Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / x86 / math-emu / poly_sin.c
diff --git a/kernel/arch/x86/math-emu/poly_sin.c b/kernel/arch/x86/math-emu/poly_sin.c
new file mode 100644 (file)
index 0000000..b862039
--- /dev/null
@@ -0,0 +1,378 @@
+/*---------------------------------------------------------------------------+
+ |  poly_sin.c                                                               |
+ |                                                                           |
+ |  Computation of an approximation of the sin function and the cosine       |
+ |  function by a polynomial.                                                |
+ |                                                                           |
+ | Copyright (C) 1992,1993,1994,1997,1999                                    |
+ |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
+ |                  E-mail   billm@melbpc.org.au                             |
+ |                                                                           |
+ |                                                                           |
+ +---------------------------------------------------------------------------*/
+
+#include "exception.h"
+#include "reg_constant.h"
+#include "fpu_emu.h"
+#include "fpu_system.h"
+#include "control_w.h"
+#include "poly.h"
+
+#define        N_COEFF_P       4
+#define        N_COEFF_N       4
+
+static const unsigned long long pos_terms_l[N_COEFF_P] = {
+       0xaaaaaaaaaaaaaaabLL,
+       0x00d00d00d00cf906LL,
+       0x000006b99159a8bbLL,
+       0x000000000d7392e6LL
+};
+
+static const unsigned long long neg_terms_l[N_COEFF_N] = {
+       0x2222222222222167LL,
+       0x0002e3bc74aab624LL,
+       0x0000000b09229062LL,
+       0x00000000000c7973LL
+};
+
+#define        N_COEFF_PH      4
+#define        N_COEFF_NH      4
+static const unsigned long long pos_terms_h[N_COEFF_PH] = {
+       0x0000000000000000LL,
+       0x05b05b05b05b0406LL,
+       0x000049f93edd91a9LL,
+       0x00000000c9c9ed62LL
+};
+
+static const unsigned long long neg_terms_h[N_COEFF_NH] = {
+       0xaaaaaaaaaaaaaa98LL,
+       0x001a01a01a019064LL,
+       0x0000008f76c68a77LL,
+       0x0000000000d58f5eLL
+};
+
+/*--- poly_sine() -----------------------------------------------------------+
+ |                                                                           |
+ +---------------------------------------------------------------------------*/
+void poly_sine(FPU_REG *st0_ptr)
+{
+       int exponent, echange;
+       Xsig accumulator, argSqrd, argTo4;
+       unsigned long fix_up, adj;
+       unsigned long long fixed_arg;
+       FPU_REG result;
+
+       exponent = exponent(st0_ptr);
+
+       accumulator.lsw = accumulator.midw = accumulator.msw = 0;
+
+       /* Split into two ranges, for arguments below and above 1.0 */
+       /* The boundary between upper and lower is approx 0.88309101259 */
+       if ((exponent < -1)
+           || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
+               /* The argument is <= 0.88309101259 */
+
+               argSqrd.msw = st0_ptr->sigh;
+               argSqrd.midw = st0_ptr->sigl;
+               argSqrd.lsw = 0;
+               mul64_Xsig(&argSqrd, &significand(st0_ptr));
+               shr_Xsig(&argSqrd, 2 * (-1 - exponent));
+               argTo4.msw = argSqrd.msw;
+               argTo4.midw = argSqrd.midw;
+               argTo4.lsw = argSqrd.lsw;
+               mul_Xsig_Xsig(&argTo4, &argTo4);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
+                               N_COEFF_N - 1);
+               mul_Xsig_Xsig(&accumulator, &argSqrd);
+               negate_Xsig(&accumulator);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
+                               N_COEFF_P - 1);
+
+               shr_Xsig(&accumulator, 2);      /* Divide by four */
+               accumulator.msw |= 0x80000000;  /* Add 1.0 */
+
+               mul64_Xsig(&accumulator, &significand(st0_ptr));
+               mul64_Xsig(&accumulator, &significand(st0_ptr));
+               mul64_Xsig(&accumulator, &significand(st0_ptr));
+
+               /* Divide by four, FPU_REG compatible, etc */
+               exponent = 3 * exponent;
+
+               /* The minimum exponent difference is 3 */
+               shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
+
+               negate_Xsig(&accumulator);
+               XSIG_LL(accumulator) += significand(st0_ptr);
+
+               echange = round_Xsig(&accumulator);
+
+               setexponentpos(&result, exponent(st0_ptr) + echange);
+       } else {
+               /* The argument is > 0.88309101259 */
+               /* We use sin(st(0)) = cos(pi/2-st(0)) */
+
+               fixed_arg = significand(st0_ptr);
+
+               if (exponent == 0) {
+                       /* The argument is >= 1.0 */
+
+                       /* Put the binary point at the left. */
+                       fixed_arg <<= 1;
+               }
+               /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
+               fixed_arg = 0x921fb54442d18469LL - fixed_arg;
+               /* There is a special case which arises due to rounding, to fix here. */
+               if (fixed_arg == 0xffffffffffffffffLL)
+                       fixed_arg = 0;
+
+               XSIG_LL(argSqrd) = fixed_arg;
+               argSqrd.lsw = 0;
+               mul64_Xsig(&argSqrd, &fixed_arg);
+
+               XSIG_LL(argTo4) = XSIG_LL(argSqrd);
+               argTo4.lsw = argSqrd.lsw;
+               mul_Xsig_Xsig(&argTo4, &argTo4);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
+                               N_COEFF_NH - 1);
+               mul_Xsig_Xsig(&accumulator, &argSqrd);
+               negate_Xsig(&accumulator);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
+                               N_COEFF_PH - 1);
+               negate_Xsig(&accumulator);
+
+               mul64_Xsig(&accumulator, &fixed_arg);
+               mul64_Xsig(&accumulator, &fixed_arg);
+
+               shr_Xsig(&accumulator, 3);
+               negate_Xsig(&accumulator);
+
+               add_Xsig_Xsig(&accumulator, &argSqrd);
+
+               shr_Xsig(&accumulator, 1);
+
+               accumulator.lsw |= 1;   /* A zero accumulator here would cause problems */
+               negate_Xsig(&accumulator);
+
+               /* The basic computation is complete. Now fix the answer to
+                  compensate for the error due to the approximation used for
+                  pi/2
+                */
+
+               /* This has an exponent of -65 */
+               fix_up = 0x898cc517;
+               /* The fix-up needs to be improved for larger args */
+               if (argSqrd.msw & 0xffc00000) {
+                       /* Get about 32 bit precision in these: */
+                       fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
+               }
+               fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
+
+               adj = accumulator.lsw;  /* temp save */
+               accumulator.lsw -= fix_up;
+               if (accumulator.lsw > adj)
+                       XSIG_LL(accumulator)--;
+
+               echange = round_Xsig(&accumulator);
+
+               setexponentpos(&result, echange - 1);
+       }
+
+       significand(&result) = XSIG_LL(accumulator);
+       setsign(&result, getsign(st0_ptr));
+       FPU_copy_to_reg0(&result, TAG_Valid);
+
+#ifdef PARANOID
+       if ((exponent(&result) >= 0)
+           && (significand(&result) > 0x8000000000000000LL)) {
+               EXCEPTION(EX_INTERNAL | 0x150);
+       }
+#endif /* PARANOID */
+
+}
+
+/*--- poly_cos() ------------------------------------------------------------+
+ |                                                                           |
+ +---------------------------------------------------------------------------*/
+void poly_cos(FPU_REG *st0_ptr)
+{
+       FPU_REG result;
+       long int exponent, exp2, echange;
+       Xsig accumulator, argSqrd, fix_up, argTo4;
+       unsigned long long fixed_arg;
+
+#ifdef PARANOID
+       if ((exponent(st0_ptr) > 0)
+           || ((exponent(st0_ptr) == 0)
+               && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
+               EXCEPTION(EX_Invalid);
+               FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
+               return;
+       }
+#endif /* PARANOID */
+
+       exponent = exponent(st0_ptr);
+
+       accumulator.lsw = accumulator.midw = accumulator.msw = 0;
+
+       if ((exponent < -1)
+           || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
+               /* arg is < 0.687705 */
+
+               argSqrd.msw = st0_ptr->sigh;
+               argSqrd.midw = st0_ptr->sigl;
+               argSqrd.lsw = 0;
+               mul64_Xsig(&argSqrd, &significand(st0_ptr));
+
+               if (exponent < -1) {
+                       /* shift the argument right by the required places */
+                       shr_Xsig(&argSqrd, 2 * (-1 - exponent));
+               }
+
+               argTo4.msw = argSqrd.msw;
+               argTo4.midw = argSqrd.midw;
+               argTo4.lsw = argSqrd.lsw;
+               mul_Xsig_Xsig(&argTo4, &argTo4);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
+                               N_COEFF_NH - 1);
+               mul_Xsig_Xsig(&accumulator, &argSqrd);
+               negate_Xsig(&accumulator);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
+                               N_COEFF_PH - 1);
+               negate_Xsig(&accumulator);
+
+               mul64_Xsig(&accumulator, &significand(st0_ptr));
+               mul64_Xsig(&accumulator, &significand(st0_ptr));
+               shr_Xsig(&accumulator, -2 * (1 + exponent));
+
+               shr_Xsig(&accumulator, 3);
+               negate_Xsig(&accumulator);
+
+               add_Xsig_Xsig(&accumulator, &argSqrd);
+
+               shr_Xsig(&accumulator, 1);
+
+               /* It doesn't matter if accumulator is all zero here, the
+                  following code will work ok */
+               negate_Xsig(&accumulator);
+
+               if (accumulator.lsw & 0x80000000)
+                       XSIG_LL(accumulator)++;
+               if (accumulator.msw == 0) {
+                       /* The result is 1.0 */
+                       FPU_copy_to_reg0(&CONST_1, TAG_Valid);
+                       return;
+               } else {
+                       significand(&result) = XSIG_LL(accumulator);
+
+                       /* will be a valid positive nr with expon = -1 */
+                       setexponentpos(&result, -1);
+               }
+       } else {
+               fixed_arg = significand(st0_ptr);
+
+               if (exponent == 0) {
+                       /* The argument is >= 1.0 */
+
+                       /* Put the binary point at the left. */
+                       fixed_arg <<= 1;
+               }
+               /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
+               fixed_arg = 0x921fb54442d18469LL - fixed_arg;
+               /* There is a special case which arises due to rounding, to fix here. */
+               if (fixed_arg == 0xffffffffffffffffLL)
+                       fixed_arg = 0;
+
+               exponent = -1;
+               exp2 = -1;
+
+               /* A shift is needed here only for a narrow range of arguments,
+                  i.e. for fixed_arg approx 2^-32, but we pick up more... */
+               if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
+                       fixed_arg <<= 16;
+                       exponent -= 16;
+                       exp2 -= 16;
+               }
+
+               XSIG_LL(argSqrd) = fixed_arg;
+               argSqrd.lsw = 0;
+               mul64_Xsig(&argSqrd, &fixed_arg);
+
+               if (exponent < -1) {
+                       /* shift the argument right by the required places */
+                       shr_Xsig(&argSqrd, 2 * (-1 - exponent));
+               }
+
+               argTo4.msw = argSqrd.msw;
+               argTo4.midw = argSqrd.midw;
+               argTo4.lsw = argSqrd.lsw;
+               mul_Xsig_Xsig(&argTo4, &argTo4);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
+                               N_COEFF_N - 1);
+               mul_Xsig_Xsig(&accumulator, &argSqrd);
+               negate_Xsig(&accumulator);
+
+               polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
+                               N_COEFF_P - 1);
+
+               shr_Xsig(&accumulator, 2);      /* Divide by four */
+               accumulator.msw |= 0x80000000;  /* Add 1.0 */
+
+               mul64_Xsig(&accumulator, &fixed_arg);
+               mul64_Xsig(&accumulator, &fixed_arg);
+               mul64_Xsig(&accumulator, &fixed_arg);
+
+               /* Divide by four, FPU_REG compatible, etc */
+               exponent = 3 * exponent;
+
+               /* The minimum exponent difference is 3 */
+               shr_Xsig(&accumulator, exp2 - exponent);
+
+               negate_Xsig(&accumulator);
+               XSIG_LL(accumulator) += fixed_arg;
+
+               /* The basic computation is complete. Now fix the answer to
+                  compensate for the error due to the approximation used for
+                  pi/2
+                */
+
+               /* This has an exponent of -65 */
+               XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
+               fix_up.lsw = 0;
+
+               /* The fix-up needs to be improved for larger args */
+               if (argSqrd.msw & 0xffc00000) {
+                       /* Get about 32 bit precision in these: */
+                       fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
+                       fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
+               }
+
+               exp2 += norm_Xsig(&accumulator);
+               shr_Xsig(&accumulator, 1);      /* Prevent overflow */
+               exp2++;
+               shr_Xsig(&fix_up, 65 + exp2);
+
+               add_Xsig_Xsig(&accumulator, &fix_up);
+
+               echange = round_Xsig(&accumulator);
+
+               setexponentpos(&result, exp2 + echange);
+               significand(&result) = XSIG_LL(accumulator);
+       }
+
+       FPU_copy_to_reg0(&result, TAG_Valid);
+
+#ifdef PARANOID
+       if ((exponent(&result) >= 0)
+           && (significand(&result) > 0x8000000000000000LL)) {
+               EXCEPTION(EX_INTERNAL | 0x151);
+       }
+#endif /* PARANOID */
+
+}