Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / edac / i5000_edac.c
diff --git a/kernel/drivers/edac/i5000_edac.c b/kernel/drivers/edac/i5000_edac.c
new file mode 100644 (file)
index 0000000..72e07e3
--- /dev/null
@@ -0,0 +1,1594 @@
+/*
+ * Intel 5000(P/V/X) class Memory Controllers kernel module
+ *
+ * This file may be distributed under the terms of the
+ * GNU General Public License.
+ *
+ * Written by Douglas Thompson Linux Networx (http://lnxi.com)
+ *     norsk5@xmission.com
+ *
+ * This module is based on the following document:
+ *
+ * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
+ *     http://developer.intel.com/design/chipsets/datashts/313070.htm
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/edac.h>
+#include <asm/mmzone.h>
+
+#include "edac_core.h"
+
+/*
+ * Alter this version for the I5000 module when modifications are made
+ */
+#define I5000_REVISION    " Ver: 2.0.12"
+#define EDAC_MOD_STR      "i5000_edac"
+
+#define i5000_printk(level, fmt, arg...) \
+        edac_printk(level, "i5000", fmt, ##arg)
+
+#define i5000_mc_printk(mci, level, fmt, arg...) \
+        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
+
+#ifndef PCI_DEVICE_ID_INTEL_FBD_0
+#define PCI_DEVICE_ID_INTEL_FBD_0      0x25F5
+#endif
+#ifndef PCI_DEVICE_ID_INTEL_FBD_1
+#define PCI_DEVICE_ID_INTEL_FBD_1      0x25F6
+#endif
+
+/* Device 16,
+ * Function 0: System Address
+ * Function 1: Memory Branch Map, Control, Errors Register
+ * Function 2: FSB Error Registers
+ *
+ * All 3 functions of Device 16 (0,1,2) share the SAME DID
+ */
+#define        PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
+
+/* OFFSETS for Function 0 */
+
+/* OFFSETS for Function 1 */
+#define                AMBASE                  0x48
+#define                MAXCH                   0x56
+#define                MAXDIMMPERCH            0x57
+#define                TOLM                    0x6C
+#define                REDMEMB                 0x7C
+#define                        RED_ECC_LOCATOR(x)      ((x) & 0x3FFFF)
+#define                        REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
+#define                        REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3FE00)
+#define                MIR0                    0x80
+#define                MIR1                    0x84
+#define                MIR2                    0x88
+#define                AMIR0                   0x8C
+#define                AMIR1                   0x90
+#define                AMIR2                   0x94
+
+#define                FERR_FAT_FBD            0x98
+#define                NERR_FAT_FBD            0x9C
+#define                        EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
+#define                        FERR_FAT_FBDCHAN 0x30000000
+#define                        FERR_FAT_M3ERR  0x00000004
+#define                        FERR_FAT_M2ERR  0x00000002
+#define                        FERR_FAT_M1ERR  0x00000001
+#define                        FERR_FAT_MASK   (FERR_FAT_M1ERR | \
+                                               FERR_FAT_M2ERR | \
+                                               FERR_FAT_M3ERR)
+
+#define                FERR_NF_FBD             0xA0
+
+/* Thermal and SPD or BFD errors */
+#define                        FERR_NF_M28ERR  0x01000000
+#define                        FERR_NF_M27ERR  0x00800000
+#define                        FERR_NF_M26ERR  0x00400000
+#define                        FERR_NF_M25ERR  0x00200000
+#define                        FERR_NF_M24ERR  0x00100000
+#define                        FERR_NF_M23ERR  0x00080000
+#define                        FERR_NF_M22ERR  0x00040000
+#define                        FERR_NF_M21ERR  0x00020000
+
+/* Correctable errors */
+#define                        FERR_NF_M20ERR  0x00010000
+#define                        FERR_NF_M19ERR  0x00008000
+#define                        FERR_NF_M18ERR  0x00004000
+#define                        FERR_NF_M17ERR  0x00002000
+
+/* Non-Retry or redundant Retry errors */
+#define                        FERR_NF_M16ERR  0x00001000
+#define                        FERR_NF_M15ERR  0x00000800
+#define                        FERR_NF_M14ERR  0x00000400
+#define                        FERR_NF_M13ERR  0x00000200
+
+/* Uncorrectable errors */
+#define                        FERR_NF_M12ERR  0x00000100
+#define                        FERR_NF_M11ERR  0x00000080
+#define                        FERR_NF_M10ERR  0x00000040
+#define                        FERR_NF_M9ERR   0x00000020
+#define                        FERR_NF_M8ERR   0x00000010
+#define                        FERR_NF_M7ERR   0x00000008
+#define                        FERR_NF_M6ERR   0x00000004
+#define                        FERR_NF_M5ERR   0x00000002
+#define                        FERR_NF_M4ERR   0x00000001
+
+#define                        FERR_NF_UNCORRECTABLE   (FERR_NF_M12ERR | \
+                                                       FERR_NF_M11ERR | \
+                                                       FERR_NF_M10ERR | \
+                                                       FERR_NF_M9ERR | \
+                                                       FERR_NF_M8ERR | \
+                                                       FERR_NF_M7ERR | \
+                                                       FERR_NF_M6ERR | \
+                                                       FERR_NF_M5ERR | \
+                                                       FERR_NF_M4ERR)
+#define                        FERR_NF_CORRECTABLE     (FERR_NF_M20ERR | \
+                                                       FERR_NF_M19ERR | \
+                                                       FERR_NF_M18ERR | \
+                                                       FERR_NF_M17ERR)
+#define                        FERR_NF_DIMM_SPARE      (FERR_NF_M27ERR | \
+                                                       FERR_NF_M28ERR)
+#define                        FERR_NF_THERMAL         (FERR_NF_M26ERR | \
+                                                       FERR_NF_M25ERR | \
+                                                       FERR_NF_M24ERR | \
+                                                       FERR_NF_M23ERR)
+#define                        FERR_NF_SPD_PROTOCOL    (FERR_NF_M22ERR)
+#define                        FERR_NF_NORTH_CRC       (FERR_NF_M21ERR)
+#define                        FERR_NF_NON_RETRY       (FERR_NF_M13ERR | \
+                                                       FERR_NF_M14ERR | \
+                                                       FERR_NF_M15ERR)
+
+#define                NERR_NF_FBD             0xA4
+#define                        FERR_NF_MASK            (FERR_NF_UNCORRECTABLE | \
+                                                       FERR_NF_CORRECTABLE | \
+                                                       FERR_NF_DIMM_SPARE | \
+                                                       FERR_NF_THERMAL | \
+                                                       FERR_NF_SPD_PROTOCOL | \
+                                                       FERR_NF_NORTH_CRC | \
+                                                       FERR_NF_NON_RETRY)
+
+#define                EMASK_FBD               0xA8
+#define                        EMASK_FBD_M28ERR        0x08000000
+#define                        EMASK_FBD_M27ERR        0x04000000
+#define                        EMASK_FBD_M26ERR        0x02000000
+#define                        EMASK_FBD_M25ERR        0x01000000
+#define                        EMASK_FBD_M24ERR        0x00800000
+#define                        EMASK_FBD_M23ERR        0x00400000
+#define                        EMASK_FBD_M22ERR        0x00200000
+#define                        EMASK_FBD_M21ERR        0x00100000
+#define                        EMASK_FBD_M20ERR        0x00080000
+#define                        EMASK_FBD_M19ERR        0x00040000
+#define                        EMASK_FBD_M18ERR        0x00020000
+#define                        EMASK_FBD_M17ERR        0x00010000
+
+#define                        EMASK_FBD_M15ERR        0x00004000
+#define                        EMASK_FBD_M14ERR        0x00002000
+#define                        EMASK_FBD_M13ERR        0x00001000
+#define                        EMASK_FBD_M12ERR        0x00000800
+#define                        EMASK_FBD_M11ERR        0x00000400
+#define                        EMASK_FBD_M10ERR        0x00000200
+#define                        EMASK_FBD_M9ERR         0x00000100
+#define                        EMASK_FBD_M8ERR         0x00000080
+#define                        EMASK_FBD_M7ERR         0x00000040
+#define                        EMASK_FBD_M6ERR         0x00000020
+#define                        EMASK_FBD_M5ERR         0x00000010
+#define                        EMASK_FBD_M4ERR         0x00000008
+#define                        EMASK_FBD_M3ERR         0x00000004
+#define                        EMASK_FBD_M2ERR         0x00000002
+#define                        EMASK_FBD_M1ERR         0x00000001
+
+#define                        ENABLE_EMASK_FBD_FATAL_ERRORS   (EMASK_FBD_M1ERR | \
+                                                       EMASK_FBD_M2ERR | \
+                                                       EMASK_FBD_M3ERR)
+
+#define                ENABLE_EMASK_FBD_UNCORRECTABLE  (EMASK_FBD_M4ERR | \
+                                                       EMASK_FBD_M5ERR | \
+                                                       EMASK_FBD_M6ERR | \
+                                                       EMASK_FBD_M7ERR | \
+                                                       EMASK_FBD_M8ERR | \
+                                                       EMASK_FBD_M9ERR | \
+                                                       EMASK_FBD_M10ERR | \
+                                                       EMASK_FBD_M11ERR | \
+                                                       EMASK_FBD_M12ERR)
+#define                ENABLE_EMASK_FBD_CORRECTABLE    (EMASK_FBD_M17ERR | \
+                                                       EMASK_FBD_M18ERR | \
+                                                       EMASK_FBD_M19ERR | \
+                                                       EMASK_FBD_M20ERR)
+#define                        ENABLE_EMASK_FBD_DIMM_SPARE     (EMASK_FBD_M27ERR | \
+                                                       EMASK_FBD_M28ERR)
+#define                        ENABLE_EMASK_FBD_THERMALS       (EMASK_FBD_M26ERR | \
+                                                       EMASK_FBD_M25ERR | \
+                                                       EMASK_FBD_M24ERR | \
+                                                       EMASK_FBD_M23ERR)
+#define                        ENABLE_EMASK_FBD_SPD_PROTOCOL   (EMASK_FBD_M22ERR)
+#define                        ENABLE_EMASK_FBD_NORTH_CRC      (EMASK_FBD_M21ERR)
+#define                        ENABLE_EMASK_FBD_NON_RETRY      (EMASK_FBD_M15ERR | \
+                                                       EMASK_FBD_M14ERR | \
+                                                       EMASK_FBD_M13ERR)
+
+#define                ENABLE_EMASK_ALL        (ENABLE_EMASK_FBD_NON_RETRY | \
+                                       ENABLE_EMASK_FBD_NORTH_CRC | \
+                                       ENABLE_EMASK_FBD_SPD_PROTOCOL | \
+                                       ENABLE_EMASK_FBD_THERMALS | \
+                                       ENABLE_EMASK_FBD_DIMM_SPARE | \
+                                       ENABLE_EMASK_FBD_FATAL_ERRORS | \
+                                       ENABLE_EMASK_FBD_CORRECTABLE | \
+                                       ENABLE_EMASK_FBD_UNCORRECTABLE)
+
+#define                ERR0_FBD                0xAC
+#define                ERR1_FBD                0xB0
+#define                ERR2_FBD                0xB4
+#define                MCERR_FBD               0xB8
+#define                NRECMEMA                0xBE
+#define                        NREC_BANK(x)            (((x)>>12) & 0x7)
+#define                        NREC_RDWR(x)            (((x)>>11) & 1)
+#define                        NREC_RANK(x)            (((x)>>8) & 0x7)
+#define                NRECMEMB                0xC0
+#define                        NREC_CAS(x)             (((x)>>16) & 0xFFFFFF)
+#define                        NREC_RAS(x)             ((x) & 0x7FFF)
+#define                NRECFGLOG               0xC4
+#define                NREEECFBDA              0xC8
+#define                NREEECFBDB              0xCC
+#define                NREEECFBDC              0xD0
+#define                NREEECFBDD              0xD4
+#define                NREEECFBDE              0xD8
+#define                REDMEMA                 0xDC
+#define                RECMEMA                 0xE2
+#define                        REC_BANK(x)             (((x)>>12) & 0x7)
+#define                        REC_RDWR(x)             (((x)>>11) & 1)
+#define                        REC_RANK(x)             (((x)>>8) & 0x7)
+#define                RECMEMB                 0xE4
+#define                        REC_CAS(x)              (((x)>>16) & 0xFFFFFF)
+#define                        REC_RAS(x)              ((x) & 0x7FFF)
+#define                RECFGLOG                0xE8
+#define                RECFBDA                 0xEC
+#define                RECFBDB                 0xF0
+#define                RECFBDC                 0xF4
+#define                RECFBDD                 0xF8
+#define                RECFBDE                 0xFC
+
+/* OFFSETS for Function 2 */
+
+/*
+ * Device 21,
+ * Function 0: Memory Map Branch 0
+ *
+ * Device 22,
+ * Function 0: Memory Map Branch 1
+ */
+#define PCI_DEVICE_ID_I5000_BRANCH_0   0x25F5
+#define PCI_DEVICE_ID_I5000_BRANCH_1   0x25F6
+
+#define AMB_PRESENT_0  0x64
+#define AMB_PRESENT_1  0x66
+#define MTR0           0x80
+#define MTR1           0x84
+#define MTR2           0x88
+#define MTR3           0x8C
+
+#define NUM_MTRS               4
+#define CHANNELS_PER_BRANCH    2
+#define MAX_BRANCHES           2
+
+/* Defines to extract the various fields from the
+ *     MTRx - Memory Technology Registers
+ */
+#define MTR_DIMMS_PRESENT(mtr)         ((mtr) & (0x1 << 8))
+#define MTR_DRAM_WIDTH(mtr)            ((((mtr) >> 6) & 0x1) ? 8 : 4)
+#define MTR_DRAM_BANKS(mtr)            ((((mtr) >> 5) & 0x1) ? 8 : 4)
+#define MTR_DRAM_BANKS_ADDR_BITS(mtr)  ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
+#define MTR_DIMM_RANK(mtr)             (((mtr) >> 4) & 0x1)
+#define MTR_DIMM_RANK_ADDR_BITS(mtr)   (MTR_DIMM_RANK(mtr) ? 2 : 1)
+#define MTR_DIMM_ROWS(mtr)             (((mtr) >> 2) & 0x3)
+#define MTR_DIMM_ROWS_ADDR_BITS(mtr)   (MTR_DIMM_ROWS(mtr) + 13)
+#define MTR_DIMM_COLS(mtr)             ((mtr) & 0x3)
+#define MTR_DIMM_COLS_ADDR_BITS(mtr)   (MTR_DIMM_COLS(mtr) + 10)
+
+/* enables the report of miscellaneous messages as CE errors - default off */
+static int misc_messages;
+
+/* Enumeration of supported devices */
+enum i5000_chips {
+       I5000P = 0,
+       I5000V = 1,             /* future */
+       I5000X = 2              /* future */
+};
+
+/* Device name and register DID (Device ID) */
+struct i5000_dev_info {
+       const char *ctl_name;   /* name for this device */
+       u16 fsb_mapping_errors; /* DID for the branchmap,control */
+};
+
+/* Table of devices attributes supported by this driver */
+static const struct i5000_dev_info i5000_devs[] = {
+       [I5000P] = {
+               .ctl_name = "I5000",
+               .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
+       },
+};
+
+struct i5000_dimm_info {
+       int megabytes;          /* size, 0 means not present  */
+       int dual_rank;
+};
+
+#define        MAX_CHANNELS    6       /* max possible channels */
+#define MAX_CSROWS     (8*2)   /* max possible csrows per channel */
+
+/* driver private data structure */
+struct i5000_pvt {
+       struct pci_dev *system_address; /* 16.0 */
+       struct pci_dev *branchmap_werrors;      /* 16.1 */
+       struct pci_dev *fsb_error_regs; /* 16.2 */
+       struct pci_dev *branch_0;       /* 21.0 */
+       struct pci_dev *branch_1;       /* 22.0 */
+
+       u16 tolm;               /* top of low memory */
+       union {
+               u64 ambase;             /* AMB BAR */
+               struct {
+                       u32 ambase_bottom;
+                       u32 ambase_top;
+               } u __packed;
+       };
+
+       u16 mir0, mir1, mir2;
+
+       u16 b0_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
+       u16 b0_ambpresent0;     /* Branch 0, Channel 0 */
+       u16 b0_ambpresent1;     /* Brnach 0, Channel 1 */
+
+       u16 b1_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
+       u16 b1_ambpresent0;     /* Branch 1, Channel 8 */
+       u16 b1_ambpresent1;     /* Branch 1, Channel 1 */
+
+       /* DIMM information matrix, allocating architecture maximums */
+       struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
+
+       /* Actual values for this controller */
+       int maxch;              /* Max channels */
+       int maxdimmperch;       /* Max DIMMs per channel */
+};
+
+/* I5000 MCH error information retrieved from Hardware */
+struct i5000_error_info {
+
+       /* These registers are always read from the MC */
+       u32 ferr_fat_fbd;       /* First Errors Fatal */
+       u32 nerr_fat_fbd;       /* Next Errors Fatal */
+       u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
+       u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
+
+       /* These registers are input ONLY if there was a Recoverable  Error */
+       u32 redmemb;            /* Recoverable Mem Data Error log B */
+       u16 recmema;            /* Recoverable Mem Error log A */
+       u32 recmemb;            /* Recoverable Mem Error log B */
+
+       /* These registers are input ONLY if there was a
+        * Non-Recoverable Error */
+       u16 nrecmema;           /* Non-Recoverable Mem log A */
+       u16 nrecmemb;           /* Non-Recoverable Mem log B */
+
+};
+
+static struct edac_pci_ctl_info *i5000_pci;
+
+/*
+ *     i5000_get_error_info    Retrieve the hardware error information from
+ *                             the hardware and cache it in the 'info'
+ *                             structure
+ */
+static void i5000_get_error_info(struct mem_ctl_info *mci,
+                                struct i5000_error_info *info)
+{
+       struct i5000_pvt *pvt;
+       u32 value;
+
+       pvt = mci->pvt_info;
+
+       /* read in the 1st FATAL error register */
+       pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
+
+       /* Mask only the bits that the doc says are valid
+        */
+       value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
+
+       /* If there is an error, then read in the */
+       /* NEXT FATAL error register and the Memory Error Log Register A */
+       if (value & FERR_FAT_MASK) {
+               info->ferr_fat_fbd = value;
+
+               /* harvest the various error data we need */
+               pci_read_config_dword(pvt->branchmap_werrors,
+                               NERR_FAT_FBD, &info->nerr_fat_fbd);
+               pci_read_config_word(pvt->branchmap_werrors,
+                               NRECMEMA, &info->nrecmema);
+               pci_read_config_word(pvt->branchmap_werrors,
+                               NRECMEMB, &info->nrecmemb);
+
+               /* Clear the error bits, by writing them back */
+               pci_write_config_dword(pvt->branchmap_werrors,
+                               FERR_FAT_FBD, value);
+       } else {
+               info->ferr_fat_fbd = 0;
+               info->nerr_fat_fbd = 0;
+               info->nrecmema = 0;
+               info->nrecmemb = 0;
+       }
+
+       /* read in the 1st NON-FATAL error register */
+       pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
+
+       /* If there is an error, then read in the 1st NON-FATAL error
+        * register as well */
+       if (value & FERR_NF_MASK) {
+               info->ferr_nf_fbd = value;
+
+               /* harvest the various error data we need */
+               pci_read_config_dword(pvt->branchmap_werrors,
+                               NERR_NF_FBD, &info->nerr_nf_fbd);
+               pci_read_config_word(pvt->branchmap_werrors,
+                               RECMEMA, &info->recmema);
+               pci_read_config_dword(pvt->branchmap_werrors,
+                               RECMEMB, &info->recmemb);
+               pci_read_config_dword(pvt->branchmap_werrors,
+                               REDMEMB, &info->redmemb);
+
+               /* Clear the error bits, by writing them back */
+               pci_write_config_dword(pvt->branchmap_werrors,
+                               FERR_NF_FBD, value);
+       } else {
+               info->ferr_nf_fbd = 0;
+               info->nerr_nf_fbd = 0;
+               info->recmema = 0;
+               info->recmemb = 0;
+               info->redmemb = 0;
+       }
+}
+
+/*
+ * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
+ *                                     struct i5000_error_info *info,
+ *                                     int handle_errors);
+ *
+ *     handle the Intel FATAL errors, if any
+ */
+static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
+                                       struct i5000_error_info *info,
+                                       int handle_errors)
+{
+       char msg[EDAC_MC_LABEL_LEN + 1 + 160];
+       char *specific = NULL;
+       u32 allErrors;
+       int channel;
+       int bank;
+       int rank;
+       int rdwr;
+       int ras, cas;
+
+       /* mask off the Error bits that are possible */
+       allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
+       if (!allErrors)
+               return;         /* if no error, return now */
+
+       channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
+
+       /* Use the NON-Recoverable macros to extract data */
+       bank = NREC_BANK(info->nrecmema);
+       rank = NREC_RANK(info->nrecmema);
+       rdwr = NREC_RDWR(info->nrecmema);
+       ras = NREC_RAS(info->nrecmemb);
+       cas = NREC_CAS(info->nrecmemb);
+
+       edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
+                rank, channel, bank,
+                rdwr ? "Write" : "Read", ras, cas);
+
+       /* Only 1 bit will be on */
+       switch (allErrors) {
+       case FERR_FAT_M1ERR:
+               specific = "Alert on non-redundant retry or fast "
+                               "reset timeout";
+               break;
+       case FERR_FAT_M2ERR:
+               specific = "Northbound CRC error on non-redundant "
+                               "retry";
+               break;
+       case FERR_FAT_M3ERR:
+               {
+               static int done;
+
+               /*
+                * This error is generated to inform that the intelligent
+                * throttling is disabled and the temperature passed the
+                * specified middle point. Since this is something the BIOS
+                * should take care of, we'll warn only once to avoid
+                * worthlessly flooding the log.
+                */
+               if (done)
+                       return;
+               done++;
+
+               specific = ">Tmid Thermal event with intelligent "
+                          "throttling disabled";
+               }
+               break;
+       }
+
+       /* Form out message */
+       snprintf(msg, sizeof(msg),
+                "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
+                bank, ras, cas, allErrors, specific);
+
+       /* Call the helper to output message */
+       edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
+                            channel >> 1, channel & 1, rank,
+                            rdwr ? "Write error" : "Read error",
+                            msg);
+}
+
+/*
+ * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
+ *                             struct i5000_error_info *info,
+ *                             int handle_errors);
+ *
+ *     handle the Intel NON-FATAL errors, if any
+ */
+static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
+                                       struct i5000_error_info *info,
+                                       int handle_errors)
+{
+       char msg[EDAC_MC_LABEL_LEN + 1 + 170];
+       char *specific = NULL;
+       u32 allErrors;
+       u32 ue_errors;
+       u32 ce_errors;
+       u32 misc_errors;
+       int branch;
+       int channel;
+       int bank;
+       int rank;
+       int rdwr;
+       int ras, cas;
+
+       /* mask off the Error bits that are possible */
+       allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
+       if (!allErrors)
+               return;         /* if no error, return now */
+
+       /* ONLY ONE of the possible error bits will be set, as per the docs */
+       ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
+       if (ue_errors) {
+               edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
+
+               branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
+
+               /*
+                * According with i5000 datasheet, bit 28 has no significance
+                * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
+                */
+               channel = branch & 2;
+
+               bank = NREC_BANK(info->nrecmema);
+               rank = NREC_RANK(info->nrecmema);
+               rdwr = NREC_RDWR(info->nrecmema);
+               ras = NREC_RAS(info->nrecmemb);
+               cas = NREC_CAS(info->nrecmemb);
+
+               edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
+                        rank, channel, channel + 1, branch >> 1, bank,
+                        rdwr ? "Write" : "Read", ras, cas);
+
+               switch (ue_errors) {
+               case FERR_NF_M12ERR:
+                       specific = "Non-Aliased Uncorrectable Patrol Data ECC";
+                       break;
+               case FERR_NF_M11ERR:
+                       specific = "Non-Aliased Uncorrectable Spare-Copy "
+                                       "Data ECC";
+                       break;
+               case FERR_NF_M10ERR:
+                       specific = "Non-Aliased Uncorrectable Mirrored Demand "
+                                       "Data ECC";
+                       break;
+               case FERR_NF_M9ERR:
+                       specific = "Non-Aliased Uncorrectable Non-Mirrored "
+                                       "Demand Data ECC";
+                       break;
+               case FERR_NF_M8ERR:
+                       specific = "Aliased Uncorrectable Patrol Data ECC";
+                       break;
+               case FERR_NF_M7ERR:
+                       specific = "Aliased Uncorrectable Spare-Copy Data ECC";
+                       break;
+               case FERR_NF_M6ERR:
+                       specific = "Aliased Uncorrectable Mirrored Demand "
+                                       "Data ECC";
+                       break;
+               case FERR_NF_M5ERR:
+                       specific = "Aliased Uncorrectable Non-Mirrored Demand "
+                                       "Data ECC";
+                       break;
+               case FERR_NF_M4ERR:
+                       specific = "Uncorrectable Data ECC on Replay";
+                       break;
+               }
+
+               /* Form out message */
+               snprintf(msg, sizeof(msg),
+                        "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
+                        rank, bank, ras, cas, ue_errors, specific);
+
+               /* Call the helper to output message */
+               edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
+                               channel >> 1, -1, rank,
+                               rdwr ? "Write error" : "Read error",
+                               msg);
+       }
+
+       /* Check correctable errors */
+       ce_errors = allErrors & FERR_NF_CORRECTABLE;
+       if (ce_errors) {
+               edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
+
+               branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
+
+               channel = 0;
+               if (REC_ECC_LOCATOR_ODD(info->redmemb))
+                       channel = 1;
+
+               /* Convert channel to be based from zero, instead of
+                * from branch base of 0 */
+               channel += branch;
+
+               bank = REC_BANK(info->recmema);
+               rank = REC_RANK(info->recmema);
+               rdwr = REC_RDWR(info->recmema);
+               ras = REC_RAS(info->recmemb);
+               cas = REC_CAS(info->recmemb);
+
+               edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
+                        rank, channel, branch >> 1, bank,
+                        rdwr ? "Write" : "Read", ras, cas);
+
+               switch (ce_errors) {
+               case FERR_NF_M17ERR:
+                       specific = "Correctable Non-Mirrored Demand Data ECC";
+                       break;
+               case FERR_NF_M18ERR:
+                       specific = "Correctable Mirrored Demand Data ECC";
+                       break;
+               case FERR_NF_M19ERR:
+                       specific = "Correctable Spare-Copy Data ECC";
+                       break;
+               case FERR_NF_M20ERR:
+                       specific = "Correctable Patrol Data ECC";
+                       break;
+               }
+
+               /* Form out message */
+               snprintf(msg, sizeof(msg),
+                        "Rank=%d Bank=%d RDWR=%s RAS=%d "
+                        "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
+                        rdwr ? "Write" : "Read", ras, cas, ce_errors,
+                        specific);
+
+               /* Call the helper to output message */
+               edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
+                               channel >> 1, channel % 2, rank,
+                               rdwr ? "Write error" : "Read error",
+                               msg);
+       }
+
+       if (!misc_messages)
+               return;
+
+       misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
+                                  FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
+       if (misc_errors) {
+               switch (misc_errors) {
+               case FERR_NF_M13ERR:
+                       specific = "Non-Retry or Redundant Retry FBD Memory "
+                                       "Alert or Redundant Fast Reset Timeout";
+                       break;
+               case FERR_NF_M14ERR:
+                       specific = "Non-Retry or Redundant Retry FBD "
+                                       "Configuration Alert";
+                       break;
+               case FERR_NF_M15ERR:
+                       specific = "Non-Retry or Redundant Retry FBD "
+                                       "Northbound CRC error on read data";
+                       break;
+               case FERR_NF_M21ERR:
+                       specific = "FBD Northbound CRC error on "
+                                       "FBD Sync Status";
+                       break;
+               case FERR_NF_M22ERR:
+                       specific = "SPD protocol error";
+                       break;
+               case FERR_NF_M27ERR:
+                       specific = "DIMM-spare copy started";
+                       break;
+               case FERR_NF_M28ERR:
+                       specific = "DIMM-spare copy completed";
+                       break;
+               }
+               branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
+
+               /* Form out message */
+               snprintf(msg, sizeof(msg),
+                        "Err=%#x (%s)", misc_errors, specific);
+
+               /* Call the helper to output message */
+               edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
+                               branch >> 1, -1, -1,
+                               "Misc error", msg);
+       }
+}
+
+/*
+ *     i5000_process_error_info        Process the error info that is
+ *     in the 'info' structure, previously retrieved from hardware
+ */
+static void i5000_process_error_info(struct mem_ctl_info *mci,
+                               struct i5000_error_info *info,
+                               int handle_errors)
+{
+       /* First handle any fatal errors that occurred */
+       i5000_process_fatal_error_info(mci, info, handle_errors);
+
+       /* now handle any non-fatal errors that occurred */
+       i5000_process_nonfatal_error_info(mci, info, handle_errors);
+}
+
+/*
+ *     i5000_clear_error       Retrieve any error from the hardware
+ *                             but do NOT process that error.
+ *                             Used for 'clearing' out of previous errors
+ *                             Called by the Core module.
+ */
+static void i5000_clear_error(struct mem_ctl_info *mci)
+{
+       struct i5000_error_info info;
+
+       i5000_get_error_info(mci, &info);
+}
+
+/*
+ *     i5000_check_error       Retrieve and process errors reported by the
+ *                             hardware. Called by the Core module.
+ */
+static void i5000_check_error(struct mem_ctl_info *mci)
+{
+       struct i5000_error_info info;
+       edac_dbg(4, "MC%d\n", mci->mc_idx);
+       i5000_get_error_info(mci, &info);
+       i5000_process_error_info(mci, &info, 1);
+}
+
+/*
+ *     i5000_get_devices       Find and perform 'get' operation on the MCH's
+ *                     device/functions we want to reference for this driver
+ *
+ *                     Need to 'get' device 16 func 1 and func 2
+ */
+static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
+{
+       //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
+       struct i5000_pvt *pvt;
+       struct pci_dev *pdev;
+
+       pvt = mci->pvt_info;
+
+       /* Attempt to 'get' the MCH register we want */
+       pdev = NULL;
+       while (1) {
+               pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+                               PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
+
+               /* End of list, leave */
+               if (pdev == NULL) {
+                       i5000_printk(KERN_ERR,
+                               "'system address,Process Bus' "
+                               "device not found:"
+                               "vendor 0x%x device 0x%x FUNC 1 "
+                               "(broken BIOS?)\n",
+                               PCI_VENDOR_ID_INTEL,
+                               PCI_DEVICE_ID_INTEL_I5000_DEV16);
+
+                       return 1;
+               }
+
+               /* Scan for device 16 func 1 */
+               if (PCI_FUNC(pdev->devfn) == 1)
+                       break;
+       }
+
+       pvt->branchmap_werrors = pdev;
+
+       /* Attempt to 'get' the MCH register we want */
+       pdev = NULL;
+       while (1) {
+               pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+                               PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
+
+               if (pdev == NULL) {
+                       i5000_printk(KERN_ERR,
+                               "MC: 'branchmap,control,errors' "
+                               "device not found:"
+                               "vendor 0x%x device 0x%x Func 2 "
+                               "(broken BIOS?)\n",
+                               PCI_VENDOR_ID_INTEL,
+                               PCI_DEVICE_ID_INTEL_I5000_DEV16);
+
+                       pci_dev_put(pvt->branchmap_werrors);
+                       return 1;
+               }
+
+               /* Scan for device 16 func 1 */
+               if (PCI_FUNC(pdev->devfn) == 2)
+                       break;
+       }
+
+       pvt->fsb_error_regs = pdev;
+
+       edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
+                pci_name(pvt->system_address),
+                pvt->system_address->vendor, pvt->system_address->device);
+       edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
+                pci_name(pvt->branchmap_werrors),
+                pvt->branchmap_werrors->vendor,
+                pvt->branchmap_werrors->device);
+       edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
+                pci_name(pvt->fsb_error_regs),
+                pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
+
+       pdev = NULL;
+       pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+                       PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
+
+       if (pdev == NULL) {
+               i5000_printk(KERN_ERR,
+                       "MC: 'BRANCH 0' device not found:"
+                       "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
+                       PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
+
+               pci_dev_put(pvt->branchmap_werrors);
+               pci_dev_put(pvt->fsb_error_regs);
+               return 1;
+       }
+
+       pvt->branch_0 = pdev;
+
+       /* If this device claims to have more than 2 channels then
+        * fetch Branch 1's information
+        */
+       if (pvt->maxch >= CHANNELS_PER_BRANCH) {
+               pdev = NULL;
+               pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+                               PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
+
+               if (pdev == NULL) {
+                       i5000_printk(KERN_ERR,
+                               "MC: 'BRANCH 1' device not found:"
+                               "vendor 0x%x device 0x%x Func 0 "
+                               "(broken BIOS?)\n",
+                               PCI_VENDOR_ID_INTEL,
+                               PCI_DEVICE_ID_I5000_BRANCH_1);
+
+                       pci_dev_put(pvt->branchmap_werrors);
+                       pci_dev_put(pvt->fsb_error_regs);
+                       pci_dev_put(pvt->branch_0);
+                       return 1;
+               }
+
+               pvt->branch_1 = pdev;
+       }
+
+       return 0;
+}
+
+/*
+ *     i5000_put_devices       'put' all the devices that we have
+ *                             reserved via 'get'
+ */
+static void i5000_put_devices(struct mem_ctl_info *mci)
+{
+       struct i5000_pvt *pvt;
+
+       pvt = mci->pvt_info;
+
+       pci_dev_put(pvt->branchmap_werrors);    /* FUNC 1 */
+       pci_dev_put(pvt->fsb_error_regs);       /* FUNC 2 */
+       pci_dev_put(pvt->branch_0);     /* DEV 21 */
+
+       /* Only if more than 2 channels do we release the second branch */
+       if (pvt->maxch >= CHANNELS_PER_BRANCH)
+               pci_dev_put(pvt->branch_1);     /* DEV 22 */
+}
+
+/*
+ *     determine_amb_resent
+ *
+ *             the information is contained in NUM_MTRS different registers
+ *             determineing which of the NUM_MTRS requires knowing
+ *             which channel is in question
+ *
+ *     2 branches, each with 2 channels
+ *             b0_ambpresent0 for channel '0'
+ *             b0_ambpresent1 for channel '1'
+ *             b1_ambpresent0 for channel '2'
+ *             b1_ambpresent1 for channel '3'
+ */
+static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
+{
+       int amb_present;
+
+       if (channel < CHANNELS_PER_BRANCH) {
+               if (channel & 0x1)
+                       amb_present = pvt->b0_ambpresent1;
+               else
+                       amb_present = pvt->b0_ambpresent0;
+       } else {
+               if (channel & 0x1)
+                       amb_present = pvt->b1_ambpresent1;
+               else
+                       amb_present = pvt->b1_ambpresent0;
+       }
+
+       return amb_present;
+}
+
+/*
+ * determine_mtr(pvt, csrow, channel)
+ *
+ *     return the proper MTR register as determine by the csrow and channel desired
+ */
+static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
+{
+       int mtr;
+
+       if (channel < CHANNELS_PER_BRANCH)
+               mtr = pvt->b0_mtr[slot];
+       else
+               mtr = pvt->b1_mtr[slot];
+
+       return mtr;
+}
+
+/*
+ */
+static void decode_mtr(int slot_row, u16 mtr)
+{
+       int ans;
+
+       ans = MTR_DIMMS_PRESENT(mtr);
+
+       edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
+                slot_row, mtr, ans ? "" : "NOT ");
+       if (!ans)
+               return;
+
+       edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
+       edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
+       edac_dbg(2, "\t\tNUMRANK: %s\n",
+                MTR_DIMM_RANK(mtr) ? "double" : "single");
+       edac_dbg(2, "\t\tNUMROW: %s\n",
+                MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
+                MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
+                MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
+                "reserved");
+       edac_dbg(2, "\t\tNUMCOL: %s\n",
+                MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
+                MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
+                MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
+                "reserved");
+}
+
+static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
+                       struct i5000_dimm_info *dinfo)
+{
+       int mtr;
+       int amb_present_reg;
+       int addrBits;
+
+       mtr = determine_mtr(pvt, slot, channel);
+       if (MTR_DIMMS_PRESENT(mtr)) {
+               amb_present_reg = determine_amb_present_reg(pvt, channel);
+
+               /* Determine if there is a DIMM present in this DIMM slot */
+               if (amb_present_reg) {
+                       dinfo->dual_rank = MTR_DIMM_RANK(mtr);
+
+                       /* Start with the number of bits for a Bank
+                               * on the DRAM */
+                       addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
+                       /* Add the number of ROW bits */
+                       addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
+                       /* add the number of COLUMN bits */
+                       addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
+
+                       /* Dual-rank memories have twice the size */
+                       if (dinfo->dual_rank)
+                               addrBits++;
+
+                       addrBits += 6;  /* add 64 bits per DIMM */
+                       addrBits -= 20; /* divide by 2^^20 */
+                       addrBits -= 3;  /* 8 bits per bytes */
+
+                       dinfo->megabytes = 1 << addrBits;
+               }
+       }
+}
+
+/*
+ *     calculate_dimm_size
+ *
+ *     also will output a DIMM matrix map, if debug is enabled, for viewing
+ *     how the DIMMs are populated
+ */
+static void calculate_dimm_size(struct i5000_pvt *pvt)
+{
+       struct i5000_dimm_info *dinfo;
+       int slot, channel, branch;
+       char *p, *mem_buffer;
+       int space, n;
+
+       /* ================= Generate some debug output ================= */
+       space = PAGE_SIZE;
+       mem_buffer = p = kmalloc(space, GFP_KERNEL);
+       if (p == NULL) {
+               i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
+                       __FILE__, __func__);
+               return;
+       }
+
+       /* Scan all the actual slots
+        * and calculate the information for each DIMM
+        * Start with the highest slot first, to display it first
+        * and work toward the 0th slot
+        */
+       for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
+
+               /* on an odd slot, first output a 'boundary' marker,
+                * then reset the message buffer  */
+               if (slot & 0x1) {
+                       n = snprintf(p, space, "--------------------------"
+                               "--------------------------------");
+                       p += n;
+                       space -= n;
+                       edac_dbg(2, "%s\n", mem_buffer);
+                       p = mem_buffer;
+                       space = PAGE_SIZE;
+               }
+               n = snprintf(p, space, "slot %2d    ", slot);
+               p += n;
+               space -= n;
+
+               for (channel = 0; channel < pvt->maxch; channel++) {
+                       dinfo = &pvt->dimm_info[slot][channel];
+                       handle_channel(pvt, slot, channel, dinfo);
+                       if (dinfo->megabytes)
+                               n = snprintf(p, space, "%4d MB %dR| ",
+                                            dinfo->megabytes, dinfo->dual_rank + 1);
+                       else
+                               n = snprintf(p, space, "%4d MB   | ", 0);
+                       p += n;
+                       space -= n;
+               }
+               p += n;
+               space -= n;
+               edac_dbg(2, "%s\n", mem_buffer);
+               p = mem_buffer;
+               space = PAGE_SIZE;
+       }
+
+       /* Output the last bottom 'boundary' marker */
+       n = snprintf(p, space, "--------------------------"
+               "--------------------------------");
+       p += n;
+       space -= n;
+       edac_dbg(2, "%s\n", mem_buffer);
+       p = mem_buffer;
+       space = PAGE_SIZE;
+
+       /* now output the 'channel' labels */
+       n = snprintf(p, space, "           ");
+       p += n;
+       space -= n;
+       for (channel = 0; channel < pvt->maxch; channel++) {
+               n = snprintf(p, space, "channel %d | ", channel);
+               p += n;
+               space -= n;
+       }
+       edac_dbg(2, "%s\n", mem_buffer);
+       p = mem_buffer;
+       space = PAGE_SIZE;
+
+       n = snprintf(p, space, "           ");
+       p += n;
+       for (branch = 0; branch < MAX_BRANCHES; branch++) {
+               n = snprintf(p, space, "       branch %d       | ", branch);
+               p += n;
+               space -= n;
+       }
+
+       /* output the last message and free buffer */
+       edac_dbg(2, "%s\n", mem_buffer);
+       kfree(mem_buffer);
+}
+
+/*
+ *     i5000_get_mc_regs       read in the necessary registers and
+ *                             cache locally
+ *
+ *                     Fills in the private data members
+ */
+static void i5000_get_mc_regs(struct mem_ctl_info *mci)
+{
+       struct i5000_pvt *pvt;
+       u32 actual_tolm;
+       u16 limit;
+       int slot_row;
+       int maxch;
+       int maxdimmperch;
+       int way0, way1;
+
+       pvt = mci->pvt_info;
+
+       pci_read_config_dword(pvt->system_address, AMBASE,
+                       &pvt->u.ambase_bottom);
+       pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
+                       &pvt->u.ambase_top);
+
+       maxdimmperch = pvt->maxdimmperch;
+       maxch = pvt->maxch;
+
+       edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
+                (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
+
+       /* Get the Branch Map regs */
+       pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
+       pvt->tolm >>= 12;
+       edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
+                pvt->tolm, pvt->tolm);
+
+       actual_tolm = pvt->tolm << 28;
+       edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
+                actual_tolm, actual_tolm);
+
+       pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
+       pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
+       pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
+
+       /* Get the MIR[0-2] regs */
+       limit = (pvt->mir0 >> 4) & 0x0FFF;
+       way0 = pvt->mir0 & 0x1;
+       way1 = pvt->mir0 & 0x2;
+       edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
+                limit, way1, way0);
+       limit = (pvt->mir1 >> 4) & 0x0FFF;
+       way0 = pvt->mir1 & 0x1;
+       way1 = pvt->mir1 & 0x2;
+       edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
+                limit, way1, way0);
+       limit = (pvt->mir2 >> 4) & 0x0FFF;
+       way0 = pvt->mir2 & 0x1;
+       way1 = pvt->mir2 & 0x2;
+       edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
+                limit, way1, way0);
+
+       /* Get the MTR[0-3] regs */
+       for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
+               int where = MTR0 + (slot_row * sizeof(u32));
+
+               pci_read_config_word(pvt->branch_0, where,
+                               &pvt->b0_mtr[slot_row]);
+
+               edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
+                        slot_row, where, pvt->b0_mtr[slot_row]);
+
+               if (pvt->maxch >= CHANNELS_PER_BRANCH) {
+                       pci_read_config_word(pvt->branch_1, where,
+                                       &pvt->b1_mtr[slot_row]);
+                       edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
+                                slot_row, where, pvt->b1_mtr[slot_row]);
+               } else {
+                       pvt->b1_mtr[slot_row] = 0;
+               }
+       }
+
+       /* Read and dump branch 0's MTRs */
+       edac_dbg(2, "Memory Technology Registers:\n");
+       edac_dbg(2, "   Branch 0:\n");
+       for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
+               decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
+       }
+       pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
+                       &pvt->b0_ambpresent0);
+       edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
+       pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
+                       &pvt->b0_ambpresent1);
+       edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
+
+       /* Only if we have 2 branchs (4 channels) */
+       if (pvt->maxch < CHANNELS_PER_BRANCH) {
+               pvt->b1_ambpresent0 = 0;
+               pvt->b1_ambpresent1 = 0;
+       } else {
+               /* Read and dump  branch 1's MTRs */
+               edac_dbg(2, "   Branch 1:\n");
+               for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
+                       decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
+               }
+               pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
+                               &pvt->b1_ambpresent0);
+               edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
+                        pvt->b1_ambpresent0);
+               pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
+                               &pvt->b1_ambpresent1);
+               edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
+                        pvt->b1_ambpresent1);
+       }
+
+       /* Go and determine the size of each DIMM and place in an
+        * orderly matrix */
+       calculate_dimm_size(pvt);
+}
+
+/*
+ *     i5000_init_csrows       Initialize the 'csrows' table within
+ *                             the mci control structure with the
+ *                             addressing of memory.
+ *
+ *     return:
+ *             0       success
+ *             1       no actual memory found on this MC
+ */
+static int i5000_init_csrows(struct mem_ctl_info *mci)
+{
+       struct i5000_pvt *pvt;
+       struct dimm_info *dimm;
+       int empty, channel_count;
+       int max_csrows;
+       int mtr;
+       int csrow_megs;
+       int channel;
+       int slot;
+
+       pvt = mci->pvt_info;
+
+       channel_count = pvt->maxch;
+       max_csrows = pvt->maxdimmperch * 2;
+
+       empty = 1;              /* Assume NO memory */
+
+       /*
+        * FIXME: The memory layout used to map slot/channel into the
+        * real memory architecture is weird: branch+slot are "csrows"
+        * and channel is channel. That required an extra array (dimm_info)
+        * to map the dimms. A good cleanup would be to remove this array,
+        * and do a loop here with branch, channel, slot
+        */
+       for (slot = 0; slot < max_csrows; slot++) {
+               for (channel = 0; channel < pvt->maxch; channel++) {
+
+                       mtr = determine_mtr(pvt, slot, channel);
+
+                       if (!MTR_DIMMS_PRESENT(mtr))
+                               continue;
+
+                       dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
+                                      channel / MAX_BRANCHES,
+                                      channel % MAX_BRANCHES, slot);
+
+                       csrow_megs = pvt->dimm_info[slot][channel].megabytes;
+                       dimm->grain = 8;
+
+                       /* Assume DDR2 for now */
+                       dimm->mtype = MEM_FB_DDR2;
+
+                       /* ask what device type on this row */
+                       if (MTR_DRAM_WIDTH(mtr))
+                               dimm->dtype = DEV_X8;
+                       else
+                               dimm->dtype = DEV_X4;
+
+                       dimm->edac_mode = EDAC_S8ECD8ED;
+                       dimm->nr_pages = csrow_megs << 8;
+               }
+
+               empty = 0;
+       }
+
+       return empty;
+}
+
+/*
+ *     i5000_enable_error_reporting
+ *                     Turn on the memory reporting features of the hardware
+ */
+static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
+{
+       struct i5000_pvt *pvt;
+       u32 fbd_error_mask;
+
+       pvt = mci->pvt_info;
+
+       /* Read the FBD Error Mask Register */
+       pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
+                       &fbd_error_mask);
+
+       /* Enable with a '0' */
+       fbd_error_mask &= ~(ENABLE_EMASK_ALL);
+
+       pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
+                       fbd_error_mask);
+}
+
+/*
+ * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
+ *
+ *     ask the device how many channels are present and how many CSROWS
+ *      as well
+ */
+static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
+                                       int *num_dimms_per_channel,
+                                       int *num_channels)
+{
+       u8 value;
+
+       /* Need to retrieve just how many channels and dimms per channel are
+        * supported on this memory controller
+        */
+       pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
+       *num_dimms_per_channel = (int)value;
+
+       pci_read_config_byte(pdev, MAXCH, &value);
+       *num_channels = (int)value;
+}
+
+/*
+ *     i5000_probe1    Probe for ONE instance of device to see if it is
+ *                     present.
+ *     return:
+ *             0 for FOUND a device
+ *             < 0 for error code
+ */
+static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
+{
+       struct mem_ctl_info *mci;
+       struct edac_mc_layer layers[3];
+       struct i5000_pvt *pvt;
+       int num_channels;
+       int num_dimms_per_channel;
+
+       edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
+                pdev->bus->number,
+                PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
+
+       /* We only are looking for func 0 of the set */
+       if (PCI_FUNC(pdev->devfn) != 0)
+               return -ENODEV;
+
+       /* Ask the devices for the number of CSROWS and CHANNELS so
+        * that we can calculate the memory resources, etc
+        *
+        * The Chipset will report what it can handle which will be greater
+        * or equal to what the motherboard manufacturer will implement.
+        *
+        * As we don't have a motherboard identification routine to determine
+        * actual number of slots/dimms per channel, we thus utilize the
+        * resource as specified by the chipset. Thus, we might have
+        * have more DIMMs per channel than actually on the mobo, but this
+        * allows the driver to support up to the chipset max, without
+        * some fancy mobo determination.
+        */
+       i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
+                                       &num_channels);
+
+       edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
+                num_channels, num_dimms_per_channel);
+
+       /* allocate a new MC control structure */
+
+       layers[0].type = EDAC_MC_LAYER_BRANCH;
+       layers[0].size = MAX_BRANCHES;
+       layers[0].is_virt_csrow = false;
+       layers[1].type = EDAC_MC_LAYER_CHANNEL;
+       layers[1].size = num_channels / MAX_BRANCHES;
+       layers[1].is_virt_csrow = false;
+       layers[2].type = EDAC_MC_LAYER_SLOT;
+       layers[2].size = num_dimms_per_channel;
+       layers[2].is_virt_csrow = true;
+       mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
+       if (mci == NULL)
+               return -ENOMEM;
+
+       edac_dbg(0, "MC: mci = %p\n", mci);
+
+       mci->pdev = &pdev->dev; /* record ptr  to the generic device */
+
+       pvt = mci->pvt_info;
+       pvt->system_address = pdev;     /* Record this device in our private */
+       pvt->maxch = num_channels;
+       pvt->maxdimmperch = num_dimms_per_channel;
+
+       /* 'get' the pci devices we want to reserve for our use */
+       if (i5000_get_devices(mci, dev_idx))
+               goto fail0;
+
+       /* Time to get serious */
+       i5000_get_mc_regs(mci); /* retrieve the hardware registers */
+
+       mci->mc_idx = 0;
+       mci->mtype_cap = MEM_FLAG_FB_DDR2;
+       mci->edac_ctl_cap = EDAC_FLAG_NONE;
+       mci->edac_cap = EDAC_FLAG_NONE;
+       mci->mod_name = "i5000_edac.c";
+       mci->mod_ver = I5000_REVISION;
+       mci->ctl_name = i5000_devs[dev_idx].ctl_name;
+       mci->dev_name = pci_name(pdev);
+       mci->ctl_page_to_phys = NULL;
+
+       /* Set the function pointer to an actual operation function */
+       mci->edac_check = i5000_check_error;
+
+       /* initialize the MC control structure 'csrows' table
+        * with the mapping and control information */
+       if (i5000_init_csrows(mci)) {
+               edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
+               mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
+       } else {
+               edac_dbg(1, "MC: Enable error reporting now\n");
+               i5000_enable_error_reporting(mci);
+       }
+
+       /* add this new MC control structure to EDAC's list of MCs */
+       if (edac_mc_add_mc(mci)) {
+               edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
+               /* FIXME: perhaps some code should go here that disables error
+                * reporting if we just enabled it
+                */
+               goto fail1;
+       }
+
+       i5000_clear_error(mci);
+
+       /* allocating generic PCI control info */
+       i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
+       if (!i5000_pci) {
+               printk(KERN_WARNING
+                       "%s(): Unable to create PCI control\n",
+                       __func__);
+               printk(KERN_WARNING
+                       "%s(): PCI error report via EDAC not setup\n",
+                       __func__);
+       }
+
+       return 0;
+
+       /* Error exit unwinding stack */
+fail1:
+
+       i5000_put_devices(mci);
+
+fail0:
+       edac_mc_free(mci);
+       return -ENODEV;
+}
+
+/*
+ *     i5000_init_one  constructor for one instance of device
+ *
+ *     returns:
+ *             negative on error
+ *             count (>= 0)
+ */
+static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+       int rc;
+
+       edac_dbg(0, "MC:\n");
+
+       /* wake up device */
+       rc = pci_enable_device(pdev);
+       if (rc)
+               return rc;
+
+       /* now probe and enable the device */
+       return i5000_probe1(pdev, id->driver_data);
+}
+
+/*
+ *     i5000_remove_one        destructor for one instance of device
+ *
+ */
+static void i5000_remove_one(struct pci_dev *pdev)
+{
+       struct mem_ctl_info *mci;
+
+       edac_dbg(0, "\n");
+
+       if (i5000_pci)
+               edac_pci_release_generic_ctl(i5000_pci);
+
+       if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
+               return;
+
+       /* retrieve references to resources, and free those resources */
+       i5000_put_devices(mci);
+       edac_mc_free(mci);
+}
+
+/*
+ *     pci_device_id   table for which devices we are looking for
+ *
+ *     The "E500P" device is the first device supported.
+ */
+static const struct pci_device_id i5000_pci_tbl[] = {
+       {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
+        .driver_data = I5000P},
+
+       {0,}                    /* 0 terminated list. */
+};
+
+MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
+
+/*
+ *     i5000_driver    pci_driver structure for this module
+ *
+ */
+static struct pci_driver i5000_driver = {
+       .name = KBUILD_BASENAME,
+       .probe = i5000_init_one,
+       .remove = i5000_remove_one,
+       .id_table = i5000_pci_tbl,
+};
+
+/*
+ *     i5000_init              Module entry function
+ *                     Try to initialize this module for its devices
+ */
+static int __init i5000_init(void)
+{
+       int pci_rc;
+
+       edac_dbg(2, "MC:\n");
+
+       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
+       opstate_init();
+
+       pci_rc = pci_register_driver(&i5000_driver);
+
+       return (pci_rc < 0) ? pci_rc : 0;
+}
+
+/*
+ *     i5000_exit()    Module exit function
+ *                     Unregister the driver
+ */
+static void __exit i5000_exit(void)
+{
+       edac_dbg(2, "MC:\n");
+       pci_unregister_driver(&i5000_driver);
+}
+
+module_init(i5000_init);
+module_exit(i5000_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR
+    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
+MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
+               I5000_REVISION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
+module_param(misc_messages, int, 0444);
+MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
+