Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / edac / amd64_edac.c
diff --git a/kernel/drivers/edac/amd64_edac.c b/kernel/drivers/edac/amd64_edac.c
new file mode 100644 (file)
index 0000000..92772ff
--- /dev/null
@@ -0,0 +1,3064 @@
+#include "amd64_edac.h"
+#include <asm/amd_nb.h>
+
+static struct edac_pci_ctl_info *pci_ctl;
+
+static int report_gart_errors;
+module_param(report_gart_errors, int, 0644);
+
+/*
+ * Set by command line parameter. If BIOS has enabled the ECC, this override is
+ * cleared to prevent re-enabling the hardware by this driver.
+ */
+static int ecc_enable_override;
+module_param(ecc_enable_override, int, 0644);
+
+static struct msr __percpu *msrs;
+
+/*
+ * count successfully initialized driver instances for setup_pci_device()
+ */
+static atomic_t drv_instances = ATOMIC_INIT(0);
+
+/* Per-node stuff */
+static struct ecc_settings **ecc_stngs;
+
+/*
+ * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
+ * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
+ * or higher value'.
+ *
+ *FIXME: Produce a better mapping/linearisation.
+ */
+static const struct scrubrate {
+       u32 scrubval;           /* bit pattern for scrub rate */
+       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
+} scrubrates[] = {
+       { 0x01, 1600000000UL},
+       { 0x02, 800000000UL},
+       { 0x03, 400000000UL},
+       { 0x04, 200000000UL},
+       { 0x05, 100000000UL},
+       { 0x06, 50000000UL},
+       { 0x07, 25000000UL},
+       { 0x08, 12284069UL},
+       { 0x09, 6274509UL},
+       { 0x0A, 3121951UL},
+       { 0x0B, 1560975UL},
+       { 0x0C, 781440UL},
+       { 0x0D, 390720UL},
+       { 0x0E, 195300UL},
+       { 0x0F, 97650UL},
+       { 0x10, 48854UL},
+       { 0x11, 24427UL},
+       { 0x12, 12213UL},
+       { 0x13, 6101UL},
+       { 0x14, 3051UL},
+       { 0x15, 1523UL},
+       { 0x16, 761UL},
+       { 0x00, 0UL},        /* scrubbing off */
+};
+
+int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
+                              u32 *val, const char *func)
+{
+       int err = 0;
+
+       err = pci_read_config_dword(pdev, offset, val);
+       if (err)
+               amd64_warn("%s: error reading F%dx%03x.\n",
+                          func, PCI_FUNC(pdev->devfn), offset);
+
+       return err;
+}
+
+int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
+                               u32 val, const char *func)
+{
+       int err = 0;
+
+       err = pci_write_config_dword(pdev, offset, val);
+       if (err)
+               amd64_warn("%s: error writing to F%dx%03x.\n",
+                          func, PCI_FUNC(pdev->devfn), offset);
+
+       return err;
+}
+
+/*
+ * Select DCT to which PCI cfg accesses are routed
+ */
+static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
+{
+       u32 reg = 0;
+
+       amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
+       reg &= (pvt->model == 0x30) ? ~3 : ~1;
+       reg |= dct;
+       amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
+}
+
+/*
+ *
+ * Depending on the family, F2 DCT reads need special handling:
+ *
+ * K8: has a single DCT only and no address offsets >= 0x100
+ *
+ * F10h: each DCT has its own set of regs
+ *     DCT0 -> F2x040..
+ *     DCT1 -> F2x140..
+ *
+ * F16h: has only 1 DCT
+ *
+ * F15h: we select which DCT we access using F1x10C[DctCfgSel]
+ */
+static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
+                                        int offset, u32 *val)
+{
+       switch (pvt->fam) {
+       case 0xf:
+               if (dct || offset >= 0x100)
+                       return -EINVAL;
+               break;
+
+       case 0x10:
+               if (dct) {
+                       /*
+                        * Note: If ganging is enabled, barring the regs
+                        * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
+                        * return 0. (cf. Section 2.8.1 F10h BKDG)
+                        */
+                       if (dct_ganging_enabled(pvt))
+                               return 0;
+
+                       offset += 0x100;
+               }
+               break;
+
+       case 0x15:
+               /*
+                * F15h: F2x1xx addresses do not map explicitly to DCT1.
+                * We should select which DCT we access using F1x10C[DctCfgSel]
+                */
+               dct = (dct && pvt->model == 0x30) ? 3 : dct;
+               f15h_select_dct(pvt, dct);
+               break;
+
+       case 0x16:
+               if (dct)
+                       return -EINVAL;
+               break;
+
+       default:
+               break;
+       }
+       return amd64_read_pci_cfg(pvt->F2, offset, val);
+}
+
+/*
+ * Memory scrubber control interface. For K8, memory scrubbing is handled by
+ * hardware and can involve L2 cache, dcache as well as the main memory. With
+ * F10, this is extended to L3 cache scrubbing on CPU models sporting that
+ * functionality.
+ *
+ * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
+ * (dram) over to cache lines. This is nasty, so we will use bandwidth in
+ * bytes/sec for the setting.
+ *
+ * Currently, we only do dram scrubbing. If the scrubbing is done in software on
+ * other archs, we might not have access to the caches directly.
+ */
+
+/*
+ * scan the scrub rate mapping table for a close or matching bandwidth value to
+ * issue. If requested is too big, then use last maximum value found.
+ */
+static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
+{
+       u32 scrubval;
+       int i;
+
+       /*
+        * map the configured rate (new_bw) to a value specific to the AMD64
+        * memory controller and apply to register. Search for the first
+        * bandwidth entry that is greater or equal than the setting requested
+        * and program that. If at last entry, turn off DRAM scrubbing.
+        *
+        * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
+        * by falling back to the last element in scrubrates[].
+        */
+       for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
+               /*
+                * skip scrub rates which aren't recommended
+                * (see F10 BKDG, F3x58)
+                */
+               if (scrubrates[i].scrubval < min_rate)
+                       continue;
+
+               if (scrubrates[i].bandwidth <= new_bw)
+                       break;
+       }
+
+       scrubval = scrubrates[i].scrubval;
+
+       pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
+
+       if (scrubval)
+               return scrubrates[i].bandwidth;
+
+       return 0;
+}
+
+static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 min_scrubrate = 0x5;
+
+       if (pvt->fam == 0xf)
+               min_scrubrate = 0x0;
+
+       /* Erratum #505 */
+       if (pvt->fam == 0x15 && pvt->model < 0x10)
+               f15h_select_dct(pvt, 0);
+
+       return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
+}
+
+static int get_scrub_rate(struct mem_ctl_info *mci)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 scrubval = 0;
+       int i, retval = -EINVAL;
+
+       /* Erratum #505 */
+       if (pvt->fam == 0x15 && pvt->model < 0x10)
+               f15h_select_dct(pvt, 0);
+
+       amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
+
+       scrubval = scrubval & 0x001F;
+
+       for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
+               if (scrubrates[i].scrubval == scrubval) {
+                       retval = scrubrates[i].bandwidth;
+                       break;
+               }
+       }
+       return retval;
+}
+
+/*
+ * returns true if the SysAddr given by sys_addr matches the
+ * DRAM base/limit associated with node_id
+ */
+static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
+{
+       u64 addr;
+
+       /* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
+        * all ones if the most significant implemented address bit is 1.
+        * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
+        * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
+        * Application Programming.
+        */
+       addr = sys_addr & 0x000000ffffffffffull;
+
+       return ((addr >= get_dram_base(pvt, nid)) &&
+               (addr <= get_dram_limit(pvt, nid)));
+}
+
+/*
+ * Attempt to map a SysAddr to a node. On success, return a pointer to the
+ * mem_ctl_info structure for the node that the SysAddr maps to.
+ *
+ * On failure, return NULL.
+ */
+static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
+                                               u64 sys_addr)
+{
+       struct amd64_pvt *pvt;
+       u8 node_id;
+       u32 intlv_en, bits;
+
+       /*
+        * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
+        * 3.4.4.2) registers to map the SysAddr to a node ID.
+        */
+       pvt = mci->pvt_info;
+
+       /*
+        * The value of this field should be the same for all DRAM Base
+        * registers.  Therefore we arbitrarily choose to read it from the
+        * register for node 0.
+        */
+       intlv_en = dram_intlv_en(pvt, 0);
+
+       if (intlv_en == 0) {
+               for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
+                       if (base_limit_match(pvt, sys_addr, node_id))
+                               goto found;
+               }
+               goto err_no_match;
+       }
+
+       if (unlikely((intlv_en != 0x01) &&
+                    (intlv_en != 0x03) &&
+                    (intlv_en != 0x07))) {
+               amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
+               return NULL;
+       }
+
+       bits = (((u32) sys_addr) >> 12) & intlv_en;
+
+       for (node_id = 0; ; ) {
+               if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
+                       break;  /* intlv_sel field matches */
+
+               if (++node_id >= DRAM_RANGES)
+                       goto err_no_match;
+       }
+
+       /* sanity test for sys_addr */
+       if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
+               amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
+                          "range for node %d with node interleaving enabled.\n",
+                          __func__, sys_addr, node_id);
+               return NULL;
+       }
+
+found:
+       return edac_mc_find((int)node_id);
+
+err_no_match:
+       edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
+                (unsigned long)sys_addr);
+
+       return NULL;
+}
+
+/*
+ * compute the CS base address of the @csrow on the DRAM controller @dct.
+ * For details see F2x[5C:40] in the processor's BKDG
+ */
+static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
+                                u64 *base, u64 *mask)
+{
+       u64 csbase, csmask, base_bits, mask_bits;
+       u8 addr_shift;
+
+       if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
+               csbase          = pvt->csels[dct].csbases[csrow];
+               csmask          = pvt->csels[dct].csmasks[csrow];
+               base_bits       = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
+               mask_bits       = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
+               addr_shift      = 4;
+
+       /*
+        * F16h and F15h, models 30h and later need two addr_shift values:
+        * 8 for high and 6 for low (cf. F16h BKDG).
+        */
+       } else if (pvt->fam == 0x16 ||
+                 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
+               csbase          = pvt->csels[dct].csbases[csrow];
+               csmask          = pvt->csels[dct].csmasks[csrow >> 1];
+
+               *base  = (csbase & GENMASK_ULL(15,  5)) << 6;
+               *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
+
+               *mask = ~0ULL;
+               /* poke holes for the csmask */
+               *mask &= ~((GENMASK_ULL(15, 5)  << 6) |
+                          (GENMASK_ULL(30, 19) << 8));
+
+               *mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
+               *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
+
+               return;
+       } else {
+               csbase          = pvt->csels[dct].csbases[csrow];
+               csmask          = pvt->csels[dct].csmasks[csrow >> 1];
+               addr_shift      = 8;
+
+               if (pvt->fam == 0x15)
+                       base_bits = mask_bits =
+                               GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
+               else
+                       base_bits = mask_bits =
+                               GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
+       }
+
+       *base  = (csbase & base_bits) << addr_shift;
+
+       *mask  = ~0ULL;
+       /* poke holes for the csmask */
+       *mask &= ~(mask_bits << addr_shift);
+       /* OR them in */
+       *mask |= (csmask & mask_bits) << addr_shift;
+}
+
+#define for_each_chip_select(i, dct, pvt) \
+       for (i = 0; i < pvt->csels[dct].b_cnt; i++)
+
+#define chip_select_base(i, dct, pvt) \
+       pvt->csels[dct].csbases[i]
+
+#define for_each_chip_select_mask(i, dct, pvt) \
+       for (i = 0; i < pvt->csels[dct].m_cnt; i++)
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Return the
+ * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
+ */
+static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
+{
+       struct amd64_pvt *pvt;
+       int csrow;
+       u64 base, mask;
+
+       pvt = mci->pvt_info;
+
+       for_each_chip_select(csrow, 0, pvt) {
+               if (!csrow_enabled(csrow, 0, pvt))
+                       continue;
+
+               get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
+
+               mask = ~mask;
+
+               if ((input_addr & mask) == (base & mask)) {
+                       edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
+                                (unsigned long)input_addr, csrow,
+                                pvt->mc_node_id);
+
+                       return csrow;
+               }
+       }
+       edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
+                (unsigned long)input_addr, pvt->mc_node_id);
+
+       return -1;
+}
+
+/*
+ * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
+ * for the node represented by mci. Info is passed back in *hole_base,
+ * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
+ * info is invalid. Info may be invalid for either of the following reasons:
+ *
+ * - The revision of the node is not E or greater.  In this case, the DRAM Hole
+ *   Address Register does not exist.
+ *
+ * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
+ *   indicating that its contents are not valid.
+ *
+ * The values passed back in *hole_base, *hole_offset, and *hole_size are
+ * complete 32-bit values despite the fact that the bitfields in the DHAR
+ * only represent bits 31-24 of the base and offset values.
+ */
+int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+                            u64 *hole_offset, u64 *hole_size)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+
+       /* only revE and later have the DRAM Hole Address Register */
+       if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
+               edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
+                        pvt->ext_model, pvt->mc_node_id);
+               return 1;
+       }
+
+       /* valid for Fam10h and above */
+       if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
+               edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
+               return 1;
+       }
+
+       if (!dhar_valid(pvt)) {
+               edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
+                        pvt->mc_node_id);
+               return 1;
+       }
+
+       /* This node has Memory Hoisting */
+
+       /* +------------------+--------------------+--------------------+-----
+        * | memory           | DRAM hole          | relocated          |
+        * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
+        * |                  |                    | DRAM hole          |
+        * |                  |                    | [0x100000000,      |
+        * |                  |                    |  (0x100000000+     |
+        * |                  |                    |   (0xffffffff-x))] |
+        * +------------------+--------------------+--------------------+-----
+        *
+        * Above is a diagram of physical memory showing the DRAM hole and the
+        * relocated addresses from the DRAM hole.  As shown, the DRAM hole
+        * starts at address x (the base address) and extends through address
+        * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
+        * addresses in the hole so that they start at 0x100000000.
+        */
+
+       *hole_base = dhar_base(pvt);
+       *hole_size = (1ULL << 32) - *hole_base;
+
+       *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
+                                       : k8_dhar_offset(pvt);
+
+       edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
+                pvt->mc_node_id, (unsigned long)*hole_base,
+                (unsigned long)*hole_offset, (unsigned long)*hole_size);
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
+
+/*
+ * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
+ * assumed that sys_addr maps to the node given by mci.
+ *
+ * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
+ * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
+ * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
+ * then it is also involved in translating a SysAddr to a DramAddr. Sections
+ * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
+ * These parts of the documentation are unclear. I interpret them as follows:
+ *
+ * When node n receives a SysAddr, it processes the SysAddr as follows:
+ *
+ * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
+ *    Limit registers for node n. If the SysAddr is not within the range
+ *    specified by the base and limit values, then node n ignores the Sysaddr
+ *    (since it does not map to node n). Otherwise continue to step 2 below.
+ *
+ * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
+ *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
+ *    the range of relocated addresses (starting at 0x100000000) from the DRAM
+ *    hole. If not, skip to step 3 below. Else get the value of the
+ *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
+ *    offset defined by this value from the SysAddr.
+ *
+ * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
+ *    Base register for node n. To obtain the DramAddr, subtract the base
+ *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
+ */
+static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
+       int ret;
+
+       dram_base = get_dram_base(pvt, pvt->mc_node_id);
+
+       ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+                                     &hole_size);
+       if (!ret) {
+               if ((sys_addr >= (1ULL << 32)) &&
+                   (sys_addr < ((1ULL << 32) + hole_size))) {
+                       /* use DHAR to translate SysAddr to DramAddr */
+                       dram_addr = sys_addr - hole_offset;
+
+                       edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
+                                (unsigned long)sys_addr,
+                                (unsigned long)dram_addr);
+
+                       return dram_addr;
+               }
+       }
+
+       /*
+        * Translate the SysAddr to a DramAddr as shown near the start of
+        * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
+        * only deals with 40-bit values.  Therefore we discard bits 63-40 of
+        * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
+        * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
+        * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
+        * Programmer's Manual Volume 1 Application Programming.
+        */
+       dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
+
+       edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
+                (unsigned long)sys_addr, (unsigned long)dram_addr);
+       return dram_addr;
+}
+
+/*
+ * @intlv_en is the value of the IntlvEn field from a DRAM Base register
+ * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
+ * for node interleaving.
+ */
+static int num_node_interleave_bits(unsigned intlv_en)
+{
+       static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
+       int n;
+
+       BUG_ON(intlv_en > 7);
+       n = intlv_shift_table[intlv_en];
+       return n;
+}
+
+/* Translate the DramAddr given by @dram_addr to an InputAddr. */
+static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+       struct amd64_pvt *pvt;
+       int intlv_shift;
+       u64 input_addr;
+
+       pvt = mci->pvt_info;
+
+       /*
+        * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+        * concerning translating a DramAddr to an InputAddr.
+        */
+       intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
+       input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
+                     (dram_addr & 0xfff);
+
+       edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
+                intlv_shift, (unsigned long)dram_addr,
+                (unsigned long)input_addr);
+
+       return input_addr;
+}
+
+/*
+ * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
+ * assumed that @sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+       u64 input_addr;
+
+       input_addr =
+           dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
+
+       edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
+                (unsigned long)sys_addr, (unsigned long)input_addr);
+
+       return input_addr;
+}
+
+/* Map the Error address to a PAGE and PAGE OFFSET. */
+static inline void error_address_to_page_and_offset(u64 error_address,
+                                                   struct err_info *err)
+{
+       err->page = (u32) (error_address >> PAGE_SHIFT);
+       err->offset = ((u32) error_address) & ~PAGE_MASK;
+}
+
+/*
+ * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
+ * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
+ * of a node that detected an ECC memory error.  mci represents the node that
+ * the error address maps to (possibly different from the node that detected
+ * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
+ * error.
+ */
+static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
+{
+       int csrow;
+
+       csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
+
+       if (csrow == -1)
+               amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
+                                 "address 0x%lx\n", (unsigned long)sys_addr);
+       return csrow;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
+
+/*
+ * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
+ * are ECC capable.
+ */
+static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
+{
+       u8 bit;
+       unsigned long edac_cap = EDAC_FLAG_NONE;
+
+       bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
+               ? 19
+               : 17;
+
+       if (pvt->dclr0 & BIT(bit))
+               edac_cap = EDAC_FLAG_SECDED;
+
+       return edac_cap;
+}
+
+static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
+
+static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
+{
+       edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
+
+       if (pvt->dram_type == MEM_LRDDR3) {
+               u32 dcsm = pvt->csels[chan].csmasks[0];
+               /*
+                * It's assumed all LRDIMMs in a DCT are going to be of
+                * same 'type' until proven otherwise. So, use a cs
+                * value of '0' here to get dcsm value.
+                */
+               edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
+       }
+
+       edac_dbg(1, "All DIMMs support ECC:%s\n",
+                   (dclr & BIT(19)) ? "yes" : "no");
+
+
+       edac_dbg(1, "  PAR/ERR parity: %s\n",
+                (dclr & BIT(8)) ?  "enabled" : "disabled");
+
+       if (pvt->fam == 0x10)
+               edac_dbg(1, "  DCT 128bit mode width: %s\n",
+                        (dclr & BIT(11)) ?  "128b" : "64b");
+
+       edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
+                (dclr & BIT(12)) ?  "yes" : "no",
+                (dclr & BIT(13)) ?  "yes" : "no",
+                (dclr & BIT(14)) ?  "yes" : "no",
+                (dclr & BIT(15)) ?  "yes" : "no");
+}
+
+/* Display and decode various NB registers for debug purposes. */
+static void dump_misc_regs(struct amd64_pvt *pvt)
+{
+       edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
+
+       edac_dbg(1, "  NB two channel DRAM capable: %s\n",
+                (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
+
+       edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
+                (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
+                (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
+
+       debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
+
+       edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
+
+       edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
+                pvt->dhar, dhar_base(pvt),
+                (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
+                                  : f10_dhar_offset(pvt));
+
+       edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
+
+       debug_display_dimm_sizes(pvt, 0);
+
+       /* everything below this point is Fam10h and above */
+       if (pvt->fam == 0xf)
+               return;
+
+       debug_display_dimm_sizes(pvt, 1);
+
+       amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
+
+       /* Only if NOT ganged does dclr1 have valid info */
+       if (!dct_ganging_enabled(pvt))
+               debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
+}
+
+/*
+ * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
+ */
+static void prep_chip_selects(struct amd64_pvt *pvt)
+{
+       if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
+               pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
+               pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
+       } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
+               pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
+               pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
+       } else {
+               pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
+               pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
+       }
+}
+
+/*
+ * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
+ */
+static void read_dct_base_mask(struct amd64_pvt *pvt)
+{
+       int cs;
+
+       prep_chip_selects(pvt);
+
+       for_each_chip_select(cs, 0, pvt) {
+               int reg0   = DCSB0 + (cs * 4);
+               int reg1   = DCSB1 + (cs * 4);
+               u32 *base0 = &pvt->csels[0].csbases[cs];
+               u32 *base1 = &pvt->csels[1].csbases[cs];
+
+               if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
+                       edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
+                                cs, *base0, reg0);
+
+               if (pvt->fam == 0xf)
+                       continue;
+
+               if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
+                       edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
+                                cs, *base1, (pvt->fam == 0x10) ? reg1
+                                                               : reg0);
+       }
+
+       for_each_chip_select_mask(cs, 0, pvt) {
+               int reg0   = DCSM0 + (cs * 4);
+               int reg1   = DCSM1 + (cs * 4);
+               u32 *mask0 = &pvt->csels[0].csmasks[cs];
+               u32 *mask1 = &pvt->csels[1].csmasks[cs];
+
+               if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
+                       edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
+                                cs, *mask0, reg0);
+
+               if (pvt->fam == 0xf)
+                       continue;
+
+               if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
+                       edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
+                                cs, *mask1, (pvt->fam == 0x10) ? reg1
+                                                               : reg0);
+       }
+}
+
+static void determine_memory_type(struct amd64_pvt *pvt)
+{
+       u32 dram_ctrl, dcsm;
+
+       switch (pvt->fam) {
+       case 0xf:
+               if (pvt->ext_model >= K8_REV_F)
+                       goto ddr3;
+
+               pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
+               return;
+
+       case 0x10:
+               if (pvt->dchr0 & DDR3_MODE)
+                       goto ddr3;
+
+               pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+               return;
+
+       case 0x15:
+               if (pvt->model < 0x60)
+                       goto ddr3;
+
+               /*
+                * Model 0x60h needs special handling:
+                *
+                * We use a Chip Select value of '0' to obtain dcsm.
+                * Theoretically, it is possible to populate LRDIMMs of different
+                * 'Rank' value on a DCT. But this is not the common case. So,
+                * it's reasonable to assume all DIMMs are going to be of same
+                * 'type' until proven otherwise.
+                */
+               amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
+               dcsm = pvt->csels[0].csmasks[0];
+
+               if (((dram_ctrl >> 8) & 0x7) == 0x2)
+                       pvt->dram_type = MEM_DDR4;
+               else if (pvt->dclr0 & BIT(16))
+                       pvt->dram_type = MEM_DDR3;
+               else if (dcsm & 0x3)
+                       pvt->dram_type = MEM_LRDDR3;
+               else
+                       pvt->dram_type = MEM_RDDR3;
+
+               return;
+
+       case 0x16:
+               goto ddr3;
+
+       default:
+               WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
+               pvt->dram_type = MEM_EMPTY;
+       }
+       return;
+
+ddr3:
+       pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
+}
+
+/* Get the number of DCT channels the memory controller is using. */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+       int flag;
+
+       if (pvt->ext_model >= K8_REV_F)
+               /* RevF (NPT) and later */
+               flag = pvt->dclr0 & WIDTH_128;
+       else
+               /* RevE and earlier */
+               flag = pvt->dclr0 & REVE_WIDTH_128;
+
+       /* not used */
+       pvt->dclr1 = 0;
+
+       return (flag) ? 2 : 1;
+}
+
+/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
+static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
+{
+       u16 mce_nid = amd_get_nb_id(m->extcpu);
+       struct mem_ctl_info *mci;
+       u8 start_bit = 1;
+       u8 end_bit   = 47;
+       u64 addr;
+
+       mci = edac_mc_find(mce_nid);
+       if (!mci)
+               return 0;
+
+       pvt = mci->pvt_info;
+
+       if (pvt->fam == 0xf) {
+               start_bit = 3;
+               end_bit   = 39;
+       }
+
+       addr = m->addr & GENMASK_ULL(end_bit, start_bit);
+
+       /*
+        * Erratum 637 workaround
+        */
+       if (pvt->fam == 0x15) {
+               u64 cc6_base, tmp_addr;
+               u32 tmp;
+               u8 intlv_en;
+
+               if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
+                       return addr;
+
+
+               amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
+               intlv_en = tmp >> 21 & 0x7;
+
+               /* add [47:27] + 3 trailing bits */
+               cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
+
+               /* reverse and add DramIntlvEn */
+               cc6_base |= intlv_en ^ 0x7;
+
+               /* pin at [47:24] */
+               cc6_base <<= 24;
+
+               if (!intlv_en)
+                       return cc6_base | (addr & GENMASK_ULL(23, 0));
+
+               amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
+
+                                                       /* faster log2 */
+               tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
+
+               /* OR DramIntlvSel into bits [14:12] */
+               tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
+
+               /* add remaining [11:0] bits from original MC4_ADDR */
+               tmp_addr |= addr & GENMASK_ULL(11, 0);
+
+               return cc6_base | tmp_addr;
+       }
+
+       return addr;
+}
+
+static struct pci_dev *pci_get_related_function(unsigned int vendor,
+                                               unsigned int device,
+                                               struct pci_dev *related)
+{
+       struct pci_dev *dev = NULL;
+
+       while ((dev = pci_get_device(vendor, device, dev))) {
+               if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
+                   (dev->bus->number == related->bus->number) &&
+                   (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
+                       break;
+       }
+
+       return dev;
+}
+
+static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
+{
+       struct amd_northbridge *nb;
+       struct pci_dev *f1 = NULL;
+       unsigned int pci_func;
+       int off = range << 3;
+       u32 llim;
+
+       amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
+       amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
+
+       if (pvt->fam == 0xf)
+               return;
+
+       if (!dram_rw(pvt, range))
+               return;
+
+       amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
+       amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
+
+       /* F15h: factor in CC6 save area by reading dst node's limit reg */
+       if (pvt->fam != 0x15)
+               return;
+
+       nb = node_to_amd_nb(dram_dst_node(pvt, range));
+       if (WARN_ON(!nb))
+               return;
+
+       if (pvt->model == 0x60)
+               pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
+       else if (pvt->model == 0x30)
+               pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
+       else
+               pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
+
+       f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
+       if (WARN_ON(!f1))
+               return;
+
+       amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
+
+       pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
+
+                                   /* {[39:27],111b} */
+       pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
+
+       pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
+
+                                   /* [47:40] */
+       pvt->ranges[range].lim.hi |= llim >> 13;
+
+       pci_dev_put(f1);
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
+                                   struct err_info *err)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+
+       error_address_to_page_and_offset(sys_addr, err);
+
+       /*
+        * Find out which node the error address belongs to. This may be
+        * different from the node that detected the error.
+        */
+       err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
+       if (!err->src_mci) {
+               amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
+                            (unsigned long)sys_addr);
+               err->err_code = ERR_NODE;
+               return;
+       }
+
+       /* Now map the sys_addr to a CSROW */
+       err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
+       if (err->csrow < 0) {
+               err->err_code = ERR_CSROW;
+               return;
+       }
+
+       /* CHIPKILL enabled */
+       if (pvt->nbcfg & NBCFG_CHIPKILL) {
+               err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
+               if (err->channel < 0) {
+                       /*
+                        * Syndrome didn't map, so we don't know which of the
+                        * 2 DIMMs is in error. So we need to ID 'both' of them
+                        * as suspect.
+                        */
+                       amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
+                                     "possible error reporting race\n",
+                                     err->syndrome);
+                       err->err_code = ERR_CHANNEL;
+                       return;
+               }
+       } else {
+               /*
+                * non-chipkill ecc mode
+                *
+                * The k8 documentation is unclear about how to determine the
+                * channel number when using non-chipkill memory.  This method
+                * was obtained from email communication with someone at AMD.
+                * (Wish the email was placed in this comment - norsk)
+                */
+               err->channel = ((sys_addr & BIT(3)) != 0);
+       }
+}
+
+static int ddr2_cs_size(unsigned i, bool dct_width)
+{
+       unsigned shift = 0;
+
+       if (i <= 2)
+               shift = i;
+       else if (!(i & 0x1))
+               shift = i >> 1;
+       else
+               shift = (i + 1) >> 1;
+
+       return 128 << (shift + !!dct_width);
+}
+
+static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+                                 unsigned cs_mode, int cs_mask_nr)
+{
+       u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
+
+       if (pvt->ext_model >= K8_REV_F) {
+               WARN_ON(cs_mode > 11);
+               return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
+       }
+       else if (pvt->ext_model >= K8_REV_D) {
+               unsigned diff;
+               WARN_ON(cs_mode > 10);
+
+               /*
+                * the below calculation, besides trying to win an obfuscated C
+                * contest, maps cs_mode values to DIMM chip select sizes. The
+                * mappings are:
+                *
+                * cs_mode      CS size (mb)
+                * =======      ============
+                * 0            32
+                * 1            64
+                * 2            128
+                * 3            128
+                * 4            256
+                * 5            512
+                * 6            256
+                * 7            512
+                * 8            1024
+                * 9            1024
+                * 10           2048
+                *
+                * Basically, it calculates a value with which to shift the
+                * smallest CS size of 32MB.
+                *
+                * ddr[23]_cs_size have a similar purpose.
+                */
+               diff = cs_mode/3 + (unsigned)(cs_mode > 5);
+
+               return 32 << (cs_mode - diff);
+       }
+       else {
+               WARN_ON(cs_mode > 6);
+               return 32 << cs_mode;
+       }
+}
+
+/*
+ * Get the number of DCT channels in use.
+ *
+ * Return:
+ *     number of Memory Channels in operation
+ * Pass back:
+ *     contents of the DCL0_LOW register
+ */
+static int f1x_early_channel_count(struct amd64_pvt *pvt)
+{
+       int i, j, channels = 0;
+
+       /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
+       if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
+               return 2;
+
+       /*
+        * Need to check if in unganged mode: In such, there are 2 channels,
+        * but they are not in 128 bit mode and thus the above 'dclr0' status
+        * bit will be OFF.
+        *
+        * Need to check DCT0[0] and DCT1[0] to see if only one of them has
+        * their CSEnable bit on. If so, then SINGLE DIMM case.
+        */
+       edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
+
+       /*
+        * Check DRAM Bank Address Mapping values for each DIMM to see if there
+        * is more than just one DIMM present in unganged mode. Need to check
+        * both controllers since DIMMs can be placed in either one.
+        */
+       for (i = 0; i < 2; i++) {
+               u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
+
+               for (j = 0; j < 4; j++) {
+                       if (DBAM_DIMM(j, dbam) > 0) {
+                               channels++;
+                               break;
+                       }
+               }
+       }
+
+       if (channels > 2)
+               channels = 2;
+
+       amd64_info("MCT channel count: %d\n", channels);
+
+       return channels;
+}
+
+static int ddr3_cs_size(unsigned i, bool dct_width)
+{
+       unsigned shift = 0;
+       int cs_size = 0;
+
+       if (i == 0 || i == 3 || i == 4)
+               cs_size = -1;
+       else if (i <= 2)
+               shift = i;
+       else if (i == 12)
+               shift = 7;
+       else if (!(i & 0x1))
+               shift = i >> 1;
+       else
+               shift = (i + 1) >> 1;
+
+       if (cs_size != -1)
+               cs_size = (128 * (1 << !!dct_width)) << shift;
+
+       return cs_size;
+}
+
+static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
+{
+       unsigned shift = 0;
+       int cs_size = 0;
+
+       if (i < 4 || i == 6)
+               cs_size = -1;
+       else if (i == 12)
+               shift = 7;
+       else if (!(i & 0x1))
+               shift = i >> 1;
+       else
+               shift = (i + 1) >> 1;
+
+       if (cs_size != -1)
+               cs_size = rank_multiply * (128 << shift);
+
+       return cs_size;
+}
+
+static int ddr4_cs_size(unsigned i)
+{
+       int cs_size = 0;
+
+       if (i == 0)
+               cs_size = -1;
+       else if (i == 1)
+               cs_size = 1024;
+       else
+               /* Min cs_size = 1G */
+               cs_size = 1024 * (1 << (i >> 1));
+
+       return cs_size;
+}
+
+static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+                                  unsigned cs_mode, int cs_mask_nr)
+{
+       u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
+
+       WARN_ON(cs_mode > 11);
+
+       if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
+               return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
+       else
+               return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
+}
+
+/*
+ * F15h supports only 64bit DCT interfaces
+ */
+static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+                                  unsigned cs_mode, int cs_mask_nr)
+{
+       WARN_ON(cs_mode > 12);
+
+       return ddr3_cs_size(cs_mode, false);
+}
+
+/* F15h M60h supports DDR4 mapping as well.. */
+static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+                                       unsigned cs_mode, int cs_mask_nr)
+{
+       int cs_size;
+       u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
+
+       WARN_ON(cs_mode > 12);
+
+       if (pvt->dram_type == MEM_DDR4) {
+               if (cs_mode > 9)
+                       return -1;
+
+               cs_size = ddr4_cs_size(cs_mode);
+       } else if (pvt->dram_type == MEM_LRDDR3) {
+               unsigned rank_multiply = dcsm & 0xf;
+
+               if (rank_multiply == 3)
+                       rank_multiply = 4;
+               cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
+       } else {
+               /* Minimum cs size is 512mb for F15hM60h*/
+               if (cs_mode == 0x1)
+                       return -1;
+
+               cs_size = ddr3_cs_size(cs_mode, false);
+       }
+
+       return cs_size;
+}
+
+/*
+ * F16h and F15h model 30h have only limited cs_modes.
+ */
+static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+                               unsigned cs_mode, int cs_mask_nr)
+{
+       WARN_ON(cs_mode > 12);
+
+       if (cs_mode == 6 || cs_mode == 8 ||
+           cs_mode == 9 || cs_mode == 12)
+               return -1;
+       else
+               return ddr3_cs_size(cs_mode, false);
+}
+
+static void read_dram_ctl_register(struct amd64_pvt *pvt)
+{
+
+       if (pvt->fam == 0xf)
+               return;
+
+       if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
+               edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
+                        pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
+
+               edac_dbg(0, "  DCTs operate in %s mode\n",
+                        (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
+
+               if (!dct_ganging_enabled(pvt))
+                       edac_dbg(0, "  Address range split per DCT: %s\n",
+                                (dct_high_range_enabled(pvt) ? "yes" : "no"));
+
+               edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
+                        (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
+                        (dct_memory_cleared(pvt) ? "yes" : "no"));
+
+               edac_dbg(0, "  channel interleave: %s, "
+                        "interleave bits selector: 0x%x\n",
+                        (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
+                        dct_sel_interleave_addr(pvt));
+       }
+
+       amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
+}
+
+/*
+ * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
+ * 2.10.12 Memory Interleaving Modes).
+ */
+static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+                                    u8 intlv_en, int num_dcts_intlv,
+                                    u32 dct_sel)
+{
+       u8 channel = 0;
+       u8 select;
+
+       if (!(intlv_en))
+               return (u8)(dct_sel);
+
+       if (num_dcts_intlv == 2) {
+               select = (sys_addr >> 8) & 0x3;
+               channel = select ? 0x3 : 0;
+       } else if (num_dcts_intlv == 4) {
+               u8 intlv_addr = dct_sel_interleave_addr(pvt);
+               switch (intlv_addr) {
+               case 0x4:
+                       channel = (sys_addr >> 8) & 0x3;
+                       break;
+               case 0x5:
+                       channel = (sys_addr >> 9) & 0x3;
+                       break;
+               }
+       }
+       return channel;
+}
+
+/*
+ * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
+ * Interleaving Modes.
+ */
+static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+                               bool hi_range_sel, u8 intlv_en)
+{
+       u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
+
+       if (dct_ganging_enabled(pvt))
+               return 0;
+
+       if (hi_range_sel)
+               return dct_sel_high;
+
+       /*
+        * see F2x110[DctSelIntLvAddr] - channel interleave mode
+        */
+       if (dct_interleave_enabled(pvt)) {
+               u8 intlv_addr = dct_sel_interleave_addr(pvt);
+
+               /* return DCT select function: 0=DCT0, 1=DCT1 */
+               if (!intlv_addr)
+                       return sys_addr >> 6 & 1;
+
+               if (intlv_addr & 0x2) {
+                       u8 shift = intlv_addr & 0x1 ? 9 : 6;
+                       u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
+
+                       return ((sys_addr >> shift) & 1) ^ temp;
+               }
+
+               return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
+       }
+
+       if (dct_high_range_enabled(pvt))
+               return ~dct_sel_high & 1;
+
+       return 0;
+}
+
+/* Convert the sys_addr to the normalized DCT address */
+static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
+                                u64 sys_addr, bool hi_rng,
+                                u32 dct_sel_base_addr)
+{
+       u64 chan_off;
+       u64 dram_base           = get_dram_base(pvt, range);
+       u64 hole_off            = f10_dhar_offset(pvt);
+       u64 dct_sel_base_off    = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
+
+       if (hi_rng) {
+               /*
+                * if
+                * base address of high range is below 4Gb
+                * (bits [47:27] at [31:11])
+                * DRAM address space on this DCT is hoisted above 4Gb  &&
+                * sys_addr > 4Gb
+                *
+                *      remove hole offset from sys_addr
+                * else
+                *      remove high range offset from sys_addr
+                */
+               if ((!(dct_sel_base_addr >> 16) ||
+                    dct_sel_base_addr < dhar_base(pvt)) &&
+                   dhar_valid(pvt) &&
+                   (sys_addr >= BIT_64(32)))
+                       chan_off = hole_off;
+               else
+                       chan_off = dct_sel_base_off;
+       } else {
+               /*
+                * if
+                * we have a valid hole         &&
+                * sys_addr > 4Gb
+                *
+                *      remove hole
+                * else
+                *      remove dram base to normalize to DCT address
+                */
+               if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
+                       chan_off = hole_off;
+               else
+                       chan_off = dram_base;
+       }
+
+       return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
+}
+
+/*
+ * checks if the csrow passed in is marked as SPARED, if so returns the new
+ * spare row
+ */
+static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
+{
+       int tmp_cs;
+
+       if (online_spare_swap_done(pvt, dct) &&
+           csrow == online_spare_bad_dramcs(pvt, dct)) {
+
+               for_each_chip_select(tmp_cs, dct, pvt) {
+                       if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
+                               csrow = tmp_cs;
+                               break;
+                       }
+               }
+       }
+       return csrow;
+}
+
+/*
+ * Iterate over the DRAM DCT "base" and "mask" registers looking for a
+ * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
+ *
+ * Return:
+ *     -EINVAL:  NOT FOUND
+ *     0..csrow = Chip-Select Row
+ */
+static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+       u64 cs_base, cs_mask;
+       int cs_found = -EINVAL;
+       int csrow;
+
+       mci = edac_mc_find(nid);
+       if (!mci)
+               return cs_found;
+
+       pvt = mci->pvt_info;
+
+       edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
+
+       for_each_chip_select(csrow, dct, pvt) {
+               if (!csrow_enabled(csrow, dct, pvt))
+                       continue;
+
+               get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
+
+               edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
+                        csrow, cs_base, cs_mask);
+
+               cs_mask = ~cs_mask;
+
+               edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
+                        (in_addr & cs_mask), (cs_base & cs_mask));
+
+               if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
+                       if (pvt->fam == 0x15 && pvt->model >= 0x30) {
+                               cs_found =  csrow;
+                               break;
+                       }
+                       cs_found = f10_process_possible_spare(pvt, dct, csrow);
+
+                       edac_dbg(1, " MATCH csrow=%d\n", cs_found);
+                       break;
+               }
+       }
+       return cs_found;
+}
+
+/*
+ * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
+ * swapped with a region located at the bottom of memory so that the GPU can use
+ * the interleaved region and thus two channels.
+ */
+static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
+{
+       u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
+
+       if (pvt->fam == 0x10) {
+               /* only revC3 and revE have that feature */
+               if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
+                       return sys_addr;
+       }
+
+       amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
+
+       if (!(swap_reg & 0x1))
+               return sys_addr;
+
+       swap_base       = (swap_reg >> 3) & 0x7f;
+       swap_limit      = (swap_reg >> 11) & 0x7f;
+       rgn_size        = (swap_reg >> 20) & 0x7f;
+       tmp_addr        = sys_addr >> 27;
+
+       if (!(sys_addr >> 34) &&
+           (((tmp_addr >= swap_base) &&
+            (tmp_addr <= swap_limit)) ||
+            (tmp_addr < rgn_size)))
+               return sys_addr ^ (u64)swap_base << 27;
+
+       return sys_addr;
+}
+
+/* For a given @dram_range, check if @sys_addr falls within it. */
+static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
+                                 u64 sys_addr, int *chan_sel)
+{
+       int cs_found = -EINVAL;
+       u64 chan_addr;
+       u32 dct_sel_base;
+       u8 channel;
+       bool high_range = false;
+
+       u8 node_id    = dram_dst_node(pvt, range);
+       u8 intlv_en   = dram_intlv_en(pvt, range);
+       u32 intlv_sel = dram_intlv_sel(pvt, range);
+
+       edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
+                range, sys_addr, get_dram_limit(pvt, range));
+
+       if (dhar_valid(pvt) &&
+           dhar_base(pvt) <= sys_addr &&
+           sys_addr < BIT_64(32)) {
+               amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
+                           sys_addr);
+               return -EINVAL;
+       }
+
+       if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
+               return -EINVAL;
+
+       sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
+
+       dct_sel_base = dct_sel_baseaddr(pvt);
+
+       /*
+        * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
+        * select between DCT0 and DCT1.
+        */
+       if (dct_high_range_enabled(pvt) &&
+          !dct_ganging_enabled(pvt) &&
+          ((sys_addr >> 27) >= (dct_sel_base >> 11)))
+               high_range = true;
+
+       channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
+
+       chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
+                                         high_range, dct_sel_base);
+
+       /* Remove node interleaving, see F1x120 */
+       if (intlv_en)
+               chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
+                           (chan_addr & 0xfff);
+
+       /* remove channel interleave */
+       if (dct_interleave_enabled(pvt) &&
+          !dct_high_range_enabled(pvt) &&
+          !dct_ganging_enabled(pvt)) {
+
+               if (dct_sel_interleave_addr(pvt) != 1) {
+                       if (dct_sel_interleave_addr(pvt) == 0x3)
+                               /* hash 9 */
+                               chan_addr = ((chan_addr >> 10) << 9) |
+                                            (chan_addr & 0x1ff);
+                       else
+                               /* A[6] or hash 6 */
+                               chan_addr = ((chan_addr >> 7) << 6) |
+                                            (chan_addr & 0x3f);
+               } else
+                       /* A[12] */
+                       chan_addr = ((chan_addr >> 13) << 12) |
+                                    (chan_addr & 0xfff);
+       }
+
+       edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
+
+       cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
+
+       if (cs_found >= 0)
+               *chan_sel = channel;
+
+       return cs_found;
+}
+
+static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
+                                       u64 sys_addr, int *chan_sel)
+{
+       int cs_found = -EINVAL;
+       int num_dcts_intlv = 0;
+       u64 chan_addr, chan_offset;
+       u64 dct_base, dct_limit;
+       u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
+       u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
+
+       u64 dhar_offset         = f10_dhar_offset(pvt);
+       u8 intlv_addr           = dct_sel_interleave_addr(pvt);
+       u8 node_id              = dram_dst_node(pvt, range);
+       u8 intlv_en             = dram_intlv_en(pvt, range);
+
+       amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
+       amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
+
+       dct_offset_en           = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
+       dct_sel                 = (u8) ((dct_cont_base_reg >> 4) & 0x7);
+
+       edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
+                range, sys_addr, get_dram_limit(pvt, range));
+
+       if (!(get_dram_base(pvt, range)  <= sys_addr) &&
+           !(get_dram_limit(pvt, range) >= sys_addr))
+               return -EINVAL;
+
+       if (dhar_valid(pvt) &&
+           dhar_base(pvt) <= sys_addr &&
+           sys_addr < BIT_64(32)) {
+               amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
+                           sys_addr);
+               return -EINVAL;
+       }
+
+       /* Verify sys_addr is within DCT Range. */
+       dct_base = (u64) dct_sel_baseaddr(pvt);
+       dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
+
+       if (!(dct_cont_base_reg & BIT(0)) &&
+           !(dct_base <= (sys_addr >> 27) &&
+             dct_limit >= (sys_addr >> 27)))
+               return -EINVAL;
+
+       /* Verify number of dct's that participate in channel interleaving. */
+       num_dcts_intlv = (int) hweight8(intlv_en);
+
+       if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
+               return -EINVAL;
+
+       channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
+                                            num_dcts_intlv, dct_sel);
+
+       /* Verify we stay within the MAX number of channels allowed */
+       if (channel > 3)
+               return -EINVAL;
+
+       leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
+
+       /* Get normalized DCT addr */
+       if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
+               chan_offset = dhar_offset;
+       else
+               chan_offset = dct_base << 27;
+
+       chan_addr = sys_addr - chan_offset;
+
+       /* remove channel interleave */
+       if (num_dcts_intlv == 2) {
+               if (intlv_addr == 0x4)
+                       chan_addr = ((chan_addr >> 9) << 8) |
+                                               (chan_addr & 0xff);
+               else if (intlv_addr == 0x5)
+                       chan_addr = ((chan_addr >> 10) << 9) |
+                                               (chan_addr & 0x1ff);
+               else
+                       return -EINVAL;
+
+       } else if (num_dcts_intlv == 4) {
+               if (intlv_addr == 0x4)
+                       chan_addr = ((chan_addr >> 10) << 8) |
+                                                       (chan_addr & 0xff);
+               else if (intlv_addr == 0x5)
+                       chan_addr = ((chan_addr >> 11) << 9) |
+                                                       (chan_addr & 0x1ff);
+               else
+                       return -EINVAL;
+       }
+
+       if (dct_offset_en) {
+               amd64_read_pci_cfg(pvt->F1,
+                                  DRAM_CONT_HIGH_OFF + (int) channel * 4,
+                                  &tmp);
+               chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
+       }
+
+       f15h_select_dct(pvt, channel);
+
+       edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
+
+       /*
+        * Find Chip select:
+        * if channel = 3, then alias it to 1. This is because, in F15 M30h,
+        * there is support for 4 DCT's, but only 2 are currently functional.
+        * They are DCT0 and DCT3. But we have read all registers of DCT3 into
+        * pvt->csels[1]. So we need to use '1' here to get correct info.
+        * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
+        */
+       alias_channel =  (channel == 3) ? 1 : channel;
+
+       cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
+
+       if (cs_found >= 0)
+               *chan_sel = alias_channel;
+
+       return cs_found;
+}
+
+static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
+                                       u64 sys_addr,
+                                       int *chan_sel)
+{
+       int cs_found = -EINVAL;
+       unsigned range;
+
+       for (range = 0; range < DRAM_RANGES; range++) {
+               if (!dram_rw(pvt, range))
+                       continue;
+
+               if (pvt->fam == 0x15 && pvt->model >= 0x30)
+                       cs_found = f15_m30h_match_to_this_node(pvt, range,
+                                                              sys_addr,
+                                                              chan_sel);
+
+               else if ((get_dram_base(pvt, range)  <= sys_addr) &&
+                        (get_dram_limit(pvt, range) >= sys_addr)) {
+                       cs_found = f1x_match_to_this_node(pvt, range,
+                                                         sys_addr, chan_sel);
+                       if (cs_found >= 0)
+                               break;
+               }
+       }
+       return cs_found;
+}
+
+/*
+ * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
+ * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
+ *
+ * The @sys_addr is usually an error address received from the hardware
+ * (MCX_ADDR).
+ */
+static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
+                                    struct err_info *err)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+
+       error_address_to_page_and_offset(sys_addr, err);
+
+       err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
+       if (err->csrow < 0) {
+               err->err_code = ERR_CSROW;
+               return;
+       }
+
+       /*
+        * We need the syndromes for channel detection only when we're
+        * ganged. Otherwise @chan should already contain the channel at
+        * this point.
+        */
+       if (dct_ganging_enabled(pvt))
+               err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
+}
+
+/*
+ * debug routine to display the memory sizes of all logical DIMMs and its
+ * CSROWs
+ */
+static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
+{
+       int dimm, size0, size1;
+       u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
+       u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
+
+       if (pvt->fam == 0xf) {
+               /* K8 families < revF not supported yet */
+              if (pvt->ext_model < K8_REV_F)
+                       return;
+              else
+                      WARN_ON(ctrl != 0);
+       }
+
+       if (pvt->fam == 0x10) {
+               dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
+                                                          : pvt->dbam0;
+               dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
+                                pvt->csels[1].csbases :
+                                pvt->csels[0].csbases;
+       } else if (ctrl) {
+               dbam = pvt->dbam0;
+               dcsb = pvt->csels[1].csbases;
+       }
+       edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
+                ctrl, dbam);
+
+       edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
+
+       /* Dump memory sizes for DIMM and its CSROWs */
+       for (dimm = 0; dimm < 4; dimm++) {
+
+               size0 = 0;
+               if (dcsb[dimm*2] & DCSB_CS_ENABLE)
+                       /* For f15m60h, need multiplier for LRDIMM cs_size
+                        * calculation. We pass 'dimm' value to the dbam_to_cs
+                        * mapper so we can find the multiplier from the
+                        * corresponding DCSM.
+                        */
+                       size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
+                                                    DBAM_DIMM(dimm, dbam),
+                                                    dimm);
+
+               size1 = 0;
+               if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
+                       size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
+                                                    DBAM_DIMM(dimm, dbam),
+                                                    dimm);
+
+               amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
+                               dimm * 2,     size0,
+                               dimm * 2 + 1, size1);
+       }
+}
+
+static struct amd64_family_type family_types[] = {
+       [K8_CPUS] = {
+               .ctl_name = "K8",
+               .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
+               .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
+               .ops = {
+                       .early_channel_count    = k8_early_channel_count,
+                       .map_sysaddr_to_csrow   = k8_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = k8_dbam_to_chip_select,
+               }
+       },
+       [F10_CPUS] = {
+               .ctl_name = "F10h",
+               .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
+               .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
+               .ops = {
+                       .early_channel_count    = f1x_early_channel_count,
+                       .map_sysaddr_to_csrow   = f1x_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f10_dbam_to_chip_select,
+               }
+       },
+       [F15_CPUS] = {
+               .ctl_name = "F15h",
+               .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
+               .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
+               .ops = {
+                       .early_channel_count    = f1x_early_channel_count,
+                       .map_sysaddr_to_csrow   = f1x_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f15_dbam_to_chip_select,
+               }
+       },
+       [F15_M30H_CPUS] = {
+               .ctl_name = "F15h_M30h",
+               .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
+               .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
+               .ops = {
+                       .early_channel_count    = f1x_early_channel_count,
+                       .map_sysaddr_to_csrow   = f1x_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f16_dbam_to_chip_select,
+               }
+       },
+       [F15_M60H_CPUS] = {
+               .ctl_name = "F15h_M60h",
+               .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
+               .f3_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F3,
+               .ops = {
+                       .early_channel_count    = f1x_early_channel_count,
+                       .map_sysaddr_to_csrow   = f1x_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f15_m60h_dbam_to_chip_select,
+               }
+       },
+       [F16_CPUS] = {
+               .ctl_name = "F16h",
+               .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
+               .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
+               .ops = {
+                       .early_channel_count    = f1x_early_channel_count,
+                       .map_sysaddr_to_csrow   = f1x_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f16_dbam_to_chip_select,
+               }
+       },
+       [F16_M30H_CPUS] = {
+               .ctl_name = "F16h_M30h",
+               .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
+               .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
+               .ops = {
+                       .early_channel_count    = f1x_early_channel_count,
+                       .map_sysaddr_to_csrow   = f1x_map_sysaddr_to_csrow,
+                       .dbam_to_cs             = f16_dbam_to_chip_select,
+               }
+       },
+};
+
+/*
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
+ *
+ * Algorithm courtesy of Ross LaFetra from AMD.
+ */
+static const u16 x4_vectors[] = {
+       0x2f57, 0x1afe, 0x66cc, 0xdd88,
+       0x11eb, 0x3396, 0x7f4c, 0xeac8,
+       0x0001, 0x0002, 0x0004, 0x0008,
+       0x1013, 0x3032, 0x4044, 0x8088,
+       0x106b, 0x30d6, 0x70fc, 0xe0a8,
+       0x4857, 0xc4fe, 0x13cc, 0x3288,
+       0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+       0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+       0x15c1, 0x2a42, 0x89ac, 0x4758,
+       0x2b03, 0x1602, 0x4f0c, 0xca08,
+       0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+       0x8ba7, 0x465e, 0x244c, 0x1cc8,
+       0x2b87, 0x164e, 0x642c, 0xdc18,
+       0x40b9, 0x80de, 0x1094, 0x20e8,
+       0x27db, 0x1eb6, 0x9dac, 0x7b58,
+       0x11c1, 0x2242, 0x84ac, 0x4c58,
+       0x1be5, 0x2d7a, 0x5e34, 0xa718,
+       0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+       0x4c97, 0xc87e, 0x11fc, 0x33a8,
+       0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+       0x16b3, 0x3d62, 0x4f34, 0x8518,
+       0x1e2f, 0x391a, 0x5cac, 0xf858,
+       0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+       0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+       0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+       0x4397, 0xc27e, 0x17fc, 0x3ea8,
+       0x1617, 0x3d3e, 0x6464, 0xb8b8,
+       0x23ff, 0x12aa, 0xab6c, 0x56d8,
+       0x2dfb, 0x1ba6, 0x913c, 0x7328,
+       0x185d, 0x2ca6, 0x7914, 0x9e28,
+       0x171b, 0x3e36, 0x7d7c, 0xebe8,
+       0x4199, 0x82ee, 0x19f4, 0x2e58,
+       0x4807, 0xc40e, 0x130c, 0x3208,
+       0x1905, 0x2e0a, 0x5804, 0xac08,
+       0x213f, 0x132a, 0xadfc, 0x5ba8,
+       0x19a9, 0x2efe, 0xb5cc, 0x6f88,
+};
+
+static const u16 x8_vectors[] = {
+       0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+       0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+       0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+       0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+       0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+       0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+       0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+       0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+       0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+       0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+       0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+       0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+       0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+       0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+       0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+       0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+       0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+       0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+       0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
+                          unsigned v_dim)
+{
+       unsigned int i, err_sym;
+
+       for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+               u16 s = syndrome;
+               unsigned v_idx =  err_sym * v_dim;
+               unsigned v_end = (err_sym + 1) * v_dim;
+
+               /* walk over all 16 bits of the syndrome */
+               for (i = 1; i < (1U << 16); i <<= 1) {
+
+                       /* if bit is set in that eigenvector... */
+                       if (v_idx < v_end && vectors[v_idx] & i) {
+                               u16 ev_comp = vectors[v_idx++];
+
+                               /* ... and bit set in the modified syndrome, */
+                               if (s & i) {
+                                       /* remove it. */
+                                       s ^= ev_comp;
+
+                                       if (!s)
+                                               return err_sym;
+                               }
+
+                       } else if (s & i)
+                               /* can't get to zero, move to next symbol */
+                               break;
+               }
+       }
+
+       edac_dbg(0, "syndrome(%x) not found\n", syndrome);
+       return -1;
+}
+
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+       if (sym_size == 4)
+               switch (err_sym) {
+               case 0x20:
+               case 0x21:
+                       return 0;
+                       break;
+               case 0x22:
+               case 0x23:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 4;
+                       break;
+               }
+       /* x8 symbols */
+       else
+               switch (err_sym) {
+               /* imaginary bits not in a DIMM */
+               case 0x10:
+                       WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+                                         err_sym);
+                       return -1;
+                       break;
+
+               case 0x11:
+                       return 0;
+                       break;
+               case 0x12:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 3;
+                       break;
+               }
+       return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       int err_sym = -1;
+
+       if (pvt->ecc_sym_sz == 8)
+               err_sym = decode_syndrome(syndrome, x8_vectors,
+                                         ARRAY_SIZE(x8_vectors),
+                                         pvt->ecc_sym_sz);
+       else if (pvt->ecc_sym_sz == 4)
+               err_sym = decode_syndrome(syndrome, x4_vectors,
+                                         ARRAY_SIZE(x4_vectors),
+                                         pvt->ecc_sym_sz);
+       else {
+               amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
+               return err_sym;
+       }
+
+       return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
+}
+
+static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
+                           u8 ecc_type)
+{
+       enum hw_event_mc_err_type err_type;
+       const char *string;
+
+       if (ecc_type == 2)
+               err_type = HW_EVENT_ERR_CORRECTED;
+       else if (ecc_type == 1)
+               err_type = HW_EVENT_ERR_UNCORRECTED;
+       else {
+               WARN(1, "Something is rotten in the state of Denmark.\n");
+               return;
+       }
+
+       switch (err->err_code) {
+       case DECODE_OK:
+               string = "";
+               break;
+       case ERR_NODE:
+               string = "Failed to map error addr to a node";
+               break;
+       case ERR_CSROW:
+               string = "Failed to map error addr to a csrow";
+               break;
+       case ERR_CHANNEL:
+               string = "unknown syndrome - possible error reporting race";
+               break;
+       default:
+               string = "WTF error";
+               break;
+       }
+
+       edac_mc_handle_error(err_type, mci, 1,
+                            err->page, err->offset, err->syndrome,
+                            err->csrow, err->channel, -1,
+                            string, "");
+}
+
+static inline void decode_bus_error(int node_id, struct mce *m)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+       u8 ecc_type = (m->status >> 45) & 0x3;
+       u8 xec = XEC(m->status, 0x1f);
+       u16 ec = EC(m->status);
+       u64 sys_addr;
+       struct err_info err;
+
+       mci = edac_mc_find(node_id);
+       if (!mci)
+               return;
+
+       pvt = mci->pvt_info;
+
+       /* Bail out early if this was an 'observed' error */
+       if (PP(ec) == NBSL_PP_OBS)
+               return;
+
+       /* Do only ECC errors */
+       if (xec && xec != F10_NBSL_EXT_ERR_ECC)
+               return;
+
+       memset(&err, 0, sizeof(err));
+
+       sys_addr = get_error_address(pvt, m);
+
+       if (ecc_type == 2)
+               err.syndrome = extract_syndrome(m->status);
+
+       pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
+
+       __log_bus_error(mci, &err, ecc_type);
+}
+
+/*
+ * Use pvt->F2 which contains the F2 CPU PCI device to get the related
+ * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
+ */
+static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
+{
+       /* Reserve the ADDRESS MAP Device */
+       pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
+       if (!pvt->F1) {
+               amd64_err("error address map device not found: "
+                         "vendor %x device 0x%x (broken BIOS?)\n",
+                         PCI_VENDOR_ID_AMD, f1_id);
+               return -ENODEV;
+       }
+
+       /* Reserve the MISC Device */
+       pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
+       if (!pvt->F3) {
+               pci_dev_put(pvt->F1);
+               pvt->F1 = NULL;
+
+               amd64_err("error F3 device not found: "
+                         "vendor %x device 0x%x (broken BIOS?)\n",
+                         PCI_VENDOR_ID_AMD, f3_id);
+
+               return -ENODEV;
+       }
+       edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
+       edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
+       edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
+
+       return 0;
+}
+
+static void free_mc_sibling_devs(struct amd64_pvt *pvt)
+{
+       pci_dev_put(pvt->F1);
+       pci_dev_put(pvt->F3);
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller (this includes the
+ * 'Address Map' and 'Misc' device regs)
+ */
+static void read_mc_regs(struct amd64_pvt *pvt)
+{
+       unsigned range;
+       u64 msr_val;
+       u32 tmp;
+
+       /*
+        * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
+        * those are Read-As-Zero
+        */
+       rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
+       edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
+
+       /* check first whether TOP_MEM2 is enabled */
+       rdmsrl(MSR_K8_SYSCFG, msr_val);
+       if (msr_val & (1U << 21)) {
+               rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
+               edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
+       } else
+               edac_dbg(0, "  TOP_MEM2 disabled\n");
+
+       amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
+
+       read_dram_ctl_register(pvt);
+
+       for (range = 0; range < DRAM_RANGES; range++) {
+               u8 rw;
+
+               /* read settings for this DRAM range */
+               read_dram_base_limit_regs(pvt, range);
+
+               rw = dram_rw(pvt, range);
+               if (!rw)
+                       continue;
+
+               edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
+                        range,
+                        get_dram_base(pvt, range),
+                        get_dram_limit(pvt, range));
+
+               edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
+                        dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
+                        (rw & 0x1) ? "R" : "-",
+                        (rw & 0x2) ? "W" : "-",
+                        dram_intlv_sel(pvt, range),
+                        dram_dst_node(pvt, range));
+       }
+
+       read_dct_base_mask(pvt);
+
+       amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
+       amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
+
+       amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
+
+       amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
+       amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
+
+       if (!dct_ganging_enabled(pvt)) {
+               amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
+               amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
+       }
+
+       pvt->ecc_sym_sz = 4;
+       determine_memory_type(pvt);
+       edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
+
+       if (pvt->fam >= 0x10) {
+               amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
+               /* F16h has only DCT0, so no need to read dbam1 */
+               if (pvt->fam != 0x16)
+                       amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
+
+               /* F10h, revD and later can do x8 ECC too */
+               if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
+                       pvt->ecc_sym_sz = 8;
+       }
+       dump_misc_regs(pvt);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code
+ *
+ * Input:
+ *     @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
+ *     k8 private pointer to -->
+ *                     DRAM Bank Address mapping register
+ *                     node_id
+ *                     DCL register where dual_channel_active is
+ *
+ * The DBAM register consists of 4 sets of 4 bits each definitions:
+ *
+ * Bits:       CSROWs
+ * 0-3         CSROWs 0 and 1
+ * 4-7         CSROWs 2 and 3
+ * 8-11                CSROWs 4 and 5
+ * 12-15       CSROWs 6 and 7
+ *
+ * Values range from: 0 to 15
+ * The meaning of the values depends on CPU revision and dual-channel state,
+ * see relevant BKDG more info.
+ *
+ * The memory controller provides for total of only 8 CSROWs in its current
+ * architecture. Each "pair" of CSROWs normally represents just one DIMM in
+ * single channel or two (2) DIMMs in dual channel mode.
+ *
+ * The following code logic collapses the various tables for CSROW based on CPU
+ * revision.
+ *
+ * Returns:
+ *     The number of PAGE_SIZE pages on the specified CSROW number it
+ *     encompasses
+ *
+ */
+static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
+{
+       u32 cs_mode, nr_pages;
+       u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
+
+
+       /*
+        * The math on this doesn't look right on the surface because x/2*4 can
+        * be simplified to x*2 but this expression makes use of the fact that
+        * it is integral math where 1/2=0. This intermediate value becomes the
+        * number of bits to shift the DBAM register to extract the proper CSROW
+        * field.
+        */
+       cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
+
+       nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
+                                                          << (20 - PAGE_SHIFT);
+
+       edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
+                   csrow_nr, dct,  cs_mode);
+       edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
+
+       return nr_pages;
+}
+
+/*
+ * Initialize the array of csrow attribute instances, based on the values
+ * from pci config hardware registers.
+ */
+static int init_csrows(struct mem_ctl_info *mci)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       struct csrow_info *csrow;
+       struct dimm_info *dimm;
+       enum edac_type edac_mode;
+       int i, j, empty = 1;
+       int nr_pages = 0;
+       u32 val;
+
+       amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
+
+       pvt->nbcfg = val;
+
+       edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
+                pvt->mc_node_id, val,
+                !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
+
+       /*
+        * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
+        */
+       for_each_chip_select(i, 0, pvt) {
+               bool row_dct0 = !!csrow_enabled(i, 0, pvt);
+               bool row_dct1 = false;
+
+               if (pvt->fam != 0xf)
+                       row_dct1 = !!csrow_enabled(i, 1, pvt);
+
+               if (!row_dct0 && !row_dct1)
+                       continue;
+
+               csrow = mci->csrows[i];
+               empty = 0;
+
+               edac_dbg(1, "MC node: %d, csrow: %d\n",
+                           pvt->mc_node_id, i);
+
+               if (row_dct0) {
+                       nr_pages = get_csrow_nr_pages(pvt, 0, i);
+                       csrow->channels[0]->dimm->nr_pages = nr_pages;
+               }
+
+               /* K8 has only one DCT */
+               if (pvt->fam != 0xf && row_dct1) {
+                       int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
+
+                       csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
+                       nr_pages += row_dct1_pages;
+               }
+
+               edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
+
+               /*
+                * determine whether CHIPKILL or JUST ECC or NO ECC is operating
+                */
+               if (pvt->nbcfg & NBCFG_ECC_ENABLE)
+                       edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
+                                   EDAC_S4ECD4ED : EDAC_SECDED;
+               else
+                       edac_mode = EDAC_NONE;
+
+               for (j = 0; j < pvt->channel_count; j++) {
+                       dimm = csrow->channels[j]->dimm;
+                       dimm->mtype = pvt->dram_type;
+                       dimm->edac_mode = edac_mode;
+               }
+       }
+
+       return empty;
+}
+
+/* get all cores on this DCT */
+static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
+{
+       int cpu;
+
+       for_each_online_cpu(cpu)
+               if (amd_get_nb_id(cpu) == nid)
+                       cpumask_set_cpu(cpu, mask);
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static bool nb_mce_bank_enabled_on_node(u16 nid)
+{
+       cpumask_var_t mask;
+       int cpu, nbe;
+       bool ret = false;
+
+       if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
+               amd64_warn("%s: Error allocating mask\n", __func__);
+               return false;
+       }
+
+       get_cpus_on_this_dct_cpumask(mask, nid);
+
+       rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
+
+       for_each_cpu(cpu, mask) {
+               struct msr *reg = per_cpu_ptr(msrs, cpu);
+               nbe = reg->l & MSR_MCGCTL_NBE;
+
+               edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+                        cpu, reg->q,
+                        (nbe ? "enabled" : "disabled"));
+
+               if (!nbe)
+                       goto out;
+       }
+       ret = true;
+
+out:
+       free_cpumask_var(mask);
+       return ret;
+}
+
+static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
+{
+       cpumask_var_t cmask;
+       int cpu;
+
+       if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
+               amd64_warn("%s: error allocating mask\n", __func__);
+               return false;
+       }
+
+       get_cpus_on_this_dct_cpumask(cmask, nid);
+
+       rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+       for_each_cpu(cpu, cmask) {
+
+               struct msr *reg = per_cpu_ptr(msrs, cpu);
+
+               if (on) {
+                       if (reg->l & MSR_MCGCTL_NBE)
+                               s->flags.nb_mce_enable = 1;
+
+                       reg->l |= MSR_MCGCTL_NBE;
+               } else {
+                       /*
+                        * Turn off NB MCE reporting only when it was off before
+                        */
+                       if (!s->flags.nb_mce_enable)
+                               reg->l &= ~MSR_MCGCTL_NBE;
+               }
+       }
+       wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+       free_cpumask_var(cmask);
+
+       return 0;
+}
+
+static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
+                                      struct pci_dev *F3)
+{
+       bool ret = true;
+       u32 value, mask = 0x3;          /* UECC/CECC enable */
+
+       if (toggle_ecc_err_reporting(s, nid, ON)) {
+               amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
+               return false;
+       }
+
+       amd64_read_pci_cfg(F3, NBCTL, &value);
+
+       s->old_nbctl   = value & mask;
+       s->nbctl_valid = true;
+
+       value |= mask;
+       amd64_write_pci_cfg(F3, NBCTL, value);
+
+       amd64_read_pci_cfg(F3, NBCFG, &value);
+
+       edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
+                nid, value, !!(value & NBCFG_ECC_ENABLE));
+
+       if (!(value & NBCFG_ECC_ENABLE)) {
+               amd64_warn("DRAM ECC disabled on this node, enabling...\n");
+
+               s->flags.nb_ecc_prev = 0;
+
+               /* Attempt to turn on DRAM ECC Enable */
+               value |= NBCFG_ECC_ENABLE;
+               amd64_write_pci_cfg(F3, NBCFG, value);
+
+               amd64_read_pci_cfg(F3, NBCFG, &value);
+
+               if (!(value & NBCFG_ECC_ENABLE)) {
+                       amd64_warn("Hardware rejected DRAM ECC enable,"
+                                  "check memory DIMM configuration.\n");
+                       ret = false;
+               } else {
+                       amd64_info("Hardware accepted DRAM ECC Enable\n");
+               }
+       } else {
+               s->flags.nb_ecc_prev = 1;
+       }
+
+       edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
+                nid, value, !!(value & NBCFG_ECC_ENABLE));
+
+       return ret;
+}
+
+static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
+                                       struct pci_dev *F3)
+{
+       u32 value, mask = 0x3;          /* UECC/CECC enable */
+
+
+       if (!s->nbctl_valid)
+               return;
+
+       amd64_read_pci_cfg(F3, NBCTL, &value);
+       value &= ~mask;
+       value |= s->old_nbctl;
+
+       amd64_write_pci_cfg(F3, NBCTL, value);
+
+       /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
+       if (!s->flags.nb_ecc_prev) {
+               amd64_read_pci_cfg(F3, NBCFG, &value);
+               value &= ~NBCFG_ECC_ENABLE;
+               amd64_write_pci_cfg(F3, NBCFG, value);
+       }
+
+       /* restore the NB Enable MCGCTL bit */
+       if (toggle_ecc_err_reporting(s, nid, OFF))
+               amd64_warn("Error restoring NB MCGCTL settings!\n");
+}
+
+/*
+ * EDAC requires that the BIOS have ECC enabled before
+ * taking over the processing of ECC errors. A command line
+ * option allows to force-enable hardware ECC later in
+ * enable_ecc_error_reporting().
+ */
+static const char *ecc_msg =
+       "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
+       " Either enable ECC checking or force module loading by setting "
+       "'ecc_enable_override'.\n"
+       " (Note that use of the override may cause unknown side effects.)\n";
+
+static bool ecc_enabled(struct pci_dev *F3, u16 nid)
+{
+       u32 value;
+       u8 ecc_en = 0;
+       bool nb_mce_en = false;
+
+       amd64_read_pci_cfg(F3, NBCFG, &value);
+
+       ecc_en = !!(value & NBCFG_ECC_ENABLE);
+       amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
+
+       nb_mce_en = nb_mce_bank_enabled_on_node(nid);
+       if (!nb_mce_en)
+               amd64_notice("NB MCE bank disabled, set MSR "
+                            "0x%08x[4] on node %d to enable.\n",
+                            MSR_IA32_MCG_CTL, nid);
+
+       if (!ecc_en || !nb_mce_en) {
+               amd64_notice("%s", ecc_msg);
+               return false;
+       }
+       return true;
+}
+
+static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
+                                struct amd64_family_type *fam)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+
+       mci->mtype_cap          = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
+       mci->edac_ctl_cap       = EDAC_FLAG_NONE;
+
+       if (pvt->nbcap & NBCAP_SECDED)
+               mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+       if (pvt->nbcap & NBCAP_CHIPKILL)
+               mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+
+       mci->edac_cap           = determine_edac_cap(pvt);
+       mci->mod_name           = EDAC_MOD_STR;
+       mci->mod_ver            = EDAC_AMD64_VERSION;
+       mci->ctl_name           = fam->ctl_name;
+       mci->dev_name           = pci_name(pvt->F2);
+       mci->ctl_page_to_phys   = NULL;
+
+       /* memory scrubber interface */
+       mci->set_sdram_scrub_rate = set_scrub_rate;
+       mci->get_sdram_scrub_rate = get_scrub_rate;
+}
+
+/*
+ * returns a pointer to the family descriptor on success, NULL otherwise.
+ */
+static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
+{
+       struct amd64_family_type *fam_type = NULL;
+
+       pvt->ext_model  = boot_cpu_data.x86_model >> 4;
+       pvt->stepping   = boot_cpu_data.x86_mask;
+       pvt->model      = boot_cpu_data.x86_model;
+       pvt->fam        = boot_cpu_data.x86;
+
+       switch (pvt->fam) {
+       case 0xf:
+               fam_type        = &family_types[K8_CPUS];
+               pvt->ops        = &family_types[K8_CPUS].ops;
+               break;
+
+       case 0x10:
+               fam_type        = &family_types[F10_CPUS];
+               pvt->ops        = &family_types[F10_CPUS].ops;
+               break;
+
+       case 0x15:
+               if (pvt->model == 0x30) {
+                       fam_type = &family_types[F15_M30H_CPUS];
+                       pvt->ops = &family_types[F15_M30H_CPUS].ops;
+                       break;
+               } else if (pvt->model == 0x60) {
+                       fam_type = &family_types[F15_M60H_CPUS];
+                       pvt->ops = &family_types[F15_M60H_CPUS].ops;
+                       break;
+               }
+
+               fam_type        = &family_types[F15_CPUS];
+               pvt->ops        = &family_types[F15_CPUS].ops;
+               break;
+
+       case 0x16:
+               if (pvt->model == 0x30) {
+                       fam_type = &family_types[F16_M30H_CPUS];
+                       pvt->ops = &family_types[F16_M30H_CPUS].ops;
+                       break;
+               }
+               fam_type        = &family_types[F16_CPUS];
+               pvt->ops        = &family_types[F16_CPUS].ops;
+               break;
+
+       default:
+               amd64_err("Unsupported family!\n");
+               return NULL;
+       }
+
+       amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
+                    (pvt->fam == 0xf ?
+                               (pvt->ext_model >= K8_REV_F  ? "revF or later "
+                                                            : "revE or earlier ")
+                                : ""), pvt->mc_node_id);
+       return fam_type;
+}
+
+static const struct attribute_group *amd64_edac_attr_groups[] = {
+#ifdef CONFIG_EDAC_DEBUG
+       &amd64_edac_dbg_group,
+#endif
+#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
+       &amd64_edac_inj_group,
+#endif
+       NULL
+};
+
+static int init_one_instance(struct pci_dev *F2)
+{
+       struct amd64_pvt *pvt = NULL;
+       struct amd64_family_type *fam_type = NULL;
+       struct mem_ctl_info *mci = NULL;
+       struct edac_mc_layer layers[2];
+       int err = 0, ret;
+       u16 nid = amd_get_node_id(F2);
+
+       ret = -ENOMEM;
+       pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
+       if (!pvt)
+               goto err_ret;
+
+       pvt->mc_node_id = nid;
+       pvt->F2 = F2;
+
+       ret = -EINVAL;
+       fam_type = per_family_init(pvt);
+       if (!fam_type)
+               goto err_free;
+
+       ret = -ENODEV;
+       err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
+       if (err)
+               goto err_free;
+
+       read_mc_regs(pvt);
+
+       /*
+        * We need to determine how many memory channels there are. Then use
+        * that information for calculating the size of the dynamic instance
+        * tables in the 'mci' structure.
+        */
+       ret = -EINVAL;
+       pvt->channel_count = pvt->ops->early_channel_count(pvt);
+       if (pvt->channel_count < 0)
+               goto err_siblings;
+
+       ret = -ENOMEM;
+       layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
+       layers[0].size = pvt->csels[0].b_cnt;
+       layers[0].is_virt_csrow = true;
+       layers[1].type = EDAC_MC_LAYER_CHANNEL;
+
+       /*
+        * Always allocate two channels since we can have setups with DIMMs on
+        * only one channel. Also, this simplifies handling later for the price
+        * of a couple of KBs tops.
+        */
+       layers[1].size = 2;
+       layers[1].is_virt_csrow = false;
+
+       mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
+       if (!mci)
+               goto err_siblings;
+
+       mci->pvt_info = pvt;
+       mci->pdev = &pvt->F2->dev;
+
+       setup_mci_misc_attrs(mci, fam_type);
+
+       if (init_csrows(mci))
+               mci->edac_cap = EDAC_FLAG_NONE;
+
+       ret = -ENODEV;
+       if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
+               edac_dbg(1, "failed edac_mc_add_mc()\n");
+               goto err_add_mc;
+       }
+
+       /* register stuff with EDAC MCE */
+       if (report_gart_errors)
+               amd_report_gart_errors(true);
+
+       amd_register_ecc_decoder(decode_bus_error);
+
+       atomic_inc(&drv_instances);
+
+       return 0;
+
+err_add_mc:
+       edac_mc_free(mci);
+
+err_siblings:
+       free_mc_sibling_devs(pvt);
+
+err_free:
+       kfree(pvt);
+
+err_ret:
+       return ret;
+}
+
+static int probe_one_instance(struct pci_dev *pdev,
+                             const struct pci_device_id *mc_type)
+{
+       u16 nid = amd_get_node_id(pdev);
+       struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
+       struct ecc_settings *s;
+       int ret = 0;
+
+       ret = pci_enable_device(pdev);
+       if (ret < 0) {
+               edac_dbg(0, "ret=%d\n", ret);
+               return -EIO;
+       }
+
+       ret = -ENOMEM;
+       s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
+       if (!s)
+               goto err_out;
+
+       ecc_stngs[nid] = s;
+
+       if (!ecc_enabled(F3, nid)) {
+               ret = -ENODEV;
+
+               if (!ecc_enable_override)
+                       goto err_enable;
+
+               amd64_warn("Forcing ECC on!\n");
+
+               if (!enable_ecc_error_reporting(s, nid, F3))
+                       goto err_enable;
+       }
+
+       ret = init_one_instance(pdev);
+       if (ret < 0) {
+               amd64_err("Error probing instance: %d\n", nid);
+               restore_ecc_error_reporting(s, nid, F3);
+       }
+
+       return ret;
+
+err_enable:
+       kfree(s);
+       ecc_stngs[nid] = NULL;
+
+err_out:
+       return ret;
+}
+
+static void remove_one_instance(struct pci_dev *pdev)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+       u16 nid = amd_get_node_id(pdev);
+       struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
+       struct ecc_settings *s = ecc_stngs[nid];
+
+       mci = find_mci_by_dev(&pdev->dev);
+       WARN_ON(!mci);
+
+       /* Remove from EDAC CORE tracking list */
+       mci = edac_mc_del_mc(&pdev->dev);
+       if (!mci)
+               return;
+
+       pvt = mci->pvt_info;
+
+       restore_ecc_error_reporting(s, nid, F3);
+
+       free_mc_sibling_devs(pvt);
+
+       /* unregister from EDAC MCE */
+       amd_report_gart_errors(false);
+       amd_unregister_ecc_decoder(decode_bus_error);
+
+       kfree(ecc_stngs[nid]);
+       ecc_stngs[nid] = NULL;
+
+       /* Free the EDAC CORE resources */
+       mci->pvt_info = NULL;
+
+       kfree(pvt);
+       edac_mc_free(mci);
+}
+
+/*
+ * This table is part of the interface for loading drivers for PCI devices. The
+ * PCI core identifies what devices are on a system during boot, and then
+ * inquiry this table to see if this driver is for a given device found.
+ */
+static const struct pci_device_id amd64_pci_table[] = {
+       { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL) },
+       { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_DRAM) },
+       { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F2) },
+       { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2) },
+       { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2) },
+       { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F2) },
+       { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2) },
+       {0, }
+};
+MODULE_DEVICE_TABLE(pci, amd64_pci_table);
+
+static struct pci_driver amd64_pci_driver = {
+       .name           = EDAC_MOD_STR,
+       .probe          = probe_one_instance,
+       .remove         = remove_one_instance,
+       .id_table       = amd64_pci_table,
+};
+
+static void setup_pci_device(void)
+{
+       struct mem_ctl_info *mci;
+       struct amd64_pvt *pvt;
+
+       if (pci_ctl)
+               return;
+
+       mci = edac_mc_find(0);
+       if (!mci)
+               return;
+
+       pvt = mci->pvt_info;
+       pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
+       if (!pci_ctl) {
+               pr_warn("%s(): Unable to create PCI control\n", __func__);
+               pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
+       }
+}
+
+static int __init amd64_edac_init(void)
+{
+       int err = -ENODEV;
+
+       printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
+
+       opstate_init();
+
+       if (amd_cache_northbridges() < 0)
+               goto err_ret;
+
+       err = -ENOMEM;
+       ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
+       if (!ecc_stngs)
+               goto err_free;
+
+       msrs = msrs_alloc();
+       if (!msrs)
+               goto err_free;
+
+       err = pci_register_driver(&amd64_pci_driver);
+       if (err)
+               goto err_pci;
+
+       err = -ENODEV;
+       if (!atomic_read(&drv_instances))
+               goto err_no_instances;
+
+       setup_pci_device();
+
+#ifdef CONFIG_X86_32
+       amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
+#endif
+
+       return 0;
+
+err_no_instances:
+       pci_unregister_driver(&amd64_pci_driver);
+
+err_pci:
+       msrs_free(msrs);
+       msrs = NULL;
+
+err_free:
+       kfree(ecc_stngs);
+       ecc_stngs = NULL;
+
+err_ret:
+       return err;
+}
+
+static void __exit amd64_edac_exit(void)
+{
+       if (pci_ctl)
+               edac_pci_release_generic_ctl(pci_ctl);
+
+       pci_unregister_driver(&amd64_pci_driver);
+
+       kfree(ecc_stngs);
+       ecc_stngs = NULL;
+
+       msrs_free(msrs);
+       msrs = NULL;
+}
+
+module_init(amd64_edac_init);
+module_exit(amd64_edac_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
+               "Dave Peterson, Thayne Harbaugh");
+MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
+               EDAC_AMD64_VERSION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");