Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / gpu / drm / nouveau / nvkm / engine / gr / ctxnv40.c
diff --git a/kernel/drivers/gpu/drm/nouveau/nvkm/engine/gr/ctxnv40.c b/kernel/drivers/gpu/drm/nouveau/nvkm/engine/gr/ctxnv40.c
new file mode 100644 (file)
index 0000000..dc31462
--- /dev/null
@@ -0,0 +1,694 @@
+/*
+ * Copyright 2009 Red Hat Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * Authors: Ben Skeggs
+ */
+
+/* NVIDIA context programs handle a number of other conditions which are
+ * not implemented in our versions.  It's not clear why NVIDIA context
+ * programs have this code, nor whether it's strictly necessary for
+ * correct operation.  We'll implement additional handling if/when we
+ * discover it's necessary.
+ *
+ * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
+ *   flag is set, this gets saved into the context.
+ * - On context save, the context program for all cards load nsource
+ *   into a flag register and check for ILLEGAL_MTHD.  If it's set,
+ *   opcode 0x60000d is called before resuming normal operation.
+ * - Some context programs check more conditions than the above.  NV44
+ *   checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
+ *   and calls 0x60000d before resuming normal operation.
+ * - At the very beginning of NVIDIA's context programs, flag 9 is checked
+ *   and if true 0x800001 is called with count=0, pos=0, the flag is cleared
+ *   and then the ctxprog is aborted.  It looks like a complicated NOP,
+ *   its purpose is unknown.
+ * - In the section of code that loads the per-vs state, NVIDIA check
+ *   flag 10.  If it's set, they only transfer the small 0x300 byte block
+ *   of state + the state for a single vs as opposed to the state for
+ *   all vs units.  It doesn't seem likely that it'll occur in normal
+ *   operation, especially seeing as it appears NVIDIA may have screwed
+ *   up the ctxprogs for some cards and have an invalid instruction
+ *   rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
+ * - There's a number of places where context offset 0 (where we place
+ *   the PRAMIN offset of the context) is loaded into either 0x408000,
+ *   0x408004 or 0x408008.  Not sure what's up there either.
+ * - The ctxprogs for some cards save 0x400a00 again during the cleanup
+ *   path for auto-loadctx.
+ */
+
+#define CP_FLAG_CLEAR                 0
+#define CP_FLAG_SET                   1
+#define CP_FLAG_SWAP_DIRECTION        ((0 * 32) + 0)
+#define CP_FLAG_SWAP_DIRECTION_LOAD   0
+#define CP_FLAG_SWAP_DIRECTION_SAVE   1
+#define CP_FLAG_USER_SAVE             ((0 * 32) + 5)
+#define CP_FLAG_USER_SAVE_NOT_PENDING 0
+#define CP_FLAG_USER_SAVE_PENDING     1
+#define CP_FLAG_USER_LOAD             ((0 * 32) + 6)
+#define CP_FLAG_USER_LOAD_NOT_PENDING 0
+#define CP_FLAG_USER_LOAD_PENDING     1
+#define CP_FLAG_STATUS                ((3 * 32) + 0)
+#define CP_FLAG_STATUS_IDLE           0
+#define CP_FLAG_STATUS_BUSY           1
+#define CP_FLAG_AUTO_SAVE             ((3 * 32) + 4)
+#define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
+#define CP_FLAG_AUTO_SAVE_PENDING     1
+#define CP_FLAG_AUTO_LOAD             ((3 * 32) + 5)
+#define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
+#define CP_FLAG_AUTO_LOAD_PENDING     1
+#define CP_FLAG_UNK54                 ((3 * 32) + 6)
+#define CP_FLAG_UNK54_CLEAR           0
+#define CP_FLAG_UNK54_SET             1
+#define CP_FLAG_ALWAYS                ((3 * 32) + 8)
+#define CP_FLAG_ALWAYS_FALSE          0
+#define CP_FLAG_ALWAYS_TRUE           1
+#define CP_FLAG_UNK57                 ((3 * 32) + 9)
+#define CP_FLAG_UNK57_CLEAR           0
+#define CP_FLAG_UNK57_SET             1
+
+#define CP_CTX                   0x00100000
+#define CP_CTX_COUNT             0x000fc000
+#define CP_CTX_COUNT_SHIFT               14
+#define CP_CTX_REG               0x00003fff
+#define CP_LOAD_SR               0x00200000
+#define CP_LOAD_SR_VALUE         0x000fffff
+#define CP_BRA                   0x00400000
+#define CP_BRA_IP                0x0000ff00
+#define CP_BRA_IP_SHIFT                   8
+#define CP_BRA_IF_CLEAR          0x00000080
+#define CP_BRA_FLAG              0x0000007f
+#define CP_WAIT                  0x00500000
+#define CP_WAIT_SET              0x00000080
+#define CP_WAIT_FLAG             0x0000007f
+#define CP_SET                   0x00700000
+#define CP_SET_1                 0x00000080
+#define CP_SET_FLAG              0x0000007f
+#define CP_NEXT_TO_SWAP          0x00600007
+#define CP_NEXT_TO_CURRENT       0x00600009
+#define CP_SET_CONTEXT_POINTER   0x0060000a
+#define CP_END                   0x0060000e
+#define CP_LOAD_MAGIC_UNK01      0x00800001 /* unknown */
+#define CP_LOAD_MAGIC_NV44TCL    0x00800029 /* per-vs state (0x4497) */
+#define CP_LOAD_MAGIC_NV40TCL    0x00800041 /* per-vs state (0x4097) */
+
+#include "ctxnv40.h"
+#include "nv40.h"
+#include <core/device.h>
+
+/* TODO:
+ *  - get vs count from 0x1540
+ */
+
+static int
+nv40_gr_vs_count(struct nvkm_device *device)
+{
+
+       switch (device->chipset) {
+       case 0x47:
+       case 0x49:
+       case 0x4b:
+               return 8;
+       case 0x40:
+               return 6;
+       case 0x41:
+       case 0x42:
+               return 5;
+       case 0x43:
+       case 0x44:
+       case 0x46:
+       case 0x4a:
+               return 3;
+       case 0x4c:
+       case 0x4e:
+       case 0x67:
+       default:
+               return 1;
+       }
+}
+
+
+enum cp_label {
+       cp_check_load = 1,
+       cp_setup_auto_load,
+       cp_setup_load,
+       cp_setup_save,
+       cp_swap_state,
+       cp_swap_state3d_3_is_save,
+       cp_prepare_exit,
+       cp_exit,
+};
+
+static void
+nv40_gr_construct_general(struct nvkm_grctx *ctx)
+{
+       struct nvkm_device *device = ctx->device;
+       int i;
+
+       cp_ctx(ctx, 0x4000a4, 1);
+       gr_def(ctx, 0x4000a4, 0x00000008);
+       cp_ctx(ctx, 0x400144, 58);
+       gr_def(ctx, 0x400144, 0x00000001);
+       cp_ctx(ctx, 0x400314, 1);
+       gr_def(ctx, 0x400314, 0x00000000);
+       cp_ctx(ctx, 0x400400, 10);
+       cp_ctx(ctx, 0x400480, 10);
+       cp_ctx(ctx, 0x400500, 19);
+       gr_def(ctx, 0x400514, 0x00040000);
+       gr_def(ctx, 0x400524, 0x55555555);
+       gr_def(ctx, 0x400528, 0x55555555);
+       gr_def(ctx, 0x40052c, 0x55555555);
+       gr_def(ctx, 0x400530, 0x55555555);
+       cp_ctx(ctx, 0x400560, 6);
+       gr_def(ctx, 0x400568, 0x0000ffff);
+       gr_def(ctx, 0x40056c, 0x0000ffff);
+       cp_ctx(ctx, 0x40057c, 5);
+       cp_ctx(ctx, 0x400710, 3);
+       gr_def(ctx, 0x400710, 0x20010001);
+       gr_def(ctx, 0x400714, 0x0f73ef00);
+       cp_ctx(ctx, 0x400724, 1);
+       gr_def(ctx, 0x400724, 0x02008821);
+       cp_ctx(ctx, 0x400770, 3);
+       if (device->chipset == 0x40) {
+               cp_ctx(ctx, 0x400814, 4);
+               cp_ctx(ctx, 0x400828, 5);
+               cp_ctx(ctx, 0x400840, 5);
+               gr_def(ctx, 0x400850, 0x00000040);
+               cp_ctx(ctx, 0x400858, 4);
+               gr_def(ctx, 0x400858, 0x00000040);
+               gr_def(ctx, 0x40085c, 0x00000040);
+               gr_def(ctx, 0x400864, 0x80000000);
+               cp_ctx(ctx, 0x40086c, 9);
+               gr_def(ctx, 0x40086c, 0x80000000);
+               gr_def(ctx, 0x400870, 0x80000000);
+               gr_def(ctx, 0x400874, 0x80000000);
+               gr_def(ctx, 0x400878, 0x80000000);
+               gr_def(ctx, 0x400888, 0x00000040);
+               gr_def(ctx, 0x40088c, 0x80000000);
+               cp_ctx(ctx, 0x4009c0, 8);
+               gr_def(ctx, 0x4009cc, 0x80000000);
+               gr_def(ctx, 0x4009dc, 0x80000000);
+       } else {
+               cp_ctx(ctx, 0x400840, 20);
+               if (nv44_gr_class(ctx->device)) {
+                       for (i = 0; i < 8; i++)
+                               gr_def(ctx, 0x400860 + (i * 4), 0x00000001);
+               }
+               gr_def(ctx, 0x400880, 0x00000040);
+               gr_def(ctx, 0x400884, 0x00000040);
+               gr_def(ctx, 0x400888, 0x00000040);
+               cp_ctx(ctx, 0x400894, 11);
+               gr_def(ctx, 0x400894, 0x00000040);
+               if (!nv44_gr_class(ctx->device)) {
+                       for (i = 0; i < 8; i++)
+                               gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000);
+               }
+               cp_ctx(ctx, 0x4008e0, 2);
+               cp_ctx(ctx, 0x4008f8, 2);
+               if (device->chipset == 0x4c ||
+                   (device->chipset & 0xf0) == 0x60)
+                       cp_ctx(ctx, 0x4009f8, 1);
+       }
+       cp_ctx(ctx, 0x400a00, 73);
+       gr_def(ctx, 0x400b0c, 0x0b0b0b0c);
+       cp_ctx(ctx, 0x401000, 4);
+       cp_ctx(ctx, 0x405004, 1);
+       switch (device->chipset) {
+       case 0x47:
+       case 0x49:
+       case 0x4b:
+               cp_ctx(ctx, 0x403448, 1);
+               gr_def(ctx, 0x403448, 0x00001010);
+               break;
+       default:
+               cp_ctx(ctx, 0x403440, 1);
+               switch (device->chipset) {
+               case 0x40:
+                       gr_def(ctx, 0x403440, 0x00000010);
+                       break;
+               case 0x44:
+               case 0x46:
+               case 0x4a:
+                       gr_def(ctx, 0x403440, 0x00003010);
+                       break;
+               case 0x41:
+               case 0x42:
+               case 0x43:
+               case 0x4c:
+               case 0x4e:
+               case 0x67:
+               default:
+                       gr_def(ctx, 0x403440, 0x00001010);
+                       break;
+               }
+               break;
+       }
+}
+
+static void
+nv40_gr_construct_state3d(struct nvkm_grctx *ctx)
+{
+       struct nvkm_device *device = ctx->device;
+       int i;
+
+       if (device->chipset == 0x40) {
+               cp_ctx(ctx, 0x401880, 51);
+               gr_def(ctx, 0x401940, 0x00000100);
+       } else
+       if (device->chipset == 0x46 || device->chipset == 0x47 ||
+           device->chipset == 0x49 || device->chipset == 0x4b) {
+               cp_ctx(ctx, 0x401880, 32);
+               for (i = 0; i < 16; i++)
+                       gr_def(ctx, 0x401880 + (i * 4), 0x00000111);
+               if (device->chipset == 0x46)
+                       cp_ctx(ctx, 0x401900, 16);
+               cp_ctx(ctx, 0x401940, 3);
+       }
+       cp_ctx(ctx, 0x40194c, 18);
+       gr_def(ctx, 0x401954, 0x00000111);
+       gr_def(ctx, 0x401958, 0x00080060);
+       gr_def(ctx, 0x401974, 0x00000080);
+       gr_def(ctx, 0x401978, 0xffff0000);
+       gr_def(ctx, 0x40197c, 0x00000001);
+       gr_def(ctx, 0x401990, 0x46400000);
+       if (device->chipset == 0x40) {
+               cp_ctx(ctx, 0x4019a0, 2);
+               cp_ctx(ctx, 0x4019ac, 5);
+       } else {
+               cp_ctx(ctx, 0x4019a0, 1);
+               cp_ctx(ctx, 0x4019b4, 3);
+       }
+       gr_def(ctx, 0x4019bc, 0xffff0000);
+       switch (device->chipset) {
+       case 0x46:
+       case 0x47:
+       case 0x49:
+       case 0x4b:
+               cp_ctx(ctx, 0x4019c0, 18);
+               for (i = 0; i < 16; i++)
+                       gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888);
+               break;
+       }
+       cp_ctx(ctx, 0x401a08, 8);
+       gr_def(ctx, 0x401a10, 0x0fff0000);
+       gr_def(ctx, 0x401a14, 0x0fff0000);
+       gr_def(ctx, 0x401a1c, 0x00011100);
+       cp_ctx(ctx, 0x401a2c, 4);
+       cp_ctx(ctx, 0x401a44, 26);
+       for (i = 0; i < 16; i++)
+               gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000);
+       gr_def(ctx, 0x401a8c, 0x4b7fffff);
+       if (device->chipset == 0x40) {
+               cp_ctx(ctx, 0x401ab8, 3);
+       } else {
+               cp_ctx(ctx, 0x401ab8, 1);
+               cp_ctx(ctx, 0x401ac0, 1);
+       }
+       cp_ctx(ctx, 0x401ad0, 8);
+       gr_def(ctx, 0x401ad0, 0x30201000);
+       gr_def(ctx, 0x401ad4, 0x70605040);
+       gr_def(ctx, 0x401ad8, 0xb8a89888);
+       gr_def(ctx, 0x401adc, 0xf8e8d8c8);
+       cp_ctx(ctx, 0x401b10, device->chipset == 0x40 ? 2 : 1);
+       gr_def(ctx, 0x401b10, 0x40100000);
+       cp_ctx(ctx, 0x401b18, device->chipset == 0x40 ? 6 : 5);
+       gr_def(ctx, 0x401b28, device->chipset == 0x40 ?
+                             0x00000004 : 0x00000000);
+       cp_ctx(ctx, 0x401b30, 25);
+       gr_def(ctx, 0x401b34, 0x0000ffff);
+       gr_def(ctx, 0x401b68, 0x435185d6);
+       gr_def(ctx, 0x401b6c, 0x2155b699);
+       gr_def(ctx, 0x401b70, 0xfedcba98);
+       gr_def(ctx, 0x401b74, 0x00000098);
+       gr_def(ctx, 0x401b84, 0xffffffff);
+       gr_def(ctx, 0x401b88, 0x00ff7000);
+       gr_def(ctx, 0x401b8c, 0x0000ffff);
+       if (device->chipset != 0x44 && device->chipset != 0x4a &&
+           device->chipset != 0x4e)
+               cp_ctx(ctx, 0x401b94, 1);
+       cp_ctx(ctx, 0x401b98, 8);
+       gr_def(ctx, 0x401b9c, 0x00ff0000);
+       cp_ctx(ctx, 0x401bc0, 9);
+       gr_def(ctx, 0x401be0, 0x00ffff00);
+       cp_ctx(ctx, 0x401c00, 192);
+       for (i = 0; i < 16; i++) { /* fragment texture units */
+               gr_def(ctx, 0x401c40 + (i * 4), 0x00018488);
+               gr_def(ctx, 0x401c80 + (i * 4), 0x00028202);
+               gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4);
+               gr_def(ctx, 0x401d40 + (i * 4), 0x01012000);
+               gr_def(ctx, 0x401d80 + (i * 4), 0x00080008);
+               gr_def(ctx, 0x401e00 + (i * 4), 0x00100008);
+       }
+       for (i = 0; i < 4; i++) { /* vertex texture units */
+               gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80);
+               gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202);
+               gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008);
+               gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008);
+       }
+       cp_ctx(ctx, 0x400f5c, 3);
+       gr_def(ctx, 0x400f5c, 0x00000002);
+       cp_ctx(ctx, 0x400f84, 1);
+}
+
+static void
+nv40_gr_construct_state3d_2(struct nvkm_grctx *ctx)
+{
+       struct nvkm_device *device = ctx->device;
+       int i;
+
+       cp_ctx(ctx, 0x402000, 1);
+       cp_ctx(ctx, 0x402404, device->chipset == 0x40 ? 1 : 2);
+       switch (device->chipset) {
+       case 0x40:
+               gr_def(ctx, 0x402404, 0x00000001);
+               break;
+       case 0x4c:
+       case 0x4e:
+       case 0x67:
+               gr_def(ctx, 0x402404, 0x00000020);
+               break;
+       case 0x46:
+       case 0x49:
+       case 0x4b:
+               gr_def(ctx, 0x402404, 0x00000421);
+               break;
+       default:
+               gr_def(ctx, 0x402404, 0x00000021);
+       }
+       if (device->chipset != 0x40)
+               gr_def(ctx, 0x402408, 0x030c30c3);
+       switch (device->chipset) {
+       case 0x44:
+       case 0x46:
+       case 0x4a:
+       case 0x4c:
+       case 0x4e:
+       case 0x67:
+               cp_ctx(ctx, 0x402440, 1);
+               gr_def(ctx, 0x402440, 0x00011001);
+               break;
+       default:
+               break;
+       }
+       cp_ctx(ctx, 0x402480, device->chipset == 0x40 ? 8 : 9);
+       gr_def(ctx, 0x402488, 0x3e020200);
+       gr_def(ctx, 0x40248c, 0x00ffffff);
+       switch (device->chipset) {
+       case 0x40:
+               gr_def(ctx, 0x402490, 0x60103f00);
+               break;
+       case 0x47:
+               gr_def(ctx, 0x402490, 0x40103f00);
+               break;
+       case 0x41:
+       case 0x42:
+       case 0x49:
+       case 0x4b:
+               gr_def(ctx, 0x402490, 0x20103f00);
+               break;
+       default:
+               gr_def(ctx, 0x402490, 0x0c103f00);
+               break;
+       }
+       gr_def(ctx, 0x40249c, device->chipset <= 0x43 ?
+                             0x00020000 : 0x00040000);
+       cp_ctx(ctx, 0x402500, 31);
+       gr_def(ctx, 0x402530, 0x00008100);
+       if (device->chipset == 0x40)
+               cp_ctx(ctx, 0x40257c, 6);
+       cp_ctx(ctx, 0x402594, 16);
+       cp_ctx(ctx, 0x402800, 17);
+       gr_def(ctx, 0x402800, 0x00000001);
+       switch (device->chipset) {
+       case 0x47:
+       case 0x49:
+       case 0x4b:
+               cp_ctx(ctx, 0x402864, 1);
+               gr_def(ctx, 0x402864, 0x00001001);
+               cp_ctx(ctx, 0x402870, 3);
+               gr_def(ctx, 0x402878, 0x00000003);
+               if (device->chipset != 0x47) { /* belong at end!! */
+                       cp_ctx(ctx, 0x402900, 1);
+                       cp_ctx(ctx, 0x402940, 1);
+                       cp_ctx(ctx, 0x402980, 1);
+                       cp_ctx(ctx, 0x4029c0, 1);
+                       cp_ctx(ctx, 0x402a00, 1);
+                       cp_ctx(ctx, 0x402a40, 1);
+                       cp_ctx(ctx, 0x402a80, 1);
+                       cp_ctx(ctx, 0x402ac0, 1);
+               }
+               break;
+       case 0x40:
+               cp_ctx(ctx, 0x402844, 1);
+               gr_def(ctx, 0x402844, 0x00000001);
+               cp_ctx(ctx, 0x402850, 1);
+               break;
+       default:
+               cp_ctx(ctx, 0x402844, 1);
+               gr_def(ctx, 0x402844, 0x00001001);
+               cp_ctx(ctx, 0x402850, 2);
+               gr_def(ctx, 0x402854, 0x00000003);
+               break;
+       }
+
+       cp_ctx(ctx, 0x402c00, 4);
+       gr_def(ctx, 0x402c00, device->chipset == 0x40 ?
+                             0x80800001 : 0x00888001);
+       switch (device->chipset) {
+       case 0x47:
+       case 0x49:
+       case 0x4b:
+               cp_ctx(ctx, 0x402c20, 40);
+               for (i = 0; i < 32; i++)
+                       gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff);
+               cp_ctx(ctx, 0x4030b8, 13);
+               gr_def(ctx, 0x4030dc, 0x00000005);
+               gr_def(ctx, 0x4030e8, 0x0000ffff);
+               break;
+       default:
+               cp_ctx(ctx, 0x402c10, 4);
+               if (device->chipset == 0x40)
+                       cp_ctx(ctx, 0x402c20, 36);
+               else
+               if (device->chipset <= 0x42)
+                       cp_ctx(ctx, 0x402c20, 24);
+               else
+               if (device->chipset <= 0x4a)
+                       cp_ctx(ctx, 0x402c20, 16);
+               else
+                       cp_ctx(ctx, 0x402c20, 8);
+               cp_ctx(ctx, 0x402cb0, device->chipset == 0x40 ? 12 : 13);
+               gr_def(ctx, 0x402cd4, 0x00000005);
+               if (device->chipset != 0x40)
+                       gr_def(ctx, 0x402ce0, 0x0000ffff);
+               break;
+       }
+
+       cp_ctx(ctx, 0x403400, device->chipset == 0x40 ? 4 : 3);
+       cp_ctx(ctx, 0x403410, device->chipset == 0x40 ? 4 : 3);
+       cp_ctx(ctx, 0x403420, nv40_gr_vs_count(ctx->device));
+       for (i = 0; i < nv40_gr_vs_count(ctx->device); i++)
+               gr_def(ctx, 0x403420 + (i * 4), 0x00005555);
+
+       if (device->chipset != 0x40) {
+               cp_ctx(ctx, 0x403600, 1);
+               gr_def(ctx, 0x403600, 0x00000001);
+       }
+       cp_ctx(ctx, 0x403800, 1);
+
+       cp_ctx(ctx, 0x403c18, 1);
+       gr_def(ctx, 0x403c18, 0x00000001);
+       switch (device->chipset) {
+       case 0x46:
+       case 0x47:
+       case 0x49:
+       case 0x4b:
+               cp_ctx(ctx, 0x405018, 1);
+               gr_def(ctx, 0x405018, 0x08e00001);
+               cp_ctx(ctx, 0x405c24, 1);
+               gr_def(ctx, 0x405c24, 0x000e3000);
+               break;
+       }
+       if (device->chipset != 0x4e)
+               cp_ctx(ctx, 0x405800, 11);
+       cp_ctx(ctx, 0x407000, 1);
+}
+
+static void
+nv40_gr_construct_state3d_3(struct nvkm_grctx *ctx)
+{
+       int len = nv44_gr_class(ctx->device) ? 0x0084 : 0x0684;
+
+       cp_out (ctx, 0x300000);
+       cp_lsr (ctx, len - 4);
+       cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save);
+       cp_lsr (ctx, len);
+       cp_name(ctx, cp_swap_state3d_3_is_save);
+       cp_out (ctx, 0x800001);
+
+       ctx->ctxvals_pos += len;
+}
+
+static void
+nv40_gr_construct_shader(struct nvkm_grctx *ctx)
+{
+       struct nvkm_device *device = ctx->device;
+       struct nvkm_gpuobj *obj = ctx->data;
+       int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset;
+       int offset, i;
+
+       vs_nr    = nv40_gr_vs_count(ctx->device);
+       vs_nr_b0 = 363;
+       vs_nr_b1 = device->chipset == 0x40 ? 128 : 64;
+       if (device->chipset == 0x40) {
+               b0_offset = 0x2200/4; /* 33a0 */
+               b1_offset = 0x55a0/4; /* 1500 */
+               vs_len = 0x6aa0/4;
+       } else
+       if (device->chipset == 0x41 || device->chipset == 0x42) {
+               b0_offset = 0x2200/4; /* 2200 */
+               b1_offset = 0x4400/4; /* 0b00 */
+               vs_len = 0x4f00/4;
+       } else {
+               b0_offset = 0x1d40/4; /* 2200 */
+               b1_offset = 0x3f40/4; /* 0b00 : 0a40 */
+               vs_len = nv44_gr_class(device) ? 0x4980/4 : 0x4a40/4;
+       }
+
+       cp_lsr(ctx, vs_len * vs_nr + 0x300/4);
+       cp_out(ctx, nv44_gr_class(device) ? 0x800029 : 0x800041);
+
+       offset = ctx->ctxvals_pos;
+       ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len));
+
+       if (ctx->mode != NVKM_GRCTX_VALS)
+               return;
+
+       offset += 0x0280/4;
+       for (i = 0; i < 16; i++, offset += 2)
+               nv_wo32(obj, offset * 4, 0x3f800000);
+
+       for (vs = 0; vs < vs_nr; vs++, offset += vs_len) {
+               for (i = 0; i < vs_nr_b0 * 6; i += 6)
+                       nv_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001);
+               for (i = 0; i < vs_nr_b1 * 4; i += 4)
+                       nv_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000);
+       }
+}
+
+static void
+nv40_grctx_generate(struct nvkm_grctx *ctx)
+{
+       /* decide whether we're loading/unloading the context */
+       cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save);
+       cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save);
+
+       cp_name(ctx, cp_check_load);
+       cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load);
+       cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load);
+       cp_bra (ctx, ALWAYS, TRUE, cp_exit);
+
+       /* setup for context load */
+       cp_name(ctx, cp_setup_auto_load);
+       cp_wait(ctx, STATUS, IDLE);
+       cp_out (ctx, CP_NEXT_TO_SWAP);
+       cp_name(ctx, cp_setup_load);
+       cp_wait(ctx, STATUS, IDLE);
+       cp_set (ctx, SWAP_DIRECTION, LOAD);
+       cp_out (ctx, 0x00910880); /* ?? */
+       cp_out (ctx, 0x00901ffe); /* ?? */
+       cp_out (ctx, 0x01940000); /* ?? */
+       cp_lsr (ctx, 0x20);
+       cp_out (ctx, 0x0060000b); /* ?? */
+       cp_wait(ctx, UNK57, CLEAR);
+       cp_out (ctx, 0x0060000c); /* ?? */
+       cp_bra (ctx, ALWAYS, TRUE, cp_swap_state);
+
+       /* setup for context save */
+       cp_name(ctx, cp_setup_save);
+       cp_set (ctx, SWAP_DIRECTION, SAVE);
+
+       /* general PGRAPH state */
+       cp_name(ctx, cp_swap_state);
+       cp_pos (ctx, 0x00020/4);
+       nv40_gr_construct_general(ctx);
+       cp_wait(ctx, STATUS, IDLE);
+
+       /* 3D state, block 1 */
+       cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit);
+       nv40_gr_construct_state3d(ctx);
+       cp_wait(ctx, STATUS, IDLE);
+
+       /* 3D state, block 2 */
+       nv40_gr_construct_state3d_2(ctx);
+
+       /* Some other block of "random" state */
+       nv40_gr_construct_state3d_3(ctx);
+
+       /* Per-vertex shader state */
+       cp_pos (ctx, ctx->ctxvals_pos);
+       nv40_gr_construct_shader(ctx);
+
+       /* pre-exit state updates */
+       cp_name(ctx, cp_prepare_exit);
+       cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load);
+       cp_bra (ctx, USER_SAVE, PENDING, cp_exit);
+       cp_out (ctx, CP_NEXT_TO_CURRENT);
+
+       cp_name(ctx, cp_exit);
+       cp_set (ctx, USER_SAVE, NOT_PENDING);
+       cp_set (ctx, USER_LOAD, NOT_PENDING);
+       cp_out (ctx, CP_END);
+}
+
+void
+nv40_grctx_fill(struct nvkm_device *device, struct nvkm_gpuobj *mem)
+{
+       nv40_grctx_generate(&(struct nvkm_grctx) {
+                            .device = device,
+                            .mode = NVKM_GRCTX_VALS,
+                            .data = mem,
+                          });
+}
+
+int
+nv40_grctx_init(struct nvkm_device *device, u32 *size)
+{
+       u32 *ctxprog = kmalloc(256 * 4, GFP_KERNEL), i;
+       struct nvkm_grctx ctx = {
+               .device = device,
+               .mode = NVKM_GRCTX_PROG,
+               .data = ctxprog,
+               .ctxprog_max = 256,
+       };
+
+       if (!ctxprog)
+               return -ENOMEM;
+
+       nv40_grctx_generate(&ctx);
+
+       nv_wr32(device, 0x400324, 0);
+       for (i = 0; i < ctx.ctxprog_len; i++)
+               nv_wr32(device, 0x400328, ctxprog[i]);
+       *size = ctx.ctxvals_pos * 4;
+
+       kfree(ctxprog);
+       return 0;
+}