Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / edac / edac_mc.c
diff --git a/kernel/drivers/edac/edac_mc.c b/kernel/drivers/edac/edac_mc.c
new file mode 100644 (file)
index 0000000..af3be19
--- /dev/null
@@ -0,0 +1,1305 @@
+/*
+ * edac_mc kernel module
+ * (C) 2005, 2006 Linux Networx (http://lnxi.com)
+ * This file may be distributed under the terms of the
+ * GNU General Public License.
+ *
+ * Written by Thayne Harbaugh
+ * Based on work by Dan Hollis <goemon at anime dot net> and others.
+ *     http://www.anime.net/~goemon/linux-ecc/
+ *
+ * Modified by Dave Peterson and Doug Thompson
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/proc_fs.h>
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/sysctl.h>
+#include <linux/highmem.h>
+#include <linux/timer.h>
+#include <linux/slab.h>
+#include <linux/jiffies.h>
+#include <linux/spinlock.h>
+#include <linux/list.h>
+#include <linux/ctype.h>
+#include <linux/edac.h>
+#include <linux/bitops.h>
+#include <asm/uaccess.h>
+#include <asm/page.h>
+#include <asm/edac.h>
+#include "edac_core.h"
+#include "edac_module.h"
+#include <ras/ras_event.h>
+
+/* lock to memory controller's control array */
+static DEFINE_MUTEX(mem_ctls_mutex);
+static LIST_HEAD(mc_devices);
+
+/*
+ * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
+ *     apei/ghes and i7core_edac to be used at the same time.
+ */
+static void const *edac_mc_owner;
+
+static struct bus_type mc_bus[EDAC_MAX_MCS];
+
+unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
+                                unsigned len)
+{
+       struct mem_ctl_info *mci = dimm->mci;
+       int i, n, count = 0;
+       char *p = buf;
+
+       for (i = 0; i < mci->n_layers; i++) {
+               n = snprintf(p, len, "%s %d ",
+                             edac_layer_name[mci->layers[i].type],
+                             dimm->location[i]);
+               p += n;
+               len -= n;
+               count += n;
+               if (!len)
+                       break;
+       }
+
+       return count;
+}
+
+#ifdef CONFIG_EDAC_DEBUG
+
+static void edac_mc_dump_channel(struct rank_info *chan)
+{
+       edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
+       edac_dbg(4, "    channel = %p\n", chan);
+       edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
+       edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
+}
+
+static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
+{
+       char location[80];
+
+       edac_dimm_info_location(dimm, location, sizeof(location));
+
+       edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
+                dimm->mci->csbased ? "rank" : "dimm",
+                number, location, dimm->csrow, dimm->cschannel);
+       edac_dbg(4, "  dimm = %p\n", dimm);
+       edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
+       edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
+       edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
+       edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
+}
+
+static void edac_mc_dump_csrow(struct csrow_info *csrow)
+{
+       edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
+       edac_dbg(4, "  csrow = %p\n", csrow);
+       edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
+       edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
+       edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
+       edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
+       edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
+       edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
+}
+
+static void edac_mc_dump_mci(struct mem_ctl_info *mci)
+{
+       edac_dbg(3, "\tmci = %p\n", mci);
+       edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
+       edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
+       edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
+       edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
+       edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
+                mci->nr_csrows, mci->csrows);
+       edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
+                mci->tot_dimms, mci->dimms);
+       edac_dbg(3, "\tdev = %p\n", mci->pdev);
+       edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
+                mci->mod_name, mci->ctl_name);
+       edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
+}
+
+#endif                         /* CONFIG_EDAC_DEBUG */
+
+const char * const edac_mem_types[] = {
+       [MEM_EMPTY]     = "Empty csrow",
+       [MEM_RESERVED]  = "Reserved csrow type",
+       [MEM_UNKNOWN]   = "Unknown csrow type",
+       [MEM_FPM]       = "Fast page mode RAM",
+       [MEM_EDO]       = "Extended data out RAM",
+       [MEM_BEDO]      = "Burst Extended data out RAM",
+       [MEM_SDR]       = "Single data rate SDRAM",
+       [MEM_RDR]       = "Registered single data rate SDRAM",
+       [MEM_DDR]       = "Double data rate SDRAM",
+       [MEM_RDDR]      = "Registered Double data rate SDRAM",
+       [MEM_RMBS]      = "Rambus DRAM",
+       [MEM_DDR2]      = "Unbuffered DDR2 RAM",
+       [MEM_FB_DDR2]   = "Fully buffered DDR2",
+       [MEM_RDDR2]     = "Registered DDR2 RAM",
+       [MEM_XDR]       = "Rambus XDR",
+       [MEM_DDR3]      = "Unbuffered DDR3 RAM",
+       [MEM_RDDR3]     = "Registered DDR3 RAM",
+       [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
+       [MEM_DDR4]      = "Unbuffered DDR4 RAM",
+       [MEM_RDDR4]     = "Registered DDR4 RAM",
+};
+EXPORT_SYMBOL_GPL(edac_mem_types);
+
+/**
+ * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
+ * @p:         pointer to a pointer with the memory offset to be used. At
+ *             return, this will be incremented to point to the next offset
+ * @size:      Size of the data structure to be reserved
+ * @n_elems:   Number of elements that should be reserved
+ *
+ * If 'size' is a constant, the compiler will optimize this whole function
+ * down to either a no-op or the addition of a constant to the value of '*p'.
+ *
+ * The 'p' pointer is absolutely needed to keep the proper advancing
+ * further in memory to the proper offsets when allocating the struct along
+ * with its embedded structs, as edac_device_alloc_ctl_info() does it
+ * above, for example.
+ *
+ * At return, the pointer 'p' will be incremented to be used on a next call
+ * to this function.
+ */
+void *edac_align_ptr(void **p, unsigned size, int n_elems)
+{
+       unsigned align, r;
+       void *ptr = *p;
+
+       *p += size * n_elems;
+
+       /*
+        * 'p' can possibly be an unaligned item X such that sizeof(X) is
+        * 'size'.  Adjust 'p' so that its alignment is at least as
+        * stringent as what the compiler would provide for X and return
+        * the aligned result.
+        * Here we assume that the alignment of a "long long" is the most
+        * stringent alignment that the compiler will ever provide by default.
+        * As far as I know, this is a reasonable assumption.
+        */
+       if (size > sizeof(long))
+               align = sizeof(long long);
+       else if (size > sizeof(int))
+               align = sizeof(long);
+       else if (size > sizeof(short))
+               align = sizeof(int);
+       else if (size > sizeof(char))
+               align = sizeof(short);
+       else
+               return (char *)ptr;
+
+       r = (unsigned long)p % align;
+
+       if (r == 0)
+               return (char *)ptr;
+
+       *p += align - r;
+
+       return (void *)(((unsigned long)ptr) + align - r);
+}
+
+static void _edac_mc_free(struct mem_ctl_info *mci)
+{
+       int i, chn, row;
+       struct csrow_info *csr;
+       const unsigned int tot_dimms = mci->tot_dimms;
+       const unsigned int tot_channels = mci->num_cschannel;
+       const unsigned int tot_csrows = mci->nr_csrows;
+
+       if (mci->dimms) {
+               for (i = 0; i < tot_dimms; i++)
+                       kfree(mci->dimms[i]);
+               kfree(mci->dimms);
+       }
+       if (mci->csrows) {
+               for (row = 0; row < tot_csrows; row++) {
+                       csr = mci->csrows[row];
+                       if (csr) {
+                               if (csr->channels) {
+                                       for (chn = 0; chn < tot_channels; chn++)
+                                               kfree(csr->channels[chn]);
+                                       kfree(csr->channels);
+                               }
+                               kfree(csr);
+                       }
+               }
+               kfree(mci->csrows);
+       }
+       kfree(mci);
+}
+
+/**
+ * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
+ * @mc_num:            Memory controller number
+ * @n_layers:          Number of MC hierarchy layers
+ * layers:             Describes each layer as seen by the Memory Controller
+ * @size_pvt:          size of private storage needed
+ *
+ *
+ * Everything is kmalloc'ed as one big chunk - more efficient.
+ * Only can be used if all structures have the same lifetime - otherwise
+ * you have to allocate and initialize your own structures.
+ *
+ * Use edac_mc_free() to free mc structures allocated by this function.
+ *
+ * NOTE: drivers handle multi-rank memories in different ways: in some
+ * drivers, one multi-rank memory stick is mapped as one entry, while, in
+ * others, a single multi-rank memory stick would be mapped into several
+ * entries. Currently, this function will allocate multiple struct dimm_info
+ * on such scenarios, as grouping the multiple ranks require drivers change.
+ *
+ * Returns:
+ *     On failure: NULL
+ *     On success: struct mem_ctl_info pointer
+ */
+struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
+                                  unsigned n_layers,
+                                  struct edac_mc_layer *layers,
+                                  unsigned sz_pvt)
+{
+       struct mem_ctl_info *mci;
+       struct edac_mc_layer *layer;
+       struct csrow_info *csr;
+       struct rank_info *chan;
+       struct dimm_info *dimm;
+       u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
+       unsigned pos[EDAC_MAX_LAYERS];
+       unsigned size, tot_dimms = 1, count = 1;
+       unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
+       void *pvt, *p, *ptr = NULL;
+       int i, j, row, chn, n, len, off;
+       bool per_rank = false;
+
+       BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
+       /*
+        * Calculate the total amount of dimms and csrows/cschannels while
+        * in the old API emulation mode
+        */
+       for (i = 0; i < n_layers; i++) {
+               tot_dimms *= layers[i].size;
+               if (layers[i].is_virt_csrow)
+                       tot_csrows *= layers[i].size;
+               else
+                       tot_channels *= layers[i].size;
+
+               if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
+                       per_rank = true;
+       }
+
+       /* Figure out the offsets of the various items from the start of an mc
+        * structure.  We want the alignment of each item to be at least as
+        * stringent as what the compiler would provide if we could simply
+        * hardcode everything into a single struct.
+        */
+       mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
+       layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
+       for (i = 0; i < n_layers; i++) {
+               count *= layers[i].size;
+               edac_dbg(4, "errcount layer %d size %d\n", i, count);
+               ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
+               ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
+               tot_errcount += 2 * count;
+       }
+
+       edac_dbg(4, "allocating %d error counters\n", tot_errcount);
+       pvt = edac_align_ptr(&ptr, sz_pvt, 1);
+       size = ((unsigned long)pvt) + sz_pvt;
+
+       edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
+                size,
+                tot_dimms,
+                per_rank ? "ranks" : "dimms",
+                tot_csrows * tot_channels);
+
+       mci = kzalloc(size, GFP_KERNEL);
+       if (mci == NULL)
+               return NULL;
+
+       /* Adjust pointers so they point within the memory we just allocated
+        * rather than an imaginary chunk of memory located at address 0.
+        */
+       layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
+       for (i = 0; i < n_layers; i++) {
+               mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
+               mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
+       }
+       pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
+
+       /* setup index and various internal pointers */
+       mci->mc_idx = mc_num;
+       mci->tot_dimms = tot_dimms;
+       mci->pvt_info = pvt;
+       mci->n_layers = n_layers;
+       mci->layers = layer;
+       memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
+       mci->nr_csrows = tot_csrows;
+       mci->num_cschannel = tot_channels;
+       mci->csbased = per_rank;
+
+       /*
+        * Alocate and fill the csrow/channels structs
+        */
+       mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
+       if (!mci->csrows)
+               goto error;
+       for (row = 0; row < tot_csrows; row++) {
+               csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
+               if (!csr)
+                       goto error;
+               mci->csrows[row] = csr;
+               csr->csrow_idx = row;
+               csr->mci = mci;
+               csr->nr_channels = tot_channels;
+               csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
+                                       GFP_KERNEL);
+               if (!csr->channels)
+                       goto error;
+
+               for (chn = 0; chn < tot_channels; chn++) {
+                       chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
+                       if (!chan)
+                               goto error;
+                       csr->channels[chn] = chan;
+                       chan->chan_idx = chn;
+                       chan->csrow = csr;
+               }
+       }
+
+       /*
+        * Allocate and fill the dimm structs
+        */
+       mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
+       if (!mci->dimms)
+               goto error;
+
+       memset(&pos, 0, sizeof(pos));
+       row = 0;
+       chn = 0;
+       for (i = 0; i < tot_dimms; i++) {
+               chan = mci->csrows[row]->channels[chn];
+               off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
+               if (off < 0 || off >= tot_dimms) {
+                       edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
+                       goto error;
+               }
+
+               dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
+               if (!dimm)
+                       goto error;
+               mci->dimms[off] = dimm;
+               dimm->mci = mci;
+
+               /*
+                * Copy DIMM location and initialize it.
+                */
+               len = sizeof(dimm->label);
+               p = dimm->label;
+               n = snprintf(p, len, "mc#%u", mc_num);
+               p += n;
+               len -= n;
+               for (j = 0; j < n_layers; j++) {
+                       n = snprintf(p, len, "%s#%u",
+                                    edac_layer_name[layers[j].type],
+                                    pos[j]);
+                       p += n;
+                       len -= n;
+                       dimm->location[j] = pos[j];
+
+                       if (len <= 0)
+                               break;
+               }
+
+               /* Link it to the csrows old API data */
+               chan->dimm = dimm;
+               dimm->csrow = row;
+               dimm->cschannel = chn;
+
+               /* Increment csrow location */
+               if (layers[0].is_virt_csrow) {
+                       chn++;
+                       if (chn == tot_channels) {
+                               chn = 0;
+                               row++;
+                       }
+               } else {
+                       row++;
+                       if (row == tot_csrows) {
+                               row = 0;
+                               chn++;
+                       }
+               }
+
+               /* Increment dimm location */
+               for (j = n_layers - 1; j >= 0; j--) {
+                       pos[j]++;
+                       if (pos[j] < layers[j].size)
+                               break;
+                       pos[j] = 0;
+               }
+       }
+
+       mci->op_state = OP_ALLOC;
+
+       return mci;
+
+error:
+       _edac_mc_free(mci);
+
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(edac_mc_alloc);
+
+/**
+ * edac_mc_free
+ *     'Free' a previously allocated 'mci' structure
+ * @mci: pointer to a struct mem_ctl_info structure
+ */
+void edac_mc_free(struct mem_ctl_info *mci)
+{
+       edac_dbg(1, "\n");
+
+       /* If we're not yet registered with sysfs free only what was allocated
+        * in edac_mc_alloc().
+        */
+       if (!device_is_registered(&mci->dev)) {
+               _edac_mc_free(mci);
+               return;
+       }
+
+       /* the mci instance is freed here, when the sysfs object is dropped */
+       edac_unregister_sysfs(mci);
+}
+EXPORT_SYMBOL_GPL(edac_mc_free);
+
+
+/**
+ * find_mci_by_dev
+ *
+ *     scan list of controllers looking for the one that manages
+ *     the 'dev' device
+ * @dev: pointer to a struct device related with the MCI
+ */
+struct mem_ctl_info *find_mci_by_dev(struct device *dev)
+{
+       struct mem_ctl_info *mci;
+       struct list_head *item;
+
+       edac_dbg(3, "\n");
+
+       list_for_each(item, &mc_devices) {
+               mci = list_entry(item, struct mem_ctl_info, link);
+
+               if (mci->pdev == dev)
+                       return mci;
+       }
+
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(find_mci_by_dev);
+
+/*
+ * handler for EDAC to check if NMI type handler has asserted interrupt
+ */
+static int edac_mc_assert_error_check_and_clear(void)
+{
+       int old_state;
+
+       if (edac_op_state == EDAC_OPSTATE_POLL)
+               return 1;
+
+       old_state = edac_err_assert;
+       edac_err_assert = 0;
+
+       return old_state;
+}
+
+/*
+ * edac_mc_workq_function
+ *     performs the operation scheduled by a workq request
+ */
+static void edac_mc_workq_function(struct work_struct *work_req)
+{
+       struct delayed_work *d_work = to_delayed_work(work_req);
+       struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
+
+       mutex_lock(&mem_ctls_mutex);
+
+       /* if this control struct has movd to offline state, we are done */
+       if (mci->op_state == OP_OFFLINE) {
+               mutex_unlock(&mem_ctls_mutex);
+               return;
+       }
+
+       /* Only poll controllers that are running polled and have a check */
+       if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
+               mci->edac_check(mci);
+
+       mutex_unlock(&mem_ctls_mutex);
+
+       /* Reschedule */
+       queue_delayed_work(edac_workqueue, &mci->work,
+                       msecs_to_jiffies(edac_mc_get_poll_msec()));
+}
+
+/*
+ * edac_mc_workq_setup
+ *     initialize a workq item for this mci
+ *     passing in the new delay period in msec
+ *
+ *     locking model:
+ *
+ *             called with the mem_ctls_mutex held
+ */
+static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
+                               bool init)
+{
+       edac_dbg(0, "\n");
+
+       /* if this instance is not in the POLL state, then simply return */
+       if (mci->op_state != OP_RUNNING_POLL)
+               return;
+
+       if (init)
+               INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
+
+       mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
+}
+
+/*
+ * edac_mc_workq_teardown
+ *     stop the workq processing on this mci
+ *
+ *     locking model:
+ *
+ *             called WITHOUT lock held
+ */
+static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
+{
+       int status;
+
+       if (mci->op_state != OP_RUNNING_POLL)
+               return;
+
+       status = cancel_delayed_work(&mci->work);
+       if (status == 0) {
+               edac_dbg(0, "not canceled, flush the queue\n");
+
+               /* workq instance might be running, wait for it */
+               flush_workqueue(edac_workqueue);
+       }
+}
+
+/*
+ * edac_mc_reset_delay_period(unsigned long value)
+ *
+ *     user space has updated our poll period value, need to
+ *     reset our workq delays
+ */
+void edac_mc_reset_delay_period(unsigned long value)
+{
+       struct mem_ctl_info *mci;
+       struct list_head *item;
+
+       mutex_lock(&mem_ctls_mutex);
+
+       list_for_each(item, &mc_devices) {
+               mci = list_entry(item, struct mem_ctl_info, link);
+
+               edac_mc_workq_setup(mci, value, false);
+       }
+
+       mutex_unlock(&mem_ctls_mutex);
+}
+
+
+
+/* Return 0 on success, 1 on failure.
+ * Before calling this function, caller must
+ * assign a unique value to mci->mc_idx.
+ *
+ *     locking model:
+ *
+ *             called with the mem_ctls_mutex lock held
+ */
+static int add_mc_to_global_list(struct mem_ctl_info *mci)
+{
+       struct list_head *item, *insert_before;
+       struct mem_ctl_info *p;
+
+       insert_before = &mc_devices;
+
+       p = find_mci_by_dev(mci->pdev);
+       if (unlikely(p != NULL))
+               goto fail0;
+
+       list_for_each(item, &mc_devices) {
+               p = list_entry(item, struct mem_ctl_info, link);
+
+               if (p->mc_idx >= mci->mc_idx) {
+                       if (unlikely(p->mc_idx == mci->mc_idx))
+                               goto fail1;
+
+                       insert_before = item;
+                       break;
+               }
+       }
+
+       list_add_tail_rcu(&mci->link, insert_before);
+       atomic_inc(&edac_handlers);
+       return 0;
+
+fail0:
+       edac_printk(KERN_WARNING, EDAC_MC,
+               "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
+               edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
+       return 1;
+
+fail1:
+       edac_printk(KERN_WARNING, EDAC_MC,
+               "bug in low-level driver: attempt to assign\n"
+               "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
+       return 1;
+}
+
+static int del_mc_from_global_list(struct mem_ctl_info *mci)
+{
+       int handlers = atomic_dec_return(&edac_handlers);
+       list_del_rcu(&mci->link);
+
+       /* these are for safe removal of devices from global list while
+        * NMI handlers may be traversing list
+        */
+       synchronize_rcu();
+       INIT_LIST_HEAD(&mci->link);
+
+       return handlers;
+}
+
+/**
+ * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
+ *
+ * If found, return a pointer to the structure.
+ * Else return NULL.
+ *
+ * Caller must hold mem_ctls_mutex.
+ */
+struct mem_ctl_info *edac_mc_find(int idx)
+{
+       struct list_head *item;
+       struct mem_ctl_info *mci;
+
+       list_for_each(item, &mc_devices) {
+               mci = list_entry(item, struct mem_ctl_info, link);
+
+               if (mci->mc_idx >= idx) {
+                       if (mci->mc_idx == idx)
+                               return mci;
+
+                       break;
+               }
+       }
+
+       return NULL;
+}
+EXPORT_SYMBOL(edac_mc_find);
+
+/**
+ * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
+ *     global list and create sysfs entries associated with mci structure
+ * @mci: pointer to the mci structure to be added to the list
+ * @groups: optional attribute groups for the driver-specific sysfs entries
+ *
+ * Return:
+ *     0       Success
+ *     !0      Failure
+ */
+
+/* FIXME - should a warning be printed if no error detection? correction? */
+int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
+                              const struct attribute_group **groups)
+{
+       int ret = -EINVAL;
+       edac_dbg(0, "\n");
+
+       if (mci->mc_idx >= EDAC_MAX_MCS) {
+               pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
+               return -ENODEV;
+       }
+
+#ifdef CONFIG_EDAC_DEBUG
+       if (edac_debug_level >= 3)
+               edac_mc_dump_mci(mci);
+
+       if (edac_debug_level >= 4) {
+               int i;
+
+               for (i = 0; i < mci->nr_csrows; i++) {
+                       struct csrow_info *csrow = mci->csrows[i];
+                       u32 nr_pages = 0;
+                       int j;
+
+                       for (j = 0; j < csrow->nr_channels; j++)
+                               nr_pages += csrow->channels[j]->dimm->nr_pages;
+                       if (!nr_pages)
+                               continue;
+                       edac_mc_dump_csrow(csrow);
+                       for (j = 0; j < csrow->nr_channels; j++)
+                               if (csrow->channels[j]->dimm->nr_pages)
+                                       edac_mc_dump_channel(csrow->channels[j]);
+               }
+               for (i = 0; i < mci->tot_dimms; i++)
+                       if (mci->dimms[i]->nr_pages)
+                               edac_mc_dump_dimm(mci->dimms[i], i);
+       }
+#endif
+       mutex_lock(&mem_ctls_mutex);
+
+       if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
+               ret = -EPERM;
+               goto fail0;
+       }
+
+       if (add_mc_to_global_list(mci))
+               goto fail0;
+
+       /* set load time so that error rate can be tracked */
+       mci->start_time = jiffies;
+
+       mci->bus = &mc_bus[mci->mc_idx];
+
+       if (edac_create_sysfs_mci_device(mci, groups)) {
+               edac_mc_printk(mci, KERN_WARNING,
+                       "failed to create sysfs device\n");
+               goto fail1;
+       }
+
+       /* If there IS a check routine, then we are running POLLED */
+       if (mci->edac_check != NULL) {
+               /* This instance is NOW RUNNING */
+               mci->op_state = OP_RUNNING_POLL;
+
+               edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
+       } else {
+               mci->op_state = OP_RUNNING_INTERRUPT;
+       }
+
+       /* Report action taken */
+       edac_mc_printk(mci, KERN_INFO,
+               "Giving out device to module %s controller %s: DEV %s (%s)\n",
+               mci->mod_name, mci->ctl_name, mci->dev_name,
+               edac_op_state_to_string(mci->op_state));
+
+       edac_mc_owner = mci->mod_name;
+
+       mutex_unlock(&mem_ctls_mutex);
+       return 0;
+
+fail1:
+       del_mc_from_global_list(mci);
+
+fail0:
+       mutex_unlock(&mem_ctls_mutex);
+       return ret;
+}
+EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
+
+/**
+ * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
+ *                 remove mci structure from global list
+ * @pdev: Pointer to 'struct device' representing mci structure to remove.
+ *
+ * Return pointer to removed mci structure, or NULL if device not found.
+ */
+struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
+{
+       struct mem_ctl_info *mci;
+
+       edac_dbg(0, "\n");
+
+       mutex_lock(&mem_ctls_mutex);
+
+       /* find the requested mci struct in the global list */
+       mci = find_mci_by_dev(dev);
+       if (mci == NULL) {
+               mutex_unlock(&mem_ctls_mutex);
+               return NULL;
+       }
+
+       if (!del_mc_from_global_list(mci))
+               edac_mc_owner = NULL;
+       mutex_unlock(&mem_ctls_mutex);
+
+       /* flush workq processes */
+       edac_mc_workq_teardown(mci);
+
+       /* marking MCI offline */
+       mci->op_state = OP_OFFLINE;
+
+       /* remove from sysfs */
+       edac_remove_sysfs_mci_device(mci);
+
+       edac_printk(KERN_INFO, EDAC_MC,
+               "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
+               mci->mod_name, mci->ctl_name, edac_dev_name(mci));
+
+       return mci;
+}
+EXPORT_SYMBOL_GPL(edac_mc_del_mc);
+
+static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
+                               u32 size)
+{
+       struct page *pg;
+       void *virt_addr;
+       unsigned long flags = 0;
+
+       edac_dbg(3, "\n");
+
+       /* ECC error page was not in our memory. Ignore it. */
+       if (!pfn_valid(page))
+               return;
+
+       /* Find the actual page structure then map it and fix */
+       pg = pfn_to_page(page);
+
+       if (PageHighMem(pg))
+               local_irq_save(flags);
+
+       virt_addr = kmap_atomic(pg);
+
+       /* Perform architecture specific atomic scrub operation */
+       atomic_scrub(virt_addr + offset, size);
+
+       /* Unmap and complete */
+       kunmap_atomic(virt_addr);
+
+       if (PageHighMem(pg))
+               local_irq_restore(flags);
+}
+
+/* FIXME - should return -1 */
+int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
+{
+       struct csrow_info **csrows = mci->csrows;
+       int row, i, j, n;
+
+       edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
+       row = -1;
+
+       for (i = 0; i < mci->nr_csrows; i++) {
+               struct csrow_info *csrow = csrows[i];
+               n = 0;
+               for (j = 0; j < csrow->nr_channels; j++) {
+                       struct dimm_info *dimm = csrow->channels[j]->dimm;
+                       n += dimm->nr_pages;
+               }
+               if (n == 0)
+                       continue;
+
+               edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
+                        mci->mc_idx,
+                        csrow->first_page, page, csrow->last_page,
+                        csrow->page_mask);
+
+               if ((page >= csrow->first_page) &&
+                   (page <= csrow->last_page) &&
+                   ((page & csrow->page_mask) ==
+                    (csrow->first_page & csrow->page_mask))) {
+                       row = i;
+                       break;
+               }
+       }
+
+       if (row == -1)
+               edac_mc_printk(mci, KERN_ERR,
+                       "could not look up page error address %lx\n",
+                       (unsigned long)page);
+
+       return row;
+}
+EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
+
+const char *edac_layer_name[] = {
+       [EDAC_MC_LAYER_BRANCH] = "branch",
+       [EDAC_MC_LAYER_CHANNEL] = "channel",
+       [EDAC_MC_LAYER_SLOT] = "slot",
+       [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
+       [EDAC_MC_LAYER_ALL_MEM] = "memory",
+};
+EXPORT_SYMBOL_GPL(edac_layer_name);
+
+static void edac_inc_ce_error(struct mem_ctl_info *mci,
+                             bool enable_per_layer_report,
+                             const int pos[EDAC_MAX_LAYERS],
+                             const u16 count)
+{
+       int i, index = 0;
+
+       mci->ce_mc += count;
+
+       if (!enable_per_layer_report) {
+               mci->ce_noinfo_count += count;
+               return;
+       }
+
+       for (i = 0; i < mci->n_layers; i++) {
+               if (pos[i] < 0)
+                       break;
+               index += pos[i];
+               mci->ce_per_layer[i][index] += count;
+
+               if (i < mci->n_layers - 1)
+                       index *= mci->layers[i + 1].size;
+       }
+}
+
+static void edac_inc_ue_error(struct mem_ctl_info *mci,
+                                   bool enable_per_layer_report,
+                                   const int pos[EDAC_MAX_LAYERS],
+                                   const u16 count)
+{
+       int i, index = 0;
+
+       mci->ue_mc += count;
+
+       if (!enable_per_layer_report) {
+               mci->ce_noinfo_count += count;
+               return;
+       }
+
+       for (i = 0; i < mci->n_layers; i++) {
+               if (pos[i] < 0)
+                       break;
+               index += pos[i];
+               mci->ue_per_layer[i][index] += count;
+
+               if (i < mci->n_layers - 1)
+                       index *= mci->layers[i + 1].size;
+       }
+}
+
+static void edac_ce_error(struct mem_ctl_info *mci,
+                         const u16 error_count,
+                         const int pos[EDAC_MAX_LAYERS],
+                         const char *msg,
+                         const char *location,
+                         const char *label,
+                         const char *detail,
+                         const char *other_detail,
+                         const bool enable_per_layer_report,
+                         const unsigned long page_frame_number,
+                         const unsigned long offset_in_page,
+                         long grain)
+{
+       unsigned long remapped_page;
+       char *msg_aux = "";
+
+       if (*msg)
+               msg_aux = " ";
+
+       if (edac_mc_get_log_ce()) {
+               if (other_detail && *other_detail)
+                       edac_mc_printk(mci, KERN_WARNING,
+                                      "%d CE %s%son %s (%s %s - %s)\n",
+                                      error_count, msg, msg_aux, label,
+                                      location, detail, other_detail);
+               else
+                       edac_mc_printk(mci, KERN_WARNING,
+                                      "%d CE %s%son %s (%s %s)\n",
+                                      error_count, msg, msg_aux, label,
+                                      location, detail);
+       }
+       edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
+
+       if (mci->scrub_mode == SCRUB_SW_SRC) {
+               /*
+                       * Some memory controllers (called MCs below) can remap
+                       * memory so that it is still available at a different
+                       * address when PCI devices map into memory.
+                       * MC's that can't do this, lose the memory where PCI
+                       * devices are mapped. This mapping is MC-dependent
+                       * and so we call back into the MC driver for it to
+                       * map the MC page to a physical (CPU) page which can
+                       * then be mapped to a virtual page - which can then
+                       * be scrubbed.
+                       */
+               remapped_page = mci->ctl_page_to_phys ?
+                       mci->ctl_page_to_phys(mci, page_frame_number) :
+                       page_frame_number;
+
+               edac_mc_scrub_block(remapped_page,
+                                       offset_in_page, grain);
+       }
+}
+
+static void edac_ue_error(struct mem_ctl_info *mci,
+                         const u16 error_count,
+                         const int pos[EDAC_MAX_LAYERS],
+                         const char *msg,
+                         const char *location,
+                         const char *label,
+                         const char *detail,
+                         const char *other_detail,
+                         const bool enable_per_layer_report)
+{
+       char *msg_aux = "";
+
+       if (*msg)
+               msg_aux = " ";
+
+       if (edac_mc_get_log_ue()) {
+               if (other_detail && *other_detail)
+                       edac_mc_printk(mci, KERN_WARNING,
+                                      "%d UE %s%son %s (%s %s - %s)\n",
+                                      error_count, msg, msg_aux, label,
+                                      location, detail, other_detail);
+               else
+                       edac_mc_printk(mci, KERN_WARNING,
+                                      "%d UE %s%son %s (%s %s)\n",
+                                      error_count, msg, msg_aux, label,
+                                      location, detail);
+       }
+
+       if (edac_mc_get_panic_on_ue()) {
+               if (other_detail && *other_detail)
+                       panic("UE %s%son %s (%s%s - %s)\n",
+                             msg, msg_aux, label, location, detail, other_detail);
+               else
+                       panic("UE %s%son %s (%s%s)\n",
+                             msg, msg_aux, label, location, detail);
+       }
+
+       edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
+}
+
+/**
+ * edac_raw_mc_handle_error - reports a memory event to userspace without doing
+ *                           anything to discover the error location
+ *
+ * @type:              severity of the error (CE/UE/Fatal)
+ * @mci:               a struct mem_ctl_info pointer
+ * @e:                 error description
+ *
+ * This raw function is used internally by edac_mc_handle_error(). It should
+ * only be called directly when the hardware error come directly from BIOS,
+ * like in the case of APEI GHES driver.
+ */
+void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
+                             struct mem_ctl_info *mci,
+                             struct edac_raw_error_desc *e)
+{
+       char detail[80];
+       int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
+
+       /* Memory type dependent details about the error */
+       if (type == HW_EVENT_ERR_CORRECTED) {
+               snprintf(detail, sizeof(detail),
+                       "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
+                       e->page_frame_number, e->offset_in_page,
+                       e->grain, e->syndrome);
+               edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
+                             detail, e->other_detail, e->enable_per_layer_report,
+                             e->page_frame_number, e->offset_in_page, e->grain);
+       } else {
+               snprintf(detail, sizeof(detail),
+                       "page:0x%lx offset:0x%lx grain:%ld",
+                       e->page_frame_number, e->offset_in_page, e->grain);
+
+               edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
+                             detail, e->other_detail, e->enable_per_layer_report);
+       }
+
+
+}
+EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
+
+/**
+ * edac_mc_handle_error - reports a memory event to userspace
+ *
+ * @type:              severity of the error (CE/UE/Fatal)
+ * @mci:               a struct mem_ctl_info pointer
+ * @error_count:       Number of errors of the same type
+ * @page_frame_number: mem page where the error occurred
+ * @offset_in_page:    offset of the error inside the page
+ * @syndrome:          ECC syndrome
+ * @top_layer:         Memory layer[0] position
+ * @mid_layer:         Memory layer[1] position
+ * @low_layer:         Memory layer[2] position
+ * @msg:               Message meaningful to the end users that
+ *                     explains the event
+ * @other_detail:      Technical details about the event that
+ *                     may help hardware manufacturers and
+ *                     EDAC developers to analyse the event
+ */
+void edac_mc_handle_error(const enum hw_event_mc_err_type type,
+                         struct mem_ctl_info *mci,
+                         const u16 error_count,
+                         const unsigned long page_frame_number,
+                         const unsigned long offset_in_page,
+                         const unsigned long syndrome,
+                         const int top_layer,
+                         const int mid_layer,
+                         const int low_layer,
+                         const char *msg,
+                         const char *other_detail)
+{
+       char *p;
+       int row = -1, chan = -1;
+       int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
+       int i, n_labels = 0;
+       u8 grain_bits;
+       struct edac_raw_error_desc *e = &mci->error_desc;
+
+       edac_dbg(3, "MC%d\n", mci->mc_idx);
+
+       /* Fills the error report buffer */
+       memset(e, 0, sizeof (*e));
+       e->error_count = error_count;
+       e->top_layer = top_layer;
+       e->mid_layer = mid_layer;
+       e->low_layer = low_layer;
+       e->page_frame_number = page_frame_number;
+       e->offset_in_page = offset_in_page;
+       e->syndrome = syndrome;
+       e->msg = msg;
+       e->other_detail = other_detail;
+
+       /*
+        * Check if the event report is consistent and if the memory
+        * location is known. If it is known, enable_per_layer_report will be
+        * true, the DIMM(s) label info will be filled and the per-layer
+        * error counters will be incremented.
+        */
+       for (i = 0; i < mci->n_layers; i++) {
+               if (pos[i] >= (int)mci->layers[i].size) {
+
+                       edac_mc_printk(mci, KERN_ERR,
+                                      "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
+                                      edac_layer_name[mci->layers[i].type],
+                                      pos[i], mci->layers[i].size);
+                       /*
+                        * Instead of just returning it, let's use what's
+                        * known about the error. The increment routines and
+                        * the DIMM filter logic will do the right thing by
+                        * pointing the likely damaged DIMMs.
+                        */
+                       pos[i] = -1;
+               }
+               if (pos[i] >= 0)
+                       e->enable_per_layer_report = true;
+       }
+
+       /*
+        * Get the dimm label/grain that applies to the match criteria.
+        * As the error algorithm may not be able to point to just one memory
+        * stick, the logic here will get all possible labels that could
+        * pottentially be affected by the error.
+        * On FB-DIMM memory controllers, for uncorrected errors, it is common
+        * to have only the MC channel and the MC dimm (also called "branch")
+        * but the channel is not known, as the memory is arranged in pairs,
+        * where each memory belongs to a separate channel within the same
+        * branch.
+        */
+       p = e->label;
+       *p = '\0';
+
+       for (i = 0; i < mci->tot_dimms; i++) {
+               struct dimm_info *dimm = mci->dimms[i];
+
+               if (top_layer >= 0 && top_layer != dimm->location[0])
+                       continue;
+               if (mid_layer >= 0 && mid_layer != dimm->location[1])
+                       continue;
+               if (low_layer >= 0 && low_layer != dimm->location[2])
+                       continue;
+
+               /* get the max grain, over the error match range */
+               if (dimm->grain > e->grain)
+                       e->grain = dimm->grain;
+
+               /*
+                * If the error is memory-controller wide, there's no need to
+                * seek for the affected DIMMs because the whole
+                * channel/memory controller/...  may be affected.
+                * Also, don't show errors for empty DIMM slots.
+                */
+               if (e->enable_per_layer_report && dimm->nr_pages) {
+                       if (n_labels >= EDAC_MAX_LABELS) {
+                               e->enable_per_layer_report = false;
+                               break;
+                       }
+                       n_labels++;
+                       if (p != e->label) {
+                               strcpy(p, OTHER_LABEL);
+                               p += strlen(OTHER_LABEL);
+                       }
+                       strcpy(p, dimm->label);
+                       p += strlen(p);
+                       *p = '\0';
+
+                       /*
+                        * get csrow/channel of the DIMM, in order to allow
+                        * incrementing the compat API counters
+                        */
+                       edac_dbg(4, "%s csrows map: (%d,%d)\n",
+                                mci->csbased ? "rank" : "dimm",
+                                dimm->csrow, dimm->cschannel);
+                       if (row == -1)
+                               row = dimm->csrow;
+                       else if (row >= 0 && row != dimm->csrow)
+                               row = -2;
+
+                       if (chan == -1)
+                               chan = dimm->cschannel;
+                       else if (chan >= 0 && chan != dimm->cschannel)
+                               chan = -2;
+               }
+       }
+
+       if (!e->enable_per_layer_report) {
+               strcpy(e->label, "any memory");
+       } else {
+               edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
+               if (p == e->label)
+                       strcpy(e->label, "unknown memory");
+               if (type == HW_EVENT_ERR_CORRECTED) {
+                       if (row >= 0) {
+                               mci->csrows[row]->ce_count += error_count;
+                               if (chan >= 0)
+                                       mci->csrows[row]->channels[chan]->ce_count += error_count;
+                       }
+               } else
+                       if (row >= 0)
+                               mci->csrows[row]->ue_count += error_count;
+       }
+
+       /* Fill the RAM location data */
+       p = e->location;
+
+       for (i = 0; i < mci->n_layers; i++) {
+               if (pos[i] < 0)
+                       continue;
+
+               p += sprintf(p, "%s:%d ",
+                            edac_layer_name[mci->layers[i].type],
+                            pos[i]);
+       }
+       if (p > e->location)
+               *(p - 1) = '\0';
+
+       /* Report the error via the trace interface */
+       grain_bits = fls_long(e->grain) + 1;
+       trace_mc_event(type, e->msg, e->label, e->error_count,
+                      mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
+                      PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
+                      grain_bits, e->syndrome, e->other_detail);
+
+       edac_raw_mc_handle_error(type, mci, e);
+}
+EXPORT_SYMBOL_GPL(edac_mc_handle_error);