Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / block / blk-core.c
diff --git a/kernel/block/blk-core.c b/kernel/block/blk-core.c
new file mode 100644 (file)
index 0000000..4e7dded
--- /dev/null
@@ -0,0 +1,3361 @@
+/*
+ * Copyright (C) 1991, 1992 Linus Torvalds
+ * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
+ * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
+ * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
+ * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
+ *     -  July2000
+ * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
+ */
+
+/*
+ * This handles all read/write requests to block devices
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/backing-dev.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/blk-mq.h>
+#include <linux/highmem.h>
+#include <linux/mm.h>
+#include <linux/kernel_stat.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/completion.h>
+#include <linux/slab.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/task_io_accounting_ops.h>
+#include <linux/fault-inject.h>
+#include <linux/list_sort.h>
+#include <linux/delay.h>
+#include <linux/ratelimit.h>
+#include <linux/pm_runtime.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/block.h>
+
+#include "blk.h"
+#include "blk-cgroup.h"
+#include "blk-mq.h"
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
+EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
+EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
+EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
+EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
+
+DEFINE_IDA(blk_queue_ida);
+
+/*
+ * For the allocated request tables
+ */
+struct kmem_cache *request_cachep = NULL;
+
+/*
+ * For queue allocation
+ */
+struct kmem_cache *blk_requestq_cachep;
+
+/*
+ * Controlling structure to kblockd
+ */
+static struct workqueue_struct *kblockd_workqueue;
+
+void blk_queue_congestion_threshold(struct request_queue *q)
+{
+       int nr;
+
+       nr = q->nr_requests - (q->nr_requests / 8) + 1;
+       if (nr > q->nr_requests)
+               nr = q->nr_requests;
+       q->nr_congestion_on = nr;
+
+       nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
+       if (nr < 1)
+               nr = 1;
+       q->nr_congestion_off = nr;
+}
+
+/**
+ * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
+ * @bdev:      device
+ *
+ * Locates the passed device's request queue and returns the address of its
+ * backing_dev_info.  This function can only be called if @bdev is opened
+ * and the return value is never NULL.
+ */
+struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
+{
+       struct request_queue *q = bdev_get_queue(bdev);
+
+       return &q->backing_dev_info;
+}
+EXPORT_SYMBOL(blk_get_backing_dev_info);
+
+void blk_rq_init(struct request_queue *q, struct request *rq)
+{
+       memset(rq, 0, sizeof(*rq));
+
+       INIT_LIST_HEAD(&rq->queuelist);
+       INIT_LIST_HEAD(&rq->timeout_list);
+#ifdef CONFIG_PREEMPT_RT_FULL
+       INIT_WORK(&rq->work, __blk_mq_complete_request_remote_work);
+#endif
+       rq->cpu = -1;
+       rq->q = q;
+       rq->__sector = (sector_t) -1;
+       INIT_HLIST_NODE(&rq->hash);
+       RB_CLEAR_NODE(&rq->rb_node);
+       rq->cmd = rq->__cmd;
+       rq->cmd_len = BLK_MAX_CDB;
+       rq->tag = -1;
+       rq->start_time = jiffies;
+       set_start_time_ns(rq);
+       rq->part = NULL;
+}
+EXPORT_SYMBOL(blk_rq_init);
+
+static void req_bio_endio(struct request *rq, struct bio *bio,
+                         unsigned int nbytes, int error)
+{
+       if (error)
+               clear_bit(BIO_UPTODATE, &bio->bi_flags);
+       else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
+               error = -EIO;
+
+       if (unlikely(rq->cmd_flags & REQ_QUIET))
+               set_bit(BIO_QUIET, &bio->bi_flags);
+
+       bio_advance(bio, nbytes);
+
+       /* don't actually finish bio if it's part of flush sequence */
+       if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
+               bio_endio(bio, error);
+}
+
+void blk_dump_rq_flags(struct request *rq, char *msg)
+{
+       int bit;
+
+       printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
+               rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
+               (unsigned long long) rq->cmd_flags);
+
+       printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
+              (unsigned long long)blk_rq_pos(rq),
+              blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
+       printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
+              rq->bio, rq->biotail, blk_rq_bytes(rq));
+
+       if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
+               printk(KERN_INFO "  cdb: ");
+               for (bit = 0; bit < BLK_MAX_CDB; bit++)
+                       printk("%02x ", rq->cmd[bit]);
+               printk("\n");
+       }
+}
+EXPORT_SYMBOL(blk_dump_rq_flags);
+
+static void blk_delay_work(struct work_struct *work)
+{
+       struct request_queue *q;
+
+       q = container_of(work, struct request_queue, delay_work.work);
+       spin_lock_irq(q->queue_lock);
+       __blk_run_queue(q);
+       spin_unlock_irq(q->queue_lock);
+}
+
+/**
+ * blk_delay_queue - restart queueing after defined interval
+ * @q:         The &struct request_queue in question
+ * @msecs:     Delay in msecs
+ *
+ * Description:
+ *   Sometimes queueing needs to be postponed for a little while, to allow
+ *   resources to come back. This function will make sure that queueing is
+ *   restarted around the specified time. Queue lock must be held.
+ */
+void blk_delay_queue(struct request_queue *q, unsigned long msecs)
+{
+       if (likely(!blk_queue_dead(q)))
+               queue_delayed_work(kblockd_workqueue, &q->delay_work,
+                                  msecs_to_jiffies(msecs));
+}
+EXPORT_SYMBOL(blk_delay_queue);
+
+/**
+ * blk_start_queue - restart a previously stopped queue
+ * @q:    The &struct request_queue in question
+ *
+ * Description:
+ *   blk_start_queue() will clear the stop flag on the queue, and call
+ *   the request_fn for the queue if it was in a stopped state when
+ *   entered. Also see blk_stop_queue(). Queue lock must be held.
+ **/
+void blk_start_queue(struct request_queue *q)
+{
+       WARN_ON_NONRT(!irqs_disabled());
+
+       queue_flag_clear(QUEUE_FLAG_STOPPED, q);
+       __blk_run_queue(q);
+}
+EXPORT_SYMBOL(blk_start_queue);
+
+/**
+ * blk_stop_queue - stop a queue
+ * @q:    The &struct request_queue in question
+ *
+ * Description:
+ *   The Linux block layer assumes that a block driver will consume all
+ *   entries on the request queue when the request_fn strategy is called.
+ *   Often this will not happen, because of hardware limitations (queue
+ *   depth settings). If a device driver gets a 'queue full' response,
+ *   or if it simply chooses not to queue more I/O at one point, it can
+ *   call this function to prevent the request_fn from being called until
+ *   the driver has signalled it's ready to go again. This happens by calling
+ *   blk_start_queue() to restart queue operations. Queue lock must be held.
+ **/
+void blk_stop_queue(struct request_queue *q)
+{
+       cancel_delayed_work(&q->delay_work);
+       queue_flag_set(QUEUE_FLAG_STOPPED, q);
+}
+EXPORT_SYMBOL(blk_stop_queue);
+
+/**
+ * blk_sync_queue - cancel any pending callbacks on a queue
+ * @q: the queue
+ *
+ * Description:
+ *     The block layer may perform asynchronous callback activity
+ *     on a queue, such as calling the unplug function after a timeout.
+ *     A block device may call blk_sync_queue to ensure that any
+ *     such activity is cancelled, thus allowing it to release resources
+ *     that the callbacks might use. The caller must already have made sure
+ *     that its ->make_request_fn will not re-add plugging prior to calling
+ *     this function.
+ *
+ *     This function does not cancel any asynchronous activity arising
+ *     out of elevator or throttling code. That would require elevator_exit()
+ *     and blkcg_exit_queue() to be called with queue lock initialized.
+ *
+ */
+void blk_sync_queue(struct request_queue *q)
+{
+       del_timer_sync(&q->timeout);
+
+       if (q->mq_ops) {
+               struct blk_mq_hw_ctx *hctx;
+               int i;
+
+               queue_for_each_hw_ctx(q, hctx, i) {
+                       cancel_delayed_work_sync(&hctx->run_work);
+                       cancel_delayed_work_sync(&hctx->delay_work);
+               }
+       } else {
+               cancel_delayed_work_sync(&q->delay_work);
+       }
+}
+EXPORT_SYMBOL(blk_sync_queue);
+
+/**
+ * __blk_run_queue_uncond - run a queue whether or not it has been stopped
+ * @q: The queue to run
+ *
+ * Description:
+ *    Invoke request handling on a queue if there are any pending requests.
+ *    May be used to restart request handling after a request has completed.
+ *    This variant runs the queue whether or not the queue has been
+ *    stopped. Must be called with the queue lock held and interrupts
+ *    disabled. See also @blk_run_queue.
+ */
+inline void __blk_run_queue_uncond(struct request_queue *q)
+{
+       if (unlikely(blk_queue_dead(q)))
+               return;
+
+       /*
+        * Some request_fn implementations, e.g. scsi_request_fn(), unlock
+        * the queue lock internally. As a result multiple threads may be
+        * running such a request function concurrently. Keep track of the
+        * number of active request_fn invocations such that blk_drain_queue()
+        * can wait until all these request_fn calls have finished.
+        */
+       q->request_fn_active++;
+       q->request_fn(q);
+       q->request_fn_active--;
+}
+
+/**
+ * __blk_run_queue - run a single device queue
+ * @q: The queue to run
+ *
+ * Description:
+ *    See @blk_run_queue. This variant must be called with the queue lock
+ *    held and interrupts disabled.
+ */
+void __blk_run_queue(struct request_queue *q)
+{
+       if (unlikely(blk_queue_stopped(q)))
+               return;
+
+       __blk_run_queue_uncond(q);
+}
+EXPORT_SYMBOL(__blk_run_queue);
+
+/**
+ * blk_run_queue_async - run a single device queue in workqueue context
+ * @q: The queue to run
+ *
+ * Description:
+ *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
+ *    of us. The caller must hold the queue lock.
+ */
+void blk_run_queue_async(struct request_queue *q)
+{
+       if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
+               mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
+}
+EXPORT_SYMBOL(blk_run_queue_async);
+
+/**
+ * blk_run_queue - run a single device queue
+ * @q: The queue to run
+ *
+ * Description:
+ *    Invoke request handling on this queue, if it has pending work to do.
+ *    May be used to restart queueing when a request has completed.
+ */
+void blk_run_queue(struct request_queue *q)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(q->queue_lock, flags);
+       __blk_run_queue(q);
+       spin_unlock_irqrestore(q->queue_lock, flags);
+}
+EXPORT_SYMBOL(blk_run_queue);
+
+void blk_put_queue(struct request_queue *q)
+{
+       kobject_put(&q->kobj);
+}
+EXPORT_SYMBOL(blk_put_queue);
+
+/**
+ * __blk_drain_queue - drain requests from request_queue
+ * @q: queue to drain
+ * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
+ *
+ * Drain requests from @q.  If @drain_all is set, all requests are drained.
+ * If not, only ELVPRIV requests are drained.  The caller is responsible
+ * for ensuring that no new requests which need to be drained are queued.
+ */
+static void __blk_drain_queue(struct request_queue *q, bool drain_all)
+       __releases(q->queue_lock)
+       __acquires(q->queue_lock)
+{
+       int i;
+
+       lockdep_assert_held(q->queue_lock);
+
+       while (true) {
+               bool drain = false;
+
+               /*
+                * The caller might be trying to drain @q before its
+                * elevator is initialized.
+                */
+               if (q->elevator)
+                       elv_drain_elevator(q);
+
+               blkcg_drain_queue(q);
+
+               /*
+                * This function might be called on a queue which failed
+                * driver init after queue creation or is not yet fully
+                * active yet.  Some drivers (e.g. fd and loop) get unhappy
+                * in such cases.  Kick queue iff dispatch queue has
+                * something on it and @q has request_fn set.
+                */
+               if (!list_empty(&q->queue_head) && q->request_fn)
+                       __blk_run_queue(q);
+
+               drain |= q->nr_rqs_elvpriv;
+               drain |= q->request_fn_active;
+
+               /*
+                * Unfortunately, requests are queued at and tracked from
+                * multiple places and there's no single counter which can
+                * be drained.  Check all the queues and counters.
+                */
+               if (drain_all) {
+                       struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
+                       drain |= !list_empty(&q->queue_head);
+                       for (i = 0; i < 2; i++) {
+                               drain |= q->nr_rqs[i];
+                               drain |= q->in_flight[i];
+                               if (fq)
+                                   drain |= !list_empty(&fq->flush_queue[i]);
+                       }
+               }
+
+               if (!drain)
+                       break;
+
+               spin_unlock_irq(q->queue_lock);
+
+               msleep(10);
+
+               spin_lock_irq(q->queue_lock);
+       }
+
+       /*
+        * With queue marked dead, any woken up waiter will fail the
+        * allocation path, so the wakeup chaining is lost and we're
+        * left with hung waiters. We need to wake up those waiters.
+        */
+       if (q->request_fn) {
+               struct request_list *rl;
+
+               blk_queue_for_each_rl(rl, q)
+                       for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
+                               wake_up_all(&rl->wait[i]);
+       }
+}
+
+/**
+ * blk_queue_bypass_start - enter queue bypass mode
+ * @q: queue of interest
+ *
+ * In bypass mode, only the dispatch FIFO queue of @q is used.  This
+ * function makes @q enter bypass mode and drains all requests which were
+ * throttled or issued before.  On return, it's guaranteed that no request
+ * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
+ * inside queue or RCU read lock.
+ */
+void blk_queue_bypass_start(struct request_queue *q)
+{
+       spin_lock_irq(q->queue_lock);
+       q->bypass_depth++;
+       queue_flag_set(QUEUE_FLAG_BYPASS, q);
+       spin_unlock_irq(q->queue_lock);
+
+       /*
+        * Queues start drained.  Skip actual draining till init is
+        * complete.  This avoids lenghty delays during queue init which
+        * can happen many times during boot.
+        */
+       if (blk_queue_init_done(q)) {
+               spin_lock_irq(q->queue_lock);
+               __blk_drain_queue(q, false);
+               spin_unlock_irq(q->queue_lock);
+
+               /* ensure blk_queue_bypass() is %true inside RCU read lock */
+               synchronize_rcu();
+       }
+}
+EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
+
+/**
+ * blk_queue_bypass_end - leave queue bypass mode
+ * @q: queue of interest
+ *
+ * Leave bypass mode and restore the normal queueing behavior.
+ */
+void blk_queue_bypass_end(struct request_queue *q)
+{
+       spin_lock_irq(q->queue_lock);
+       if (!--q->bypass_depth)
+               queue_flag_clear(QUEUE_FLAG_BYPASS, q);
+       WARN_ON_ONCE(q->bypass_depth < 0);
+       spin_unlock_irq(q->queue_lock);
+}
+EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
+
+void blk_set_queue_dying(struct request_queue *q)
+{
+       queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
+
+       if (q->mq_ops)
+               blk_mq_wake_waiters(q);
+       else {
+               struct request_list *rl;
+
+               blk_queue_for_each_rl(rl, q) {
+                       if (rl->rq_pool) {
+                               wake_up(&rl->wait[BLK_RW_SYNC]);
+                               wake_up(&rl->wait[BLK_RW_ASYNC]);
+                       }
+               }
+       }
+}
+EXPORT_SYMBOL_GPL(blk_set_queue_dying);
+
+/**
+ * blk_cleanup_queue - shutdown a request queue
+ * @q: request queue to shutdown
+ *
+ * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
+ * put it.  All future requests will be failed immediately with -ENODEV.
+ */
+void blk_cleanup_queue(struct request_queue *q)
+{
+       spinlock_t *lock = q->queue_lock;
+
+       /* mark @q DYING, no new request or merges will be allowed afterwards */
+       mutex_lock(&q->sysfs_lock);
+       blk_set_queue_dying(q);
+       spin_lock_irq(lock);
+
+       /*
+        * A dying queue is permanently in bypass mode till released.  Note
+        * that, unlike blk_queue_bypass_start(), we aren't performing
+        * synchronize_rcu() after entering bypass mode to avoid the delay
+        * as some drivers create and destroy a lot of queues while
+        * probing.  This is still safe because blk_release_queue() will be
+        * called only after the queue refcnt drops to zero and nothing,
+        * RCU or not, would be traversing the queue by then.
+        */
+       q->bypass_depth++;
+       queue_flag_set(QUEUE_FLAG_BYPASS, q);
+
+       queue_flag_set(QUEUE_FLAG_NOMERGES, q);
+       queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
+       queue_flag_set(QUEUE_FLAG_DYING, q);
+       spin_unlock_irq(lock);
+       mutex_unlock(&q->sysfs_lock);
+
+       /*
+        * Drain all requests queued before DYING marking. Set DEAD flag to
+        * prevent that q->request_fn() gets invoked after draining finished.
+        */
+       if (q->mq_ops) {
+               blk_mq_freeze_queue(q);
+               spin_lock_irq(lock);
+       } else {
+               spin_lock_irq(lock);
+               __blk_drain_queue(q, true);
+       }
+       queue_flag_set(QUEUE_FLAG_DEAD, q);
+       spin_unlock_irq(lock);
+
+       /* @q won't process any more request, flush async actions */
+       del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
+       blk_sync_queue(q);
+
+       if (q->mq_ops)
+               blk_mq_free_queue(q);
+
+       spin_lock_irq(lock);
+       if (q->queue_lock != &q->__queue_lock)
+               q->queue_lock = &q->__queue_lock;
+       spin_unlock_irq(lock);
+
+       bdi_destroy(&q->backing_dev_info);
+
+       /* @q is and will stay empty, shutdown and put */
+       blk_put_queue(q);
+}
+EXPORT_SYMBOL(blk_cleanup_queue);
+
+/* Allocate memory local to the request queue */
+static void *alloc_request_struct(gfp_t gfp_mask, void *data)
+{
+       int nid = (int)(long)data;
+       return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
+}
+
+static void free_request_struct(void *element, void *unused)
+{
+       kmem_cache_free(request_cachep, element);
+}
+
+int blk_init_rl(struct request_list *rl, struct request_queue *q,
+               gfp_t gfp_mask)
+{
+       if (unlikely(rl->rq_pool))
+               return 0;
+
+       rl->q = q;
+       rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
+       rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
+       init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
+       init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
+
+       rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
+                                         free_request_struct,
+                                         (void *)(long)q->node, gfp_mask,
+                                         q->node);
+       if (!rl->rq_pool)
+               return -ENOMEM;
+
+       return 0;
+}
+
+void blk_exit_rl(struct request_list *rl)
+{
+       if (rl->rq_pool)
+               mempool_destroy(rl->rq_pool);
+}
+
+struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
+{
+       return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
+}
+EXPORT_SYMBOL(blk_alloc_queue);
+
+struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
+{
+       struct request_queue *q;
+       int err;
+
+       q = kmem_cache_alloc_node(blk_requestq_cachep,
+                               gfp_mask | __GFP_ZERO, node_id);
+       if (!q)
+               return NULL;
+
+       q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
+       if (q->id < 0)
+               goto fail_q;
+
+       q->backing_dev_info.ra_pages =
+                       (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
+       q->backing_dev_info.state = 0;
+       q->backing_dev_info.capabilities = 0;
+       q->backing_dev_info.name = "block";
+       q->node = node_id;
+
+       err = bdi_init(&q->backing_dev_info);
+       if (err)
+               goto fail_id;
+
+       setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
+                   laptop_mode_timer_fn, (unsigned long) q);
+       setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
+       INIT_LIST_HEAD(&q->queue_head);
+       INIT_LIST_HEAD(&q->timeout_list);
+       INIT_LIST_HEAD(&q->icq_list);
+#ifdef CONFIG_BLK_CGROUP
+       INIT_LIST_HEAD(&q->blkg_list);
+#endif
+       INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
+
+       kobject_init(&q->kobj, &blk_queue_ktype);
+
+       mutex_init(&q->sysfs_lock);
+       spin_lock_init(&q->__queue_lock);
+
+       /*
+        * By default initialize queue_lock to internal lock and driver can
+        * override it later if need be.
+        */
+       q->queue_lock = &q->__queue_lock;
+
+       /*
+        * A queue starts its life with bypass turned on to avoid
+        * unnecessary bypass on/off overhead and nasty surprises during
+        * init.  The initial bypass will be finished when the queue is
+        * registered by blk_register_queue().
+        */
+       q->bypass_depth = 1;
+       __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
+
+       init_swait_head(&q->mq_freeze_wq);
+
+       if (blkcg_init_queue(q))
+               goto fail_bdi;
+
+       return q;
+
+fail_bdi:
+       bdi_destroy(&q->backing_dev_info);
+fail_id:
+       ida_simple_remove(&blk_queue_ida, q->id);
+fail_q:
+       kmem_cache_free(blk_requestq_cachep, q);
+       return NULL;
+}
+EXPORT_SYMBOL(blk_alloc_queue_node);
+
+/**
+ * blk_init_queue  - prepare a request queue for use with a block device
+ * @rfn:  The function to be called to process requests that have been
+ *        placed on the queue.
+ * @lock: Request queue spin lock
+ *
+ * Description:
+ *    If a block device wishes to use the standard request handling procedures,
+ *    which sorts requests and coalesces adjacent requests, then it must
+ *    call blk_init_queue().  The function @rfn will be called when there
+ *    are requests on the queue that need to be processed.  If the device
+ *    supports plugging, then @rfn may not be called immediately when requests
+ *    are available on the queue, but may be called at some time later instead.
+ *    Plugged queues are generally unplugged when a buffer belonging to one
+ *    of the requests on the queue is needed, or due to memory pressure.
+ *
+ *    @rfn is not required, or even expected, to remove all requests off the
+ *    queue, but only as many as it can handle at a time.  If it does leave
+ *    requests on the queue, it is responsible for arranging that the requests
+ *    get dealt with eventually.
+ *
+ *    The queue spin lock must be held while manipulating the requests on the
+ *    request queue; this lock will be taken also from interrupt context, so irq
+ *    disabling is needed for it.
+ *
+ *    Function returns a pointer to the initialized request queue, or %NULL if
+ *    it didn't succeed.
+ *
+ * Note:
+ *    blk_init_queue() must be paired with a blk_cleanup_queue() call
+ *    when the block device is deactivated (such as at module unload).
+ **/
+
+struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
+{
+       return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
+}
+EXPORT_SYMBOL(blk_init_queue);
+
+struct request_queue *
+blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
+{
+       struct request_queue *uninit_q, *q;
+
+       uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
+       if (!uninit_q)
+               return NULL;
+
+       q = blk_init_allocated_queue(uninit_q, rfn, lock);
+       if (!q)
+               blk_cleanup_queue(uninit_q);
+
+       return q;
+}
+EXPORT_SYMBOL(blk_init_queue_node);
+
+static void blk_queue_bio(struct request_queue *q, struct bio *bio);
+
+struct request_queue *
+blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
+                        spinlock_t *lock)
+{
+       if (!q)
+               return NULL;
+
+       q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
+       if (!q->fq)
+               return NULL;
+
+       if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
+               goto fail;
+
+       q->request_fn           = rfn;
+       q->prep_rq_fn           = NULL;
+       q->unprep_rq_fn         = NULL;
+       q->queue_flags          |= QUEUE_FLAG_DEFAULT;
+
+       /* Override internal queue lock with supplied lock pointer */
+       if (lock)
+               q->queue_lock           = lock;
+
+       /*
+        * This also sets hw/phys segments, boundary and size
+        */
+       blk_queue_make_request(q, blk_queue_bio);
+
+       q->sg_reserved_size = INT_MAX;
+
+       /* Protect q->elevator from elevator_change */
+       mutex_lock(&q->sysfs_lock);
+
+       /* init elevator */
+       if (elevator_init(q, NULL)) {
+               mutex_unlock(&q->sysfs_lock);
+               goto fail;
+       }
+
+       mutex_unlock(&q->sysfs_lock);
+
+       return q;
+
+fail:
+       blk_free_flush_queue(q->fq);
+       return NULL;
+}
+EXPORT_SYMBOL(blk_init_allocated_queue);
+
+bool blk_get_queue(struct request_queue *q)
+{
+       if (likely(!blk_queue_dying(q))) {
+               __blk_get_queue(q);
+               return true;
+       }
+
+       return false;
+}
+EXPORT_SYMBOL(blk_get_queue);
+
+static inline void blk_free_request(struct request_list *rl, struct request *rq)
+{
+       if (rq->cmd_flags & REQ_ELVPRIV) {
+               elv_put_request(rl->q, rq);
+               if (rq->elv.icq)
+                       put_io_context(rq->elv.icq->ioc);
+       }
+
+       mempool_free(rq, rl->rq_pool);
+}
+
+/*
+ * ioc_batching returns true if the ioc is a valid batching request and
+ * should be given priority access to a request.
+ */
+static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
+{
+       if (!ioc)
+               return 0;
+
+       /*
+        * Make sure the process is able to allocate at least 1 request
+        * even if the batch times out, otherwise we could theoretically
+        * lose wakeups.
+        */
+       return ioc->nr_batch_requests == q->nr_batching ||
+               (ioc->nr_batch_requests > 0
+               && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
+}
+
+/*
+ * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
+ * will cause the process to be a "batcher" on all queues in the system. This
+ * is the behaviour we want though - once it gets a wakeup it should be given
+ * a nice run.
+ */
+static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
+{
+       if (!ioc || ioc_batching(q, ioc))
+               return;
+
+       ioc->nr_batch_requests = q->nr_batching;
+       ioc->last_waited = jiffies;
+}
+
+static void __freed_request(struct request_list *rl, int sync)
+{
+       struct request_queue *q = rl->q;
+
+       /*
+        * bdi isn't aware of blkcg yet.  As all async IOs end up root
+        * blkcg anyway, just use root blkcg state.
+        */
+       if (rl == &q->root_rl &&
+           rl->count[sync] < queue_congestion_off_threshold(q))
+               blk_clear_queue_congested(q, sync);
+
+       if (rl->count[sync] + 1 <= q->nr_requests) {
+               if (waitqueue_active(&rl->wait[sync]))
+                       wake_up(&rl->wait[sync]);
+
+               blk_clear_rl_full(rl, sync);
+       }
+}
+
+/*
+ * A request has just been released.  Account for it, update the full and
+ * congestion status, wake up any waiters.   Called under q->queue_lock.
+ */
+static void freed_request(struct request_list *rl, unsigned int flags)
+{
+       struct request_queue *q = rl->q;
+       int sync = rw_is_sync(flags);
+
+       q->nr_rqs[sync]--;
+       rl->count[sync]--;
+       if (flags & REQ_ELVPRIV)
+               q->nr_rqs_elvpriv--;
+
+       __freed_request(rl, sync);
+
+       if (unlikely(rl->starved[sync ^ 1]))
+               __freed_request(rl, sync ^ 1);
+}
+
+int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
+{
+       struct request_list *rl;
+
+       spin_lock_irq(q->queue_lock);
+       q->nr_requests = nr;
+       blk_queue_congestion_threshold(q);
+
+       /* congestion isn't cgroup aware and follows root blkcg for now */
+       rl = &q->root_rl;
+
+       if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
+               blk_set_queue_congested(q, BLK_RW_SYNC);
+       else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
+               blk_clear_queue_congested(q, BLK_RW_SYNC);
+
+       if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
+               blk_set_queue_congested(q, BLK_RW_ASYNC);
+       else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
+               blk_clear_queue_congested(q, BLK_RW_ASYNC);
+
+       blk_queue_for_each_rl(rl, q) {
+               if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
+                       blk_set_rl_full(rl, BLK_RW_SYNC);
+               } else {
+                       blk_clear_rl_full(rl, BLK_RW_SYNC);
+                       wake_up(&rl->wait[BLK_RW_SYNC]);
+               }
+
+               if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
+                       blk_set_rl_full(rl, BLK_RW_ASYNC);
+               } else {
+                       blk_clear_rl_full(rl, BLK_RW_ASYNC);
+                       wake_up(&rl->wait[BLK_RW_ASYNC]);
+               }
+       }
+
+       spin_unlock_irq(q->queue_lock);
+       return 0;
+}
+
+/*
+ * Determine if elevator data should be initialized when allocating the
+ * request associated with @bio.
+ */
+static bool blk_rq_should_init_elevator(struct bio *bio)
+{
+       if (!bio)
+               return true;
+
+       /*
+        * Flush requests do not use the elevator so skip initialization.
+        * This allows a request to share the flush and elevator data.
+        */
+       if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
+               return false;
+
+       return true;
+}
+
+/**
+ * rq_ioc - determine io_context for request allocation
+ * @bio: request being allocated is for this bio (can be %NULL)
+ *
+ * Determine io_context to use for request allocation for @bio.  May return
+ * %NULL if %current->io_context doesn't exist.
+ */
+static struct io_context *rq_ioc(struct bio *bio)
+{
+#ifdef CONFIG_BLK_CGROUP
+       if (bio && bio->bi_ioc)
+               return bio->bi_ioc;
+#endif
+       return current->io_context;
+}
+
+/**
+ * __get_request - get a free request
+ * @rl: request list to allocate from
+ * @rw_flags: RW and SYNC flags
+ * @bio: bio to allocate request for (can be %NULL)
+ * @gfp_mask: allocation mask
+ *
+ * Get a free request from @q.  This function may fail under memory
+ * pressure or if @q is dead.
+ *
+ * Must be called with @q->queue_lock held and,
+ * Returns ERR_PTR on failure, with @q->queue_lock held.
+ * Returns request pointer on success, with @q->queue_lock *not held*.
+ */
+static struct request *__get_request(struct request_list *rl, int rw_flags,
+                                    struct bio *bio, gfp_t gfp_mask)
+{
+       struct request_queue *q = rl->q;
+       struct request *rq;
+       struct elevator_type *et = q->elevator->type;
+       struct io_context *ioc = rq_ioc(bio);
+       struct io_cq *icq = NULL;
+       const bool is_sync = rw_is_sync(rw_flags) != 0;
+       int may_queue;
+
+       if (unlikely(blk_queue_dying(q)))
+               return ERR_PTR(-ENODEV);
+
+       may_queue = elv_may_queue(q, rw_flags);
+       if (may_queue == ELV_MQUEUE_NO)
+               goto rq_starved;
+
+       if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
+               if (rl->count[is_sync]+1 >= q->nr_requests) {
+                       /*
+                        * The queue will fill after this allocation, so set
+                        * it as full, and mark this process as "batching".
+                        * This process will be allowed to complete a batch of
+                        * requests, others will be blocked.
+                        */
+                       if (!blk_rl_full(rl, is_sync)) {
+                               ioc_set_batching(q, ioc);
+                               blk_set_rl_full(rl, is_sync);
+                       } else {
+                               if (may_queue != ELV_MQUEUE_MUST
+                                               && !ioc_batching(q, ioc)) {
+                                       /*
+                                        * The queue is full and the allocating
+                                        * process is not a "batcher", and not
+                                        * exempted by the IO scheduler
+                                        */
+                                       return ERR_PTR(-ENOMEM);
+                               }
+                       }
+               }
+               /*
+                * bdi isn't aware of blkcg yet.  As all async IOs end up
+                * root blkcg anyway, just use root blkcg state.
+                */
+               if (rl == &q->root_rl)
+                       blk_set_queue_congested(q, is_sync);
+       }
+
+       /*
+        * Only allow batching queuers to allocate up to 50% over the defined
+        * limit of requests, otherwise we could have thousands of requests
+        * allocated with any setting of ->nr_requests
+        */
+       if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
+               return ERR_PTR(-ENOMEM);
+
+       q->nr_rqs[is_sync]++;
+       rl->count[is_sync]++;
+       rl->starved[is_sync] = 0;
+
+       /*
+        * Decide whether the new request will be managed by elevator.  If
+        * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
+        * prevent the current elevator from being destroyed until the new
+        * request is freed.  This guarantees icq's won't be destroyed and
+        * makes creating new ones safe.
+        *
+        * Also, lookup icq while holding queue_lock.  If it doesn't exist,
+        * it will be created after releasing queue_lock.
+        */
+       if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
+               rw_flags |= REQ_ELVPRIV;
+               q->nr_rqs_elvpriv++;
+               if (et->icq_cache && ioc)
+                       icq = ioc_lookup_icq(ioc, q);
+       }
+
+       if (blk_queue_io_stat(q))
+               rw_flags |= REQ_IO_STAT;
+       spin_unlock_irq(q->queue_lock);
+
+       /* allocate and init request */
+       rq = mempool_alloc(rl->rq_pool, gfp_mask);
+       if (!rq)
+               goto fail_alloc;
+
+       blk_rq_init(q, rq);
+       blk_rq_set_rl(rq, rl);
+       rq->cmd_flags = rw_flags | REQ_ALLOCED;
+
+       /* init elvpriv */
+       if (rw_flags & REQ_ELVPRIV) {
+               if (unlikely(et->icq_cache && !icq)) {
+                       if (ioc)
+                               icq = ioc_create_icq(ioc, q, gfp_mask);
+                       if (!icq)
+                               goto fail_elvpriv;
+               }
+
+               rq->elv.icq = icq;
+               if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
+                       goto fail_elvpriv;
+
+               /* @rq->elv.icq holds io_context until @rq is freed */
+               if (icq)
+                       get_io_context(icq->ioc);
+       }
+out:
+       /*
+        * ioc may be NULL here, and ioc_batching will be false. That's
+        * OK, if the queue is under the request limit then requests need
+        * not count toward the nr_batch_requests limit. There will always
+        * be some limit enforced by BLK_BATCH_TIME.
+        */
+       if (ioc_batching(q, ioc))
+               ioc->nr_batch_requests--;
+
+       trace_block_getrq(q, bio, rw_flags & 1);
+       return rq;
+
+fail_elvpriv:
+       /*
+        * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
+        * and may fail indefinitely under memory pressure and thus
+        * shouldn't stall IO.  Treat this request as !elvpriv.  This will
+        * disturb iosched and blkcg but weird is bettern than dead.
+        */
+       printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
+                          __func__, dev_name(q->backing_dev_info.dev));
+
+       rq->cmd_flags &= ~REQ_ELVPRIV;
+       rq->elv.icq = NULL;
+
+       spin_lock_irq(q->queue_lock);
+       q->nr_rqs_elvpriv--;
+       spin_unlock_irq(q->queue_lock);
+       goto out;
+
+fail_alloc:
+       /*
+        * Allocation failed presumably due to memory. Undo anything we
+        * might have messed up.
+        *
+        * Allocating task should really be put onto the front of the wait
+        * queue, but this is pretty rare.
+        */
+       spin_lock_irq(q->queue_lock);
+       freed_request(rl, rw_flags);
+
+       /*
+        * in the very unlikely event that allocation failed and no
+        * requests for this direction was pending, mark us starved so that
+        * freeing of a request in the other direction will notice
+        * us. another possible fix would be to split the rq mempool into
+        * READ and WRITE
+        */
+rq_starved:
+       if (unlikely(rl->count[is_sync] == 0))
+               rl->starved[is_sync] = 1;
+       return ERR_PTR(-ENOMEM);
+}
+
+/**
+ * get_request - get a free request
+ * @q: request_queue to allocate request from
+ * @rw_flags: RW and SYNC flags
+ * @bio: bio to allocate request for (can be %NULL)
+ * @gfp_mask: allocation mask
+ *
+ * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
+ * function keeps retrying under memory pressure and fails iff @q is dead.
+ *
+ * Must be called with @q->queue_lock held and,
+ * Returns ERR_PTR on failure, with @q->queue_lock held.
+ * Returns request pointer on success, with @q->queue_lock *not held*.
+ */
+static struct request *get_request(struct request_queue *q, int rw_flags,
+                                  struct bio *bio, gfp_t gfp_mask)
+{
+       const bool is_sync = rw_is_sync(rw_flags) != 0;
+       DEFINE_WAIT(wait);
+       struct request_list *rl;
+       struct request *rq;
+
+       rl = blk_get_rl(q, bio);        /* transferred to @rq on success */
+retry:
+       rq = __get_request(rl, rw_flags, bio, gfp_mask);
+       if (!IS_ERR(rq))
+               return rq;
+
+       if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
+               blk_put_rl(rl);
+               return rq;
+       }
+
+       /* wait on @rl and retry */
+       prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
+                                 TASK_UNINTERRUPTIBLE);
+
+       trace_block_sleeprq(q, bio, rw_flags & 1);
+
+       spin_unlock_irq(q->queue_lock);
+       io_schedule();
+
+       /*
+        * After sleeping, we become a "batching" process and will be able
+        * to allocate at least one request, and up to a big batch of them
+        * for a small period time.  See ioc_batching, ioc_set_batching
+        */
+       ioc_set_batching(q, current->io_context);
+
+       spin_lock_irq(q->queue_lock);
+       finish_wait(&rl->wait[is_sync], &wait);
+
+       goto retry;
+}
+
+static struct request *blk_old_get_request(struct request_queue *q, int rw,
+               gfp_t gfp_mask)
+{
+       struct request *rq;
+
+       BUG_ON(rw != READ && rw != WRITE);
+
+       /* create ioc upfront */
+       create_io_context(gfp_mask, q->node);
+
+       spin_lock_irq(q->queue_lock);
+       rq = get_request(q, rw, NULL, gfp_mask);
+       if (IS_ERR(rq))
+               spin_unlock_irq(q->queue_lock);
+       /* q->queue_lock is unlocked at this point */
+
+       return rq;
+}
+
+struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
+{
+       if (q->mq_ops)
+               return blk_mq_alloc_request(q, rw, gfp_mask, false);
+       else
+               return blk_old_get_request(q, rw, gfp_mask);
+}
+EXPORT_SYMBOL(blk_get_request);
+
+/**
+ * blk_make_request - given a bio, allocate a corresponding struct request.
+ * @q: target request queue
+ * @bio:  The bio describing the memory mappings that will be submitted for IO.
+ *        It may be a chained-bio properly constructed by block/bio layer.
+ * @gfp_mask: gfp flags to be used for memory allocation
+ *
+ * blk_make_request is the parallel of generic_make_request for BLOCK_PC
+ * type commands. Where the struct request needs to be farther initialized by
+ * the caller. It is passed a &struct bio, which describes the memory info of
+ * the I/O transfer.
+ *
+ * The caller of blk_make_request must make sure that bi_io_vec
+ * are set to describe the memory buffers. That bio_data_dir() will return
+ * the needed direction of the request. (And all bio's in the passed bio-chain
+ * are properly set accordingly)
+ *
+ * If called under none-sleepable conditions, mapped bio buffers must not
+ * need bouncing, by calling the appropriate masked or flagged allocator,
+ * suitable for the target device. Otherwise the call to blk_queue_bounce will
+ * BUG.
+ *
+ * WARNING: When allocating/cloning a bio-chain, careful consideration should be
+ * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
+ * anything but the first bio in the chain. Otherwise you risk waiting for IO
+ * completion of a bio that hasn't been submitted yet, thus resulting in a
+ * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
+ * of bio_alloc(), as that avoids the mempool deadlock.
+ * If possible a big IO should be split into smaller parts when allocation
+ * fails. Partial allocation should not be an error, or you risk a live-lock.
+ */
+struct request *blk_make_request(struct request_queue *q, struct bio *bio,
+                                gfp_t gfp_mask)
+{
+       struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
+
+       if (IS_ERR(rq))
+               return rq;
+
+       blk_rq_set_block_pc(rq);
+
+       for_each_bio(bio) {
+               struct bio *bounce_bio = bio;
+               int ret;
+
+               blk_queue_bounce(q, &bounce_bio);
+               ret = blk_rq_append_bio(q, rq, bounce_bio);
+               if (unlikely(ret)) {
+                       blk_put_request(rq);
+                       return ERR_PTR(ret);
+               }
+       }
+
+       return rq;
+}
+EXPORT_SYMBOL(blk_make_request);
+
+/**
+ * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
+ * @rq:                request to be initialized
+ *
+ */
+void blk_rq_set_block_pc(struct request *rq)
+{
+       rq->cmd_type = REQ_TYPE_BLOCK_PC;
+       rq->__data_len = 0;
+       rq->__sector = (sector_t) -1;
+       rq->bio = rq->biotail = NULL;
+       memset(rq->__cmd, 0, sizeof(rq->__cmd));
+}
+EXPORT_SYMBOL(blk_rq_set_block_pc);
+
+/**
+ * blk_requeue_request - put a request back on queue
+ * @q:         request queue where request should be inserted
+ * @rq:                request to be inserted
+ *
+ * Description:
+ *    Drivers often keep queueing requests until the hardware cannot accept
+ *    more, when that condition happens we need to put the request back
+ *    on the queue. Must be called with queue lock held.
+ */
+void blk_requeue_request(struct request_queue *q, struct request *rq)
+{
+       blk_delete_timer(rq);
+       blk_clear_rq_complete(rq);
+       trace_block_rq_requeue(q, rq);
+
+       if (rq->cmd_flags & REQ_QUEUED)
+               blk_queue_end_tag(q, rq);
+
+       BUG_ON(blk_queued_rq(rq));
+
+       elv_requeue_request(q, rq);
+}
+EXPORT_SYMBOL(blk_requeue_request);
+
+static void add_acct_request(struct request_queue *q, struct request *rq,
+                            int where)
+{
+       blk_account_io_start(rq, true);
+       __elv_add_request(q, rq, where);
+}
+
+static void part_round_stats_single(int cpu, struct hd_struct *part,
+                                   unsigned long now)
+{
+       int inflight;
+
+       if (now == part->stamp)
+               return;
+
+       inflight = part_in_flight(part);
+       if (inflight) {
+               __part_stat_add(cpu, part, time_in_queue,
+                               inflight * (now - part->stamp));
+               __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
+       }
+       part->stamp = now;
+}
+
+/**
+ * part_round_stats() - Round off the performance stats on a struct disk_stats.
+ * @cpu: cpu number for stats access
+ * @part: target partition
+ *
+ * The average IO queue length and utilisation statistics are maintained
+ * by observing the current state of the queue length and the amount of
+ * time it has been in this state for.
+ *
+ * Normally, that accounting is done on IO completion, but that can result
+ * in more than a second's worth of IO being accounted for within any one
+ * second, leading to >100% utilisation.  To deal with that, we call this
+ * function to do a round-off before returning the results when reading
+ * /proc/diskstats.  This accounts immediately for all queue usage up to
+ * the current jiffies and restarts the counters again.
+ */
+void part_round_stats(int cpu, struct hd_struct *part)
+{
+       unsigned long now = jiffies;
+
+       if (part->partno)
+               part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
+       part_round_stats_single(cpu, part, now);
+}
+EXPORT_SYMBOL_GPL(part_round_stats);
+
+#ifdef CONFIG_PM
+static void blk_pm_put_request(struct request *rq)
+{
+       if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
+               pm_runtime_mark_last_busy(rq->q->dev);
+}
+#else
+static inline void blk_pm_put_request(struct request *rq) {}
+#endif
+
+/*
+ * queue lock must be held
+ */
+void __blk_put_request(struct request_queue *q, struct request *req)
+{
+       if (unlikely(!q))
+               return;
+
+       if (q->mq_ops) {
+               blk_mq_free_request(req);
+               return;
+       }
+
+       blk_pm_put_request(req);
+
+       elv_completed_request(q, req);
+
+       /* this is a bio leak */
+       WARN_ON(req->bio != NULL);
+
+       /*
+        * Request may not have originated from ll_rw_blk. if not,
+        * it didn't come out of our reserved rq pools
+        */
+       if (req->cmd_flags & REQ_ALLOCED) {
+               unsigned int flags = req->cmd_flags;
+               struct request_list *rl = blk_rq_rl(req);
+
+               BUG_ON(!list_empty(&req->queuelist));
+               BUG_ON(ELV_ON_HASH(req));
+
+               blk_free_request(rl, req);
+               freed_request(rl, flags);
+               blk_put_rl(rl);
+       }
+}
+EXPORT_SYMBOL_GPL(__blk_put_request);
+
+void blk_put_request(struct request *req)
+{
+       struct request_queue *q = req->q;
+
+       if (q->mq_ops)
+               blk_mq_free_request(req);
+       else {
+               unsigned long flags;
+
+               spin_lock_irqsave(q->queue_lock, flags);
+               __blk_put_request(q, req);
+               spin_unlock_irqrestore(q->queue_lock, flags);
+       }
+}
+EXPORT_SYMBOL(blk_put_request);
+
+/**
+ * blk_add_request_payload - add a payload to a request
+ * @rq: request to update
+ * @page: page backing the payload
+ * @len: length of the payload.
+ *
+ * This allows to later add a payload to an already submitted request by
+ * a block driver.  The driver needs to take care of freeing the payload
+ * itself.
+ *
+ * Note that this is a quite horrible hack and nothing but handling of
+ * discard requests should ever use it.
+ */
+void blk_add_request_payload(struct request *rq, struct page *page,
+               unsigned int len)
+{
+       struct bio *bio = rq->bio;
+
+       bio->bi_io_vec->bv_page = page;
+       bio->bi_io_vec->bv_offset = 0;
+       bio->bi_io_vec->bv_len = len;
+
+       bio->bi_iter.bi_size = len;
+       bio->bi_vcnt = 1;
+       bio->bi_phys_segments = 1;
+
+       rq->__data_len = rq->resid_len = len;
+       rq->nr_phys_segments = 1;
+}
+EXPORT_SYMBOL_GPL(blk_add_request_payload);
+
+bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
+                           struct bio *bio)
+{
+       const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
+
+       if (!ll_back_merge_fn(q, req, bio))
+               return false;
+
+       trace_block_bio_backmerge(q, req, bio);
+
+       if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
+               blk_rq_set_mixed_merge(req);
+
+       req->biotail->bi_next = bio;
+       req->biotail = bio;
+       req->__data_len += bio->bi_iter.bi_size;
+       req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
+
+       blk_account_io_start(req, false);
+       return true;
+}
+
+bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
+                            struct bio *bio)
+{
+       const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
+
+       if (!ll_front_merge_fn(q, req, bio))
+               return false;
+
+       trace_block_bio_frontmerge(q, req, bio);
+
+       if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
+               blk_rq_set_mixed_merge(req);
+
+       bio->bi_next = req->bio;
+       req->bio = bio;
+
+       req->__sector = bio->bi_iter.bi_sector;
+       req->__data_len += bio->bi_iter.bi_size;
+       req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
+
+       blk_account_io_start(req, false);
+       return true;
+}
+
+/**
+ * blk_attempt_plug_merge - try to merge with %current's plugged list
+ * @q: request_queue new bio is being queued at
+ * @bio: new bio being queued
+ * @request_count: out parameter for number of traversed plugged requests
+ *
+ * Determine whether @bio being queued on @q can be merged with a request
+ * on %current's plugged list.  Returns %true if merge was successful,
+ * otherwise %false.
+ *
+ * Plugging coalesces IOs from the same issuer for the same purpose without
+ * going through @q->queue_lock.  As such it's more of an issuing mechanism
+ * than scheduling, and the request, while may have elvpriv data, is not
+ * added on the elevator at this point.  In addition, we don't have
+ * reliable access to the elevator outside queue lock.  Only check basic
+ * merging parameters without querying the elevator.
+ *
+ * Caller must ensure !blk_queue_nomerges(q) beforehand.
+ */
+bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
+                           unsigned int *request_count)
+{
+       struct blk_plug *plug;
+       struct request *rq;
+       bool ret = false;
+       struct list_head *plug_list;
+
+       plug = current->plug;
+       if (!plug)
+               goto out;
+       *request_count = 0;
+
+       if (q->mq_ops)
+               plug_list = &plug->mq_list;
+       else
+               plug_list = &plug->list;
+
+       list_for_each_entry_reverse(rq, plug_list, queuelist) {
+               int el_ret;
+
+               if (rq->q == q)
+                       (*request_count)++;
+
+               if (rq->q != q || !blk_rq_merge_ok(rq, bio))
+                       continue;
+
+               el_ret = blk_try_merge(rq, bio);
+               if (el_ret == ELEVATOR_BACK_MERGE) {
+                       ret = bio_attempt_back_merge(q, rq, bio);
+                       if (ret)
+                               break;
+               } else if (el_ret == ELEVATOR_FRONT_MERGE) {
+                       ret = bio_attempt_front_merge(q, rq, bio);
+                       if (ret)
+                               break;
+               }
+       }
+out:
+       return ret;
+}
+
+void init_request_from_bio(struct request *req, struct bio *bio)
+{
+       req->cmd_type = REQ_TYPE_FS;
+
+       req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
+       if (bio->bi_rw & REQ_RAHEAD)
+               req->cmd_flags |= REQ_FAILFAST_MASK;
+
+       req->errors = 0;
+       req->__sector = bio->bi_iter.bi_sector;
+       req->ioprio = bio_prio(bio);
+       blk_rq_bio_prep(req->q, req, bio);
+}
+
+static void blk_queue_bio(struct request_queue *q, struct bio *bio)
+{
+       const bool sync = !!(bio->bi_rw & REQ_SYNC);
+       struct blk_plug *plug;
+       int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
+       struct request *req;
+       unsigned int request_count = 0;
+
+       /*
+        * low level driver can indicate that it wants pages above a
+        * certain limit bounced to low memory (ie for highmem, or even
+        * ISA dma in theory)
+        */
+       blk_queue_bounce(q, &bio);
+
+       if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
+               bio_endio(bio, -EIO);
+               return;
+       }
+
+       if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
+               spin_lock_irq(q->queue_lock);
+               where = ELEVATOR_INSERT_FLUSH;
+               goto get_rq;
+       }
+
+       /*
+        * Check if we can merge with the plugged list before grabbing
+        * any locks.
+        */
+       if (!blk_queue_nomerges(q) &&
+           blk_attempt_plug_merge(q, bio, &request_count))
+               return;
+
+       spin_lock_irq(q->queue_lock);
+
+       el_ret = elv_merge(q, &req, bio);
+       if (el_ret == ELEVATOR_BACK_MERGE) {
+               if (bio_attempt_back_merge(q, req, bio)) {
+                       elv_bio_merged(q, req, bio);
+                       if (!attempt_back_merge(q, req))
+                               elv_merged_request(q, req, el_ret);
+                       goto out_unlock;
+               }
+       } else if (el_ret == ELEVATOR_FRONT_MERGE) {
+               if (bio_attempt_front_merge(q, req, bio)) {
+                       elv_bio_merged(q, req, bio);
+                       if (!attempt_front_merge(q, req))
+                               elv_merged_request(q, req, el_ret);
+                       goto out_unlock;
+               }
+       }
+
+get_rq:
+       /*
+        * This sync check and mask will be re-done in init_request_from_bio(),
+        * but we need to set it earlier to expose the sync flag to the
+        * rq allocator and io schedulers.
+        */
+       rw_flags = bio_data_dir(bio);
+       if (sync)
+               rw_flags |= REQ_SYNC;
+
+       /*
+        * Grab a free request. This is might sleep but can not fail.
+        * Returns with the queue unlocked.
+        */
+       req = get_request(q, rw_flags, bio, GFP_NOIO);
+       if (IS_ERR(req)) {
+               bio_endio(bio, PTR_ERR(req));   /* @q is dead */
+               goto out_unlock;
+       }
+
+       /*
+        * After dropping the lock and possibly sleeping here, our request
+        * may now be mergeable after it had proven unmergeable (above).
+        * We don't worry about that case for efficiency. It won't happen
+        * often, and the elevators are able to handle it.
+        */
+       init_request_from_bio(req, bio);
+
+       if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
+               req->cpu = raw_smp_processor_id();
+
+       plug = current->plug;
+       if (plug) {
+               /*
+                * If this is the first request added after a plug, fire
+                * of a plug trace.
+                */
+               if (!request_count)
+                       trace_block_plug(q);
+               else {
+                       if (request_count >= BLK_MAX_REQUEST_COUNT) {
+                               blk_flush_plug_list(plug, false);
+                               trace_block_plug(q);
+                       }
+               }
+               list_add_tail(&req->queuelist, &plug->list);
+               blk_account_io_start(req, true);
+       } else {
+               spin_lock_irq(q->queue_lock);
+               add_acct_request(q, req, where);
+               __blk_run_queue(q);
+out_unlock:
+               spin_unlock_irq(q->queue_lock);
+       }
+}
+
+/*
+ * If bio->bi_dev is a partition, remap the location
+ */
+static inline void blk_partition_remap(struct bio *bio)
+{
+       struct block_device *bdev = bio->bi_bdev;
+
+       if (bio_sectors(bio) && bdev != bdev->bd_contains) {
+               struct hd_struct *p = bdev->bd_part;
+
+               bio->bi_iter.bi_sector += p->start_sect;
+               bio->bi_bdev = bdev->bd_contains;
+
+               trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
+                                     bdev->bd_dev,
+                                     bio->bi_iter.bi_sector - p->start_sect);
+       }
+}
+
+static void handle_bad_sector(struct bio *bio)
+{
+       char b[BDEVNAME_SIZE];
+
+       printk(KERN_INFO "attempt to access beyond end of device\n");
+       printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
+                       bdevname(bio->bi_bdev, b),
+                       bio->bi_rw,
+                       (unsigned long long)bio_end_sector(bio),
+                       (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
+
+       set_bit(BIO_EOF, &bio->bi_flags);
+}
+
+#ifdef CONFIG_FAIL_MAKE_REQUEST
+
+static DECLARE_FAULT_ATTR(fail_make_request);
+
+static int __init setup_fail_make_request(char *str)
+{
+       return setup_fault_attr(&fail_make_request, str);
+}
+__setup("fail_make_request=", setup_fail_make_request);
+
+static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
+{
+       return part->make_it_fail && should_fail(&fail_make_request, bytes);
+}
+
+static int __init fail_make_request_debugfs(void)
+{
+       struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
+                                               NULL, &fail_make_request);
+
+       return PTR_ERR_OR_ZERO(dir);
+}
+
+late_initcall(fail_make_request_debugfs);
+
+#else /* CONFIG_FAIL_MAKE_REQUEST */
+
+static inline bool should_fail_request(struct hd_struct *part,
+                                       unsigned int bytes)
+{
+       return false;
+}
+
+#endif /* CONFIG_FAIL_MAKE_REQUEST */
+
+/*
+ * Check whether this bio extends beyond the end of the device.
+ */
+static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
+{
+       sector_t maxsector;
+
+       if (!nr_sectors)
+               return 0;
+
+       /* Test device or partition size, when known. */
+       maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
+       if (maxsector) {
+               sector_t sector = bio->bi_iter.bi_sector;
+
+               if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
+                       /*
+                        * This may well happen - the kernel calls bread()
+                        * without checking the size of the device, e.g., when
+                        * mounting a device.
+                        */
+                       handle_bad_sector(bio);
+                       return 1;
+               }
+       }
+
+       return 0;
+}
+
+static noinline_for_stack bool
+generic_make_request_checks(struct bio *bio)
+{
+       struct request_queue *q;
+       int nr_sectors = bio_sectors(bio);
+       int err = -EIO;
+       char b[BDEVNAME_SIZE];
+       struct hd_struct *part;
+
+       might_sleep();
+
+       if (bio_check_eod(bio, nr_sectors))
+               goto end_io;
+
+       q = bdev_get_queue(bio->bi_bdev);
+       if (unlikely(!q)) {
+               printk(KERN_ERR
+                      "generic_make_request: Trying to access "
+                       "nonexistent block-device %s (%Lu)\n",
+                       bdevname(bio->bi_bdev, b),
+                       (long long) bio->bi_iter.bi_sector);
+               goto end_io;
+       }
+
+       if (likely(bio_is_rw(bio) &&
+                  nr_sectors > queue_max_hw_sectors(q))) {
+               printk(KERN_ERR "bio too big device %s (%u > %u)\n",
+                      bdevname(bio->bi_bdev, b),
+                      bio_sectors(bio),
+                      queue_max_hw_sectors(q));
+               goto end_io;
+       }
+
+       part = bio->bi_bdev->bd_part;
+       if (should_fail_request(part, bio->bi_iter.bi_size) ||
+           should_fail_request(&part_to_disk(part)->part0,
+                               bio->bi_iter.bi_size))
+               goto end_io;
+
+       /*
+        * If this device has partitions, remap block n
+        * of partition p to block n+start(p) of the disk.
+        */
+       blk_partition_remap(bio);
+
+       if (bio_check_eod(bio, nr_sectors))
+               goto end_io;
+
+       /*
+        * Filter flush bio's early so that make_request based
+        * drivers without flush support don't have to worry
+        * about them.
+        */
+       if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
+               bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
+               if (!nr_sectors) {
+                       err = 0;
+                       goto end_io;
+               }
+       }
+
+       if ((bio->bi_rw & REQ_DISCARD) &&
+           (!blk_queue_discard(q) ||
+            ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
+               err = -EOPNOTSUPP;
+               goto end_io;
+       }
+
+       if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
+               err = -EOPNOTSUPP;
+               goto end_io;
+       }
+
+       /*
+        * Various block parts want %current->io_context and lazy ioc
+        * allocation ends up trading a lot of pain for a small amount of
+        * memory.  Just allocate it upfront.  This may fail and block
+        * layer knows how to live with it.
+        */
+       create_io_context(GFP_ATOMIC, q->node);
+
+       if (blk_throtl_bio(q, bio))
+               return false;   /* throttled, will be resubmitted later */
+
+       trace_block_bio_queue(q, bio);
+       return true;
+
+end_io:
+       bio_endio(bio, err);
+       return false;
+}
+
+/**
+ * generic_make_request - hand a buffer to its device driver for I/O
+ * @bio:  The bio describing the location in memory and on the device.
+ *
+ * generic_make_request() is used to make I/O requests of block
+ * devices. It is passed a &struct bio, which describes the I/O that needs
+ * to be done.
+ *
+ * generic_make_request() does not return any status.  The
+ * success/failure status of the request, along with notification of
+ * completion, is delivered asynchronously through the bio->bi_end_io
+ * function described (one day) else where.
+ *
+ * The caller of generic_make_request must make sure that bi_io_vec
+ * are set to describe the memory buffer, and that bi_dev and bi_sector are
+ * set to describe the device address, and the
+ * bi_end_io and optionally bi_private are set to describe how
+ * completion notification should be signaled.
+ *
+ * generic_make_request and the drivers it calls may use bi_next if this
+ * bio happens to be merged with someone else, and may resubmit the bio to
+ * a lower device by calling into generic_make_request recursively, which
+ * means the bio should NOT be touched after the call to ->make_request_fn.
+ */
+void generic_make_request(struct bio *bio)
+{
+       struct bio_list bio_list_on_stack;
+
+       if (!generic_make_request_checks(bio))
+               return;
+
+       /*
+        * We only want one ->make_request_fn to be active at a time, else
+        * stack usage with stacked devices could be a problem.  So use
+        * current->bio_list to keep a list of requests submited by a
+        * make_request_fn function.  current->bio_list is also used as a
+        * flag to say if generic_make_request is currently active in this
+        * task or not.  If it is NULL, then no make_request is active.  If
+        * it is non-NULL, then a make_request is active, and new requests
+        * should be added at the tail
+        */
+       if (current->bio_list) {
+               bio_list_add(current->bio_list, bio);
+               return;
+       }
+
+       /* following loop may be a bit non-obvious, and so deserves some
+        * explanation.
+        * Before entering the loop, bio->bi_next is NULL (as all callers
+        * ensure that) so we have a list with a single bio.
+        * We pretend that we have just taken it off a longer list, so
+        * we assign bio_list to a pointer to the bio_list_on_stack,
+        * thus initialising the bio_list of new bios to be
+        * added.  ->make_request() may indeed add some more bios
+        * through a recursive call to generic_make_request.  If it
+        * did, we find a non-NULL value in bio_list and re-enter the loop
+        * from the top.  In this case we really did just take the bio
+        * of the top of the list (no pretending) and so remove it from
+        * bio_list, and call into ->make_request() again.
+        */
+       BUG_ON(bio->bi_next);
+       bio_list_init(&bio_list_on_stack);
+       current->bio_list = &bio_list_on_stack;
+       do {
+               struct request_queue *q = bdev_get_queue(bio->bi_bdev);
+
+               q->make_request_fn(q, bio);
+
+               bio = bio_list_pop(current->bio_list);
+       } while (bio);
+       current->bio_list = NULL; /* deactivate */
+}
+EXPORT_SYMBOL(generic_make_request);
+
+/**
+ * submit_bio - submit a bio to the block device layer for I/O
+ * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
+ * @bio: The &struct bio which describes the I/O
+ *
+ * submit_bio() is very similar in purpose to generic_make_request(), and
+ * uses that function to do most of the work. Both are fairly rough
+ * interfaces; @bio must be presetup and ready for I/O.
+ *
+ */
+void submit_bio(int rw, struct bio *bio)
+{
+       bio->bi_rw |= rw;
+
+       /*
+        * If it's a regular read/write or a barrier with data attached,
+        * go through the normal accounting stuff before submission.
+        */
+       if (bio_has_data(bio)) {
+               unsigned int count;
+
+               if (unlikely(rw & REQ_WRITE_SAME))
+                       count = bdev_logical_block_size(bio->bi_bdev) >> 9;
+               else
+                       count = bio_sectors(bio);
+
+               if (rw & WRITE) {
+                       count_vm_events(PGPGOUT, count);
+               } else {
+                       task_io_account_read(bio->bi_iter.bi_size);
+                       count_vm_events(PGPGIN, count);
+               }
+
+               if (unlikely(block_dump)) {
+                       char b[BDEVNAME_SIZE];
+                       printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
+                       current->comm, task_pid_nr(current),
+                               (rw & WRITE) ? "WRITE" : "READ",
+                               (unsigned long long)bio->bi_iter.bi_sector,
+                               bdevname(bio->bi_bdev, b),
+                               count);
+               }
+       }
+
+       generic_make_request(bio);
+}
+EXPORT_SYMBOL(submit_bio);
+
+/**
+ * blk_rq_check_limits - Helper function to check a request for the queue limit
+ * @q:  the queue
+ * @rq: the request being checked
+ *
+ * Description:
+ *    @rq may have been made based on weaker limitations of upper-level queues
+ *    in request stacking drivers, and it may violate the limitation of @q.
+ *    Since the block layer and the underlying device driver trust @rq
+ *    after it is inserted to @q, it should be checked against @q before
+ *    the insertion using this generic function.
+ *
+ *    This function should also be useful for request stacking drivers
+ *    in some cases below, so export this function.
+ *    Request stacking drivers like request-based dm may change the queue
+ *    limits while requests are in the queue (e.g. dm's table swapping).
+ *    Such request stacking drivers should check those requests against
+ *    the new queue limits again when they dispatch those requests,
+ *    although such checkings are also done against the old queue limits
+ *    when submitting requests.
+ */
+int blk_rq_check_limits(struct request_queue *q, struct request *rq)
+{
+       if (!rq_mergeable(rq))
+               return 0;
+
+       if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
+               printk(KERN_ERR "%s: over max size limit.\n", __func__);
+               return -EIO;
+       }
+
+       /*
+        * queue's settings related to segment counting like q->bounce_pfn
+        * may differ from that of other stacking queues.
+        * Recalculate it to check the request correctly on this queue's
+        * limitation.
+        */
+       blk_recalc_rq_segments(rq);
+       if (rq->nr_phys_segments > queue_max_segments(q)) {
+               printk(KERN_ERR "%s: over max segments limit.\n", __func__);
+               return -EIO;
+       }
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(blk_rq_check_limits);
+
+/**
+ * blk_insert_cloned_request - Helper for stacking drivers to submit a request
+ * @q:  the queue to submit the request
+ * @rq: the request being queued
+ */
+int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
+{
+       unsigned long flags;
+       int where = ELEVATOR_INSERT_BACK;
+
+       if (blk_rq_check_limits(q, rq))
+               return -EIO;
+
+       if (rq->rq_disk &&
+           should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
+               return -EIO;
+
+       if (q->mq_ops) {
+               if (blk_queue_io_stat(q))
+                       blk_account_io_start(rq, true);
+               blk_mq_insert_request(rq, false, true, true);
+               return 0;
+       }
+
+       spin_lock_irqsave(q->queue_lock, flags);
+       if (unlikely(blk_queue_dying(q))) {
+               spin_unlock_irqrestore(q->queue_lock, flags);
+               return -ENODEV;
+       }
+
+       /*
+        * Submitting request must be dequeued before calling this function
+        * because it will be linked to another request_queue
+        */
+       BUG_ON(blk_queued_rq(rq));
+
+       if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
+               where = ELEVATOR_INSERT_FLUSH;
+
+       add_acct_request(q, rq, where);
+       if (where == ELEVATOR_INSERT_FLUSH)
+               __blk_run_queue(q);
+       spin_unlock_irqrestore(q->queue_lock, flags);
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
+
+/**
+ * blk_rq_err_bytes - determine number of bytes till the next failure boundary
+ * @rq: request to examine
+ *
+ * Description:
+ *     A request could be merge of IOs which require different failure
+ *     handling.  This function determines the number of bytes which
+ *     can be failed from the beginning of the request without
+ *     crossing into area which need to be retried further.
+ *
+ * Return:
+ *     The number of bytes to fail.
+ *
+ * Context:
+ *     queue_lock must be held.
+ */
+unsigned int blk_rq_err_bytes(const struct request *rq)
+{
+       unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
+       unsigned int bytes = 0;
+       struct bio *bio;
+
+       if (!(rq->cmd_flags & REQ_MIXED_MERGE))
+               return blk_rq_bytes(rq);
+
+       /*
+        * Currently the only 'mixing' which can happen is between
+        * different fastfail types.  We can safely fail portions
+        * which have all the failfast bits that the first one has -
+        * the ones which are at least as eager to fail as the first
+        * one.
+        */
+       for (bio = rq->bio; bio; bio = bio->bi_next) {
+               if ((bio->bi_rw & ff) != ff)
+                       break;
+               bytes += bio->bi_iter.bi_size;
+       }
+
+       /* this could lead to infinite loop */
+       BUG_ON(blk_rq_bytes(rq) && !bytes);
+       return bytes;
+}
+EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
+
+void blk_account_io_completion(struct request *req, unsigned int bytes)
+{
+       if (blk_do_io_stat(req)) {
+               const int rw = rq_data_dir(req);
+               struct hd_struct *part;
+               int cpu;
+
+               cpu = part_stat_lock();
+               part = req->part;
+               part_stat_add(cpu, part, sectors[rw], bytes >> 9);
+               part_stat_unlock();
+       }
+}
+
+void blk_account_io_done(struct request *req)
+{
+       /*
+        * Account IO completion.  flush_rq isn't accounted as a
+        * normal IO on queueing nor completion.  Accounting the
+        * containing request is enough.
+        */
+       if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
+               unsigned long duration = jiffies - req->start_time;
+               const int rw = rq_data_dir(req);
+               struct hd_struct *part;
+               int cpu;
+
+               cpu = part_stat_lock();
+               part = req->part;
+
+               part_stat_inc(cpu, part, ios[rw]);
+               part_stat_add(cpu, part, ticks[rw], duration);
+               part_round_stats(cpu, part);
+               part_dec_in_flight(part, rw);
+
+               hd_struct_put(part);
+               part_stat_unlock();
+       }
+}
+
+#ifdef CONFIG_PM
+/*
+ * Don't process normal requests when queue is suspended
+ * or in the process of suspending/resuming
+ */
+static struct request *blk_pm_peek_request(struct request_queue *q,
+                                          struct request *rq)
+{
+       if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
+           (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
+               return NULL;
+       else
+               return rq;
+}
+#else
+static inline struct request *blk_pm_peek_request(struct request_queue *q,
+                                                 struct request *rq)
+{
+       return rq;
+}
+#endif
+
+void blk_account_io_start(struct request *rq, bool new_io)
+{
+       struct hd_struct *part;
+       int rw = rq_data_dir(rq);
+       int cpu;
+
+       if (!blk_do_io_stat(rq))
+               return;
+
+       cpu = part_stat_lock();
+
+       if (!new_io) {
+               part = rq->part;
+               part_stat_inc(cpu, part, merges[rw]);
+       } else {
+               part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
+               if (!hd_struct_try_get(part)) {
+                       /*
+                        * The partition is already being removed,
+                        * the request will be accounted on the disk only
+                        *
+                        * We take a reference on disk->part0 although that
+                        * partition will never be deleted, so we can treat
+                        * it as any other partition.
+                        */
+                       part = &rq->rq_disk->part0;
+                       hd_struct_get(part);
+               }
+               part_round_stats(cpu, part);
+               part_inc_in_flight(part, rw);
+               rq->part = part;
+       }
+
+       part_stat_unlock();
+}
+
+/**
+ * blk_peek_request - peek at the top of a request queue
+ * @q: request queue to peek at
+ *
+ * Description:
+ *     Return the request at the top of @q.  The returned request
+ *     should be started using blk_start_request() before LLD starts
+ *     processing it.
+ *
+ * Return:
+ *     Pointer to the request at the top of @q if available.  Null
+ *     otherwise.
+ *
+ * Context:
+ *     queue_lock must be held.
+ */
+struct request *blk_peek_request(struct request_queue *q)
+{
+       struct request *rq;
+       int ret;
+
+       while ((rq = __elv_next_request(q)) != NULL) {
+
+               rq = blk_pm_peek_request(q, rq);
+               if (!rq)
+                       break;
+
+               if (!(rq->cmd_flags & REQ_STARTED)) {
+                       /*
+                        * This is the first time the device driver
+                        * sees this request (possibly after
+                        * requeueing).  Notify IO scheduler.
+                        */
+                       if (rq->cmd_flags & REQ_SORTED)
+                               elv_activate_rq(q, rq);
+
+                       /*
+                        * just mark as started even if we don't start
+                        * it, a request that has been delayed should
+                        * not be passed by new incoming requests
+                        */
+                       rq->cmd_flags |= REQ_STARTED;
+                       trace_block_rq_issue(q, rq);
+               }
+
+               if (!q->boundary_rq || q->boundary_rq == rq) {
+                       q->end_sector = rq_end_sector(rq);
+                       q->boundary_rq = NULL;
+               }
+
+               if (rq->cmd_flags & REQ_DONTPREP)
+                       break;
+
+               if (q->dma_drain_size && blk_rq_bytes(rq)) {
+                       /*
+                        * make sure space for the drain appears we
+                        * know we can do this because max_hw_segments
+                        * has been adjusted to be one fewer than the
+                        * device can handle
+                        */
+                       rq->nr_phys_segments++;
+               }
+
+               if (!q->prep_rq_fn)
+                       break;
+
+               ret = q->prep_rq_fn(q, rq);
+               if (ret == BLKPREP_OK) {
+                       break;
+               } else if (ret == BLKPREP_DEFER) {
+                       /*
+                        * the request may have been (partially) prepped.
+                        * we need to keep this request in the front to
+                        * avoid resource deadlock.  REQ_STARTED will
+                        * prevent other fs requests from passing this one.
+                        */
+                       if (q->dma_drain_size && blk_rq_bytes(rq) &&
+                           !(rq->cmd_flags & REQ_DONTPREP)) {
+                               /*
+                                * remove the space for the drain we added
+                                * so that we don't add it again
+                                */
+                               --rq->nr_phys_segments;
+                       }
+
+                       rq = NULL;
+                       break;
+               } else if (ret == BLKPREP_KILL) {
+                       rq->cmd_flags |= REQ_QUIET;
+                       /*
+                        * Mark this request as started so we don't trigger
+                        * any debug logic in the end I/O path.
+                        */
+                       blk_start_request(rq);
+                       __blk_end_request_all(rq, -EIO);
+               } else {
+                       printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
+                       break;
+               }
+       }
+
+       return rq;
+}
+EXPORT_SYMBOL(blk_peek_request);
+
+void blk_dequeue_request(struct request *rq)
+{
+       struct request_queue *q = rq->q;
+
+       BUG_ON(list_empty(&rq->queuelist));
+       BUG_ON(ELV_ON_HASH(rq));
+
+       list_del_init(&rq->queuelist);
+
+       /*
+        * the time frame between a request being removed from the lists
+        * and to it is freed is accounted as io that is in progress at
+        * the driver side.
+        */
+       if (blk_account_rq(rq)) {
+               q->in_flight[rq_is_sync(rq)]++;
+               set_io_start_time_ns(rq);
+       }
+}
+
+/**
+ * blk_start_request - start request processing on the driver
+ * @req: request to dequeue
+ *
+ * Description:
+ *     Dequeue @req and start timeout timer on it.  This hands off the
+ *     request to the driver.
+ *
+ *     Block internal functions which don't want to start timer should
+ *     call blk_dequeue_request().
+ *
+ * Context:
+ *     queue_lock must be held.
+ */
+void blk_start_request(struct request *req)
+{
+       blk_dequeue_request(req);
+
+       /*
+        * We are now handing the request to the hardware, initialize
+        * resid_len to full count and add the timeout handler.
+        */
+       req->resid_len = blk_rq_bytes(req);
+       if (unlikely(blk_bidi_rq(req)))
+               req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
+
+       BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
+       blk_add_timer(req);
+}
+EXPORT_SYMBOL(blk_start_request);
+
+/**
+ * blk_fetch_request - fetch a request from a request queue
+ * @q: request queue to fetch a request from
+ *
+ * Description:
+ *     Return the request at the top of @q.  The request is started on
+ *     return and LLD can start processing it immediately.
+ *
+ * Return:
+ *     Pointer to the request at the top of @q if available.  Null
+ *     otherwise.
+ *
+ * Context:
+ *     queue_lock must be held.
+ */
+struct request *blk_fetch_request(struct request_queue *q)
+{
+       struct request *rq;
+
+       rq = blk_peek_request(q);
+       if (rq)
+               blk_start_request(rq);
+       return rq;
+}
+EXPORT_SYMBOL(blk_fetch_request);
+
+/**
+ * blk_update_request - Special helper function for request stacking drivers
+ * @req:      the request being processed
+ * @error:    %0 for success, < %0 for error
+ * @nr_bytes: number of bytes to complete @req
+ *
+ * Description:
+ *     Ends I/O on a number of bytes attached to @req, but doesn't complete
+ *     the request structure even if @req doesn't have leftover.
+ *     If @req has leftover, sets it up for the next range of segments.
+ *
+ *     This special helper function is only for request stacking drivers
+ *     (e.g. request-based dm) so that they can handle partial completion.
+ *     Actual device drivers should use blk_end_request instead.
+ *
+ *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
+ *     %false return from this function.
+ *
+ * Return:
+ *     %false - this request doesn't have any more data
+ *     %true  - this request has more data
+ **/
+bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
+{
+       int total_bytes;
+
+       trace_block_rq_complete(req->q, req, nr_bytes);
+
+       if (!req->bio)
+               return false;
+
+       /*
+        * For fs requests, rq is just carrier of independent bio's
+        * and each partial completion should be handled separately.
+        * Reset per-request error on each partial completion.
+        *
+        * TODO: tj: This is too subtle.  It would be better to let
+        * low level drivers do what they see fit.
+        */
+       if (req->cmd_type == REQ_TYPE_FS)
+               req->errors = 0;
+
+       if (error && req->cmd_type == REQ_TYPE_FS &&
+           !(req->cmd_flags & REQ_QUIET)) {
+               char *error_type;
+
+               switch (error) {
+               case -ENOLINK:
+                       error_type = "recoverable transport";
+                       break;
+               case -EREMOTEIO:
+                       error_type = "critical target";
+                       break;
+               case -EBADE:
+                       error_type = "critical nexus";
+                       break;
+               case -ETIMEDOUT:
+                       error_type = "timeout";
+                       break;
+               case -ENOSPC:
+                       error_type = "critical space allocation";
+                       break;
+               case -ENODATA:
+                       error_type = "critical medium";
+                       break;
+               case -EIO:
+               default:
+                       error_type = "I/O";
+                       break;
+               }
+               printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
+                                  __func__, error_type, req->rq_disk ?
+                                  req->rq_disk->disk_name : "?",
+                                  (unsigned long long)blk_rq_pos(req));
+
+       }
+
+       blk_account_io_completion(req, nr_bytes);
+
+       total_bytes = 0;
+       while (req->bio) {
+               struct bio *bio = req->bio;
+               unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
+
+               if (bio_bytes == bio->bi_iter.bi_size)
+                       req->bio = bio->bi_next;
+
+               req_bio_endio(req, bio, bio_bytes, error);
+
+               total_bytes += bio_bytes;
+               nr_bytes -= bio_bytes;
+
+               if (!nr_bytes)
+                       break;
+       }
+
+       /*
+        * completely done
+        */
+       if (!req->bio) {
+               /*
+                * Reset counters so that the request stacking driver
+                * can find how many bytes remain in the request
+                * later.
+                */
+               req->__data_len = 0;
+               return false;
+       }
+
+       req->__data_len -= total_bytes;
+
+       /* update sector only for requests with clear definition of sector */
+       if (req->cmd_type == REQ_TYPE_FS)
+               req->__sector += total_bytes >> 9;
+
+       /* mixed attributes always follow the first bio */
+       if (req->cmd_flags & REQ_MIXED_MERGE) {
+               req->cmd_flags &= ~REQ_FAILFAST_MASK;
+               req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
+       }
+
+       /*
+        * If total number of sectors is less than the first segment
+        * size, something has gone terribly wrong.
+        */
+       if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
+               blk_dump_rq_flags(req, "request botched");
+               req->__data_len = blk_rq_cur_bytes(req);
+       }
+
+       /* recalculate the number of segments */
+       blk_recalc_rq_segments(req);
+
+       return true;
+}
+EXPORT_SYMBOL_GPL(blk_update_request);
+
+static bool blk_update_bidi_request(struct request *rq, int error,
+                                   unsigned int nr_bytes,
+                                   unsigned int bidi_bytes)
+{
+       if (blk_update_request(rq, error, nr_bytes))
+               return true;
+
+       /* Bidi request must be completed as a whole */
+       if (unlikely(blk_bidi_rq(rq)) &&
+           blk_update_request(rq->next_rq, error, bidi_bytes))
+               return true;
+
+       if (blk_queue_add_random(rq->q))
+               add_disk_randomness(rq->rq_disk);
+
+       return false;
+}
+
+/**
+ * blk_unprep_request - unprepare a request
+ * @req:       the request
+ *
+ * This function makes a request ready for complete resubmission (or
+ * completion).  It happens only after all error handling is complete,
+ * so represents the appropriate moment to deallocate any resources
+ * that were allocated to the request in the prep_rq_fn.  The queue
+ * lock is held when calling this.
+ */
+void blk_unprep_request(struct request *req)
+{
+       struct request_queue *q = req->q;
+
+       req->cmd_flags &= ~REQ_DONTPREP;
+       if (q->unprep_rq_fn)
+               q->unprep_rq_fn(q, req);
+}
+EXPORT_SYMBOL_GPL(blk_unprep_request);
+
+/*
+ * queue lock must be held
+ */
+void blk_finish_request(struct request *req, int error)
+{
+       if (req->cmd_flags & REQ_QUEUED)
+               blk_queue_end_tag(req->q, req);
+
+       BUG_ON(blk_queued_rq(req));
+
+       if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
+               laptop_io_completion(&req->q->backing_dev_info);
+
+       blk_delete_timer(req);
+
+       if (req->cmd_flags & REQ_DONTPREP)
+               blk_unprep_request(req);
+
+       blk_account_io_done(req);
+
+       if (req->end_io)
+               req->end_io(req, error);
+       else {
+               if (blk_bidi_rq(req))
+                       __blk_put_request(req->next_rq->q, req->next_rq);
+
+               __blk_put_request(req->q, req);
+       }
+}
+EXPORT_SYMBOL(blk_finish_request);
+
+/**
+ * blk_end_bidi_request - Complete a bidi request
+ * @rq:         the request to complete
+ * @error:      %0 for success, < %0 for error
+ * @nr_bytes:   number of bytes to complete @rq
+ * @bidi_bytes: number of bytes to complete @rq->next_rq
+ *
+ * Description:
+ *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
+ *     Drivers that supports bidi can safely call this member for any
+ *     type of request, bidi or uni.  In the later case @bidi_bytes is
+ *     just ignored.
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ **/
+static bool blk_end_bidi_request(struct request *rq, int error,
+                                unsigned int nr_bytes, unsigned int bidi_bytes)
+{
+       struct request_queue *q = rq->q;
+       unsigned long flags;
+
+       if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
+               return true;
+
+       spin_lock_irqsave(q->queue_lock, flags);
+       blk_finish_request(rq, error);
+       spin_unlock_irqrestore(q->queue_lock, flags);
+
+       return false;
+}
+
+/**
+ * __blk_end_bidi_request - Complete a bidi request with queue lock held
+ * @rq:         the request to complete
+ * @error:      %0 for success, < %0 for error
+ * @nr_bytes:   number of bytes to complete @rq
+ * @bidi_bytes: number of bytes to complete @rq->next_rq
+ *
+ * Description:
+ *     Identical to blk_end_bidi_request() except that queue lock is
+ *     assumed to be locked on entry and remains so on return.
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ **/
+bool __blk_end_bidi_request(struct request *rq, int error,
+                                  unsigned int nr_bytes, unsigned int bidi_bytes)
+{
+       if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
+               return true;
+
+       blk_finish_request(rq, error);
+
+       return false;
+}
+
+/**
+ * blk_end_request - Helper function for drivers to complete the request.
+ * @rq:       the request being processed
+ * @error:    %0 for success, < %0 for error
+ * @nr_bytes: number of bytes to complete
+ *
+ * Description:
+ *     Ends I/O on a number of bytes attached to @rq.
+ *     If @rq has leftover, sets it up for the next range of segments.
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ **/
+bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
+{
+       return blk_end_bidi_request(rq, error, nr_bytes, 0);
+}
+EXPORT_SYMBOL(blk_end_request);
+
+/**
+ * blk_end_request_all - Helper function for drives to finish the request.
+ * @rq: the request to finish
+ * @error: %0 for success, < %0 for error
+ *
+ * Description:
+ *     Completely finish @rq.
+ */
+void blk_end_request_all(struct request *rq, int error)
+{
+       bool pending;
+       unsigned int bidi_bytes = 0;
+
+       if (unlikely(blk_bidi_rq(rq)))
+               bidi_bytes = blk_rq_bytes(rq->next_rq);
+
+       pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
+       BUG_ON(pending);
+}
+EXPORT_SYMBOL(blk_end_request_all);
+
+/**
+ * blk_end_request_cur - Helper function to finish the current request chunk.
+ * @rq: the request to finish the current chunk for
+ * @error: %0 for success, < %0 for error
+ *
+ * Description:
+ *     Complete the current consecutively mapped chunk from @rq.
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ */
+bool blk_end_request_cur(struct request *rq, int error)
+{
+       return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
+}
+EXPORT_SYMBOL(blk_end_request_cur);
+
+/**
+ * blk_end_request_err - Finish a request till the next failure boundary.
+ * @rq: the request to finish till the next failure boundary for
+ * @error: must be negative errno
+ *
+ * Description:
+ *     Complete @rq till the next failure boundary.
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ */
+bool blk_end_request_err(struct request *rq, int error)
+{
+       WARN_ON(error >= 0);
+       return blk_end_request(rq, error, blk_rq_err_bytes(rq));
+}
+EXPORT_SYMBOL_GPL(blk_end_request_err);
+
+/**
+ * __blk_end_request - Helper function for drivers to complete the request.
+ * @rq:       the request being processed
+ * @error:    %0 for success, < %0 for error
+ * @nr_bytes: number of bytes to complete
+ *
+ * Description:
+ *     Must be called with queue lock held unlike blk_end_request().
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ **/
+bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
+{
+       return __blk_end_bidi_request(rq, error, nr_bytes, 0);
+}
+EXPORT_SYMBOL(__blk_end_request);
+
+/**
+ * __blk_end_request_all - Helper function for drives to finish the request.
+ * @rq: the request to finish
+ * @error: %0 for success, < %0 for error
+ *
+ * Description:
+ *     Completely finish @rq.  Must be called with queue lock held.
+ */
+void __blk_end_request_all(struct request *rq, int error)
+{
+       bool pending;
+       unsigned int bidi_bytes = 0;
+
+       if (unlikely(blk_bidi_rq(rq)))
+               bidi_bytes = blk_rq_bytes(rq->next_rq);
+
+       pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
+       BUG_ON(pending);
+}
+EXPORT_SYMBOL(__blk_end_request_all);
+
+/**
+ * __blk_end_request_cur - Helper function to finish the current request chunk.
+ * @rq: the request to finish the current chunk for
+ * @error: %0 for success, < %0 for error
+ *
+ * Description:
+ *     Complete the current consecutively mapped chunk from @rq.  Must
+ *     be called with queue lock held.
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ */
+bool __blk_end_request_cur(struct request *rq, int error)
+{
+       return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
+}
+EXPORT_SYMBOL(__blk_end_request_cur);
+
+/**
+ * __blk_end_request_err - Finish a request till the next failure boundary.
+ * @rq: the request to finish till the next failure boundary for
+ * @error: must be negative errno
+ *
+ * Description:
+ *     Complete @rq till the next failure boundary.  Must be called
+ *     with queue lock held.
+ *
+ * Return:
+ *     %false - we are done with this request
+ *     %true  - still buffers pending for this request
+ */
+bool __blk_end_request_err(struct request *rq, int error)
+{
+       WARN_ON(error >= 0);
+       return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
+}
+EXPORT_SYMBOL_GPL(__blk_end_request_err);
+
+void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
+                    struct bio *bio)
+{
+       /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
+       rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
+
+       if (bio_has_data(bio))
+               rq->nr_phys_segments = bio_phys_segments(q, bio);
+
+       rq->__data_len = bio->bi_iter.bi_size;
+       rq->bio = rq->biotail = bio;
+
+       if (bio->bi_bdev)
+               rq->rq_disk = bio->bi_bdev->bd_disk;
+}
+
+#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
+/**
+ * rq_flush_dcache_pages - Helper function to flush all pages in a request
+ * @rq: the request to be flushed
+ *
+ * Description:
+ *     Flush all pages in @rq.
+ */
+void rq_flush_dcache_pages(struct request *rq)
+{
+       struct req_iterator iter;
+       struct bio_vec bvec;
+
+       rq_for_each_segment(bvec, rq, iter)
+               flush_dcache_page(bvec.bv_page);
+}
+EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
+#endif
+
+/**
+ * blk_lld_busy - Check if underlying low-level drivers of a device are busy
+ * @q : the queue of the device being checked
+ *
+ * Description:
+ *    Check if underlying low-level drivers of a device are busy.
+ *    If the drivers want to export their busy state, they must set own
+ *    exporting function using blk_queue_lld_busy() first.
+ *
+ *    Basically, this function is used only by request stacking drivers
+ *    to stop dispatching requests to underlying devices when underlying
+ *    devices are busy.  This behavior helps more I/O merging on the queue
+ *    of the request stacking driver and prevents I/O throughput regression
+ *    on burst I/O load.
+ *
+ * Return:
+ *    0 - Not busy (The request stacking driver should dispatch request)
+ *    1 - Busy (The request stacking driver should stop dispatching request)
+ */
+int blk_lld_busy(struct request_queue *q)
+{
+       if (q->lld_busy_fn)
+               return q->lld_busy_fn(q);
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(blk_lld_busy);
+
+/**
+ * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
+ * @rq: the clone request to be cleaned up
+ *
+ * Description:
+ *     Free all bios in @rq for a cloned request.
+ */
+void blk_rq_unprep_clone(struct request *rq)
+{
+       struct bio *bio;
+
+       while ((bio = rq->bio) != NULL) {
+               rq->bio = bio->bi_next;
+
+               bio_put(bio);
+       }
+}
+EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
+
+/*
+ * Copy attributes of the original request to the clone request.
+ * The actual data parts (e.g. ->cmd, ->sense) are not copied.
+ */
+static void __blk_rq_prep_clone(struct request *dst, struct request *src)
+{
+       dst->cpu = src->cpu;
+       dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
+       dst->cmd_type = src->cmd_type;
+       dst->__sector = blk_rq_pos(src);
+       dst->__data_len = blk_rq_bytes(src);
+       dst->nr_phys_segments = src->nr_phys_segments;
+       dst->ioprio = src->ioprio;
+       dst->extra_len = src->extra_len;
+}
+
+/**
+ * blk_rq_prep_clone - Helper function to setup clone request
+ * @rq: the request to be setup
+ * @rq_src: original request to be cloned
+ * @bs: bio_set that bios for clone are allocated from
+ * @gfp_mask: memory allocation mask for bio
+ * @bio_ctr: setup function to be called for each clone bio.
+ *           Returns %0 for success, non %0 for failure.
+ * @data: private data to be passed to @bio_ctr
+ *
+ * Description:
+ *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
+ *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
+ *     are not copied, and copying such parts is the caller's responsibility.
+ *     Also, pages which the original bios are pointing to are not copied
+ *     and the cloned bios just point same pages.
+ *     So cloned bios must be completed before original bios, which means
+ *     the caller must complete @rq before @rq_src.
+ */
+int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
+                     struct bio_set *bs, gfp_t gfp_mask,
+                     int (*bio_ctr)(struct bio *, struct bio *, void *),
+                     void *data)
+{
+       struct bio *bio, *bio_src;
+
+       if (!bs)
+               bs = fs_bio_set;
+
+       __rq_for_each_bio(bio_src, rq_src) {
+               bio = bio_clone_fast(bio_src, gfp_mask, bs);
+               if (!bio)
+                       goto free_and_out;
+
+               if (bio_ctr && bio_ctr(bio, bio_src, data))
+                       goto free_and_out;
+
+               if (rq->bio) {
+                       rq->biotail->bi_next = bio;
+                       rq->biotail = bio;
+               } else
+                       rq->bio = rq->biotail = bio;
+       }
+
+       __blk_rq_prep_clone(rq, rq_src);
+
+       return 0;
+
+free_and_out:
+       if (bio)
+               bio_put(bio);
+       blk_rq_unprep_clone(rq);
+
+       return -ENOMEM;
+}
+EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
+
+int kblockd_schedule_work(struct work_struct *work)
+{
+       return queue_work(kblockd_workqueue, work);
+}
+EXPORT_SYMBOL(kblockd_schedule_work);
+
+int kblockd_schedule_delayed_work(struct delayed_work *dwork,
+                                 unsigned long delay)
+{
+       return queue_delayed_work(kblockd_workqueue, dwork, delay);
+}
+EXPORT_SYMBOL(kblockd_schedule_delayed_work);
+
+int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
+                                    unsigned long delay)
+{
+       return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
+}
+EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
+
+/**
+ * blk_start_plug - initialize blk_plug and track it inside the task_struct
+ * @plug:      The &struct blk_plug that needs to be initialized
+ *
+ * Description:
+ *   Tracking blk_plug inside the task_struct will help with auto-flushing the
+ *   pending I/O should the task end up blocking between blk_start_plug() and
+ *   blk_finish_plug(). This is important from a performance perspective, but
+ *   also ensures that we don't deadlock. For instance, if the task is blocking
+ *   for a memory allocation, memory reclaim could end up wanting to free a
+ *   page belonging to that request that is currently residing in our private
+ *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
+ *   this kind of deadlock.
+ */
+void blk_start_plug(struct blk_plug *plug)
+{
+       struct task_struct *tsk = current;
+
+       INIT_LIST_HEAD(&plug->list);
+       INIT_LIST_HEAD(&plug->mq_list);
+       INIT_LIST_HEAD(&plug->cb_list);
+
+       /*
+        * If this is a nested plug, don't actually assign it. It will be
+        * flushed on its own.
+        */
+       if (!tsk->plug) {
+               /*
+                * Store ordering should not be needed here, since a potential
+                * preempt will imply a full memory barrier
+                */
+               tsk->plug = plug;
+       }
+}
+EXPORT_SYMBOL(blk_start_plug);
+
+static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
+{
+       struct request *rqa = container_of(a, struct request, queuelist);
+       struct request *rqb = container_of(b, struct request, queuelist);
+
+       return !(rqa->q < rqb->q ||
+               (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
+}
+
+/*
+ * If 'from_schedule' is true, then postpone the dispatch of requests
+ * until a safe kblockd context. We due this to avoid accidental big
+ * additional stack usage in driver dispatch, in places where the originally
+ * plugger did not intend it.
+ */
+static void queue_unplugged(struct request_queue *q, unsigned int depth,
+                           bool from_schedule)
+       __releases(q->queue_lock)
+{
+       trace_block_unplug(q, depth, !from_schedule);
+
+       if (from_schedule)
+               blk_run_queue_async(q);
+       else
+               __blk_run_queue(q);
+       spin_unlock_irq(q->queue_lock);
+}
+
+static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
+{
+       LIST_HEAD(callbacks);
+
+       while (!list_empty(&plug->cb_list)) {
+               list_splice_init(&plug->cb_list, &callbacks);
+
+               while (!list_empty(&callbacks)) {
+                       struct blk_plug_cb *cb = list_first_entry(&callbacks,
+                                                         struct blk_plug_cb,
+                                                         list);
+                       list_del(&cb->list);
+                       cb->callback(cb, from_schedule);
+               }
+       }
+}
+
+struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
+                                     int size)
+{
+       struct blk_plug *plug = current->plug;
+       struct blk_plug_cb *cb;
+
+       if (!plug)
+               return NULL;
+
+       list_for_each_entry(cb, &plug->cb_list, list)
+               if (cb->callback == unplug && cb->data == data)
+                       return cb;
+
+       /* Not currently on the callback list */
+       BUG_ON(size < sizeof(*cb));
+       cb = kzalloc(size, GFP_ATOMIC);
+       if (cb) {
+               cb->data = data;
+               cb->callback = unplug;
+               list_add(&cb->list, &plug->cb_list);
+       }
+       return cb;
+}
+EXPORT_SYMBOL(blk_check_plugged);
+
+void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
+{
+       struct request_queue *q;
+       struct request *rq;
+       LIST_HEAD(list);
+       unsigned int depth;
+
+       flush_plug_callbacks(plug, from_schedule);
+
+       if (!list_empty(&plug->mq_list))
+               blk_mq_flush_plug_list(plug, from_schedule);
+
+       if (list_empty(&plug->list))
+               return;
+
+       list_splice_init(&plug->list, &list);
+
+       list_sort(NULL, &list, plug_rq_cmp);
+
+       q = NULL;
+       depth = 0;
+
+       while (!list_empty(&list)) {
+               rq = list_entry_rq(list.next);
+               list_del_init(&rq->queuelist);
+               BUG_ON(!rq->q);
+               if (rq->q != q) {
+                       /*
+                        * This drops the queue lock
+                        */
+                       if (q)
+                               queue_unplugged(q, depth, from_schedule);
+                       q = rq->q;
+                       depth = 0;
+                       spin_lock_irq(q->queue_lock);
+               }
+
+               /*
+                * Short-circuit if @q is dead
+                */
+               if (unlikely(blk_queue_dying(q))) {
+                       __blk_end_request_all(rq, -ENODEV);
+                       continue;
+               }
+
+               /*
+                * rq is already accounted, so use raw insert
+                */
+               if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
+                       __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
+               else
+                       __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
+
+               depth++;
+       }
+
+       /*
+        * This drops the queue lock
+        */
+       if (q)
+               queue_unplugged(q, depth, from_schedule);
+}
+
+void blk_finish_plug(struct blk_plug *plug)
+{
+       blk_flush_plug_list(plug, false);
+
+       if (plug == current->plug)
+               current->plug = NULL;
+}
+EXPORT_SYMBOL(blk_finish_plug);
+
+#ifdef CONFIG_PM
+/**
+ * blk_pm_runtime_init - Block layer runtime PM initialization routine
+ * @q: the queue of the device
+ * @dev: the device the queue belongs to
+ *
+ * Description:
+ *    Initialize runtime-PM-related fields for @q and start auto suspend for
+ *    @dev. Drivers that want to take advantage of request-based runtime PM
+ *    should call this function after @dev has been initialized, and its
+ *    request queue @q has been allocated, and runtime PM for it can not happen
+ *    yet(either due to disabled/forbidden or its usage_count > 0). In most
+ *    cases, driver should call this function before any I/O has taken place.
+ *
+ *    This function takes care of setting up using auto suspend for the device,
+ *    the autosuspend delay is set to -1 to make runtime suspend impossible
+ *    until an updated value is either set by user or by driver. Drivers do
+ *    not need to touch other autosuspend settings.
+ *
+ *    The block layer runtime PM is request based, so only works for drivers
+ *    that use request as their IO unit instead of those directly use bio's.
+ */
+void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
+{
+       q->dev = dev;
+       q->rpm_status = RPM_ACTIVE;
+       pm_runtime_set_autosuspend_delay(q->dev, -1);
+       pm_runtime_use_autosuspend(q->dev);
+}
+EXPORT_SYMBOL(blk_pm_runtime_init);
+
+/**
+ * blk_pre_runtime_suspend - Pre runtime suspend check
+ * @q: the queue of the device
+ *
+ * Description:
+ *    This function will check if runtime suspend is allowed for the device
+ *    by examining if there are any requests pending in the queue. If there
+ *    are requests pending, the device can not be runtime suspended; otherwise,
+ *    the queue's status will be updated to SUSPENDING and the driver can
+ *    proceed to suspend the device.
+ *
+ *    For the not allowed case, we mark last busy for the device so that
+ *    runtime PM core will try to autosuspend it some time later.
+ *
+ *    This function should be called near the start of the device's
+ *    runtime_suspend callback.
+ *
+ * Return:
+ *    0                - OK to runtime suspend the device
+ *    -EBUSY   - Device should not be runtime suspended
+ */
+int blk_pre_runtime_suspend(struct request_queue *q)
+{
+       int ret = 0;
+
+       spin_lock_irq(q->queue_lock);
+       if (q->nr_pending) {
+               ret = -EBUSY;
+               pm_runtime_mark_last_busy(q->dev);
+       } else {
+               q->rpm_status = RPM_SUSPENDING;
+       }
+       spin_unlock_irq(q->queue_lock);
+       return ret;
+}
+EXPORT_SYMBOL(blk_pre_runtime_suspend);
+
+/**
+ * blk_post_runtime_suspend - Post runtime suspend processing
+ * @q: the queue of the device
+ * @err: return value of the device's runtime_suspend function
+ *
+ * Description:
+ *    Update the queue's runtime status according to the return value of the
+ *    device's runtime suspend function and mark last busy for the device so
+ *    that PM core will try to auto suspend the device at a later time.
+ *
+ *    This function should be called near the end of the device's
+ *    runtime_suspend callback.
+ */
+void blk_post_runtime_suspend(struct request_queue *q, int err)
+{
+       spin_lock_irq(q->queue_lock);
+       if (!err) {
+               q->rpm_status = RPM_SUSPENDED;
+       } else {
+               q->rpm_status = RPM_ACTIVE;
+               pm_runtime_mark_last_busy(q->dev);
+       }
+       spin_unlock_irq(q->queue_lock);
+}
+EXPORT_SYMBOL(blk_post_runtime_suspend);
+
+/**
+ * blk_pre_runtime_resume - Pre runtime resume processing
+ * @q: the queue of the device
+ *
+ * Description:
+ *    Update the queue's runtime status to RESUMING in preparation for the
+ *    runtime resume of the device.
+ *
+ *    This function should be called near the start of the device's
+ *    runtime_resume callback.
+ */
+void blk_pre_runtime_resume(struct request_queue *q)
+{
+       spin_lock_irq(q->queue_lock);
+       q->rpm_status = RPM_RESUMING;
+       spin_unlock_irq(q->queue_lock);
+}
+EXPORT_SYMBOL(blk_pre_runtime_resume);
+
+/**
+ * blk_post_runtime_resume - Post runtime resume processing
+ * @q: the queue of the device
+ * @err: return value of the device's runtime_resume function
+ *
+ * Description:
+ *    Update the queue's runtime status according to the return value of the
+ *    device's runtime_resume function. If it is successfully resumed, process
+ *    the requests that are queued into the device's queue when it is resuming
+ *    and then mark last busy and initiate autosuspend for it.
+ *
+ *    This function should be called near the end of the device's
+ *    runtime_resume callback.
+ */
+void blk_post_runtime_resume(struct request_queue *q, int err)
+{
+       spin_lock_irq(q->queue_lock);
+       if (!err) {
+               q->rpm_status = RPM_ACTIVE;
+               __blk_run_queue(q);
+               pm_runtime_mark_last_busy(q->dev);
+               pm_request_autosuspend(q->dev);
+       } else {
+               q->rpm_status = RPM_SUSPENDED;
+       }
+       spin_unlock_irq(q->queue_lock);
+}
+EXPORT_SYMBOL(blk_post_runtime_resume);
+#endif
+
+int __init blk_dev_init(void)
+{
+       BUILD_BUG_ON(__REQ_NR_BITS > 8 *
+                       sizeof(((struct request *)0)->cmd_flags));
+
+       /* used for unplugging and affects IO latency/throughput - HIGHPRI */
+       kblockd_workqueue = alloc_workqueue("kblockd",
+                                           WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
+       if (!kblockd_workqueue)
+               panic("Failed to create kblockd\n");
+
+       request_cachep = kmem_cache_create("blkdev_requests",
+                       sizeof(struct request), 0, SLAB_PANIC, NULL);
+
+       blk_requestq_cachep = kmem_cache_create("blkdev_queue",
+                       sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
+
+       return 0;
+}