instr->addr + instr->len) & (regions[i].erasesize-1))
+               return -EINVAL;
+
+       chipnum = instr->addr >> cfi->chipshift;
+       adr = instr->addr - (chipnum << cfi->chipshift);
+       len = instr->len;
+
+       i=first;
+
+       while(len) {
+               ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
+
+               if (ret)
+                       return ret;
+
+               adr += regions[i].erasesize;
+               len -= regions[i].erasesize;
+
+               if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
+                       i++;
+
+               if (adr >> cfi->chipshift) {
+                       adr = 0;
+                       chipnum++;
+
+                       if (chipnum >= cfi->numchips)
+                               break;
+               }
+       }
+
+       instr->state = MTD_ERASE_DONE;
+       mtd_erase_callback(instr);
+
+       return 0;
+}
+
+static void cfi_staa_sync (struct mtd_info *mtd)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       int i;
+       struct flchip *chip;
+       int ret = 0;
+       DECLARE_WAITQUEUE(wait, current);
+
+       for (i=0; !ret && i<cfi->numchips; i++) {
+               chip = &cfi->chips[i];
+
+       retry:
+               mutex_lock(&chip->mutex);
+
+               switch(chip->state) {
+               case FL_READY:
+               case FL_STATUS:
+               case FL_CFI_QUERY:
+               case FL_JEDEC_QUERY:
+                       chip->oldstate = chip->state;
+                       chip->state = FL_SYNCING;
+                       /* No need to wake_up() on this state change -
+                        * as the whole point is that nobody can do anything
+                        * with the chip now anyway.
+                        */
+               case FL_SYNCING:
+                       mutex_unlock(&chip->mutex);
+                       break;
+
+               default:
+                       /* Not an idle state */
+                       set_current_state(TASK_UNINTERRUPTIBLE);
+                       add_wait_queue(&chip->wq, &wait);
+
+                       mutex_unlock(&chip->mutex);
+                       schedule();
+                       remove_wait_queue(&chip->wq, &wait);
+
+                       goto retry;
+               }
+       }
+
+       /* Unlock the chips again */
+
+       for (i--; i >=0; i--) {
+               chip = &cfi->chips[i];
+
+               mutex_lock(&chip->mutex);
+
+               if (chip->state == FL_SYNCING) {
+                       chip->state = chip->oldstate;
+                       wake_up(&chip->wq);
+               }
+               mutex_unlock(&chip->mutex);
+       }
+}
+
+static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+       struct cfi_private *cfi = map->fldrv_priv;
+       map_word status, status_OK;
+       unsigned long timeo = jiffies + HZ;
+       DECLARE_WAITQUEUE(wait, current);
+
+       adr += chip->start;
+
+       /* Let's determine this according to the interleave only once */
+       status_OK = CMD(0x80);
+
+       timeo = jiffies + HZ;
+retry:
+       mutex_lock(&chip->mutex);
+
+       /* Check that the chip's ready to talk to us. */
+       switch (chip->state) {
+       case FL_CFI_QUERY:
+       case FL_JEDEC_QUERY:
+       case FL_READY:
+               map_write(map, CMD(0x70), adr);
+               chip->state = FL_STATUS;
+
+       case FL_STATUS:
+               status = map_read(map, adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               /* Urgh. Chip not yet ready to talk to us. */
+               if (time_after(jiffies, timeo)) {
+                       mutex_unlock(&chip->mutex);
+                       printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               goto retry;
+
+       default:
+               /* Stick ourselves on a wait queue to be woken when
+                  someone changes the status */
+               set_current_state(TASK_UNINTERRUPTIBLE);
+               add_wait_queue(&chip->wq, &wait);
+               mutex_unlock(&chip->mutex);
+               schedule();
+               remove_wait_queue(&chip->wq, &wait);
+               timeo = jiffies + HZ;
+               goto retry;
+       }
+
+       ENABLE_VPP(map);
+       map_write(map, CMD(0x60), adr);
+       map_write(map, CMD(0x01), adr);
+       chip->state = FL_LOCKING;
+
+       mutex_unlock(&chip->mutex);
+       msleep(1000);
+       mutex_lock(&chip->mutex);
+
+       /* FIXME. Use a timer to check this, and return immediately. */
+       /* Once the state machine's known to be working I'll do that */
+
+       timeo = jiffies + (HZ*2);
+       for (;;) {
+
+               status = map_read(map, adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               /* OK Still waiting */
+               if (time_after(jiffies, timeo)) {
+                       map_write(map, CMD(0x70), adr);
+                       chip->state = FL_STATUS;
+                       printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+                       DISABLE_VPP(map);
+                       mutex_unlock(&chip->mutex);
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               mutex_lock(&chip->mutex);
+       }
+
+       /* Done and happy. */
+       chip->state = FL_STATUS;
+       DISABLE_VPP(map);
+       wake_up(&chip->wq);
+       mutex_unlock(&chip->mutex);
+       return 0;
+}
+static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       unsigned long adr;
+       int chipnum, ret = 0;
+#ifdef DEBUG_LOCK_BITS
+       int ofs_factor = cfi->interleave * cfi->device_type;
+#endif
+
+       if (ofs & (mtd->erasesize - 1))
+               return -EINVAL;
+
+       if (len & (mtd->erasesize -1))
+               return -EINVAL;
+
+       chipnum = ofs >> cfi->chipshift;
+       adr = ofs - (chipnum << cfi->chipshift);
+
+       while(len) {
+
+#ifdef DEBUG_LOCK_BITS
+               cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+               printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+               cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+               ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
+
+#ifdef DEBUG_LOCK_BITS
+               cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+               printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+               cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+               if (ret)
+                       return ret;
+
+               adr += mtd->erasesize;
+               len -= mtd->erasesize;
+
+               if (adr >> cfi->chipshift) {
+                       adr = 0;
+                       chipnum++;
+
+                       if (chipnum >= cfi->numchips)
+                               break;
+               }
+       }
+       return 0;
+}
+static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
+{
+       struct cfi_private *cfi = map->fldrv_priv;
+       map_word status, status_OK;
+       unsigned long timeo = jiffies + HZ;
+       DECLARE_WAITQUEUE(wait, current);
+
+       adr += chip->start;
+
+       /* Let's determine this according to the interleave only once */
+       status_OK = CMD(0x80);
+
+       timeo = jiffies + HZ;
+retry:
+       mutex_lock(&chip->mutex);
+
+       /* Check that the chip's ready to talk to us. */
+       switch (chip->state) {
+       case FL_CFI_QUERY:
+       case FL_JEDEC_QUERY:
+       case FL_READY:
+               map_write(map, CMD(0x70), adr);
+               chip->state = FL_STATUS;
+
+       case FL_STATUS:
+               status = map_read(map, adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               /* Urgh. Chip not yet ready to talk to us. */
+               if (time_after(jiffies, timeo)) {
+                       mutex_unlock(&chip->mutex);
+                       printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the lock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               goto retry;
+
+       default:
+               /* Stick ourselves on a wait queue to be woken when
+                  someone changes the status */
+               set_current_state(TASK_UNINTERRUPTIBLE);
+               add_wait_queue(&chip->wq, &wait);
+               mutex_unlock(&chip->mutex);
+               schedule();
+               remove_wait_queue(&chip->wq, &wait);
+               timeo = jiffies + HZ;
+               goto retry;
+       }
+
+       ENABLE_VPP(map);
+       map_write(map, CMD(0x60), adr);
+       map_write(map, CMD(0xD0), adr);
+       chip->state = FL_UNLOCKING;
+
+       mutex_unlock(&chip->mutex);
+       msleep(1000);
+       mutex_lock(&chip->mutex);
+
+       /* FIXME. Use a timer to check this, and return immediately. */
+       /* Once the state machine's known to be working I'll do that */
+
+       timeo = jiffies + (HZ*2);
+       for (;;) {
+
+               status = map_read(map, adr);
+               if (map_word_andequal(map, status, status_OK, status_OK))
+                       break;
+
+               /* OK Still waiting */
+               if (time_after(jiffies, timeo)) {
+                       map_write(map, CMD(0x70), adr);
+                       chip->state = FL_STATUS;
+                       printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
+                       DISABLE_VPP(map);
+                       mutex_unlock(&chip->mutex);
+                       return -EIO;
+               }
+
+               /* Latency issues. Drop the unlock, wait a while and retry */
+               mutex_unlock(&chip->mutex);
+               cfi_udelay(1);
+               mutex_lock(&chip->mutex);
+       }
+
+       /* Done and happy. */
+       chip->state = FL_STATUS;
+       DISABLE_VPP(map);
+       wake_up(&chip->wq);
+       mutex_unlock(&chip->mutex);
+       return 0;
+}
+static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       unsigned long adr;
+       int chipnum, ret = 0;
+#ifdef DEBUG_LOCK_BITS
+       int ofs_factor = cfi->interleave * cfi->device_type;
+#endif
+
+       chipnum = ofs >> cfi->chipshift;
+       adr = ofs - (chipnum << cfi->chipshift);
+
+#ifdef DEBUG_LOCK_BITS
+       {
+               unsigned long temp_adr = adr;
+               unsigned long temp_len = len;
+
+               cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+                while (temp_len) {
+                       printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
+                       temp_adr += mtd->erasesize;
+                       temp_len -= mtd->erasesize;
+               }
+               cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+       }
+#endif
+
+       ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
+
+#ifdef DEBUG_LOCK_BITS
+       cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
+       printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
+       cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
+#endif
+
+       return ret;
+}
+
+static int cfi_staa_suspend(struct mtd_info *mtd)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       int i;
+       struct flchip *chip;
+       int ret = 0;
+
+       for (i=0; !ret && i<cfi->numchips; i++) {
+               chip = &cfi->chips[i];
+
+               mutex_lock(&chip->mutex);
+
+               switch(chip->state) {
+               case FL_READY:
+               case FL_STATUS:
+               case FL_CFI_QUERY:
+               case FL_JEDEC_QUERY:
+                       chip->oldstate = chip->state;
+                       chip->state = FL_PM_SUSPENDED;
+                       /* No need to wake_up() on this state change -
+                        * as the whole point is that nobody can do anything
+                        * with the chip now anyway.
+                        */
+               case FL_PM_SUSPENDED:
+                       break;
+
+               default:
+                       ret = -EAGAIN;
+                       break;
+               }
+               mutex_unlock(&chip->mutex);
+       }
+
+       /* Unlock the chips again */
+
+       if (ret) {
+               for (i--; i >=0; i--) {
+                       chip = &cfi->chips[i];
+
+                       mutex_lock(&chip->mutex);
+
+                       if (chip->state == FL_PM_SUSPENDED) {
+                               /* No need to force it into a known state here,
+                                  because we're returning failure, and it didn't
+                                  get power cycled */
+                               chip->state = chip->oldstate;
+                               wake_up(&chip->wq);
+                       }
+                       mutex_unlock(&chip->mutex);
+               }
+       }
+
+       return ret;
+}
+
+static void cfi_staa_resume(struct mtd_info *mtd)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       int i;
+       struct flchip *chip;
+
+       for (i=0; i<cfi->numchips; i++) {
+
+               chip = &cfi->chips[i];
+
+               mutex_lock(&chip->mutex);
+
+               /* Go to known state. Chip may have been power cycled */
+               if (chip->state == FL_PM_SUSPENDED) {
+                       map_write(map, CMD(0xFF), 0);
+                       chip->state = FL_READY;
+                       wake_up(&chip->wq);
+               }
+
+               mutex_unlock(&chip->mutex);
+       }
+}
+
+static void cfi_staa_destroy(struct mtd_info *mtd)
+{
+       struct map_info *map = mtd->priv;
+       struct cfi_private *cfi = map->fldrv_priv;
+       kfree(cfi->cmdset_priv);
+       kfree(cfi);
+}
+
+MODULE_LICENSE("GPL");