Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / x86 / kvm / x86.c
diff --git a/kernel/arch/x86/kvm/x86.c b/kernel/arch/x86/kvm/x86.c
new file mode 100644 (file)
index 0000000..6cceb2c
--- /dev/null
@@ -0,0 +1,7994 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * derived from drivers/kvm/kvm_main.c
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright (C) 2008 Qumranet, Inc.
+ * Copyright IBM Corporation, 2008
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Avi Kivity   <avi@qumranet.com>
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *   Amit Shah    <amit.shah@qumranet.com>
+ *   Ben-Ami Yassour <benami@il.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2.  See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/kvm_host.h>
+#include "irq.h"
+#include "mmu.h"
+#include "i8254.h"
+#include "tss.h"
+#include "kvm_cache_regs.h"
+#include "x86.h"
+#include "cpuid.h"
+#include "assigned-dev.h"
+
+#include <linux/clocksource.h>
+#include <linux/interrupt.h>
+#include <linux/kvm.h>
+#include <linux/fs.h>
+#include <linux/vmalloc.h>
+#include <linux/module.h>
+#include <linux/mman.h>
+#include <linux/highmem.h>
+#include <linux/iommu.h>
+#include <linux/intel-iommu.h>
+#include <linux/cpufreq.h>
+#include <linux/user-return-notifier.h>
+#include <linux/srcu.h>
+#include <linux/slab.h>
+#include <linux/perf_event.h>
+#include <linux/uaccess.h>
+#include <linux/hash.h>
+#include <linux/pci.h>
+#include <linux/timekeeper_internal.h>
+#include <linux/pvclock_gtod.h>
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+#include <asm/debugreg.h>
+#include <asm/msr.h>
+#include <asm/desc.h>
+#include <asm/mtrr.h>
+#include <asm/mce.h>
+#include <asm/i387.h>
+#include <asm/fpu-internal.h> /* Ugh! */
+#include <asm/xcr.h>
+#include <asm/pvclock.h>
+#include <asm/div64.h>
+
+#define MAX_IO_MSRS 256
+#define KVM_MAX_MCE_BANKS 32
+#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
+
+#define emul_to_vcpu(ctxt) \
+       container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
+
+/* EFER defaults:
+ * - enable syscall per default because its emulated by KVM
+ * - enable LME and LMA per default on 64 bit KVM
+ */
+#ifdef CONFIG_X86_64
+static
+u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
+#else
+static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
+#endif
+
+#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
+#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu);
+static void process_nmi(struct kvm_vcpu *vcpu);
+static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
+
+struct kvm_x86_ops *kvm_x86_ops;
+EXPORT_SYMBOL_GPL(kvm_x86_ops);
+
+static bool ignore_msrs = 0;
+module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
+
+unsigned int min_timer_period_us = 500;
+module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
+
+bool kvm_has_tsc_control;
+EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
+u32  kvm_max_guest_tsc_khz;
+EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
+
+/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
+static u32 tsc_tolerance_ppm = 250;
+module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
+
+/* lapic timer advance (tscdeadline mode only) in nanoseconds */
+unsigned int lapic_timer_advance_ns = 0;
+module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
+
+static bool backwards_tsc_observed = false;
+
+#define KVM_NR_SHARED_MSRS 16
+
+struct kvm_shared_msrs_global {
+       int nr;
+       u32 msrs[KVM_NR_SHARED_MSRS];
+};
+
+struct kvm_shared_msrs {
+       struct user_return_notifier urn;
+       bool registered;
+       struct kvm_shared_msr_values {
+               u64 host;
+               u64 curr;
+       } values[KVM_NR_SHARED_MSRS];
+};
+
+static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
+static struct kvm_shared_msrs __percpu *shared_msrs;
+
+struct kvm_stats_debugfs_item debugfs_entries[] = {
+       { "pf_fixed", VCPU_STAT(pf_fixed) },
+       { "pf_guest", VCPU_STAT(pf_guest) },
+       { "tlb_flush", VCPU_STAT(tlb_flush) },
+       { "invlpg", VCPU_STAT(invlpg) },
+       { "exits", VCPU_STAT(exits) },
+       { "io_exits", VCPU_STAT(io_exits) },
+       { "mmio_exits", VCPU_STAT(mmio_exits) },
+       { "signal_exits", VCPU_STAT(signal_exits) },
+       { "irq_window", VCPU_STAT(irq_window_exits) },
+       { "nmi_window", VCPU_STAT(nmi_window_exits) },
+       { "halt_exits", VCPU_STAT(halt_exits) },
+       { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
+       { "halt_wakeup", VCPU_STAT(halt_wakeup) },
+       { "hypercalls", VCPU_STAT(hypercalls) },
+       { "request_irq", VCPU_STAT(request_irq_exits) },
+       { "irq_exits", VCPU_STAT(irq_exits) },
+       { "host_state_reload", VCPU_STAT(host_state_reload) },
+       { "efer_reload", VCPU_STAT(efer_reload) },
+       { "fpu_reload", VCPU_STAT(fpu_reload) },
+       { "insn_emulation", VCPU_STAT(insn_emulation) },
+       { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
+       { "irq_injections", VCPU_STAT(irq_injections) },
+       { "nmi_injections", VCPU_STAT(nmi_injections) },
+       { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
+       { "mmu_pte_write", VM_STAT(mmu_pte_write) },
+       { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
+       { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
+       { "mmu_flooded", VM_STAT(mmu_flooded) },
+       { "mmu_recycled", VM_STAT(mmu_recycled) },
+       { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
+       { "mmu_unsync", VM_STAT(mmu_unsync) },
+       { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
+       { "largepages", VM_STAT(lpages) },
+       { NULL }
+};
+
+u64 __read_mostly host_xcr0;
+
+static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
+
+static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
+{
+       int i;
+       for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
+               vcpu->arch.apf.gfns[i] = ~0;
+}
+
+static void kvm_on_user_return(struct user_return_notifier *urn)
+{
+       unsigned slot;
+       struct kvm_shared_msrs *locals
+               = container_of(urn, struct kvm_shared_msrs, urn);
+       struct kvm_shared_msr_values *values;
+
+       for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
+               values = &locals->values[slot];
+               if (values->host != values->curr) {
+                       wrmsrl(shared_msrs_global.msrs[slot], values->host);
+                       values->curr = values->host;
+               }
+       }
+       locals->registered = false;
+       user_return_notifier_unregister(urn);
+}
+
+static void shared_msr_update(unsigned slot, u32 msr)
+{
+       u64 value;
+       unsigned int cpu = smp_processor_id();
+       struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
+
+       /* only read, and nobody should modify it at this time,
+        * so don't need lock */
+       if (slot >= shared_msrs_global.nr) {
+               printk(KERN_ERR "kvm: invalid MSR slot!");
+               return;
+       }
+       rdmsrl_safe(msr, &value);
+       smsr->values[slot].host = value;
+       smsr->values[slot].curr = value;
+}
+
+void kvm_define_shared_msr(unsigned slot, u32 msr)
+{
+       BUG_ON(slot >= KVM_NR_SHARED_MSRS);
+       if (slot >= shared_msrs_global.nr)
+               shared_msrs_global.nr = slot + 1;
+       shared_msrs_global.msrs[slot] = msr;
+       /* we need ensured the shared_msr_global have been updated */
+       smp_wmb();
+}
+EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
+
+static void kvm_shared_msr_cpu_online(void)
+{
+       unsigned i;
+
+       for (i = 0; i < shared_msrs_global.nr; ++i)
+               shared_msr_update(i, shared_msrs_global.msrs[i]);
+}
+
+int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
+{
+       unsigned int cpu = smp_processor_id();
+       struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
+       int err;
+
+       if (((value ^ smsr->values[slot].curr) & mask) == 0)
+               return 0;
+       smsr->values[slot].curr = value;
+       err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
+       if (err)
+               return 1;
+
+       if (!smsr->registered) {
+               smsr->urn.on_user_return = kvm_on_user_return;
+               user_return_notifier_register(&smsr->urn);
+               smsr->registered = true;
+       }
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
+
+static void drop_user_return_notifiers(void)
+{
+       unsigned int cpu = smp_processor_id();
+       struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
+
+       if (smsr->registered)
+               kvm_on_user_return(&smsr->urn);
+}
+
+u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
+{
+       return vcpu->arch.apic_base;
+}
+EXPORT_SYMBOL_GPL(kvm_get_apic_base);
+
+int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+       u64 old_state = vcpu->arch.apic_base &
+               (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
+       u64 new_state = msr_info->data &
+               (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
+       u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
+               0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
+
+       if (!msr_info->host_initiated &&
+           ((msr_info->data & reserved_bits) != 0 ||
+            new_state == X2APIC_ENABLE ||
+            (new_state == MSR_IA32_APICBASE_ENABLE &&
+             old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
+            (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
+             old_state == 0)))
+               return 1;
+
+       kvm_lapic_set_base(vcpu, msr_info->data);
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_apic_base);
+
+asmlinkage __visible void kvm_spurious_fault(void)
+{
+       /* Fault while not rebooting.  We want the trace. */
+       BUG();
+}
+EXPORT_SYMBOL_GPL(kvm_spurious_fault);
+
+#define EXCPT_BENIGN           0
+#define EXCPT_CONTRIBUTORY     1
+#define EXCPT_PF               2
+
+static int exception_class(int vector)
+{
+       switch (vector) {
+       case PF_VECTOR:
+               return EXCPT_PF;
+       case DE_VECTOR:
+       case TS_VECTOR:
+       case NP_VECTOR:
+       case SS_VECTOR:
+       case GP_VECTOR:
+               return EXCPT_CONTRIBUTORY;
+       default:
+               break;
+       }
+       return EXCPT_BENIGN;
+}
+
+#define EXCPT_FAULT            0
+#define EXCPT_TRAP             1
+#define EXCPT_ABORT            2
+#define EXCPT_INTERRUPT                3
+
+static int exception_type(int vector)
+{
+       unsigned int mask;
+
+       if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
+               return EXCPT_INTERRUPT;
+
+       mask = 1 << vector;
+
+       /* #DB is trap, as instruction watchpoints are handled elsewhere */
+       if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
+               return EXCPT_TRAP;
+
+       if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
+               return EXCPT_ABORT;
+
+       /* Reserved exceptions will result in fault */
+       return EXCPT_FAULT;
+}
+
+static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
+               unsigned nr, bool has_error, u32 error_code,
+               bool reinject)
+{
+       u32 prev_nr;
+       int class1, class2;
+
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       if (!vcpu->arch.exception.pending) {
+       queue:
+               if (has_error && !is_protmode(vcpu))
+                       has_error = false;
+               vcpu->arch.exception.pending = true;
+               vcpu->arch.exception.has_error_code = has_error;
+               vcpu->arch.exception.nr = nr;
+               vcpu->arch.exception.error_code = error_code;
+               vcpu->arch.exception.reinject = reinject;
+               return;
+       }
+
+       /* to check exception */
+       prev_nr = vcpu->arch.exception.nr;
+       if (prev_nr == DF_VECTOR) {
+               /* triple fault -> shutdown */
+               kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+               return;
+       }
+       class1 = exception_class(prev_nr);
+       class2 = exception_class(nr);
+       if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
+               || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
+               /* generate double fault per SDM Table 5-5 */
+               vcpu->arch.exception.pending = true;
+               vcpu->arch.exception.has_error_code = true;
+               vcpu->arch.exception.nr = DF_VECTOR;
+               vcpu->arch.exception.error_code = 0;
+       } else
+               /* replace previous exception with a new one in a hope
+                  that instruction re-execution will regenerate lost
+                  exception */
+               goto queue;
+}
+
+void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+       kvm_multiple_exception(vcpu, nr, false, 0, false);
+}
+EXPORT_SYMBOL_GPL(kvm_queue_exception);
+
+void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+       kvm_multiple_exception(vcpu, nr, false, 0, true);
+}
+EXPORT_SYMBOL_GPL(kvm_requeue_exception);
+
+void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
+{
+       if (err)
+               kvm_inject_gp(vcpu, 0);
+       else
+               kvm_x86_ops->skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
+
+void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
+{
+       ++vcpu->stat.pf_guest;
+       vcpu->arch.cr2 = fault->address;
+       kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
+}
+EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
+
+static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
+{
+       if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
+               vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
+       else
+               vcpu->arch.mmu.inject_page_fault(vcpu, fault);
+
+       return fault->nested_page_fault;
+}
+
+void kvm_inject_nmi(struct kvm_vcpu *vcpu)
+{
+       atomic_inc(&vcpu->arch.nmi_queued);
+       kvm_make_request(KVM_REQ_NMI, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_inject_nmi);
+
+void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
+{
+       kvm_multiple_exception(vcpu, nr, true, error_code, false);
+}
+EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
+
+void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
+{
+       kvm_multiple_exception(vcpu, nr, true, error_code, true);
+}
+EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
+
+/*
+ * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
+ * a #GP and return false.
+ */
+bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
+{
+       if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
+               return true;
+       kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+       return false;
+}
+EXPORT_SYMBOL_GPL(kvm_require_cpl);
+
+bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
+{
+       if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
+               return true;
+
+       kvm_queue_exception(vcpu, UD_VECTOR);
+       return false;
+}
+EXPORT_SYMBOL_GPL(kvm_require_dr);
+
+/*
+ * This function will be used to read from the physical memory of the currently
+ * running guest. The difference to kvm_read_guest_page is that this function
+ * can read from guest physical or from the guest's guest physical memory.
+ */
+int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+                           gfn_t ngfn, void *data, int offset, int len,
+                           u32 access)
+{
+       struct x86_exception exception;
+       gfn_t real_gfn;
+       gpa_t ngpa;
+
+       ngpa     = gfn_to_gpa(ngfn);
+       real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
+       if (real_gfn == UNMAPPED_GVA)
+               return -EFAULT;
+
+       real_gfn = gpa_to_gfn(real_gfn);
+
+       return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
+}
+EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
+
+static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
+                              void *data, int offset, int len, u32 access)
+{
+       return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
+                                      data, offset, len, access);
+}
+
+/*
+ * Load the pae pdptrs.  Return true is they are all valid.
+ */
+int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
+{
+       gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
+       unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
+       int i;
+       int ret;
+       u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
+
+       ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
+                                     offset * sizeof(u64), sizeof(pdpte),
+                                     PFERR_USER_MASK|PFERR_WRITE_MASK);
+       if (ret < 0) {
+               ret = 0;
+               goto out;
+       }
+       for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
+               if (is_present_gpte(pdpte[i]) &&
+                   (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
+                       ret = 0;
+                       goto out;
+               }
+       }
+       ret = 1;
+
+       memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
+       __set_bit(VCPU_EXREG_PDPTR,
+                 (unsigned long *)&vcpu->arch.regs_avail);
+       __set_bit(VCPU_EXREG_PDPTR,
+                 (unsigned long *)&vcpu->arch.regs_dirty);
+out:
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(load_pdptrs);
+
+static bool pdptrs_changed(struct kvm_vcpu *vcpu)
+{
+       u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
+       bool changed = true;
+       int offset;
+       gfn_t gfn;
+       int r;
+
+       if (is_long_mode(vcpu) || !is_pae(vcpu))
+               return false;
+
+       if (!test_bit(VCPU_EXREG_PDPTR,
+                     (unsigned long *)&vcpu->arch.regs_avail))
+               return true;
+
+       gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
+       offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
+       r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
+                                      PFERR_USER_MASK | PFERR_WRITE_MASK);
+       if (r < 0)
+               goto out;
+       changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
+out:
+
+       return changed;
+}
+
+int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+       unsigned long old_cr0 = kvm_read_cr0(vcpu);
+       unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
+                                   X86_CR0_CD | X86_CR0_NW;
+
+       cr0 |= X86_CR0_ET;
+
+#ifdef CONFIG_X86_64
+       if (cr0 & 0xffffffff00000000UL)
+               return 1;
+#endif
+
+       cr0 &= ~CR0_RESERVED_BITS;
+
+       if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
+               return 1;
+
+       if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
+               return 1;
+
+       if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
+#ifdef CONFIG_X86_64
+               if ((vcpu->arch.efer & EFER_LME)) {
+                       int cs_db, cs_l;
+
+                       if (!is_pae(vcpu))
+                               return 1;
+                       kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
+                       if (cs_l)
+                               return 1;
+               } else
+#endif
+               if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
+                                                kvm_read_cr3(vcpu)))
+                       return 1;
+       }
+
+       if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
+               return 1;
+
+       kvm_x86_ops->set_cr0(vcpu, cr0);
+
+       if ((cr0 ^ old_cr0) & X86_CR0_PG) {
+               kvm_clear_async_pf_completion_queue(vcpu);
+               kvm_async_pf_hash_reset(vcpu);
+       }
+
+       if ((cr0 ^ old_cr0) & update_bits)
+               kvm_mmu_reset_context(vcpu);
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr0);
+
+void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
+{
+       (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
+}
+EXPORT_SYMBOL_GPL(kvm_lmsw);
+
+static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
+{
+       if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
+                       !vcpu->guest_xcr0_loaded) {
+               /* kvm_set_xcr() also depends on this */
+               xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
+               vcpu->guest_xcr0_loaded = 1;
+       }
+}
+
+static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
+{
+       if (vcpu->guest_xcr0_loaded) {
+               if (vcpu->arch.xcr0 != host_xcr0)
+                       xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
+               vcpu->guest_xcr0_loaded = 0;
+       }
+}
+
+static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
+{
+       u64 xcr0 = xcr;
+       u64 old_xcr0 = vcpu->arch.xcr0;
+       u64 valid_bits;
+
+       /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
+       if (index != XCR_XFEATURE_ENABLED_MASK)
+               return 1;
+       if (!(xcr0 & XSTATE_FP))
+               return 1;
+       if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
+               return 1;
+
+       /*
+        * Do not allow the guest to set bits that we do not support
+        * saving.  However, xcr0 bit 0 is always set, even if the
+        * emulated CPU does not support XSAVE (see fx_init).
+        */
+       valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
+       if (xcr0 & ~valid_bits)
+               return 1;
+
+       if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
+               return 1;
+
+       if (xcr0 & XSTATE_AVX512) {
+               if (!(xcr0 & XSTATE_YMM))
+                       return 1;
+               if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
+                       return 1;
+       }
+       kvm_put_guest_xcr0(vcpu);
+       vcpu->arch.xcr0 = xcr0;
+
+       if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
+               kvm_update_cpuid(vcpu);
+       return 0;
+}
+
+int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
+{
+       if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
+           __kvm_set_xcr(vcpu, index, xcr)) {
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_xcr);
+
+int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+       unsigned long old_cr4 = kvm_read_cr4(vcpu);
+       unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
+                                  X86_CR4_SMEP | X86_CR4_SMAP;
+
+       if (cr4 & CR4_RESERVED_BITS)
+               return 1;
+
+       if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
+               return 1;
+
+       if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
+               return 1;
+
+       if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
+               return 1;
+
+       if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
+               return 1;
+
+       if (is_long_mode(vcpu)) {
+               if (!(cr4 & X86_CR4_PAE))
+                       return 1;
+       } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
+                  && ((cr4 ^ old_cr4) & pdptr_bits)
+                  && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
+                                  kvm_read_cr3(vcpu)))
+               return 1;
+
+       if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
+               if (!guest_cpuid_has_pcid(vcpu))
+                       return 1;
+
+               /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
+               if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
+                       return 1;
+       }
+
+       if (kvm_x86_ops->set_cr4(vcpu, cr4))
+               return 1;
+
+       if (((cr4 ^ old_cr4) & pdptr_bits) ||
+           (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
+               kvm_mmu_reset_context(vcpu);
+
+       if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
+               kvm_update_cpuid(vcpu);
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr4);
+
+int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+#ifdef CONFIG_X86_64
+       cr3 &= ~CR3_PCID_INVD;
+#endif
+
+       if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
+               kvm_mmu_sync_roots(vcpu);
+               kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+               return 0;
+       }
+
+       if (is_long_mode(vcpu)) {
+               if (cr3 & CR3_L_MODE_RESERVED_BITS)
+                       return 1;
+       } else if (is_pae(vcpu) && is_paging(vcpu) &&
+                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
+               return 1;
+
+       vcpu->arch.cr3 = cr3;
+       __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+       kvm_mmu_new_cr3(vcpu);
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr3);
+
+int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
+{
+       if (cr8 & CR8_RESERVED_BITS)
+               return 1;
+       if (irqchip_in_kernel(vcpu->kvm))
+               kvm_lapic_set_tpr(vcpu, cr8);
+       else
+               vcpu->arch.cr8 = cr8;
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr8);
+
+unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
+{
+       if (irqchip_in_kernel(vcpu->kvm))
+               return kvm_lapic_get_cr8(vcpu);
+       else
+               return vcpu->arch.cr8;
+}
+EXPORT_SYMBOL_GPL(kvm_get_cr8);
+
+static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
+{
+       int i;
+
+       if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
+               for (i = 0; i < KVM_NR_DB_REGS; i++)
+                       vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+               vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
+       }
+}
+
+static void kvm_update_dr6(struct kvm_vcpu *vcpu)
+{
+       if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
+               kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
+}
+
+static void kvm_update_dr7(struct kvm_vcpu *vcpu)
+{
+       unsigned long dr7;
+
+       if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+               dr7 = vcpu->arch.guest_debug_dr7;
+       else
+               dr7 = vcpu->arch.dr7;
+       kvm_x86_ops->set_dr7(vcpu, dr7);
+       vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
+       if (dr7 & DR7_BP_EN_MASK)
+               vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
+}
+
+static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
+{
+       u64 fixed = DR6_FIXED_1;
+
+       if (!guest_cpuid_has_rtm(vcpu))
+               fixed |= DR6_RTM;
+       return fixed;
+}
+
+static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
+{
+       switch (dr) {
+       case 0 ... 3:
+               vcpu->arch.db[dr] = val;
+               if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
+                       vcpu->arch.eff_db[dr] = val;
+               break;
+       case 4:
+               /* fall through */
+       case 6:
+               if (val & 0xffffffff00000000ULL)
+                       return -1; /* #GP */
+               vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
+               kvm_update_dr6(vcpu);
+               break;
+       case 5:
+               /* fall through */
+       default: /* 7 */
+               if (val & 0xffffffff00000000ULL)
+                       return -1; /* #GP */
+               vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
+               kvm_update_dr7(vcpu);
+               break;
+       }
+
+       return 0;
+}
+
+int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
+{
+       if (__kvm_set_dr(vcpu, dr, val)) {
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_dr);
+
+int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
+{
+       switch (dr) {
+       case 0 ... 3:
+               *val = vcpu->arch.db[dr];
+               break;
+       case 4:
+               /* fall through */
+       case 6:
+               if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+                       *val = vcpu->arch.dr6;
+               else
+                       *val = kvm_x86_ops->get_dr6(vcpu);
+               break;
+       case 5:
+               /* fall through */
+       default: /* 7 */
+               *val = vcpu->arch.dr7;
+               break;
+       }
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_get_dr);
+
+bool kvm_rdpmc(struct kvm_vcpu *vcpu)
+{
+       u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
+       u64 data;
+       int err;
+
+       err = kvm_pmu_read_pmc(vcpu, ecx, &data);
+       if (err)
+               return err;
+       kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
+       kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
+       return err;
+}
+EXPORT_SYMBOL_GPL(kvm_rdpmc);
+
+/*
+ * List of msr numbers which we expose to userspace through KVM_GET_MSRS
+ * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
+ *
+ * This list is modified at module load time to reflect the
+ * capabilities of the host cpu. This capabilities test skips MSRs that are
+ * kvm-specific. Those are put in the beginning of the list.
+ */
+
+#define KVM_SAVE_MSRS_BEGIN    12
+static u32 msrs_to_save[] = {
+       MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
+       MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
+       HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
+       HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
+       HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
+       MSR_KVM_PV_EOI_EN,
+       MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
+       MSR_STAR,
+#ifdef CONFIG_X86_64
+       MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
+#endif
+       MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
+       MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
+};
+
+static unsigned num_msrs_to_save;
+
+static const u32 emulated_msrs[] = {
+       MSR_IA32_TSC_ADJUST,
+       MSR_IA32_TSCDEADLINE,
+       MSR_IA32_MISC_ENABLE,
+       MSR_IA32_MCG_STATUS,
+       MSR_IA32_MCG_CTL,
+};
+
+bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+       if (efer & efer_reserved_bits)
+               return false;
+
+       if (efer & EFER_FFXSR) {
+               struct kvm_cpuid_entry2 *feat;
+
+               feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+               if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
+                       return false;
+       }
+
+       if (efer & EFER_SVME) {
+               struct kvm_cpuid_entry2 *feat;
+
+               feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+               if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
+                       return false;
+       }
+
+       return true;
+}
+EXPORT_SYMBOL_GPL(kvm_valid_efer);
+
+static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+       u64 old_efer = vcpu->arch.efer;
+
+       if (!kvm_valid_efer(vcpu, efer))
+               return 1;
+
+       if (is_paging(vcpu)
+           && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
+               return 1;
+
+       efer &= ~EFER_LMA;
+       efer |= vcpu->arch.efer & EFER_LMA;
+
+       kvm_x86_ops->set_efer(vcpu, efer);
+
+       /* Update reserved bits */
+       if ((efer ^ old_efer) & EFER_NX)
+               kvm_mmu_reset_context(vcpu);
+
+       return 0;
+}
+
+void kvm_enable_efer_bits(u64 mask)
+{
+       efer_reserved_bits &= ~mask;
+}
+EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
+
+/*
+ * Writes msr value into into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
+{
+       switch (msr->index) {
+       case MSR_FS_BASE:
+       case MSR_GS_BASE:
+       case MSR_KERNEL_GS_BASE:
+       case MSR_CSTAR:
+       case MSR_LSTAR:
+               if (is_noncanonical_address(msr->data))
+                       return 1;
+               break;
+       case MSR_IA32_SYSENTER_EIP:
+       case MSR_IA32_SYSENTER_ESP:
+               /*
+                * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
+                * non-canonical address is written on Intel but not on
+                * AMD (which ignores the top 32-bits, because it does
+                * not implement 64-bit SYSENTER).
+                *
+                * 64-bit code should hence be able to write a non-canonical
+                * value on AMD.  Making the address canonical ensures that
+                * vmentry does not fail on Intel after writing a non-canonical
+                * value, and that something deterministic happens if the guest
+                * invokes 64-bit SYSENTER.
+                */
+               msr->data = get_canonical(msr->data);
+       }
+       return kvm_x86_ops->set_msr(vcpu, msr);
+}
+EXPORT_SYMBOL_GPL(kvm_set_msr);
+
+/*
+ * Adapt set_msr() to msr_io()'s calling convention
+ */
+static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
+{
+       struct msr_data msr;
+
+       msr.data = *data;
+       msr.index = index;
+       msr.host_initiated = true;
+       return kvm_set_msr(vcpu, &msr);
+}
+
+#ifdef CONFIG_X86_64
+struct pvclock_gtod_data {
+       seqcount_t      seq;
+
+       struct { /* extract of a clocksource struct */
+               int vclock_mode;
+               cycle_t cycle_last;
+               cycle_t mask;
+               u32     mult;
+               u32     shift;
+       } clock;
+
+       u64             boot_ns;
+       u64             nsec_base;
+};
+
+static struct pvclock_gtod_data pvclock_gtod_data;
+
+static void update_pvclock_gtod(struct timekeeper *tk)
+{
+       struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
+       u64 boot_ns;
+
+       boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
+
+       write_seqcount_begin(&vdata->seq);
+
+       /* copy pvclock gtod data */
+       vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
+       vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
+       vdata->clock.mask               = tk->tkr_mono.mask;
+       vdata->clock.mult               = tk->tkr_mono.mult;
+       vdata->clock.shift              = tk->tkr_mono.shift;
+
+       vdata->boot_ns                  = boot_ns;
+       vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
+
+       write_seqcount_end(&vdata->seq);
+}
+#endif
+
+void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
+{
+       /*
+        * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
+        * vcpu_enter_guest.  This function is only called from
+        * the physical CPU that is running vcpu.
+        */
+       kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
+}
+
+static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
+{
+       int version;
+       int r;
+       struct pvclock_wall_clock wc;
+       struct timespec boot;
+
+       if (!wall_clock)
+               return;
+
+       r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
+       if (r)
+               return;
+
+       if (version & 1)
+               ++version;  /* first time write, random junk */
+
+       ++version;
+
+       kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
+
+       /*
+        * The guest calculates current wall clock time by adding
+        * system time (updated by kvm_guest_time_update below) to the
+        * wall clock specified here.  guest system time equals host
+        * system time for us, thus we must fill in host boot time here.
+        */
+       getboottime(&boot);
+
+       if (kvm->arch.kvmclock_offset) {
+               struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
+               boot = timespec_sub(boot, ts);
+       }
+       wc.sec = boot.tv_sec;
+       wc.nsec = boot.tv_nsec;
+       wc.version = version;
+
+       kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
+
+       version++;
+       kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
+}
+
+static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
+{
+       uint32_t quotient, remainder;
+
+       /* Don't try to replace with do_div(), this one calculates
+        * "(dividend << 32) / divisor" */
+       __asm__ ( "divl %4"
+                 : "=a" (quotient), "=d" (remainder)
+                 : "0" (0), "1" (dividend), "r" (divisor) );
+       return quotient;
+}
+
+static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
+                              s8 *pshift, u32 *pmultiplier)
+{
+       uint64_t scaled64;
+       int32_t  shift = 0;
+       uint64_t tps64;
+       uint32_t tps32;
+
+       tps64 = base_khz * 1000LL;
+       scaled64 = scaled_khz * 1000LL;
+       while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
+               tps64 >>= 1;
+               shift--;
+       }
+
+       tps32 = (uint32_t)tps64;
+       while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
+               if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
+                       scaled64 >>= 1;
+               else
+                       tps32 <<= 1;
+               shift++;
+       }
+
+       *pshift = shift;
+       *pmultiplier = div_frac(scaled64, tps32);
+
+       pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
+                __func__, base_khz, scaled_khz, shift, *pmultiplier);
+}
+
+static inline u64 get_kernel_ns(void)
+{
+       return ktime_get_boot_ns();
+}
+
+#ifdef CONFIG_X86_64
+static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
+#endif
+
+static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
+static unsigned long max_tsc_khz;
+
+static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
+{
+       return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
+                                  vcpu->arch.virtual_tsc_shift);
+}
+
+static u32 adjust_tsc_khz(u32 khz, s32 ppm)
+{
+       u64 v = (u64)khz * (1000000 + ppm);
+       do_div(v, 1000000);
+       return v;
+}
+
+static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
+{
+       u32 thresh_lo, thresh_hi;
+       int use_scaling = 0;
+
+       /* tsc_khz can be zero if TSC calibration fails */
+       if (this_tsc_khz == 0)
+               return;
+
+       /* Compute a scale to convert nanoseconds in TSC cycles */
+       kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
+                          &vcpu->arch.virtual_tsc_shift,
+                          &vcpu->arch.virtual_tsc_mult);
+       vcpu->arch.virtual_tsc_khz = this_tsc_khz;
+
+       /*
+        * Compute the variation in TSC rate which is acceptable
+        * within the range of tolerance and decide if the
+        * rate being applied is within that bounds of the hardware
+        * rate.  If so, no scaling or compensation need be done.
+        */
+       thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
+       thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
+       if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
+               pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
+               use_scaling = 1;
+       }
+       kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
+}
+
+static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
+{
+       u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
+                                     vcpu->arch.virtual_tsc_mult,
+                                     vcpu->arch.virtual_tsc_shift);
+       tsc += vcpu->arch.this_tsc_write;
+       return tsc;
+}
+
+static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_X86_64
+       bool vcpus_matched;
+       struct kvm_arch *ka = &vcpu->kvm->arch;
+       struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+
+       vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
+                        atomic_read(&vcpu->kvm->online_vcpus));
+
+       /*
+        * Once the masterclock is enabled, always perform request in
+        * order to update it.
+        *
+        * In order to enable masterclock, the host clocksource must be TSC
+        * and the vcpus need to have matched TSCs.  When that happens,
+        * perform request to enable masterclock.
+        */
+       if (ka->use_master_clock ||
+           (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
+               kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+
+       trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
+                           atomic_read(&vcpu->kvm->online_vcpus),
+                           ka->use_master_clock, gtod->clock.vclock_mode);
+#endif
+}
+
+static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
+{
+       u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
+       vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
+}
+
+void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
+{
+       struct kvm *kvm = vcpu->kvm;
+       u64 offset, ns, elapsed;
+       unsigned long flags;
+       s64 usdiff;
+       bool matched;
+       bool already_matched;
+       u64 data = msr->data;
+
+       raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
+       offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
+       ns = get_kernel_ns();
+       elapsed = ns - kvm->arch.last_tsc_nsec;
+
+       if (vcpu->arch.virtual_tsc_khz) {
+               int faulted = 0;
+
+               /* n.b - signed multiplication and division required */
+               usdiff = data - kvm->arch.last_tsc_write;
+#ifdef CONFIG_X86_64
+               usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
+#else
+               /* do_div() only does unsigned */
+               asm("1: idivl %[divisor]\n"
+                   "2: xor %%edx, %%edx\n"
+                   "   movl $0, %[faulted]\n"
+                   "3:\n"
+                   ".section .fixup,\"ax\"\n"
+                   "4: movl $1, %[faulted]\n"
+                   "   jmp  3b\n"
+                   ".previous\n"
+
+               _ASM_EXTABLE(1b, 4b)
+
+               : "=A"(usdiff), [faulted] "=r" (faulted)
+               : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
+
+#endif
+               do_div(elapsed, 1000);
+               usdiff -= elapsed;
+               if (usdiff < 0)
+                       usdiff = -usdiff;
+
+               /* idivl overflow => difference is larger than USEC_PER_SEC */
+               if (faulted)
+                       usdiff = USEC_PER_SEC;
+       } else
+               usdiff = USEC_PER_SEC; /* disable TSC match window below */
+
+       /*
+        * Special case: TSC write with a small delta (1 second) of virtual
+        * cycle time against real time is interpreted as an attempt to
+        * synchronize the CPU.
+         *
+        * For a reliable TSC, we can match TSC offsets, and for an unstable
+        * TSC, we add elapsed time in this computation.  We could let the
+        * compensation code attempt to catch up if we fall behind, but
+        * it's better to try to match offsets from the beginning.
+         */
+       if (usdiff < USEC_PER_SEC &&
+           vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
+               if (!check_tsc_unstable()) {
+                       offset = kvm->arch.cur_tsc_offset;
+                       pr_debug("kvm: matched tsc offset for %llu\n", data);
+               } else {
+                       u64 delta = nsec_to_cycles(vcpu, elapsed);
+                       data += delta;
+                       offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
+                       pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
+               }
+               matched = true;
+               already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
+       } else {
+               /*
+                * We split periods of matched TSC writes into generations.
+                * For each generation, we track the original measured
+                * nanosecond time, offset, and write, so if TSCs are in
+                * sync, we can match exact offset, and if not, we can match
+                * exact software computation in compute_guest_tsc()
+                *
+                * These values are tracked in kvm->arch.cur_xxx variables.
+                */
+               kvm->arch.cur_tsc_generation++;
+               kvm->arch.cur_tsc_nsec = ns;
+               kvm->arch.cur_tsc_write = data;
+               kvm->arch.cur_tsc_offset = offset;
+               matched = false;
+               pr_debug("kvm: new tsc generation %llu, clock %llu\n",
+                        kvm->arch.cur_tsc_generation, data);
+       }
+
+       /*
+        * We also track th most recent recorded KHZ, write and time to
+        * allow the matching interval to be extended at each write.
+        */
+       kvm->arch.last_tsc_nsec = ns;
+       kvm->arch.last_tsc_write = data;
+       kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
+
+       vcpu->arch.last_guest_tsc = data;
+
+       /* Keep track of which generation this VCPU has synchronized to */
+       vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
+       vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
+       vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
+
+       if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
+               update_ia32_tsc_adjust_msr(vcpu, offset);
+       kvm_x86_ops->write_tsc_offset(vcpu, offset);
+       raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
+
+       spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
+       if (!matched) {
+               kvm->arch.nr_vcpus_matched_tsc = 0;
+       } else if (!already_matched) {
+               kvm->arch.nr_vcpus_matched_tsc++;
+       }
+
+       kvm_track_tsc_matching(vcpu);
+       spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
+}
+
+EXPORT_SYMBOL_GPL(kvm_write_tsc);
+
+#ifdef CONFIG_X86_64
+
+static cycle_t read_tsc(void)
+{
+       cycle_t ret;
+       u64 last;
+
+       /*
+        * Empirically, a fence (of type that depends on the CPU)
+        * before rdtsc is enough to ensure that rdtsc is ordered
+        * with respect to loads.  The various CPU manuals are unclear
+        * as to whether rdtsc can be reordered with later loads,
+        * but no one has ever seen it happen.
+        */
+       rdtsc_barrier();
+       ret = (cycle_t)vget_cycles();
+
+       last = pvclock_gtod_data.clock.cycle_last;
+
+       if (likely(ret >= last))
+               return ret;
+
+       /*
+        * GCC likes to generate cmov here, but this branch is extremely
+        * predictable (it's just a funciton of time and the likely is
+        * very likely) and there's a data dependence, so force GCC
+        * to generate a branch instead.  I don't barrier() because
+        * we don't actually need a barrier, and if this function
+        * ever gets inlined it will generate worse code.
+        */
+       asm volatile ("");
+       return last;
+}
+
+static inline u64 vgettsc(cycle_t *cycle_now)
+{
+       long v;
+       struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+
+       *cycle_now = read_tsc();
+
+       v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
+       return v * gtod->clock.mult;
+}
+
+static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
+{
+       struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+       unsigned long seq;
+       int mode;
+       u64 ns;
+
+       do {
+               seq = read_seqcount_begin(&gtod->seq);
+               mode = gtod->clock.vclock_mode;
+               ns = gtod->nsec_base;
+               ns += vgettsc(cycle_now);
+               ns >>= gtod->clock.shift;
+               ns += gtod->boot_ns;
+       } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
+       *t = ns;
+
+       return mode;
+}
+
+/* returns true if host is using tsc clocksource */
+static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
+{
+       /* checked again under seqlock below */
+       if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
+               return false;
+
+       return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
+}
+#endif
+
+/*
+ *
+ * Assuming a stable TSC across physical CPUS, and a stable TSC
+ * across virtual CPUs, the following condition is possible.
+ * Each numbered line represents an event visible to both
+ * CPUs at the next numbered event.
+ *
+ * "timespecX" represents host monotonic time. "tscX" represents
+ * RDTSC value.
+ *
+ *             VCPU0 on CPU0           |       VCPU1 on CPU1
+ *
+ * 1.  read timespec0,tsc0
+ * 2.                                  | timespec1 = timespec0 + N
+ *                                     | tsc1 = tsc0 + M
+ * 3. transition to guest              | transition to guest
+ * 4. ret0 = timespec0 + (rdtsc - tsc0) |
+ * 5.                                  | ret1 = timespec1 + (rdtsc - tsc1)
+ *                                     | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
+ *
+ * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
+ *
+ *     - ret0 < ret1
+ *     - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
+ *             ...
+ *     - 0 < N - M => M < N
+ *
+ * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
+ * always the case (the difference between two distinct xtime instances
+ * might be smaller then the difference between corresponding TSC reads,
+ * when updating guest vcpus pvclock areas).
+ *
+ * To avoid that problem, do not allow visibility of distinct
+ * system_timestamp/tsc_timestamp values simultaneously: use a master
+ * copy of host monotonic time values. Update that master copy
+ * in lockstep.
+ *
+ * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
+ *
+ */
+
+static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+       struct kvm_arch *ka = &kvm->arch;
+       int vclock_mode;
+       bool host_tsc_clocksource, vcpus_matched;
+
+       vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
+                       atomic_read(&kvm->online_vcpus));
+
+       /*
+        * If the host uses TSC clock, then passthrough TSC as stable
+        * to the guest.
+        */
+       host_tsc_clocksource = kvm_get_time_and_clockread(
+                                       &ka->master_kernel_ns,
+                                       &ka->master_cycle_now);
+
+       ka->use_master_clock = host_tsc_clocksource && vcpus_matched
+                               && !backwards_tsc_observed
+                               && !ka->boot_vcpu_runs_old_kvmclock;
+
+       if (ka->use_master_clock)
+               atomic_set(&kvm_guest_has_master_clock, 1);
+
+       vclock_mode = pvclock_gtod_data.clock.vclock_mode;
+       trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
+                                       vcpus_matched);
+#endif
+}
+
+static void kvm_gen_update_masterclock(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+       int i;
+       struct kvm_vcpu *vcpu;
+       struct kvm_arch *ka = &kvm->arch;
+
+       spin_lock(&ka->pvclock_gtod_sync_lock);
+       kvm_make_mclock_inprogress_request(kvm);
+       /* no guest entries from this point */
+       pvclock_update_vm_gtod_copy(kvm);
+
+       kvm_for_each_vcpu(i, vcpu, kvm)
+               kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+
+       /* guest entries allowed */
+       kvm_for_each_vcpu(i, vcpu, kvm)
+               clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
+
+       spin_unlock(&ka->pvclock_gtod_sync_lock);
+#endif
+}
+
+static int kvm_guest_time_update(struct kvm_vcpu *v)
+{
+       unsigned long flags, this_tsc_khz;
+       struct kvm_vcpu_arch *vcpu = &v->arch;
+       struct kvm_arch *ka = &v->kvm->arch;
+       s64 kernel_ns;
+       u64 tsc_timestamp, host_tsc;
+       struct pvclock_vcpu_time_info guest_hv_clock;
+       u8 pvclock_flags;
+       bool use_master_clock;
+
+       kernel_ns = 0;
+       host_tsc = 0;
+
+       /*
+        * If the host uses TSC clock, then passthrough TSC as stable
+        * to the guest.
+        */
+       spin_lock(&ka->pvclock_gtod_sync_lock);
+       use_master_clock = ka->use_master_clock;
+       if (use_master_clock) {
+               host_tsc = ka->master_cycle_now;
+               kernel_ns = ka->master_kernel_ns;
+       }
+       spin_unlock(&ka->pvclock_gtod_sync_lock);
+
+       /* Keep irq disabled to prevent changes to the clock */
+       local_irq_save(flags);
+       this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
+       if (unlikely(this_tsc_khz == 0)) {
+               local_irq_restore(flags);
+               kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
+               return 1;
+       }
+       if (!use_master_clock) {
+               host_tsc = native_read_tsc();
+               kernel_ns = get_kernel_ns();
+       }
+
+       tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
+
+       /*
+        * We may have to catch up the TSC to match elapsed wall clock
+        * time for two reasons, even if kvmclock is used.
+        *   1) CPU could have been running below the maximum TSC rate
+        *   2) Broken TSC compensation resets the base at each VCPU
+        *      entry to avoid unknown leaps of TSC even when running
+        *      again on the same CPU.  This may cause apparent elapsed
+        *      time to disappear, and the guest to stand still or run
+        *      very slowly.
+        */
+       if (vcpu->tsc_catchup) {
+               u64 tsc = compute_guest_tsc(v, kernel_ns);
+               if (tsc > tsc_timestamp) {
+                       adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
+                       tsc_timestamp = tsc;
+               }
+       }
+
+       local_irq_restore(flags);
+
+       if (!vcpu->pv_time_enabled)
+               return 0;
+
+       if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
+               kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
+                                  &vcpu->hv_clock.tsc_shift,
+                                  &vcpu->hv_clock.tsc_to_system_mul);
+               vcpu->hw_tsc_khz = this_tsc_khz;
+       }
+
+       /* With all the info we got, fill in the values */
+       vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
+       vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
+       vcpu->last_guest_tsc = tsc_timestamp;
+
+       if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
+               &guest_hv_clock, sizeof(guest_hv_clock))))
+               return 0;
+
+       /* This VCPU is paused, but it's legal for a guest to read another
+        * VCPU's kvmclock, so we really have to follow the specification where
+        * it says that version is odd if data is being modified, and even after
+        * it is consistent.
+        *
+        * Version field updates must be kept separate.  This is because
+        * kvm_write_guest_cached might use a "rep movs" instruction, and
+        * writes within a string instruction are weakly ordered.  So there
+        * are three writes overall.
+        *
+        * As a small optimization, only write the version field in the first
+        * and third write.  The vcpu->pv_time cache is still valid, because the
+        * version field is the first in the struct.
+        */
+       BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
+
+       vcpu->hv_clock.version = guest_hv_clock.version + 1;
+       kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+                               &vcpu->hv_clock,
+                               sizeof(vcpu->hv_clock.version));
+
+       smp_wmb();
+
+       /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
+       pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
+
+       if (vcpu->pvclock_set_guest_stopped_request) {
+               pvclock_flags |= PVCLOCK_GUEST_STOPPED;
+               vcpu->pvclock_set_guest_stopped_request = false;
+       }
+
+       /* If the host uses TSC clocksource, then it is stable */
+       if (use_master_clock)
+               pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
+
+       vcpu->hv_clock.flags = pvclock_flags;
+
+       trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
+
+       kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+                               &vcpu->hv_clock,
+                               sizeof(vcpu->hv_clock));
+
+       smp_wmb();
+
+       vcpu->hv_clock.version++;
+       kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+                               &vcpu->hv_clock,
+                               sizeof(vcpu->hv_clock.version));
+       return 0;
+}
+
+/*
+ * kvmclock updates which are isolated to a given vcpu, such as
+ * vcpu->cpu migration, should not allow system_timestamp from
+ * the rest of the vcpus to remain static. Otherwise ntp frequency
+ * correction applies to one vcpu's system_timestamp but not
+ * the others.
+ *
+ * So in those cases, request a kvmclock update for all vcpus.
+ * We need to rate-limit these requests though, as they can
+ * considerably slow guests that have a large number of vcpus.
+ * The time for a remote vcpu to update its kvmclock is bound
+ * by the delay we use to rate-limit the updates.
+ */
+
+#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
+
+static void kvmclock_update_fn(struct work_struct *work)
+{
+       int i;
+       struct delayed_work *dwork = to_delayed_work(work);
+       struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
+                                          kvmclock_update_work);
+       struct kvm *kvm = container_of(ka, struct kvm, arch);
+       struct kvm_vcpu *vcpu;
+
+       kvm_for_each_vcpu(i, vcpu, kvm) {
+               kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+               kvm_vcpu_kick(vcpu);
+       }
+}
+
+static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
+{
+       struct kvm *kvm = v->kvm;
+
+       kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
+       schedule_delayed_work(&kvm->arch.kvmclock_update_work,
+                                       KVMCLOCK_UPDATE_DELAY);
+}
+
+#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
+
+static void kvmclock_sync_fn(struct work_struct *work)
+{
+       struct delayed_work *dwork = to_delayed_work(work);
+       struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
+                                          kvmclock_sync_work);
+       struct kvm *kvm = container_of(ka, struct kvm, arch);
+
+       schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
+       schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
+                                       KVMCLOCK_SYNC_PERIOD);
+}
+
+static bool msr_mtrr_valid(unsigned msr)
+{
+       switch (msr) {
+       case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
+       case MSR_MTRRfix64K_00000:
+       case MSR_MTRRfix16K_80000:
+       case MSR_MTRRfix16K_A0000:
+       case MSR_MTRRfix4K_C0000:
+       case MSR_MTRRfix4K_C8000:
+       case MSR_MTRRfix4K_D0000:
+       case MSR_MTRRfix4K_D8000:
+       case MSR_MTRRfix4K_E0000:
+       case MSR_MTRRfix4K_E8000:
+       case MSR_MTRRfix4K_F0000:
+       case MSR_MTRRfix4K_F8000:
+       case MSR_MTRRdefType:
+       case MSR_IA32_CR_PAT:
+               return true;
+       case 0x2f8:
+               return true;
+       }
+       return false;
+}
+
+static bool valid_pat_type(unsigned t)
+{
+       return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
+}
+
+static bool valid_mtrr_type(unsigned t)
+{
+       return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
+}
+
+bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+       int i;
+       u64 mask;
+
+       if (!msr_mtrr_valid(msr))
+               return false;
+
+       if (msr == MSR_IA32_CR_PAT) {
+               for (i = 0; i < 8; i++)
+                       if (!valid_pat_type((data >> (i * 8)) & 0xff))
+                               return false;
+               return true;
+       } else if (msr == MSR_MTRRdefType) {
+               if (data & ~0xcff)
+                       return false;
+               return valid_mtrr_type(data & 0xff);
+       } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
+               for (i = 0; i < 8 ; i++)
+                       if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
+                               return false;
+               return true;
+       }
+
+       /* variable MTRRs */
+       WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
+
+       mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
+       if ((msr & 1) == 0) {
+               /* MTRR base */
+               if (!valid_mtrr_type(data & 0xff))
+                       return false;
+               mask |= 0xf00;
+       } else
+               /* MTRR mask */
+               mask |= 0x7ff;
+       if (data & mask) {
+               kvm_inject_gp(vcpu, 0);
+               return false;
+       }
+
+       return true;
+}
+EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
+
+static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+       u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
+
+       if (!kvm_mtrr_valid(vcpu, msr, data))
+               return 1;
+
+       if (msr == MSR_MTRRdefType) {
+               vcpu->arch.mtrr_state.def_type = data;
+               vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
+       } else if (msr == MSR_MTRRfix64K_00000)
+               p[0] = data;
+       else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
+               p[1 + msr - MSR_MTRRfix16K_80000] = data;
+       else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
+               p[3 + msr - MSR_MTRRfix4K_C0000] = data;
+       else if (msr == MSR_IA32_CR_PAT)
+               vcpu->arch.pat = data;
+       else {  /* Variable MTRRs */
+               int idx, is_mtrr_mask;
+               u64 *pt;
+
+               idx = (msr - 0x200) / 2;
+               is_mtrr_mask = msr - 0x200 - 2 * idx;
+               if (!is_mtrr_mask)
+                       pt =
+                         (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
+               else
+                       pt =
+                         (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
+               *pt = data;
+       }
+
+       kvm_mmu_reset_context(vcpu);
+       return 0;
+}
+
+static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+       u64 mcg_cap = vcpu->arch.mcg_cap;
+       unsigned bank_num = mcg_cap & 0xff;
+
+       switch (msr) {
+       case MSR_IA32_MCG_STATUS:
+               vcpu->arch.mcg_status = data;
+               break;
+       case MSR_IA32_MCG_CTL:
+               if (!(mcg_cap & MCG_CTL_P))
+                       return 1;
+               if (data != 0 && data != ~(u64)0)
+                       return -1;
+               vcpu->arch.mcg_ctl = data;
+               break;
+       default:
+               if (msr >= MSR_IA32_MC0_CTL &&
+                   msr < MSR_IA32_MCx_CTL(bank_num)) {
+                       u32 offset = msr - MSR_IA32_MC0_CTL;
+                       /* only 0 or all 1s can be written to IA32_MCi_CTL
+                        * some Linux kernels though clear bit 10 in bank 4 to
+                        * workaround a BIOS/GART TBL issue on AMD K8s, ignore
+                        * this to avoid an uncatched #GP in the guest
+                        */
+                       if ((offset & 0x3) == 0 &&
+                           data != 0 && (data | (1 << 10)) != ~(u64)0)
+                               return -1;
+                       vcpu->arch.mce_banks[offset] = data;
+                       break;
+               }
+               return 1;
+       }
+       return 0;
+}
+
+static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
+{
+       struct kvm *kvm = vcpu->kvm;
+       int lm = is_long_mode(vcpu);
+       u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
+               : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
+       u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
+               : kvm->arch.xen_hvm_config.blob_size_32;
+       u32 page_num = data & ~PAGE_MASK;
+       u64 page_addr = data & PAGE_MASK;
+       u8 *page;
+       int r;
+
+       r = -E2BIG;
+       if (page_num >= blob_size)
+               goto out;
+       r = -ENOMEM;
+       page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
+       if (IS_ERR(page)) {
+               r = PTR_ERR(page);
+               goto out;
+       }
+       if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
+               goto out_free;
+       r = 0;
+out_free:
+       kfree(page);
+out:
+       return r;
+}
+
+static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
+{
+       return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
+}
+
+static bool kvm_hv_msr_partition_wide(u32 msr)
+{
+       bool r = false;
+       switch (msr) {
+       case HV_X64_MSR_GUEST_OS_ID:
+       case HV_X64_MSR_HYPERCALL:
+       case HV_X64_MSR_REFERENCE_TSC:
+       case HV_X64_MSR_TIME_REF_COUNT:
+               r = true;
+               break;
+       }
+
+       return r;
+}
+
+static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+       struct kvm *kvm = vcpu->kvm;
+
+       switch (msr) {
+       case HV_X64_MSR_GUEST_OS_ID:
+               kvm->arch.hv_guest_os_id = data;
+               /* setting guest os id to zero disables hypercall page */
+               if (!kvm->arch.hv_guest_os_id)
+                       kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
+               break;
+       case HV_X64_MSR_HYPERCALL: {
+               u64 gfn;
+               unsigned long addr;
+               u8 instructions[4];
+
+               /* if guest os id is not set hypercall should remain disabled */
+               if (!kvm->arch.hv_guest_os_id)
+                       break;
+               if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
+                       kvm->arch.hv_hypercall = data;
+                       break;
+               }
+               gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
+               addr = gfn_to_hva(kvm, gfn);
+               if (kvm_is_error_hva(addr))
+                       return 1;
+               kvm_x86_ops->patch_hypercall(vcpu, instructions);
+               ((unsigned char *)instructions)[3] = 0xc3; /* ret */
+               if (__copy_to_user((void __user *)addr, instructions, 4))
+                       return 1;
+               kvm->arch.hv_hypercall = data;
+               mark_page_dirty(kvm, gfn);
+               break;
+       }
+       case HV_X64_MSR_REFERENCE_TSC: {
+               u64 gfn;
+               HV_REFERENCE_TSC_PAGE tsc_ref;
+               memset(&tsc_ref, 0, sizeof(tsc_ref));
+               kvm->arch.hv_tsc_page = data;
+               if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
+                       break;
+               gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
+               if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
+                       &tsc_ref, sizeof(tsc_ref)))
+                       return 1;
+               mark_page_dirty(kvm, gfn);
+               break;
+       }
+       default:
+               vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
+                           "data 0x%llx\n", msr, data);
+               return 1;
+       }
+       return 0;
+}
+
+static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+       switch (msr) {
+       case HV_X64_MSR_APIC_ASSIST_PAGE: {
+               u64 gfn;
+               unsigned long addr;
+
+               if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
+                       vcpu->arch.hv_vapic = data;
+                       if (kvm_lapic_enable_pv_eoi(vcpu, 0))
+                               return 1;
+                       break;
+               }
+               gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
+               addr = gfn_to_hva(vcpu->kvm, gfn);
+               if (kvm_is_error_hva(addr))
+                       return 1;
+               if (__clear_user((void __user *)addr, PAGE_SIZE))
+                       return 1;
+               vcpu->arch.hv_vapic = data;
+               mark_page_dirty(vcpu->kvm, gfn);
+               if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
+                       return 1;
+               break;
+       }
+       case HV_X64_MSR_EOI:
+               return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
+       case HV_X64_MSR_ICR:
+               return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
+       case HV_X64_MSR_TPR:
+               return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
+       default:
+               vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
+                           "data 0x%llx\n", msr, data);
+               return 1;
+       }
+
+       return 0;
+}
+
+static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
+{
+       gpa_t gpa = data & ~0x3f;
+
+       /* Bits 2:5 are reserved, Should be zero */
+       if (data & 0x3c)
+               return 1;
+
+       vcpu->arch.apf.msr_val = data;
+
+       if (!(data & KVM_ASYNC_PF_ENABLED)) {
+               kvm_clear_async_pf_completion_queue(vcpu);
+               kvm_async_pf_hash_reset(vcpu);
+               return 0;
+       }
+
+       if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
+                                       sizeof(u32)))
+               return 1;
+
+       vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
+       kvm_async_pf_wakeup_all(vcpu);
+       return 0;
+}
+
+static void kvmclock_reset(struct kvm_vcpu *vcpu)
+{
+       vcpu->arch.pv_time_enabled = false;
+}
+
+static void accumulate_steal_time(struct kvm_vcpu *vcpu)
+{
+       u64 delta;
+
+       if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+               return;
+
+       delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
+       vcpu->arch.st.last_steal = current->sched_info.run_delay;
+       vcpu->arch.st.accum_steal = delta;
+}
+
+static void record_steal_time(struct kvm_vcpu *vcpu)
+{
+       if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+               return;
+
+       if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+               &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
+               return;
+
+       vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
+       vcpu->arch.st.steal.version += 2;
+       vcpu->arch.st.accum_steal = 0;
+
+       kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+               &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
+}
+
+int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+       bool pr = false;
+       u32 msr = msr_info->index;
+       u64 data = msr_info->data;
+
+       switch (msr) {
+       case MSR_AMD64_NB_CFG:
+       case MSR_IA32_UCODE_REV:
+       case MSR_IA32_UCODE_WRITE:
+       case MSR_VM_HSAVE_PA:
+       case MSR_AMD64_PATCH_LOADER:
+       case MSR_AMD64_BU_CFG2:
+               break;
+
+       case MSR_EFER:
+               return set_efer(vcpu, data);
+       case MSR_K7_HWCR:
+               data &= ~(u64)0x40;     /* ignore flush filter disable */
+               data &= ~(u64)0x100;    /* ignore ignne emulation enable */
+               data &= ~(u64)0x8;      /* ignore TLB cache disable */
+               data &= ~(u64)0x40000;  /* ignore Mc status write enable */
+               if (data != 0) {
+                       vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
+                                   data);
+                       return 1;
+               }
+               break;
+       case MSR_FAM10H_MMIO_CONF_BASE:
+               if (data != 0) {
+                       vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
+                                   "0x%llx\n", data);
+                       return 1;
+               }
+               break;
+       case MSR_IA32_DEBUGCTLMSR:
+               if (!data) {
+                       /* We support the non-activated case already */
+                       break;
+               } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
+                       /* Values other than LBR and BTF are vendor-specific,
+                          thus reserved and should throw a #GP */
+                       return 1;
+               }
+               vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
+                           __func__, data);
+               break;
+       case 0x200 ... 0x2ff:
+               return set_msr_mtrr(vcpu, msr, data);
+       case MSR_IA32_APICBASE:
+               return kvm_set_apic_base(vcpu, msr_info);
+       case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
+               return kvm_x2apic_msr_write(vcpu, msr, data);
+       case MSR_IA32_TSCDEADLINE:
+               kvm_set_lapic_tscdeadline_msr(vcpu, data);
+               break;
+       case MSR_IA32_TSC_ADJUST:
+               if (guest_cpuid_has_tsc_adjust(vcpu)) {
+                       if (!msr_info->host_initiated) {
+                               s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
+                               kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
+                       }
+                       vcpu->arch.ia32_tsc_adjust_msr = data;
+               }
+               break;
+       case MSR_IA32_MISC_ENABLE:
+               vcpu->arch.ia32_misc_enable_msr = data;
+               break;
+       case MSR_KVM_WALL_CLOCK_NEW:
+       case MSR_KVM_WALL_CLOCK:
+               vcpu->kvm->arch.wall_clock = data;
+               kvm_write_wall_clock(vcpu->kvm, data);
+               break;
+       case MSR_KVM_SYSTEM_TIME_NEW:
+       case MSR_KVM_SYSTEM_TIME: {
+               u64 gpa_offset;
+               struct kvm_arch *ka = &vcpu->kvm->arch;
+
+               kvmclock_reset(vcpu);
+
+               if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
+                       bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
+
+                       if (ka->boot_vcpu_runs_old_kvmclock != tmp)
+                               set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
+                                       &vcpu->requests);
+
+                       ka->boot_vcpu_runs_old_kvmclock = tmp;
+               }
+
+               vcpu->arch.time = data;
+               kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
+
+               /* we verify if the enable bit is set... */
+               if (!(data & 1))
+                       break;
+
+               gpa_offset = data & ~(PAGE_MASK | 1);
+
+               if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
+                    &vcpu->arch.pv_time, data & ~1ULL,
+                    sizeof(struct pvclock_vcpu_time_info)))
+                       vcpu->arch.pv_time_enabled = false;
+               else
+                       vcpu->arch.pv_time_enabled = true;
+
+               break;
+       }
+       case MSR_KVM_ASYNC_PF_EN:
+               if (kvm_pv_enable_async_pf(vcpu, data))
+                       return 1;
+               break;
+       case MSR_KVM_STEAL_TIME:
+
+               if (unlikely(!sched_info_on()))
+                       return 1;
+
+               if (data & KVM_STEAL_RESERVED_MASK)
+                       return 1;
+
+               if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
+                                               data & KVM_STEAL_VALID_BITS,
+                                               sizeof(struct kvm_steal_time)))
+                       return 1;
+
+               vcpu->arch.st.msr_val = data;
+
+               if (!(data & KVM_MSR_ENABLED))
+                       break;
+
+               vcpu->arch.st.last_steal = current->sched_info.run_delay;
+
+               preempt_disable();
+               accumulate_steal_time(vcpu);
+               preempt_enable();
+
+               kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
+
+               break;
+       case MSR_KVM_PV_EOI_EN:
+               if (kvm_lapic_enable_pv_eoi(vcpu, data))
+                       return 1;
+               break;
+
+       case MSR_IA32_MCG_CTL:
+       case MSR_IA32_MCG_STATUS:
+       case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
+               return set_msr_mce(vcpu, msr, data);
+
+       /* Performance counters are not protected by a CPUID bit,
+        * so we should check all of them in the generic path for the sake of
+        * cross vendor migration.
+        * Writing a zero into the event select MSRs disables them,
+        * which we perfectly emulate ;-). Any other value should be at least
+        * reported, some guests depend on them.
+        */
+       case MSR_K7_EVNTSEL0:
+       case MSR_K7_EVNTSEL1:
+       case MSR_K7_EVNTSEL2:
+       case MSR_K7_EVNTSEL3:
+               if (data != 0)
+                       vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
+                                   "0x%x data 0x%llx\n", msr, data);
+               break;
+       /* at least RHEL 4 unconditionally writes to the perfctr registers,
+        * so we ignore writes to make it happy.
+        */
+       case MSR_K7_PERFCTR0:
+       case MSR_K7_PERFCTR1:
+       case MSR_K7_PERFCTR2:
+       case MSR_K7_PERFCTR3:
+               vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
+                           "0x%x data 0x%llx\n", msr, data);
+               break;
+       case MSR_P6_PERFCTR0:
+       case MSR_P6_PERFCTR1:
+               pr = true;
+       case MSR_P6_EVNTSEL0:
+       case MSR_P6_EVNTSEL1:
+               if (kvm_pmu_msr(vcpu, msr))
+                       return kvm_pmu_set_msr(vcpu, msr_info);
+
+               if (pr || data != 0)
+                       vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
+                                   "0x%x data 0x%llx\n", msr, data);
+               break;
+       case MSR_K7_CLK_CTL:
+               /*
+                * Ignore all writes to this no longer documented MSR.
+                * Writes are only relevant for old K7 processors,
+                * all pre-dating SVM, but a recommended workaround from
+                * AMD for these chips. It is possible to specify the
+                * affected processor models on the command line, hence
+                * the need to ignore the workaround.
+                */
+               break;
+       case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
+               if (kvm_hv_msr_partition_wide(msr)) {
+                       int r;
+                       mutex_lock(&vcpu->kvm->lock);
+                       r = set_msr_hyperv_pw(vcpu, msr, data);
+                       mutex_unlock(&vcpu->kvm->lock);
+                       return r;
+               } else
+                       return set_msr_hyperv(vcpu, msr, data);
+               break;
+       case MSR_IA32_BBL_CR_CTL3:
+               /* Drop writes to this legacy MSR -- see rdmsr
+                * counterpart for further detail.
+                */
+               vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
+               break;
+       case MSR_AMD64_OSVW_ID_LENGTH:
+               if (!guest_cpuid_has_osvw(vcpu))
+                       return 1;
+               vcpu->arch.osvw.length = data;
+               break;
+       case MSR_AMD64_OSVW_STATUS:
+               if (!guest_cpuid_has_osvw(vcpu))
+                       return 1;
+               vcpu->arch.osvw.status = data;
+               break;
+       default:
+               if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
+                       return xen_hvm_config(vcpu, data);
+               if (kvm_pmu_msr(vcpu, msr))
+                       return kvm_pmu_set_msr(vcpu, msr_info);
+               if (!ignore_msrs) {
+                       vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
+                                   msr, data);
+                       return 1;
+               } else {
+                       vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
+                                   msr, data);
+                       break;
+               }
+       }
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_msr_common);
+
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
+{
+       return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
+}
+EXPORT_SYMBOL_GPL(kvm_get_msr);
+
+static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+       u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
+
+       if (!msr_mtrr_valid(msr))
+               return 1;
+
+       if (msr == MSR_MTRRdefType)
+               *pdata = vcpu->arch.mtrr_state.def_type +
+                        (vcpu->arch.mtrr_state.enabled << 10);
+       else if (msr == MSR_MTRRfix64K_00000)
+               *pdata = p[0];
+       else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
+               *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
+       else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
+               *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
+       else if (msr == MSR_IA32_CR_PAT)
+               *pdata = vcpu->arch.pat;
+       else {  /* Variable MTRRs */
+               int idx, is_mtrr_mask;
+               u64 *pt;
+
+               idx = (msr - 0x200) / 2;
+               is_mtrr_mask = msr - 0x200 - 2 * idx;
+               if (!is_mtrr_mask)
+                       pt =
+                         (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
+               else
+                       pt =
+                         (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
+               *pdata = *pt;
+       }
+
+       return 0;
+}
+
+static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+       u64 data;
+       u64 mcg_cap = vcpu->arch.mcg_cap;
+       unsigned bank_num = mcg_cap & 0xff;
+
+       switch (msr) {
+       case MSR_IA32_P5_MC_ADDR:
+       case MSR_IA32_P5_MC_TYPE:
+               data = 0;
+               break;
+       case MSR_IA32_MCG_CAP:
+               data = vcpu->arch.mcg_cap;
+               break;
+       case MSR_IA32_MCG_CTL:
+               if (!(mcg_cap & MCG_CTL_P))
+                       return 1;
+               data = vcpu->arch.mcg_ctl;
+               break;
+       case MSR_IA32_MCG_STATUS:
+               data = vcpu->arch.mcg_status;
+               break;
+       default:
+               if (msr >= MSR_IA32_MC0_CTL &&
+                   msr < MSR_IA32_MCx_CTL(bank_num)) {
+                       u32 offset = msr - MSR_IA32_MC0_CTL;
+                       data = vcpu->arch.mce_banks[offset];
+                       break;
+               }
+               return 1;
+       }
+       *pdata = data;
+       return 0;
+}
+
+static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+       u64 data = 0;
+       struct kvm *kvm = vcpu->kvm;
+
+       switch (msr) {
+       case HV_X64_MSR_GUEST_OS_ID:
+               data = kvm->arch.hv_guest_os_id;
+               break;
+       case HV_X64_MSR_HYPERCALL:
+               data = kvm->arch.hv_hypercall;
+               break;
+       case HV_X64_MSR_TIME_REF_COUNT: {
+               data =
+                    div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
+               break;
+       }
+       case HV_X64_MSR_REFERENCE_TSC:
+               data = kvm->arch.hv_tsc_page;
+               break;
+       default:
+               vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
+               return 1;
+       }
+
+       *pdata = data;
+       return 0;
+}
+
+static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+       u64 data = 0;
+
+       switch (msr) {
+       case HV_X64_MSR_VP_INDEX: {
+               int r;
+               struct kvm_vcpu *v;
+               kvm_for_each_vcpu(r, v, vcpu->kvm) {
+                       if (v == vcpu) {
+                               data = r;
+                               break;
+                       }
+               }
+               break;
+       }
+       case HV_X64_MSR_EOI:
+               return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
+       case HV_X64_MSR_ICR:
+               return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
+       case HV_X64_MSR_TPR:
+               return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
+       case HV_X64_MSR_APIC_ASSIST_PAGE:
+               data = vcpu->arch.hv_vapic;
+               break;
+       default:
+               vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
+               return 1;
+       }
+       *pdata = data;
+       return 0;
+}
+
+int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+       u64 data;
+
+       switch (msr) {
+       case MSR_IA32_PLATFORM_ID:
+       case MSR_IA32_EBL_CR_POWERON:
+       case MSR_IA32_DEBUGCTLMSR:
+       case MSR_IA32_LASTBRANCHFROMIP:
+       case MSR_IA32_LASTBRANCHTOIP:
+       case MSR_IA32_LASTINTFROMIP:
+       case MSR_IA32_LASTINTTOIP:
+       case MSR_K8_SYSCFG:
+       case MSR_K7_HWCR:
+       case MSR_VM_HSAVE_PA:
+       case MSR_K7_EVNTSEL0:
+       case MSR_K7_EVNTSEL1:
+       case MSR_K7_EVNTSEL2:
+       case MSR_K7_EVNTSEL3:
+       case MSR_K7_PERFCTR0:
+       case MSR_K7_PERFCTR1:
+       case MSR_K7_PERFCTR2:
+       case MSR_K7_PERFCTR3:
+       case MSR_K8_INT_PENDING_MSG:
+       case MSR_AMD64_NB_CFG:
+       case MSR_FAM10H_MMIO_CONF_BASE:
+       case MSR_AMD64_BU_CFG2:
+               data = 0;
+               break;
+       case MSR_P6_PERFCTR0:
+       case MSR_P6_PERFCTR1:
+       case MSR_P6_EVNTSEL0:
+       case MSR_P6_EVNTSEL1:
+               if (kvm_pmu_msr(vcpu, msr))
+                       return kvm_pmu_get_msr(vcpu, msr, pdata);
+               data = 0;
+               break;
+       case MSR_IA32_UCODE_REV:
+               data = 0x100000000ULL;
+               break;
+       case MSR_MTRRcap:
+               data = 0x500 | KVM_NR_VAR_MTRR;
+               break;
+       case 0x200 ... 0x2ff:
+               return get_msr_mtrr(vcpu, msr, pdata);
+       case 0xcd: /* fsb frequency */
+               data = 3;
+               break;
+               /*
+                * MSR_EBC_FREQUENCY_ID
+                * Conservative value valid for even the basic CPU models.
+                * Models 0,1: 000 in bits 23:21 indicating a bus speed of
+                * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
+                * and 266MHz for model 3, or 4. Set Core Clock
+                * Frequency to System Bus Frequency Ratio to 1 (bits
+                * 31:24) even though these are only valid for CPU
+                * models > 2, however guests may end up dividing or
+                * multiplying by zero otherwise.
+                */
+       case MSR_EBC_FREQUENCY_ID:
+               data = 1 << 24;
+               break;
+       case MSR_IA32_APICBASE:
+               data = kvm_get_apic_base(vcpu);
+               break;
+       case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
+               return kvm_x2apic_msr_read(vcpu, msr, pdata);
+               break;
+       case MSR_IA32_TSCDEADLINE:
+               data = kvm_get_lapic_tscdeadline_msr(vcpu);
+               break;
+       case MSR_IA32_TSC_ADJUST:
+               data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
+               break;
+       case MSR_IA32_MISC_ENABLE:
+               data = vcpu->arch.ia32_misc_enable_msr;
+               break;
+       case MSR_IA32_PERF_STATUS:
+               /* TSC increment by tick */
+               data = 1000ULL;
+               /* CPU multiplier */
+               data |= (((uint64_t)4ULL) << 40);
+               break;
+       case MSR_EFER:
+               data = vcpu->arch.efer;
+               break;
+       case MSR_KVM_WALL_CLOCK:
+       case MSR_KVM_WALL_CLOCK_NEW:
+               data = vcpu->kvm->arch.wall_clock;
+               break;
+       case MSR_KVM_SYSTEM_TIME:
+       case MSR_KVM_SYSTEM_TIME_NEW:
+               data = vcpu->arch.time;
+               break;
+       case MSR_KVM_ASYNC_PF_EN:
+               data = vcpu->arch.apf.msr_val;
+               break;
+       case MSR_KVM_STEAL_TIME:
+               data = vcpu->arch.st.msr_val;
+               break;
+       case MSR_KVM_PV_EOI_EN:
+               data = vcpu->arch.pv_eoi.msr_val;
+               break;
+       case MSR_IA32_P5_MC_ADDR:
+       case MSR_IA32_P5_MC_TYPE:
+       case MSR_IA32_MCG_CAP:
+       case MSR_IA32_MCG_CTL:
+       case MSR_IA32_MCG_STATUS:
+       case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
+               return get_msr_mce(vcpu, msr, pdata);
+       case MSR_K7_CLK_CTL:
+               /*
+                * Provide expected ramp-up count for K7. All other
+                * are set to zero, indicating minimum divisors for
+                * every field.
+                *
+                * This prevents guest kernels on AMD host with CPU
+                * type 6, model 8 and higher from exploding due to
+                * the rdmsr failing.
+                */
+               data = 0x20000000;
+               break;
+       case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
+               if (kvm_hv_msr_partition_wide(msr)) {
+                       int r;
+                       mutex_lock(&vcpu->kvm->lock);
+                       r = get_msr_hyperv_pw(vcpu, msr, pdata);
+                       mutex_unlock(&vcpu->kvm->lock);
+                       return r;
+               } else
+                       return get_msr_hyperv(vcpu, msr, pdata);
+               break;
+       case MSR_IA32_BBL_CR_CTL3:
+               /* This legacy MSR exists but isn't fully documented in current
+                * silicon.  It is however accessed by winxp in very narrow
+                * scenarios where it sets bit #19, itself documented as
+                * a "reserved" bit.  Best effort attempt to source coherent
+                * read data here should the balance of the register be
+                * interpreted by the guest:
+                *
+                * L2 cache control register 3: 64GB range, 256KB size,
+                * enabled, latency 0x1, configured
+                */
+               data = 0xbe702111;
+               break;
+       case MSR_AMD64_OSVW_ID_LENGTH:
+               if (!guest_cpuid_has_osvw(vcpu))
+                       return 1;
+               data = vcpu->arch.osvw.length;
+               break;
+       case MSR_AMD64_OSVW_STATUS:
+               if (!guest_cpuid_has_osvw(vcpu))
+                       return 1;
+               data = vcpu->arch.osvw.status;
+               break;
+       default:
+               if (kvm_pmu_msr(vcpu, msr))
+                       return kvm_pmu_get_msr(vcpu, msr, pdata);
+               if (!ignore_msrs) {
+                       vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
+                       return 1;
+               } else {
+                       vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
+                       data = 0;
+               }
+               break;
+       }
+       *pdata = data;
+       return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_get_msr_common);
+
+/*
+ * Read or write a bunch of msrs. All parameters are kernel addresses.
+ *
+ * @return number of msrs set successfully.
+ */
+static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
+                   struct kvm_msr_entry *entries,
+                   int (*do_msr)(struct kvm_vcpu *vcpu,
+                                 unsigned index, u64 *data))
+{
+       int i, idx;
+
+       idx = srcu_read_lock(&vcpu->kvm->srcu);
+       for (i = 0; i < msrs->nmsrs; ++i)
+               if (do_msr(vcpu, entries[i].index, &entries[i].data))
+                       break;
+       srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+       return i;
+}
+
+/*
+ * Read or write a bunch of msrs. Parameters are user addresses.
+ *
+ * @return number of msrs set successfully.
+ */
+static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
+                 int (*do_msr)(struct kvm_vcpu *vcpu,
+                               unsigned index, u64 *data),
+                 int writeback)
+{
+       struct kvm_msrs msrs;
+       struct kvm_msr_entry *entries;
+       int r, n;
+       unsigned size;
+
+       r = -EFAULT;
+       if (copy_from_user(&msrs, user_msrs, sizeof msrs))
+               goto out;
+
+       r = -E2BIG;
+       if (msrs.nmsrs >= MAX_IO_MSRS)
+               goto out;
+
+       size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
+       entries = memdup_user(user_msrs->entries, size);
+       if (IS_ERR(entries)) {
+               r = PTR_ERR(entries);
+               goto out;
+       }
+
+       r = n = __msr_io(vcpu, &msrs, entries, do_msr);
+       if (r < 0)
+               goto out_free;
+
+       r = -EFAULT;
+       if (writeback && copy_to_user(user_msrs->entries, entries, size))
+               goto out_free;
+
+       r = n;
+
+out_free:
+       kfree(entries);
+out:
+       return r;
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+       int r;
+
+       switch (ext) {
+       case KVM_CAP_IRQCHIP:
+       case KVM_CAP_HLT:
+       case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
+       case KVM_CAP_SET_TSS_ADDR:
+       case KVM_CAP_EXT_CPUID:
+       case KVM_CAP_EXT_EMUL_CPUID:
+       case KVM_CAP_CLOCKSOURCE:
+       case KVM_CAP_PIT:
+       case KVM_CAP_NOP_IO_DELAY:
+       case KVM_CAP_MP_STATE:
+       case KVM_CAP_SYNC_MMU:
+       case KVM_CAP_USER_NMI:
+       case KVM_CAP_REINJECT_CONTROL:
+       case KVM_CAP_IRQ_INJECT_STATUS:
+       case KVM_CAP_IOEVENTFD:
+       case KVM_CAP_IOEVENTFD_NO_LENGTH:
+       case KVM_CAP_PIT2:
+       case KVM_CAP_PIT_STATE2:
+       case KVM_CAP_SET_IDENTITY_MAP_ADDR:
+       case KVM_CAP_XEN_HVM:
+       case KVM_CAP_ADJUST_CLOCK:
+       case KVM_CAP_VCPU_EVENTS:
+       case KVM_CAP_HYPERV:
+       case KVM_CAP_HYPERV_VAPIC:
+       case KVM_CAP_HYPERV_SPIN:
+       case KVM_CAP_PCI_SEGMENT:
+       case KVM_CAP_DEBUGREGS:
+       case KVM_CAP_X86_ROBUST_SINGLESTEP:
+       case KVM_CAP_XSAVE:
+       case KVM_CAP_ASYNC_PF:
+       case KVM_CAP_GET_TSC_KHZ:
+       case KVM_CAP_KVMCLOCK_CTRL:
+       case KVM_CAP_READONLY_MEM:
+       case KVM_CAP_HYPERV_TIME:
+       case KVM_CAP_IOAPIC_POLARITY_IGNORED:
+       case KVM_CAP_TSC_DEADLINE_TIMER:
+#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
+       case KVM_CAP_ASSIGN_DEV_IRQ:
+       case KVM_CAP_PCI_2_3:
+#endif
+               r = 1;
+               break;
+       case KVM_CAP_COALESCED_MMIO:
+               r = KVM_COALESCED_MMIO_PAGE_OFFSET;
+               break;
+       case KVM_CAP_VAPIC:
+               r = !kvm_x86_ops->cpu_has_accelerated_tpr();
+               break;
+       case KVM_CAP_NR_VCPUS:
+               r = KVM_SOFT_MAX_VCPUS;
+               break;
+       case KVM_CAP_MAX_VCPUS:
+               r = KVM_MAX_VCPUS;
+               break;
+       case KVM_CAP_NR_MEMSLOTS:
+               r = KVM_USER_MEM_SLOTS;
+               break;
+       case KVM_CAP_PV_MMU:    /* obsolete */
+               r = 0;
+               break;
+#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
+       case KVM_CAP_IOMMU:
+               r = iommu_present(&pci_bus_type);
+               break;
+#endif
+       case KVM_CAP_MCE:
+               r = KVM_MAX_MCE_BANKS;
+               break;
+       case KVM_CAP_XCRS:
+               r = cpu_has_xsave;
+               break;
+       case KVM_CAP_TSC_CONTROL:
+               r = kvm_has_tsc_control;
+               break;
+       default:
+               r = 0;
+               break;
+       }
+       return r;
+
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+                       unsigned int ioctl, unsigned long arg)
+{
+       void __user *argp = (void __user *)arg;
+       long r;
+
+       switch (ioctl) {
+       case KVM_GET_MSR_INDEX_LIST: {
+               struct kvm_msr_list __user *user_msr_list = argp;
+               struct kvm_msr_list msr_list;
+               unsigned n;
+
+               r = -EFAULT;
+               if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
+                       goto out;
+               n = msr_list.nmsrs;
+               msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
+               if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
+                       goto out;
+               r = -E2BIG;
+               if (n < msr_list.nmsrs)
+                       goto out;
+               r = -EFAULT;
+               if (copy_to_user(user_msr_list->indices, &msrs_to_save,
+                                num_msrs_to_save * sizeof(u32)))
+                       goto out;
+               if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
+                                &emulated_msrs,
+                                ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
+                       goto out;
+               r = 0;
+               break;
+       }
+       case KVM_GET_SUPPORTED_CPUID:
+       case KVM_GET_EMULATED_CPUID: {
+               struct kvm_cpuid2 __user *cpuid_arg = argp;
+               struct kvm_cpuid2 cpuid;
+
+               r = -EFAULT;
+               if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+                       goto out;
+
+               r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
+                                           ioctl);
+               if (r)
+                       goto out;
+
+               r = -EFAULT;
+               if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
+                       goto out;
+               r = 0;
+               break;
+       }
+       case KVM_X86_GET_MCE_CAP_SUPPORTED: {
+               u64 mce_cap;
+
+               mce_cap = KVM_MCE_CAP_SUPPORTED;
+               r = -EFAULT;
+               if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
+                       goto out;
+               r = 0;
+               break;
+       }
+       default:
+               r = -EINVAL;
+       }
+out:
+       return r;
+}
+
+static void wbinvd_ipi(void *garbage)
+{
+       wbinvd();
+}
+
+static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
+{
+       return kvm_arch_has_noncoherent_dma(vcpu->kvm);
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+       /* Address WBINVD may be executed by guest */
+       if (need_emulate_wbinvd(vcpu)) {
+               if (kvm_x86_ops->has_wbinvd_exit())
+                       cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
+               else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
+                       smp_call_function_single(vcpu->cpu,
+                                       wbinvd_ipi, NULL, 1);
+       }
+
+       kvm_x86_ops->vcpu_load(vcpu, cpu);
+
+       /* Apply any externally detected TSC adjustments (due to suspend) */
+       if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
+               adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
+               vcpu->arch.tsc_offset_adjustment = 0;
+               kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+       }
+
+       if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
+               s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
+                               native_read_tsc() - vcpu->arch.last_host_tsc;
+               if (tsc_delta < 0)
+                       mark_tsc_unstable("KVM discovered backwards TSC");
+               if (check_tsc_unstable()) {
+                       u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
+                                               vcpu->arch.last_guest_tsc);
+                       kvm_x86_ops->write_tsc_offset(vcpu, offset);
+                       vcpu->arch.tsc_catchup = 1;
+               }
+               /*
+                * On a host with synchronized TSC, there is no need to update
+                * kvmclock on vcpu->cpu migration
+                */
+               if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
+                       kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
+               if (vcpu->cpu != cpu)
+                       kvm_migrate_timers(vcpu);
+               vcpu->cpu = cpu;
+       }
+
+       accumulate_steal_time(vcpu);
+       kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+       kvm_x86_ops->vcpu_put(vcpu);
+       kvm_put_guest_fpu(vcpu);
+       vcpu->arch.last_host_tsc = native_read_tsc();
+}
+
+static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
+                                   struct kvm_lapic_state *s)
+{
+       kvm_x86_ops->sync_pir_to_irr(vcpu);
+       memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
+
+       return 0;
+}
+
+static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
+                                   struct kvm_lapic_state *s)
+{
+       kvm_apic_post_state_restore(vcpu, s);
+       update_cr8_intercept(vcpu);
+
+       return 0;
+}
+
+static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
+                                   struct kvm_interrupt *irq)
+{
+       if (irq->irq >= KVM_NR_INTERRUPTS)
+               return -EINVAL;
+       if (irqchip_in_kernel(vcpu->kvm))
+               return -ENXIO;
+
+       kvm_queue_interrupt(vcpu, irq->irq, false);
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       return 0;
+}
+
+static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
+{
+       kvm_inject_nmi(vcpu);
+
+       return 0;
+}
+
+static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
+                                          struct kvm_tpr_access_ctl *tac)
+{
+       if (tac->flags)
+               return -EINVAL;
+       vcpu->arch.tpr_access_reporting = !!tac->enabled;
+       return 0;
+}
+
+static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
+                                       u64 mcg_cap)
+{
+       int r;
+       unsigned bank_num = mcg_cap & 0xff, bank;
+
+       r = -EINVAL;
+       if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
+               goto out;
+       if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
+               goto out;
+       r = 0;
+       vcpu->arch.mcg_cap = mcg_cap;
+       /* Init IA32_MCG_CTL to all 1s */
+       if (mcg_cap & MCG_CTL_P)
+               vcpu->arch.mcg_ctl = ~(u64)0;
+       /* Init IA32_MCi_CTL to all 1s */
+       for (bank = 0; bank < bank_num; bank++)
+               vcpu->arch.mce_banks[bank*4] = ~(u64)0;
+out:
+       return r;
+}
+
+static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
+                                     struct kvm_x86_mce *mce)
+{
+       u64 mcg_cap = vcpu->arch.mcg_cap;
+       unsigned bank_num = mcg_cap & 0xff;
+       u64 *banks = vcpu->arch.mce_banks;
+
+       if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
+               return -EINVAL;
+       /*
+        * if IA32_MCG_CTL is not all 1s, the uncorrected error
+        * reporting is disabled
+        */
+       if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
+           vcpu->arch.mcg_ctl != ~(u64)0)
+               return 0;
+       banks += 4 * mce->bank;
+       /*
+        * if IA32_MCi_CTL is not all 1s, the uncorrected error
+        * reporting is disabled for the bank
+        */
+       if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
+               return 0;
+       if (mce->status & MCI_STATUS_UC) {
+               if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
+                   !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
+                       kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+                       return 0;
+               }
+               if (banks[1] & MCI_STATUS_VAL)
+                       mce->status |= MCI_STATUS_OVER;
+               banks[2] = mce->addr;
+               banks[3] = mce->misc;
+               vcpu->arch.mcg_status = mce->mcg_status;
+               banks[1] = mce->status;
+               kvm_queue_exception(vcpu, MC_VECTOR);
+       } else if (!(banks[1] & MCI_STATUS_VAL)
+                  || !(banks[1] & MCI_STATUS_UC)) {
+               if (banks[1] & MCI_STATUS_VAL)
+                       mce->status |= MCI_STATUS_OVER;
+               banks[2] = mce->addr;
+               banks[3] = mce->misc;
+               banks[1] = mce->status;
+       } else
+               banks[1] |= MCI_STATUS_OVER;
+       return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
+                                              struct kvm_vcpu_events *events)
+{
+       process_nmi(vcpu);
+       events->exception.injected =
+               vcpu->arch.exception.pending &&
+               !kvm_exception_is_soft(vcpu->arch.exception.nr);
+       events->exception.nr = vcpu->arch.exception.nr;
+       events->exception.has_error_code = vcpu->arch.exception.has_error_code;
+       events->exception.pad = 0;
+       events->exception.error_code = vcpu->arch.exception.error_code;
+
+       events->interrupt.injected =
+               vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
+       events->interrupt.nr = vcpu->arch.interrupt.nr;
+       events->interrupt.soft = 0;
+       events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
+
+       events->nmi.injected = vcpu->arch.nmi_injected;
+       events->nmi.pending = vcpu->arch.nmi_pending != 0;
+       events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
+       events->nmi.pad = 0;
+
+       events->sipi_vector = 0; /* never valid when reporting to user space */
+
+       events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
+                        | KVM_VCPUEVENT_VALID_SHADOW);
+       memset(&events->reserved, 0, sizeof(events->reserved));
+}
+
+static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
+                                             struct kvm_vcpu_events *events)
+{
+       if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
+                             | KVM_VCPUEVENT_VALID_SIPI_VECTOR
+                             | KVM_VCPUEVENT_VALID_SHADOW))
+               return -EINVAL;
+
+       process_nmi(vcpu);
+       vcpu->arch.exception.pending = events->exception.injected;
+       vcpu->arch.exception.nr = events->exception.nr;
+       vcpu->arch.exception.has_error_code = events->exception.has_error_code;
+       vcpu->arch.exception.error_code = events->exception.error_code;
+
+       vcpu->arch.interrupt.pending = events->interrupt.injected;
+       vcpu->arch.interrupt.nr = events->interrupt.nr;
+       vcpu->arch.interrupt.soft = events->interrupt.soft;
+       if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
+               kvm_x86_ops->set_interrupt_shadow(vcpu,
+                                                 events->interrupt.shadow);
+
+       vcpu->arch.nmi_injected = events->nmi.injected;
+       if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
+               vcpu->arch.nmi_pending = events->nmi.pending;
+       kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
+
+       if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
+           kvm_vcpu_has_lapic(vcpu))
+               vcpu->arch.apic->sipi_vector = events->sipi_vector;
+
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
+                                            struct kvm_debugregs *dbgregs)
+{
+       unsigned long val;
+
+       memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
+       kvm_get_dr(vcpu, 6, &val);
+       dbgregs->dr6 = val;
+       dbgregs->dr7 = vcpu->arch.dr7;
+       dbgregs->flags = 0;
+       memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
+}
+
+static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
+                                           struct kvm_debugregs *dbgregs)
+{
+       if (dbgregs->flags)
+               return -EINVAL;
+
+       memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
+       kvm_update_dr0123(vcpu);
+       vcpu->arch.dr6 = dbgregs->dr6;
+       kvm_update_dr6(vcpu);
+       vcpu->arch.dr7 = dbgregs->dr7;
+       kvm_update_dr7(vcpu);
+
+       return 0;
+}
+
+#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
+
+static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
+{
+       struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
+       u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
+       u64 valid;
+
+       /*
+        * Copy legacy XSAVE area, to avoid complications with CPUID
+        * leaves 0 and 1 in the loop below.
+        */
+       memcpy(dest, xsave, XSAVE_HDR_OFFSET);
+
+       /* Set XSTATE_BV */
+       *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
+
+       /*
+        * Copy each region from the possibly compacted offset to the
+        * non-compacted offset.
+        */
+       valid = xstate_bv & ~XSTATE_FPSSE;
+       while (valid) {
+               u64 feature = valid & -valid;
+               int index = fls64(feature) - 1;
+               void *src = get_xsave_addr(xsave, feature);
+
+               if (src) {
+                       u32 size, offset, ecx, edx;
+                       cpuid_count(XSTATE_CPUID, index,
+                                   &size, &offset, &ecx, &edx);
+                       memcpy(dest + offset, src, size);
+               }
+
+               valid -= feature;
+       }
+}
+
+static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
+{
+       struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
+       u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
+       u64 valid;
+
+       /*
+        * Copy legacy XSAVE area, to avoid complications with CPUID
+        * leaves 0 and 1 in the loop below.
+        */
+       memcpy(xsave, src, XSAVE_HDR_OFFSET);
+
+       /* Set XSTATE_BV and possibly XCOMP_BV.  */
+       xsave->xsave_hdr.xstate_bv = xstate_bv;
+       if (cpu_has_xsaves)
+               xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
+
+       /*
+        * Copy each region from the non-compacted offset to the
+        * possibly compacted offset.
+        */
+       valid = xstate_bv & ~XSTATE_FPSSE;
+       while (valid) {
+               u64 feature = valid & -valid;
+               int index = fls64(feature) - 1;
+               void *dest = get_xsave_addr(xsave, feature);
+
+               if (dest) {
+                       u32 size, offset, ecx, edx;
+                       cpuid_count(XSTATE_CPUID, index,
+                                   &size, &offset, &ecx, &edx);
+                       memcpy(dest, src + offset, size);
+               } else
+                       WARN_ON_ONCE(1);
+
+               valid -= feature;
+       }
+}
+
+static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
+                                        struct kvm_xsave *guest_xsave)
+{
+       if (cpu_has_xsave) {
+               memset(guest_xsave, 0, sizeof(struct kvm_xsave));
+               fill_xsave((u8 *) guest_xsave->region, vcpu);
+       } else {
+               memcpy(guest_xsave->region,
+                       &vcpu->arch.guest_fpu.state->fxsave,
+                       sizeof(struct i387_fxsave_struct));
+               *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
+                       XSTATE_FPSSE;
+       }
+}
+
+static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
+                                       struct kvm_xsave *guest_xsave)
+{
+       u64 xstate_bv =
+               *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
+
+       if (cpu_has_xsave) {
+               /*
+                * Here we allow setting states that are not present in
+                * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
+                * with old userspace.
+                */
+               if (xstate_bv & ~kvm_supported_xcr0())
+                       return -EINVAL;
+               load_xsave(vcpu, (u8 *)guest_xsave->region);
+       } else {
+               if (xstate_bv & ~XSTATE_FPSSE)
+                       return -EINVAL;
+               memcpy(&vcpu->arch.guest_fpu.state->fxsave,
+                       guest_xsave->region, sizeof(struct i387_fxsave_struct));
+       }
+       return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
+                                       struct kvm_xcrs *guest_xcrs)
+{
+       if (!cpu_has_xsave) {
+               guest_xcrs->nr_xcrs = 0;
+               return;
+       }
+
+       guest_xcrs->nr_xcrs = 1;
+       guest_xcrs->flags = 0;
+       guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
+       guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
+}
+
+static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
+                                      struct kvm_xcrs *guest_xcrs)
+{
+       int i, r = 0;
+
+       if (!cpu_has_xsave)
+               return -EINVAL;
+
+       if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
+               return -EINVAL;
+
+       for (i = 0; i < guest_xcrs->nr_xcrs; i++)
+               /* Only support XCR0 currently */
+               if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
+                       r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
+                               guest_xcrs->xcrs[i].value);
+                       break;
+               }
+       if (r)
+               r = -EINVAL;
+       return r;
+}
+
+/*
+ * kvm_set_guest_paused() indicates to the guest kernel that it has been
+ * stopped by the hypervisor.  This function will be called from the host only.
+ * EINVAL is returned when the host attempts to set the flag for a guest that
+ * does not support pv clocks.
+ */
+static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
+{
+       if (!vcpu->arch.pv_time_enabled)
+               return -EINVAL;
+       vcpu->arch.pvclock_set_guest_stopped_request = true;
+       kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+       return 0;
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+                        unsigned int ioctl, unsigned long arg)
+{
+       struct kvm_vcpu *vcpu = filp->private_data;
+       void __user *argp = (void __user *)arg;
+       int r;
+       union {
+               struct kvm_lapic_state *lapic;
+               struct kvm_xsave *xsave;
+               struct kvm_xcrs *xcrs;
+               void *buffer;
+       } u;
+
+       u.buffer = NULL;
+       switch (ioctl) {
+       case KVM_GET_LAPIC: {
+               r = -EINVAL;
+               if (!vcpu->arch.apic)
+                       goto out;
+               u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
+
+               r = -ENOMEM;
+               if (!u.lapic)
+                       goto out;
+               r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
+               if (r)
+                       goto out;
+               r = -EFAULT;
+               if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
+                       goto out;
+               r = 0;
+               break;
+       }
+       case KVM_SET_LAPIC: {
+               r = -EINVAL;
+               if (!vcpu->arch.apic)
+                       goto out;
+               u.lapic = memdup_user(argp, sizeof(*u.lapic));
+               if (IS_ERR(u.lapic))
+                       return PTR_ERR(u.lapic);
+
+               r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
+               break;
+       }
+       case KVM_INTERRUPT: {
+               struct kvm_interrupt irq;
+
+               r = -EFAULT;
+               if (copy_from_user(&irq, argp, sizeof irq))
+                       goto out;
+               r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
+               break;
+       }
+       case KVM_NMI: {
+               r = kvm_vcpu_ioctl_nmi(vcpu);
+               break;
+       }
+       case KVM_SET_CPUID: {
+               struct kvm_cpuid __user *cpuid_arg = argp;
+               struct kvm_cpuid cpuid;
+
+               r = -EFAULT;
+               if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+                       goto out;
+               r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
+               break;
+       }
+       case KVM_SET_CPUID2: {
+               struct kvm_cpuid2 __user *cpuid_arg = argp;
+               struct kvm_cpuid2 cpuid;
+
+               r = -EFAULT;
+               if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+                       goto out;
+               r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
+                                             cpuid_arg->entries);
+               break;
+       }
+       case KVM_GET_CPUID2: {
+               struct kvm_cpuid2 __user *cpuid_arg = argp;
+               struct kvm_cpuid2 cpuid;
+
+               r = -EFAULT;
+               if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+                       goto out;
+               r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
+                                             cpuid_arg->entries);
+               if (r)
+                       goto out;
+               r = -EFAULT;
+               if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
+                       goto out;
+               r = 0;
+               break;
+       }
+       case KVM_GET_MSRS:
+               r = msr_io(vcpu, argp, kvm_get_msr, 1);
+               break;
+       case KVM_SET_MSRS:
+               r = msr_io(vcpu, argp, do_set_msr, 0);
+               break;
+       case KVM_TPR_ACCESS_REPORTING: {
+               struct kvm_tpr_access_ctl tac;
+
+               r = -EFAULT;
+               if (copy_from_user(&tac, argp, sizeof tac))
+                       goto out;
+               r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
+               if (r)
+                       goto out;
+               r = -EFAULT;
+               if (copy_to_user(argp, &tac, sizeof tac))
+                       goto out;
+               r = 0;
+               break;
+       };
+       case KVM_SET_VAPIC_ADDR: {
+               struct kvm_vapic_addr va;
+
+               r = -EINVAL;
+               if (!irqchip_in_kernel(vcpu->kvm))
+                       goto out;
+               r = -EFAULT;
+               if (copy_from_user(&va, argp, sizeof va))
+                       goto out;
+               r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
+               break;
+       }
+       case KVM_X86_SETUP_MCE: {
+               u64 mcg_cap;
+
+               r = -EFAULT;
+               if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
+                       goto out;
+               r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
+               break;
+       }
+       case KVM_X86_SET_MCE: {
+               struct kvm_x86_mce mce;
+
+               r = -EFAULT;
+               if (copy_from_user(&mce, argp, sizeof mce))
+                       goto out;
+               r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
+               break;
+       }
+       case KVM_GET_VCPU_EVENTS: {
+               struct kvm_vcpu_events events;
+
+               kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
+
+               r = -EFAULT;
+               if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
+                       break;
+               r = 0;
+               break;
+       }
+       case KVM_SET_VCPU_EVENTS: {
+               struct kvm_vcpu_events events;
+
+               r = -EFAULT;
+               if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
+                       break;
+
+               r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
+               break;
+       }
+       case KVM_GET_DEBUGREGS: {
+               struct kvm_debugregs dbgregs;
+
+               kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
+
+               r = -EFAULT;
+               if (copy_to_user(argp, &dbgregs,
+                                sizeof(struct kvm_debugregs)))
+                       break;
+               r = 0;
+               break;
+       }
+       case KVM_SET_DEBUGREGS: {
+               struct kvm_debugregs dbgregs;
+
+               r = -EFAULT;
+               if (copy_from_user(&dbgregs, argp,
+                                  sizeof(struct kvm_debugregs)))
+                       break;
+
+               r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
+               break;
+       }
+       case KVM_GET_XSAVE: {
+               u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
+               r = -ENOMEM;
+               if (!u.xsave)
+                       break;
+
+               kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
+
+               r = -EFAULT;
+               if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
+                       break;
+               r = 0;
+               break;
+       }
+       case KVM_SET_XSAVE: {
+               u.xsave = memdup_user(argp, sizeof(*u.xsave));
+               if (IS_ERR(u.xsave))
+                       return PTR_ERR(u.xsave);
+
+               r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
+               break;
+       }
+       case KVM_GET_XCRS: {
+               u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
+               r = -ENOMEM;
+               if (!u.xcrs)
+                       break;
+
+               kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
+
+               r = -EFAULT;
+               if (copy_to_user(argp, u.xcrs,
+                                sizeof(struct kvm_xcrs)))
+                       break;
+               r = 0;
+               break;
+       }
+       case KVM_SET_XCRS: {
+               u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
+               if (IS_ERR(u.xcrs))
+                       return PTR_ERR(u.xcrs);
+
+               r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
+               break;
+       }
+       case KVM_SET_TSC_KHZ: {
+               u32 user_tsc_khz;
+
+               r = -EINVAL;
+               user_tsc_khz = (u32)arg;
+
+               if (user_tsc_khz >= kvm_max_guest_tsc_khz)
+                       goto out;
+
+               if (user_tsc_khz == 0)
+                       user_tsc_khz = tsc_khz;
+
+               kvm_set_tsc_khz(vcpu, user_tsc_khz);
+
+               r = 0;
+               goto out;
+       }
+       case KVM_GET_TSC_KHZ: {
+               r = vcpu->arch.virtual_tsc_khz;
+               goto out;
+       }
+       case KVM_KVMCLOCK_CTRL: {
+               r = kvm_set_guest_paused(vcpu);
+               goto out;
+       }
+       default:
+               r = -EINVAL;
+       }
+out:
+       kfree(u.buffer);
+       return r;
+}
+
+int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+       return VM_FAULT_SIGBUS;
+}
+
+static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
+{
+       int ret;
+
+       if (addr > (unsigned int)(-3 * PAGE_SIZE))
+               return -EINVAL;
+       ret = kvm_x86_ops->set_tss_addr(kvm, addr);
+       return ret;
+}
+
+static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
+                                             u64 ident_addr)
+{
+       kvm->arch.ept_identity_map_addr = ident_addr;
+       return 0;
+}
+
+static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
+                                         u32 kvm_nr_mmu_pages)
+{
+       if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
+               return -EINVAL;
+
+       mutex_lock(&kvm->slots_lock);
+
+       kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
+       kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
+
+       mutex_unlock(&kvm->slots_lock);
+       return 0;
+}
+
+static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
+{
+       return kvm->arch.n_max_mmu_pages;
+}
+
+static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
+{
+       int r;
+
+       r = 0;
+       switch (chip->chip_id) {
+       case KVM_IRQCHIP_PIC_MASTER:
+               memcpy(&chip->chip.pic,
+                       &pic_irqchip(kvm)->pics[0],
+                       sizeof(struct kvm_pic_state));
+               break;
+       case KVM_IRQCHIP_PIC_SLAVE:
+               memcpy(&chip->chip.pic,
+                       &pic_irqchip(kvm)->pics[1],
+                       sizeof(struct kvm_pic_state));
+               break;
+       case KVM_IRQCHIP_IOAPIC:
+               r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
+               break;
+       default:
+               r = -EINVAL;
+               break;
+       }
+       return r;
+}
+
+static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
+{
+       int r;
+
+       r = 0;
+       switch (chip->chip_id) {
+       case KVM_IRQCHIP_PIC_MASTER:
+               spin_lock(&pic_irqchip(kvm)->lock);
+               memcpy(&pic_irqchip(kvm)->pics[0],
+                       &chip->chip.pic,
+                       sizeof(struct kvm_pic_state));
+               spin_unlock(&pic_irqchip(kvm)->lock);
+               break;
+       case KVM_IRQCHIP_PIC_SLAVE:
+               spin_lock(&pic_irqchip(kvm)->lock);
+               memcpy(&pic_irqchip(kvm)->pics[1],
+                       &chip->chip.pic,
+                       sizeof(struct kvm_pic_state));
+               spin_unlock(&pic_irqchip(kvm)->lock);
+               break;
+       case KVM_IRQCHIP_IOAPIC:
+               r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
+               break;
+       default:
+               r = -EINVAL;
+               break;
+       }
+       kvm_pic_update_irq(pic_irqchip(kvm));
+       return r;
+}
+
+static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
+{
+       int r = 0;
+
+       mutex_lock(&kvm->arch.vpit->pit_state.lock);
+       memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
+       mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+       return r;
+}
+
+static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
+{
+       int r = 0;
+
+       mutex_lock(&kvm->arch.vpit->pit_state.lock);
+       memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
+       kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
+       mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+       return r;
+}
+
+static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
+{
+       int r = 0;
+
+       mutex_lock(&kvm->arch.vpit->pit_state.lock);
+       memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
+               sizeof(ps->channels));
+       ps->flags = kvm->arch.vpit->pit_state.flags;
+       mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+       memset(&ps->reserved, 0, sizeof(ps->reserved));
+       return r;
+}
+
+static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
+{
+       int r = 0, start = 0;
+       u32 prev_legacy, cur_legacy;
+       mutex_lock(&kvm->arch.vpit->pit_state.lock);
+       prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
+       cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
+       if (!prev_legacy && cur_legacy)
+               start = 1;
+       memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
+              sizeof(kvm->arch.vpit->pit_state.channels));
+       kvm->arch.vpit->pit_state.flags = ps->flags;
+       kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
+       mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+       return r;
+}
+
+static int kvm_vm_ioctl_reinject(struct kvm *kvm,
+                                struct kvm_reinject_control *control)
+{
+       if (!kvm->arch.vpit)
+               return -ENXIO;
+       mutex_lock(&kvm->arch.vpit->pit_state.lock);
+       kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
+       mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+       return 0;
+}
+
+/**
+ * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
+ * @kvm: kvm instance
+ * @log: slot id and address to which we copy the log
+ *
+ * Steps 1-4 below provide general overview of dirty page logging. See
+ * kvm_get_dirty_log_protect() function description for additional details.
+ *
+ * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+ * always flush the TLB (step 4) even if previous step failed  and the dirty
+ * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+ * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+ * writes will be marked dirty for next log read.
+ *
+ *   1. Take a snapshot of the bit and clear it if needed.
+ *   2. Write protect the corresponding page.
+ *   3. Copy the snapshot to the userspace.
+ *   4. Flush TLB's if needed.
+ */
+int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
+{
+       bool is_dirty = false;
+       int r;
+
+       mutex_lock(&kvm->slots_lock);
+
+       /*
+        * Flush potentially hardware-cached dirty pages to dirty_bitmap.
+        */
+       if (kvm_x86_ops->flush_log_dirty)
+               kvm_x86_ops->flush_log_dirty(kvm);
+
+       r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+
+       /*
+        * All the TLBs can be flushed out of mmu lock, see the comments in
+        * kvm_mmu_slot_remove_write_access().
+        */
+       lockdep_assert_held(&kvm->slots_lock);
+       if (is_dirty)
+               kvm_flush_remote_tlbs(kvm);
+
+       mutex_unlock(&kvm->slots_lock);
+       return r;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
+                       bool line_status)
+{
+       if (!irqchip_in_kernel(kvm))
+               return -ENXIO;
+
+       irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
+                                       irq_event->irq, irq_event->level,
+                                       line_status);
+       return 0;
+}
+
+long kvm_arch_vm_ioctl(struct file *filp,
+                      unsigned int ioctl, unsigned long arg)
+{
+       struct kvm *kvm = filp->private_data;
+       void __user *argp = (void __user *)arg;
+       int r = -ENOTTY;
+       /*
+        * This union makes it completely explicit to gcc-3.x
+        * that these two variables' stack usage should be
+        * combined, not added together.
+        */
+       union {
+               struct kvm_pit_state ps;
+               struct kvm_pit_state2 ps2;
+               struct kvm_pit_config pit_config;
+       } u;
+
+       switch (ioctl) {
+       case KVM_SET_TSS_ADDR:
+               r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
+               break;
+       case KVM_SET_IDENTITY_MAP_ADDR: {
+               u64 ident_addr;
+
+               r = -EFAULT;
+               if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
+                       goto out;
+               r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
+               break;
+       }
+       case KVM_SET_NR_MMU_PAGES:
+               r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
+               break;
+       case KVM_GET_NR_MMU_PAGES:
+               r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
+               break;
+       case KVM_CREATE_IRQCHIP: {
+               struct kvm_pic *vpic;
+
+               mutex_lock(&kvm->lock);
+               r = -EEXIST;
+               if (kvm->arch.vpic)
+                       goto create_irqchip_unlock;
+               r = -EINVAL;
+               if (atomic_read(&kvm->online_vcpus))
+                       goto create_irqchip_unlock;
+               r = -ENOMEM;
+               vpic = kvm_create_pic(kvm);
+               if (vpic) {
+                       r = kvm_ioapic_init(kvm);
+                       if (r) {
+                               mutex_lock(&kvm->slots_lock);
+                               kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
+                                                         &vpic->dev_master);
+                               kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
+                                                         &vpic->dev_slave);
+                               kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
+                                                         &vpic->dev_eclr);
+                               mutex_unlock(&kvm->slots_lock);
+                               kfree(vpic);
+                               goto create_irqchip_unlock;
+                       }
+               } else
+                       goto create_irqchip_unlock;
+               smp_wmb();
+               kvm->arch.vpic = vpic;
+               smp_wmb();
+               r = kvm_setup_default_irq_routing(kvm);
+               if (r) {
+                       mutex_lock(&kvm->slots_lock);
+                       mutex_lock(&kvm->irq_lock);
+                       kvm_ioapic_destroy(kvm);
+                       kvm_destroy_pic(kvm);
+                       mutex_unlock(&kvm->irq_lock);
+                       mutex_unlock(&kvm->slots_lock);
+               }
+       create_irqchip_unlock:
+               mutex_unlock(&kvm->lock);
+               break;
+       }
+       case KVM_CREATE_PIT:
+               u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
+               goto create_pit;
+       case KVM_CREATE_PIT2:
+               r = -EFAULT;
+               if (copy_from_user(&u.pit_config, argp,
+                                  sizeof(struct kvm_pit_config)))
+                       goto out;
+       create_pit:
+               mutex_lock(&kvm->slots_lock);
+               r = -EEXIST;
+               if (kvm->arch.vpit)
+                       goto create_pit_unlock;
+               r = -ENOMEM;
+               kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
+               if (kvm->arch.vpit)
+                       r = 0;
+       create_pit_unlock:
+               mutex_unlock(&kvm->slots_lock);
+               break;
+       case KVM_GET_IRQCHIP: {
+               /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
+               struct kvm_irqchip *chip;
+
+               chip = memdup_user(argp, sizeof(*chip));
+               if (IS_ERR(chip)) {
+                       r = PTR_ERR(chip);
+                       goto out;
+               }
+
+               r = -ENXIO;
+               if (!irqchip_in_kernel(kvm))
+                       goto get_irqchip_out;
+               r = kvm_vm_ioctl_get_irqchip(kvm, chip);
+               if (r)
+                       goto get_irqchip_out;
+               r = -EFAULT;
+               if (copy_to_user(argp, chip, sizeof *chip))
+                       goto get_irqchip_out;
+               r = 0;
+       get_irqchip_out:
+               kfree(chip);
+               break;
+       }
+       case KVM_SET_IRQCHIP: {
+               /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
+               struct kvm_irqchip *chip;
+
+               chip = memdup_user(argp, sizeof(*chip));
+               if (IS_ERR(chip)) {
+                       r = PTR_ERR(chip);
+                       goto out;
+               }
+
+               r = -ENXIO;
+               if (!irqchip_in_kernel(kvm))
+                       goto set_irqchip_out;
+               r = kvm_vm_ioctl_set_irqchip(kvm, chip);
+               if (r)
+                       goto set_irqchip_out;
+               r = 0;
+       set_irqchip_out:
+               kfree(chip);
+               break;
+       }
+       case KVM_GET_PIT: {
+               r = -EFAULT;
+               if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
+                       goto out;
+               r = -ENXIO;
+               if (!kvm->arch.vpit)
+                       goto out;
+               r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
+               if (r)
+                       goto out;
+               r = -EFAULT;
+               if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
+                       goto out;
+               r = 0;
+               break;
+       }
+       case KVM_SET_PIT: {
+               r = -EFAULT;
+               if (copy_from_user(&u.ps, argp, sizeof u.ps))
+                       goto out;
+               r = -ENXIO;
+               if (!kvm->arch.vpit)
+                       goto out;
+               r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
+               break;
+       }
+       case KVM_GET_PIT2: {
+               r = -ENXIO;
+               if (!kvm->arch.vpit)
+                       goto out;
+               r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
+               if (r)
+                       goto out;
+               r = -EFAULT;
+               if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
+                       goto out;
+               r = 0;
+               break;
+       }
+       case KVM_SET_PIT2: {
+               r = -EFAULT;
+               if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
+                       goto out;
+               r = -ENXIO;
+               if (!kvm->arch.vpit)
+                       goto out;
+               r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
+               break;
+       }
+       case KVM_REINJECT_CONTROL: {
+               struct kvm_reinject_control control;
+               r =  -EFAULT;
+               if (copy_from_user(&control, argp, sizeof(control)))
+                       goto out;
+               r = kvm_vm_ioctl_reinject(kvm, &control);
+               break;
+       }
+       case KVM_XEN_HVM_CONFIG: {
+               r = -EFAULT;
+               if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
+                                  sizeof(struct kvm_xen_hvm_config)))
+                       goto out;
+               r = -EINVAL;
+               if (kvm->arch.xen_hvm_config.flags)
+                       goto out;
+               r = 0;
+               break;
+       }
+       case KVM_SET_CLOCK: {
+               struct kvm_clock_data user_ns;
+               u64 now_ns;
+               s64 delta;
+
+               r = -EFAULT;
+               if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
+                       goto out;
+
+               r = -EINVAL;
+               if (user_ns.flags)
+                       goto out;
+
+               r = 0;
+               local_irq_disable();
+               now_ns = get_kernel_ns();
+               delta = user_ns.clock - now_ns;
+               local_irq_enable();
+               kvm->arch.kvmclock_offset = delta;
+               kvm_gen_update_masterclock(kvm);
+               break;
+       }
+       case KVM_GET_CLOCK: {
+               struct kvm_clock_data user_ns;
+               u64 now_ns;
+
+               local_irq_disable();
+               now_ns = get_kernel_ns();
+               user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
+               local_irq_enable();
+               user_ns.flags = 0;
+               memset(&user_ns.pad, 0, sizeof(user_ns.pad));
+
+               r = -EFAULT;
+               if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
+                       goto out;
+               r = 0;
+               break;
+       }
+
+       default:
+               r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
+       }
+out:
+       return r;
+}
+
+static void kvm_init_msr_list(void)
+{
+       u32 dummy[2];
+       unsigned i, j;
+
+       /* skip the first msrs in the list. KVM-specific */
+       for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
+               if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
+                       continue;
+
+               /*
+                * Even MSRs that are valid in the host may not be exposed
+                * to the guests in some cases.  We could work around this
+                * in VMX with the generic MSR save/load machinery, but it
+                * is not really worthwhile since it will really only
+                * happen with nested virtualization.
+                */
+               switch (msrs_to_save[i]) {
+               case MSR_IA32_BNDCFGS:
+                       if (!kvm_x86_ops->mpx_supported())
+                               continue;
+                       break;
+               default:
+                       break;
+               }
+
+               if (j < i)
+                       msrs_to_save[j] = msrs_to_save[i];
+               j++;
+       }
+       num_msrs_to_save = j;
+}
+
+static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
+                          const void *v)
+{
+       int handled = 0;
+       int n;
+
+       do {
+               n = min(len, 8);
+               if (!(vcpu->arch.apic &&
+                     !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
+                   && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
+                       break;
+               handled += n;
+               addr += n;
+               len -= n;
+               v += n;
+       } while (len);
+
+       return handled;
+}
+
+static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
+{
+       int handled = 0;
+       int n;
+
+       do {
+               n = min(len, 8);
+               if (!(vcpu->arch.apic &&
+                     !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
+                                        addr, n, v))
+                   && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
+                       break;
+               trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
+               handled += n;
+               addr += n;
+               len -= n;
+               v += n;
+       } while (len);
+
+       return handled;
+}
+
+static void kvm_set_segment(struct kvm_vcpu *vcpu,
+                       struct kvm_segment *var, int seg)
+{
+       kvm_x86_ops->set_segment(vcpu, var, seg);
+}
+
+void kvm_get_segment(struct kvm_vcpu *vcpu,
+                    struct kvm_segment *var, int seg)
+{
+       kvm_x86_ops->get_segment(vcpu, var, seg);
+}
+
+gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
+                          struct x86_exception *exception)
+{
+       gpa_t t_gpa;
+
+       BUG_ON(!mmu_is_nested(vcpu));
+
+       /* NPT walks are always user-walks */
+       access |= PFERR_USER_MASK;
+       t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
+
+       return t_gpa;
+}
+
+gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
+                             struct x86_exception *exception)
+{
+       u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+       return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+ gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
+                               struct x86_exception *exception)
+{
+       u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+       access |= PFERR_FETCH_MASK;
+       return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
+                              struct x86_exception *exception)
+{
+       u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+       access |= PFERR_WRITE_MASK;
+       return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+/* uses this to access any guest's mapped memory without checking CPL */
+gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
+                               struct x86_exception *exception)
+{
+       return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
+}
+
+static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
+                                     struct kvm_vcpu *vcpu, u32 access,
+                                     struct x86_exception *exception)
+{
+       void *data = val;
+       int r = X86EMUL_CONTINUE;
+
+       while (bytes) {
+               gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
+                                                           exception);
+               unsigned offset = addr & (PAGE_SIZE-1);
+               unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
+               int ret;
+
+               if (gpa == UNMAPPED_GVA)
+                       return X86EMUL_PROPAGATE_FAULT;
+               ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
+                                         offset, toread);
+               if (ret < 0) {
+                       r = X86EMUL_IO_NEEDED;
+                       goto out;
+               }
+
+               bytes -= toread;
+               data += toread;
+               addr += toread;
+       }
+out:
+       return r;
+}
+
+/* used for instruction fetching */
+static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
+                               gva_t addr, void *val, unsigned int bytes,
+                               struct x86_exception *exception)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+       unsigned offset;
+       int ret;
+
+       /* Inline kvm_read_guest_virt_helper for speed.  */
+       gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
+                                                   exception);
+       if (unlikely(gpa == UNMAPPED_GVA))
+               return X86EMUL_PROPAGATE_FAULT;
+
+       offset = addr & (PAGE_SIZE-1);
+       if (WARN_ON(offset + bytes > PAGE_SIZE))
+               bytes = (unsigned)PAGE_SIZE - offset;
+       ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
+                                 offset, bytes);
+       if (unlikely(ret < 0))
+               return X86EMUL_IO_NEEDED;
+
+       return X86EMUL_CONTINUE;
+}
+
+int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
+                              gva_t addr, void *val, unsigned int bytes,
+                              struct x86_exception *exception)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+
+       return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
+                                         exception);
+}
+EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
+
+static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
+                                     gva_t addr, void *val, unsigned int bytes,
+                                     struct x86_exception *exception)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
+}
+
+int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
+                                      gva_t addr, void *val,
+                                      unsigned int bytes,
+                                      struct x86_exception *exception)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       void *data = val;
+       int r = X86EMUL_CONTINUE;
+
+       while (bytes) {
+               gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
+                                                            PFERR_WRITE_MASK,
+                                                            exception);
+               unsigned offset = addr & (PAGE_SIZE-1);
+               unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
+               int ret;
+
+               if (gpa == UNMAPPED_GVA)
+                       return X86EMUL_PROPAGATE_FAULT;
+               ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
+               if (ret < 0) {
+                       r = X86EMUL_IO_NEEDED;
+                       goto out;
+               }
+
+               bytes -= towrite;
+               data += towrite;
+               addr += towrite;
+       }
+out:
+       return r;
+}
+EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
+
+static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
+                               gpa_t *gpa, struct x86_exception *exception,
+                               bool write)
+{
+       u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
+               | (write ? PFERR_WRITE_MASK : 0);
+
+       if (vcpu_match_mmio_gva(vcpu, gva)
+           && !permission_fault(vcpu, vcpu->arch.walk_mmu,
+                                vcpu->arch.access, access)) {
+               *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
+                                       (gva & (PAGE_SIZE - 1));
+               trace_vcpu_match_mmio(gva, *gpa, write, false);
+               return 1;
+       }
+
+       *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+
+       if (*gpa == UNMAPPED_GVA)
+               return -1;
+
+       /* For APIC access vmexit */
+       if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+               return 1;
+
+       if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
+               trace_vcpu_match_mmio(gva, *gpa, write, true);
+               return 1;
+       }
+
+       return 0;
+}
+
+int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
+                       const void *val, int bytes)
+{
+       int ret;
+
+       ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
+       if (ret < 0)
+               return 0;
+       kvm_mmu_pte_write(vcpu, gpa, val, bytes);
+       return 1;
+}
+
+struct read_write_emulator_ops {
+       int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
+                                 int bytes);
+       int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
+                                 void *val, int bytes);
+       int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
+                              int bytes, void *val);
+       int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
+                                   void *val, int bytes);
+       bool write;
+};
+
+static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
+{
+       if (vcpu->mmio_read_completed) {
+               trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
+                              vcpu->mmio_fragments[0].gpa, *(u64 *)val);
+               vcpu->mmio_read_completed = 0;
+               return 1;
+       }
+
+       return 0;
+}
+
+static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
+                       void *val, int bytes)
+{
+       return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
+}
+
+static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
+                        void *val, int bytes)
+{
+       return emulator_write_phys(vcpu, gpa, val, bytes);
+}
+
+static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
+{
+       trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
+       return vcpu_mmio_write(vcpu, gpa, bytes, val);
+}
+
+static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
+                         void *val, int bytes)
+{
+       trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
+       return X86EMUL_IO_NEEDED;
+}
+
+static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
+                          void *val, int bytes)
+{
+       struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
+
+       memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
+       return X86EMUL_CONTINUE;
+}
+
+static const struct read_write_emulator_ops read_emultor = {
+       .read_write_prepare = read_prepare,
+       .read_write_emulate = read_emulate,
+       .read_write_mmio = vcpu_mmio_read,
+       .read_write_exit_mmio = read_exit_mmio,
+};
+
+static const struct read_write_emulator_ops write_emultor = {
+       .read_write_emulate = write_emulate,
+       .read_write_mmio = write_mmio,
+       .read_write_exit_mmio = write_exit_mmio,
+       .write = true,
+};
+
+static int emulator_read_write_onepage(unsigned long addr, void *val,
+                                      unsigned int bytes,
+                                      struct x86_exception *exception,
+                                      struct kvm_vcpu *vcpu,
+                                      const struct read_write_emulator_ops *ops)
+{
+       gpa_t gpa;
+       int handled, ret;
+       bool write = ops->write;
+       struct kvm_mmio_fragment *frag;
+
+       ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
+
+       if (ret < 0)
+               return X86EMUL_PROPAGATE_FAULT;
+
+       /* For APIC access vmexit */
+       if (ret)
+               goto mmio;
+
+       if (ops->read_write_emulate(vcpu, gpa, val, bytes))
+               return X86EMUL_CONTINUE;
+
+mmio:
+       /*
+        * Is this MMIO handled locally?
+        */
+       handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
+       if (handled == bytes)
+               return X86EMUL_CONTINUE;
+
+       gpa += handled;
+       bytes -= handled;
+       val += handled;
+
+       WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
+       frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
+       frag->gpa = gpa;
+       frag->data = val;
+       frag->len = bytes;
+       return X86EMUL_CONTINUE;
+}
+
+static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
+                       unsigned long addr,
+                       void *val, unsigned int bytes,
+                       struct x86_exception *exception,
+                       const struct read_write_emulator_ops *ops)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       gpa_t gpa;
+       int rc;
+
+       if (ops->read_write_prepare &&
+                 ops->read_write_prepare(vcpu, val, bytes))
+               return X86EMUL_CONTINUE;
+
+       vcpu->mmio_nr_fragments = 0;
+
+       /* Crossing a page boundary? */
+       if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
+               int now;
+
+               now = -addr & ~PAGE_MASK;
+               rc = emulator_read_write_onepage(addr, val, now, exception,
+                                                vcpu, ops);
+
+               if (rc != X86EMUL_CONTINUE)
+                       return rc;
+               addr += now;
+               if (ctxt->mode != X86EMUL_MODE_PROT64)
+                       addr = (u32)addr;
+               val += now;
+               bytes -= now;
+       }
+
+       rc = emulator_read_write_onepage(addr, val, bytes, exception,
+                                        vcpu, ops);
+       if (rc != X86EMUL_CONTINUE)
+               return rc;
+
+       if (!vcpu->mmio_nr_fragments)
+               return rc;
+
+       gpa = vcpu->mmio_fragments[0].gpa;
+
+       vcpu->mmio_needed = 1;
+       vcpu->mmio_cur_fragment = 0;
+
+       vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
+       vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
+       vcpu->run->exit_reason = KVM_EXIT_MMIO;
+       vcpu->run->mmio.phys_addr = gpa;
+
+       return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
+}
+
+static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
+                                 unsigned long addr,
+                                 void *val,
+                                 unsigned int bytes,
+                                 struct x86_exception *exception)
+{
+       return emulator_read_write(ctxt, addr, val, bytes,
+                                  exception, &read_emultor);
+}
+
+static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
+                           unsigned long addr,
+                           const void *val,
+                           unsigned int bytes,
+                           struct x86_exception *exception)
+{
+       return emulator_read_write(ctxt, addr, (void *)val, bytes,
+                                  exception, &write_emultor);
+}
+
+#define CMPXCHG_TYPE(t, ptr, old, new) \
+       (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
+
+#ifdef CONFIG_X86_64
+#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
+#else
+#  define CMPXCHG64(ptr, old, new) \
+       (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
+#endif
+
+static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
+                                    unsigned long addr,
+                                    const void *old,
+                                    const void *new,
+                                    unsigned int bytes,
+                                    struct x86_exception *exception)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       gpa_t gpa;
+       struct page *page;
+       char *kaddr;
+       bool exchanged;
+
+       /* guests cmpxchg8b have to be emulated atomically */
+       if (bytes > 8 || (bytes & (bytes - 1)))
+               goto emul_write;
+
+       gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
+
+       if (gpa == UNMAPPED_GVA ||
+           (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+               goto emul_write;
+
+       if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
+               goto emul_write;
+
+       page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
+       if (is_error_page(page))
+               goto emul_write;
+
+       kaddr = kmap_atomic(page);
+       kaddr += offset_in_page(gpa);
+       switch (bytes) {
+       case 1:
+               exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
+               break;
+       case 2:
+               exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
+               break;
+       case 4:
+               exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
+               break;
+       case 8:
+               exchanged = CMPXCHG64(kaddr, old, new);
+               break;
+       default:
+               BUG();
+       }
+       kunmap_atomic(kaddr);
+       kvm_release_page_dirty(page);
+
+       if (!exchanged)
+               return X86EMUL_CMPXCHG_FAILED;
+
+       mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
+       kvm_mmu_pte_write(vcpu, gpa, new, bytes);
+
+       return X86EMUL_CONTINUE;
+
+emul_write:
+       printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
+
+       return emulator_write_emulated(ctxt, addr, new, bytes, exception);
+}
+
+static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
+{
+       /* TODO: String I/O for in kernel device */
+       int r;
+
+       if (vcpu->arch.pio.in)
+               r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
+                                   vcpu->arch.pio.size, pd);
+       else
+               r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
+                                    vcpu->arch.pio.port, vcpu->arch.pio.size,
+                                    pd);
+       return r;
+}
+
+static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
+                              unsigned short port, void *val,
+                              unsigned int count, bool in)
+{
+       vcpu->arch.pio.port = port;
+       vcpu->arch.pio.in = in;
+       vcpu->arch.pio.count  = count;
+       vcpu->arch.pio.size = size;
+
+       if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
+               vcpu->arch.pio.count = 0;
+               return 1;
+       }
+
+       vcpu->run->exit_reason = KVM_EXIT_IO;
+       vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
+       vcpu->run->io.size = size;
+       vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
+       vcpu->run->io.count = count;
+       vcpu->run->io.port = port;
+
+       return 0;
+}
+
+static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
+                                   int size, unsigned short port, void *val,
+                                   unsigned int count)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       int ret;
+
+       if (vcpu->arch.pio.count)
+               goto data_avail;
+
+       ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
+       if (ret) {
+data_avail:
+               memcpy(val, vcpu->arch.pio_data, size * count);
+               trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
+               vcpu->arch.pio.count = 0;
+               return 1;
+       }
+
+       return 0;
+}
+
+static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
+                                    int size, unsigned short port,
+                                    const void *val, unsigned int count)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+
+       memcpy(vcpu->arch.pio_data, val, size * count);
+       trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
+       return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
+}
+
+static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+       return kvm_x86_ops->get_segment_base(vcpu, seg);
+}
+
+static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
+{
+       kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
+}
+
+int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
+{
+       if (!need_emulate_wbinvd(vcpu))
+               return X86EMUL_CONTINUE;
+
+       if (kvm_x86_ops->has_wbinvd_exit()) {
+               int cpu = get_cpu();
+
+               cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
+               smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
+                               wbinvd_ipi, NULL, 1);
+               put_cpu();
+               cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
+       } else
+               wbinvd();
+       return X86EMUL_CONTINUE;
+}
+
+int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
+{
+       kvm_x86_ops->skip_emulated_instruction(vcpu);
+       return kvm_emulate_wbinvd_noskip(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
+
+
+
+static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
+{
+       kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
+}
+
+static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
+                          unsigned long *dest)
+{
+       return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
+}
+
+static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
+                          unsigned long value)
+{
+
+       return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
+}
+
+static u64 mk_cr_64(u64 curr_cr, u32 new_val)
+{
+       return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
+}
+
+static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       unsigned long value;
+
+       switch (cr) {
+       case 0:
+               value = kvm_read_cr0(vcpu);
+               break;
+       case 2:
+               value = vcpu->arch.cr2;
+               break;
+       case 3:
+               value = kvm_read_cr3(vcpu);
+               break;
+       case 4:
+               value = kvm_read_cr4(vcpu);
+               break;
+       case 8:
+               value = kvm_get_cr8(vcpu);
+               break;
+       default:
+               kvm_err("%s: unexpected cr %u\n", __func__, cr);
+               return 0;
+       }
+
+       return value;
+}
+
+static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       int res = 0;
+
+       switch (cr) {
+       case 0:
+               res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
+               break;
+       case 2:
+               vcpu->arch.cr2 = val;
+               break;
+       case 3:
+               res = kvm_set_cr3(vcpu, val);
+               break;
+       case 4:
+               res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
+               break;
+       case 8:
+               res = kvm_set_cr8(vcpu, val);
+               break;
+       default:
+               kvm_err("%s: unexpected cr %u\n", __func__, cr);
+               res = -1;
+       }
+
+       return res;
+}
+
+static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
+{
+       return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
+}
+
+static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+       kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+       kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+       kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+       kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
+}
+
+static unsigned long emulator_get_cached_segment_base(
+       struct x86_emulate_ctxt *ctxt, int seg)
+{
+       return get_segment_base(emul_to_vcpu(ctxt), seg);
+}
+
+static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
+                                struct desc_struct *desc, u32 *base3,
+                                int seg)
+{
+       struct kvm_segment var;
+
+       kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
+       *selector = var.selector;
+
+       if (var.unusable) {
+               memset(desc, 0, sizeof(*desc));
+               return false;
+       }
+
+       if (var.g)
+               var.limit >>= 12;
+       set_desc_limit(desc, var.limit);
+       set_desc_base(desc, (unsigned long)var.base);
+#ifdef CONFIG_X86_64
+       if (base3)
+               *base3 = var.base >> 32;
+#endif
+       desc->type = var.type;
+       desc->s = var.s;
+       desc->dpl = var.dpl;
+       desc->p = var.present;
+       desc->avl = var.avl;
+       desc->l = var.l;
+       desc->d = var.db;
+       desc->g = var.g;
+
+       return true;
+}
+
+static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
+                                struct desc_struct *desc, u32 base3,
+                                int seg)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       struct kvm_segment var;
+
+       var.selector = selector;
+       var.base = get_desc_base(desc);
+#ifdef CONFIG_X86_64
+       var.base |= ((u64)base3) << 32;
+#endif
+       var.limit = get_desc_limit(desc);
+       if (desc->g)
+               var.limit = (var.limit << 12) | 0xfff;
+       var.type = desc->type;
+       var.dpl = desc->dpl;
+       var.db = desc->d;
+       var.s = desc->s;
+       var.l = desc->l;
+       var.g = desc->g;
+       var.avl = desc->avl;
+       var.present = desc->p;
+       var.unusable = !var.present;
+       var.padding = 0;
+
+       kvm_set_segment(vcpu, &var, seg);
+       return;
+}
+
+static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
+                           u32 msr_index, u64 *pdata)
+{
+       return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
+}
+
+static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
+                           u32 msr_index, u64 data)
+{
+       struct msr_data msr;
+
+       msr.data = data;
+       msr.index = msr_index;
+       msr.host_initiated = false;
+       return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
+}
+
+static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
+                             u32 pmc)
+{
+       return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
+}
+
+static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
+                            u32 pmc, u64 *pdata)
+{
+       return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
+}
+
+static void emulator_halt(struct x86_emulate_ctxt *ctxt)
+{
+       emul_to_vcpu(ctxt)->arch.halt_request = 1;
+}
+
+static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
+{
+       preempt_disable();
+       kvm_load_guest_fpu(emul_to_vcpu(ctxt));
+       /*
+        * CR0.TS may reference the host fpu state, not the guest fpu state,
+        * so it may be clear at this point.
+        */
+       clts();
+}
+
+static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
+{
+       preempt_enable();
+}
+
+static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
+                             struct x86_instruction_info *info,
+                             enum x86_intercept_stage stage)
+{
+       return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
+}
+
+static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
+                              u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
+{
+       kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
+}
+
+static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
+{
+       return kvm_register_read(emul_to_vcpu(ctxt), reg);
+}
+
+static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
+{
+       kvm_register_write(emul_to_vcpu(ctxt), reg, val);
+}
+
+static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
+{
+       kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
+}
+
+static const struct x86_emulate_ops emulate_ops = {
+       .read_gpr            = emulator_read_gpr,
+       .write_gpr           = emulator_write_gpr,
+       .read_std            = kvm_read_guest_virt_system,
+       .write_std           = kvm_write_guest_virt_system,
+       .fetch               = kvm_fetch_guest_virt,
+       .read_emulated       = emulator_read_emulated,
+       .write_emulated      = emulator_write_emulated,
+       .cmpxchg_emulated    = emulator_cmpxchg_emulated,
+       .invlpg              = emulator_invlpg,
+       .pio_in_emulated     = emulator_pio_in_emulated,
+       .pio_out_emulated    = emulator_pio_out_emulated,
+       .get_segment         = emulator_get_segment,
+       .set_segment         = emulator_set_segment,
+       .get_cached_segment_base = emulator_get_cached_segment_base,
+       .get_gdt             = emulator_get_gdt,
+       .get_idt             = emulator_get_idt,
+       .set_gdt             = emulator_set_gdt,
+       .set_idt             = emulator_set_idt,
+       .get_cr              = emulator_get_cr,
+       .set_cr              = emulator_set_cr,
+       .cpl                 = emulator_get_cpl,
+       .get_dr              = emulator_get_dr,
+       .set_dr              = emulator_set_dr,
+       .set_msr             = emulator_set_msr,
+       .get_msr             = emulator_get_msr,
+       .check_pmc           = emulator_check_pmc,
+       .read_pmc            = emulator_read_pmc,
+       .halt                = emulator_halt,
+       .wbinvd              = emulator_wbinvd,
+       .fix_hypercall       = emulator_fix_hypercall,
+       .get_fpu             = emulator_get_fpu,
+       .put_fpu             = emulator_put_fpu,
+       .intercept           = emulator_intercept,
+       .get_cpuid           = emulator_get_cpuid,
+       .set_nmi_mask        = emulator_set_nmi_mask,
+};
+
+static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
+{
+       u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
+       /*
+        * an sti; sti; sequence only disable interrupts for the first
+        * instruction. So, if the last instruction, be it emulated or
+        * not, left the system with the INT_STI flag enabled, it
+        * means that the last instruction is an sti. We should not
+        * leave the flag on in this case. The same goes for mov ss
+        */
+       if (int_shadow & mask)
+               mask = 0;
+       if (unlikely(int_shadow || mask)) {
+               kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
+               if (!mask)
+                       kvm_make_request(KVM_REQ_EVENT, vcpu);
+       }
+}
+
+static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
+{
+       struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+       if (ctxt->exception.vector == PF_VECTOR)
+               return kvm_propagate_fault(vcpu, &ctxt->exception);
+
+       if (ctxt->exception.error_code_valid)
+               kvm_queue_exception_e(vcpu, ctxt->exception.vector,
+                                     ctxt->exception.error_code);
+       else
+               kvm_queue_exception(vcpu, ctxt->exception.vector);
+       return false;
+}
+
+static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
+{
+       struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+       int cs_db, cs_l;
+
+       kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
+
+       ctxt->eflags = kvm_get_rflags(vcpu);
+       ctxt->eip = kvm_rip_read(vcpu);
+       ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
+                    (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
+                    (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
+                    cs_db                              ? X86EMUL_MODE_PROT32 :
+                                                         X86EMUL_MODE_PROT16;
+       ctxt->guest_mode = is_guest_mode(vcpu);
+
+       init_decode_cache(ctxt);
+       vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
+}
+
+int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
+{
+       struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+       int ret;
+
+       init_emulate_ctxt(vcpu);
+
+       ctxt->op_bytes = 2;
+       ctxt->ad_bytes = 2;
+       ctxt->_eip = ctxt->eip + inc_eip;
+       ret = emulate_int_real(ctxt, irq);
+
+       if (ret != X86EMUL_CONTINUE)
+               return EMULATE_FAIL;
+
+       ctxt->eip = ctxt->_eip;
+       kvm_rip_write(vcpu, ctxt->eip);
+       kvm_set_rflags(vcpu, ctxt->eflags);
+
+       if (irq == NMI_VECTOR)
+               vcpu->arch.nmi_pending = 0;
+       else
+               vcpu->arch.interrupt.pending = false;
+
+       return EMULATE_DONE;
+}
+EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
+
+static int handle_emulation_failure(struct kvm_vcpu *vcpu)
+{
+       int r = EMULATE_DONE;
+
+       ++vcpu->stat.insn_emulation_fail;
+       trace_kvm_emulate_insn_failed(vcpu);
+       if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
+               vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+               vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+               vcpu->run->internal.ndata = 0;
+               r = EMULATE_FAIL;
+       }
+       kvm_queue_exception(vcpu, UD_VECTOR);
+
+       return r;
+}
+
+static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
+                                 bool write_fault_to_shadow_pgtable,
+                                 int emulation_type)
+{
+       gpa_t gpa = cr2;
+       pfn_t pfn;
+
+       if (emulation_type & EMULTYPE_NO_REEXECUTE)
+               return false;
+
+       if (!vcpu->arch.mmu.direct_map) {
+               /*
+                * Write permission should be allowed since only
+                * write access need to be emulated.
+                */
+               gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
+
+               /*
+                * If the mapping is invalid in guest, let cpu retry
+                * it to generate fault.
+                */
+               if (gpa == UNMAPPED_GVA)
+                       return true;
+       }
+
+       /*
+        * Do not retry the unhandleable instruction if it faults on the
+        * readonly host memory, otherwise it will goto a infinite loop:
+        * retry instruction -> write #PF -> emulation fail -> retry
+        * instruction -> ...
+        */
+       pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
+
+       /*
+        * If the instruction failed on the error pfn, it can not be fixed,
+        * report the error to userspace.
+        */
+       if (is_error_noslot_pfn(pfn))
+               return false;
+
+       kvm_release_pfn_clean(pfn);
+
+       /* The instructions are well-emulated on direct mmu. */
+       if (vcpu->arch.mmu.direct_map) {
+               unsigned int indirect_shadow_pages;
+
+               spin_lock(&vcpu->kvm->mmu_lock);
+               indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
+               spin_unlock(&vcpu->kvm->mmu_lock);
+
+               if (indirect_shadow_pages)
+                       kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+               return true;
+       }
+
+       /*
+        * if emulation was due to access to shadowed page table
+        * and it failed try to unshadow page and re-enter the
+        * guest to let CPU execute the instruction.
+        */
+       kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+       /*
+        * If the access faults on its page table, it can not
+        * be fixed by unprotecting shadow page and it should
+        * be reported to userspace.
+        */
+       return !write_fault_to_shadow_pgtable;
+}
+
+static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
+                             unsigned long cr2,  int emulation_type)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
+
+       last_retry_eip = vcpu->arch.last_retry_eip;
+       last_retry_addr = vcpu->arch.last_retry_addr;
+
+       /*
+        * If the emulation is caused by #PF and it is non-page_table
+        * writing instruction, it means the VM-EXIT is caused by shadow
+        * page protected, we can zap the shadow page and retry this
+        * instruction directly.
+        *
+        * Note: if the guest uses a non-page-table modifying instruction
+        * on the PDE that points to the instruction, then we will unmap
+        * the instruction and go to an infinite loop. So, we cache the
+        * last retried eip and the last fault address, if we meet the eip
+        * and the address again, we can break out of the potential infinite
+        * loop.
+        */
+       vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
+
+       if (!(emulation_type & EMULTYPE_RETRY))
+               return false;
+
+       if (x86_page_table_writing_insn(ctxt))
+               return false;
+
+       if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
+               return false;
+
+       vcpu->arch.last_retry_eip = ctxt->eip;
+       vcpu->arch.last_retry_addr = cr2;
+
+       if (!vcpu->arch.mmu.direct_map)
+               gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
+
+       kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+       return true;
+}
+
+static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
+static int complete_emulated_pio(struct kvm_vcpu *vcpu);
+
+static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
+                               unsigned long *db)
+{
+       u32 dr6 = 0;
+       int i;
+       u32 enable, rwlen;
+
+       enable = dr7;
+       rwlen = dr7 >> 16;
+       for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
+               if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
+                       dr6 |= (1 << i);
+       return dr6;
+}
+
+static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
+{
+       struct kvm_run *kvm_run = vcpu->run;
+
+       /*
+        * rflags is the old, "raw" value of the flags.  The new value has
+        * not been saved yet.
+        *
+        * This is correct even for TF set by the guest, because "the
+        * processor will not generate this exception after the instruction
+        * that sets the TF flag".
+        */
+       if (unlikely(rflags & X86_EFLAGS_TF)) {
+               if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+                       kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
+                                                 DR6_RTM;
+                       kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
+                       kvm_run->debug.arch.exception = DB_VECTOR;
+                       kvm_run->exit_reason = KVM_EXIT_DEBUG;
+                       *r = EMULATE_USER_EXIT;
+               } else {
+                       vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
+                       /*
+                        * "Certain debug exceptions may clear bit 0-3.  The
+                        * remaining contents of the DR6 register are never
+                        * cleared by the processor".
+                        */
+                       vcpu->arch.dr6 &= ~15;
+                       vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
+                       kvm_queue_exception(vcpu, DB_VECTOR);
+               }
+       }
+}
+
+static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
+{
+       if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
+           (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
+               struct kvm_run *kvm_run = vcpu->run;
+               unsigned long eip = kvm_get_linear_rip(vcpu);
+               u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+                                          vcpu->arch.guest_debug_dr7,
+                                          vcpu->arch.eff_db);
+
+               if (dr6 != 0) {
+                       kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
+                       kvm_run->debug.arch.pc = eip;
+                       kvm_run->debug.arch.exception = DB_VECTOR;
+                       kvm_run->exit_reason = KVM_EXIT_DEBUG;
+                       *r = EMULATE_USER_EXIT;
+                       return true;
+               }
+       }
+
+       if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
+           !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
+               unsigned long eip = kvm_get_linear_rip(vcpu);
+               u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+                                          vcpu->arch.dr7,
+                                          vcpu->arch.db);
+
+               if (dr6 != 0) {
+                       vcpu->arch.dr6 &= ~15;
+                       vcpu->arch.dr6 |= dr6 | DR6_RTM;
+                       kvm_queue_exception(vcpu, DB_VECTOR);
+                       *r = EMULATE_DONE;
+                       return true;
+               }
+       }
+
+       return false;
+}
+
+int x86_emulate_instruction(struct kvm_vcpu *vcpu,
+                           unsigned long cr2,
+                           int emulation_type,
+                           void *insn,
+                           int insn_len)
+{
+       int r;
+       struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+       bool writeback = true;
+       bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
+
+       /*
+        * Clear write_fault_to_shadow_pgtable here to ensure it is
+        * never reused.
+        */
+       vcpu->arch.write_fault_to_shadow_pgtable = false;
+       kvm_clear_exception_queue(vcpu);
+
+       if (!(emulation_type & EMULTYPE_NO_DECODE)) {
+               init_emulate_ctxt(vcpu);
+
+               /*
+                * We will reenter on the same instruction since
+                * we do not set complete_userspace_io.  This does not
+                * handle watchpoints yet, those would be handled in
+                * the emulate_ops.
+                */
+               if (kvm_vcpu_check_breakpoint(vcpu, &r))
+                       return r;
+
+               ctxt->interruptibility = 0;
+               ctxt->have_exception = false;
+               ctxt->exception.vector = -1;
+               ctxt->perm_ok = false;
+
+               ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
+
+               r = x86_decode_insn(ctxt, insn, insn_len);
+
+               trace_kvm_emulate_insn_start(vcpu);
+               ++vcpu->stat.insn_emulation;
+               if (r != EMULATION_OK)  {
+                       if (emulation_type & EMULTYPE_TRAP_UD)
+                               return EMULATE_FAIL;
+                       if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
+                                               emulation_type))
+                               return EMULATE_DONE;
+                       if (emulation_type & EMULTYPE_SKIP)
+                               return EMULATE_FAIL;
+                       return handle_emulation_failure(vcpu);
+               }
+       }
+
+       if (emulation_type & EMULTYPE_SKIP) {
+               kvm_rip_write(vcpu, ctxt->_eip);
+               if (ctxt->eflags & X86_EFLAGS_RF)
+                       kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
+               return EMULATE_DONE;
+       }
+
+       if (retry_instruction(ctxt, cr2, emulation_type))
+               return EMULATE_DONE;
+
+       /* this is needed for vmware backdoor interface to work since it
+          changes registers values  during IO operation */
+       if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
+               vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
+               emulator_invalidate_register_cache(ctxt);
+       }
+
+restart:
+       r = x86_emulate_insn(ctxt);
+
+       if (r == EMULATION_INTERCEPTED)
+               return EMULATE_DONE;
+
+       if (r == EMULATION_FAILED) {
+               if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
+                                       emulation_type))
+                       return EMULATE_DONE;
+
+               return handle_emulation_failure(vcpu);
+       }
+
+       if (ctxt->have_exception) {
+               r = EMULATE_DONE;
+               if (inject_emulated_exception(vcpu))
+                       return r;
+       } else if (vcpu->arch.pio.count) {
+               if (!vcpu->arch.pio.in) {
+                       /* FIXME: return into emulator if single-stepping.  */
+                       vcpu->arch.pio.count = 0;
+               } else {
+                       writeback = false;
+                       vcpu->arch.complete_userspace_io = complete_emulated_pio;
+               }
+               r = EMULATE_USER_EXIT;
+       } else if (vcpu->mmio_needed) {
+               if (!vcpu->mmio_is_write)
+                       writeback = false;
+               r = EMULATE_USER_EXIT;
+               vcpu->arch.complete_userspace_io = complete_emulated_mmio;
+       } else if (r == EMULATION_RESTART)
+               goto restart;
+       else
+               r = EMULATE_DONE;
+
+       if (writeback) {
+               unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
+               toggle_interruptibility(vcpu, ctxt->interruptibility);
+               vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+               kvm_rip_write(vcpu, ctxt->eip);
+               if (r == EMULATE_DONE)
+                       kvm_vcpu_check_singlestep(vcpu, rflags, &r);
+               if (!ctxt->have_exception ||
+                   exception_type(ctxt->exception.vector) == EXCPT_TRAP)
+                       __kvm_set_rflags(vcpu, ctxt->eflags);
+
+               /*
+                * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
+                * do nothing, and it will be requested again as soon as
+                * the shadow expires.  But we still need to check here,
+                * because POPF has no interrupt shadow.
+                */
+               if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
+                       kvm_make_request(KVM_REQ_EVENT, vcpu);
+       } else
+               vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
+
+       return r;
+}
+EXPORT_SYMBOL_GPL(x86_emulate_instruction);
+
+int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
+{
+       unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
+       int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
+                                           size, port, &val, 1);
+       /* do not return to emulator after return from userspace */
+       vcpu->arch.pio.count = 0;
+       return ret;
+}
+EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
+
+static void tsc_bad(void *info)
+{
+       __this_cpu_write(cpu_tsc_khz, 0);
+}
+
+static void tsc_khz_changed(void *data)
+{
+       struct cpufreq_freqs *freq = data;
+       unsigned long khz = 0;
+
+       if (data)
+               khz = freq->new;
+       else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+               khz = cpufreq_quick_get(raw_smp_processor_id());
+       if (!khz)
+               khz = tsc_khz;
+       __this_cpu_write(cpu_tsc_khz, khz);
+}
+
+static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
+                                    void *data)
+{
+       struct cpufreq_freqs *freq = data;
+       struct kvm *kvm;
+       struct kvm_vcpu *vcpu;
+       int i, send_ipi = 0;
+
+       /*
+        * We allow guests to temporarily run on slowing clocks,
+        * provided we notify them after, or to run on accelerating
+        * clocks, provided we notify them before.  Thus time never
+        * goes backwards.
+        *
+        * However, we have a problem.  We can't atomically update
+        * the frequency of a given CPU from this function; it is
+        * merely a notifier, which can be called from any CPU.
+        * Changing the TSC frequency at arbitrary points in time
+        * requires a recomputation of local variables related to
+        * the TSC for each VCPU.  We must flag these local variables
+        * to be updated and be sure the update takes place with the
+        * new frequency before any guests proceed.
+        *
+        * Unfortunately, the combination of hotplug CPU and frequency
+        * change creates an intractable locking scenario; the order
+        * of when these callouts happen is undefined with respect to
+        * CPU hotplug, and they can race with each other.  As such,
+        * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
+        * undefined; you can actually have a CPU frequency change take
+        * place in between the computation of X and the setting of the
+        * variable.  To protect against this problem, all updates of
+        * the per_cpu tsc_khz variable are done in an interrupt
+        * protected IPI, and all callers wishing to update the value
+        * must wait for a synchronous IPI to complete (which is trivial
+        * if the caller is on the CPU already).  This establishes the
+        * necessary total order on variable updates.
+        *
+        * Note that because a guest time update may take place
+        * anytime after the setting of the VCPU's request bit, the
+        * correct TSC value must be set before the request.  However,
+        * to ensure the update actually makes it to any guest which
+        * starts running in hardware virtualization between the set
+        * and the acquisition of the spinlock, we must also ping the
+        * CPU after setting the request bit.
+        *
+        */
+
+       if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
+               return 0;
+       if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
+               return 0;
+
+       smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
+
+       spin_lock(&kvm_lock);
+       list_for_each_entry(kvm, &vm_list, vm_list) {
+               kvm_for_each_vcpu(i, vcpu, kvm) {
+                       if (vcpu->cpu != freq->cpu)
+                               continue;
+                       kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+                       if (vcpu->cpu != smp_processor_id())
+                               send_ipi = 1;
+               }
+       }
+       spin_unlock(&kvm_lock);
+
+       if (freq->old < freq->new && send_ipi) {
+               /*
+                * We upscale the frequency.  Must make the guest
+                * doesn't see old kvmclock values while running with
+                * the new frequency, otherwise we risk the guest sees
+                * time go backwards.
+                *
+                * In case we update the frequency for another cpu
+                * (which might be in guest context) send an interrupt
+                * to kick the cpu out of guest context.  Next time
+                * guest context is entered kvmclock will be updated,
+                * so the guest will not see stale values.
+                */
+               smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
+       }
+       return 0;
+}
+
+static struct notifier_block kvmclock_cpufreq_notifier_block = {
+       .notifier_call  = kvmclock_cpufreq_notifier
+};
+
+static int kvmclock_cpu_notifier(struct notifier_block *nfb,
+                                       unsigned long action, void *hcpu)
+{
+       unsigned int cpu = (unsigned long)hcpu;
+
+       switch (action) {
+               case CPU_ONLINE:
+               case CPU_DOWN_FAILED:
+                       smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
+                       break;
+               case CPU_DOWN_PREPARE:
+                       smp_call_function_single(cpu, tsc_bad, NULL, 1);
+                       break;
+       }
+       return NOTIFY_OK;
+}
+
+static struct notifier_block kvmclock_cpu_notifier_block = {
+       .notifier_call  = kvmclock_cpu_notifier,
+       .priority = -INT_MAX
+};
+
+static void kvm_timer_init(void)
+{
+       int cpu;
+
+       max_tsc_khz = tsc_khz;
+
+       cpu_notifier_register_begin();
+       if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
+#ifdef CONFIG_CPU_FREQ
+               struct cpufreq_policy policy;
+               memset(&policy, 0, sizeof(policy));
+               cpu = get_cpu();
+               cpufreq_get_policy(&policy, cpu);
+               if (policy.cpuinfo.max_freq)
+                       max_tsc_khz = policy.cpuinfo.max_freq;
+               put_cpu();
+#endif
+               cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
+                                         CPUFREQ_TRANSITION_NOTIFIER);
+       }
+       pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
+       for_each_online_cpu(cpu)
+               smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
+
+       __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
+       cpu_notifier_register_done();
+
+}
+
+static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
+
+int kvm_is_in_guest(void)
+{
+       return __this_cpu_read(current_vcpu) != NULL;
+}
+
+static int kvm_is_user_mode(void)
+{
+       int user_mode = 3;
+
+       if (__this_cpu_read(current_vcpu))
+               user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
+
+       return user_mode != 0;
+}
+
+static unsigned long kvm_get_guest_ip(void)
+{
+       unsigned long ip = 0;
+
+       if (__this_cpu_read(current_vcpu))
+               ip = kvm_rip_read(__this_cpu_read(current_vcpu));
+
+       return ip;
+}
+
+static struct perf_guest_info_callbacks kvm_guest_cbs = {
+       .is_in_guest            = kvm_is_in_guest,
+       .is_user_mode           = kvm_is_user_mode,
+       .get_guest_ip           = kvm_get_guest_ip,
+};
+
+void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
+{
+       __this_cpu_write(current_vcpu, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
+
+void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
+{
+       __this_cpu_write(current_vcpu, NULL);
+}
+EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
+
+static void kvm_set_mmio_spte_mask(void)
+{
+       u64 mask;
+       int maxphyaddr = boot_cpu_data.x86_phys_bits;
+
+       /*
+        * Set the reserved bits and the present bit of an paging-structure
+        * entry to generate page fault with PFER.RSV = 1.
+        */
+        /* Mask the reserved physical address bits. */
+       mask = rsvd_bits(maxphyaddr, 51);
+
+       /* Bit 62 is always reserved for 32bit host. */
+       mask |= 0x3ull << 62;
+
+       /* Set the present bit. */
+       mask |= 1ull;
+
+#ifdef CONFIG_X86_64
+       /*
+        * If reserved bit is not supported, clear the present bit to disable
+        * mmio page fault.
+        */
+       if (maxphyaddr == 52)
+               mask &= ~1ull;
+#endif
+
+       kvm_mmu_set_mmio_spte_mask(mask);
+}
+
+#ifdef CONFIG_X86_64
+static void pvclock_gtod_update_fn(struct work_struct *work)
+{
+       struct kvm *kvm;
+
+       struct kvm_vcpu *vcpu;
+       int i;
+
+       spin_lock(&kvm_lock);
+       list_for_each_entry(kvm, &vm_list, vm_list)
+               kvm_for_each_vcpu(i, vcpu, kvm)
+                       kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+       atomic_set(&kvm_guest_has_master_clock, 0);
+       spin_unlock(&kvm_lock);
+}
+
+static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
+
+/*
+ * Notification about pvclock gtod data update.
+ */
+static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
+                              void *priv)
+{
+       struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+       struct timekeeper *tk = priv;
+
+       update_pvclock_gtod(tk);
+
+       /* disable master clock if host does not trust, or does not
+        * use, TSC clocksource
+        */
+       if (gtod->clock.vclock_mode != VCLOCK_TSC &&
+           atomic_read(&kvm_guest_has_master_clock) != 0)
+               queue_work(system_long_wq, &pvclock_gtod_work);
+
+       return 0;
+}
+
+static struct notifier_block pvclock_gtod_notifier = {
+       .notifier_call = pvclock_gtod_notify,
+};
+#endif
+
+int kvm_arch_init(void *opaque)
+{
+       int r;
+       struct kvm_x86_ops *ops = opaque;
+
+       if (kvm_x86_ops) {
+               printk(KERN_ERR "kvm: already loaded the other module\n");
+               r = -EEXIST;
+               goto out;
+       }
+
+       if (!ops->cpu_has_kvm_support()) {
+               printk(KERN_ERR "kvm: no hardware support\n");
+               r = -EOPNOTSUPP;
+               goto out;
+       }
+       if (ops->disabled_by_bios()) {
+               printk(KERN_ERR "kvm: disabled by bios\n");
+               r = -EOPNOTSUPP;
+               goto out;
+       }
+
+       r = -ENOMEM;
+       shared_msrs = alloc_percpu(struct kvm_shared_msrs);
+       if (!shared_msrs) {
+               printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
+               goto out;
+       }
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+       if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
+               printk(KERN_ERR "RT requires X86_FEATURE_CONSTANT_TSC\n");
+               return -EOPNOTSUPP;
+       }
+#endif
+
+       r = kvm_mmu_module_init();
+       if (r)
+               goto out_free_percpu;
+
+       kvm_set_mmio_spte_mask();
+
+       kvm_x86_ops = ops;
+
+       kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
+                       PT_DIRTY_MASK, PT64_NX_MASK, 0);
+
+       kvm_timer_init();
+
+       perf_register_guest_info_callbacks(&kvm_guest_cbs);
+
+       if (cpu_has_xsave)
+               host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
+
+       kvm_lapic_init();
+#ifdef CONFIG_X86_64
+       pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
+#endif
+
+       return 0;
+
+out_free_percpu:
+       free_percpu(shared_msrs);
+out:
+       return r;
+}
+
+void kvm_arch_exit(void)
+{
+       perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
+
+       if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+               cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
+                                           CPUFREQ_TRANSITION_NOTIFIER);
+       unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
+#ifdef CONFIG_X86_64
+       pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
+#endif
+       kvm_x86_ops = NULL;
+       kvm_mmu_module_exit();
+       free_percpu(shared_msrs);
+}
+
+int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
+{
+       ++vcpu->stat.halt_exits;
+       if (irqchip_in_kernel(vcpu->kvm)) {
+               vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
+               return 1;
+       } else {
+               vcpu->run->exit_reason = KVM_EXIT_HLT;
+               return 0;
+       }
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
+
+int kvm_emulate_halt(struct kvm_vcpu *vcpu)
+{
+       kvm_x86_ops->skip_emulated_instruction(vcpu);
+       return kvm_vcpu_halt(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_halt);
+
+int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
+{
+       u64 param, ingpa, outgpa, ret;
+       uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
+       bool fast, longmode;
+
+       /*
+        * hypercall generates UD from non zero cpl and real mode
+        * per HYPER-V spec
+        */
+       if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 0;
+       }
+
+       longmode = is_64_bit_mode(vcpu);
+
+       if (!longmode) {
+               param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
+                       (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
+               ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
+                       (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
+               outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
+                       (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
+       }
+#ifdef CONFIG_X86_64
+       else {
+               param = kvm_register_read(vcpu, VCPU_REGS_RCX);
+               ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
+               outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
+       }
+#endif
+
+       code = param & 0xffff;
+       fast = (param >> 16) & 0x1;
+       rep_cnt = (param >> 32) & 0xfff;
+       rep_idx = (param >> 48) & 0xfff;
+
+       trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
+
+       switch (code) {
+       case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
+               kvm_vcpu_on_spin(vcpu);
+               break;
+       default:
+               res = HV_STATUS_INVALID_HYPERCALL_CODE;
+               break;
+       }
+
+       ret = res | (((u64)rep_done & 0xfff) << 32);
+       if (longmode) {
+               kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
+       } else {
+               kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
+               kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
+       }
+
+       return 1;
+}
+
+/*
+ * kvm_pv_kick_cpu_op:  Kick a vcpu.
+ *
+ * @apicid - apicid of vcpu to be kicked.
+ */
+static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
+{
+       struct kvm_lapic_irq lapic_irq;
+
+       lapic_irq.shorthand = 0;
+       lapic_irq.dest_mode = 0;
+       lapic_irq.dest_id = apicid;
+
+       lapic_irq.delivery_mode = APIC_DM_REMRD;
+       kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
+}
+
+int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
+{
+       unsigned long nr, a0, a1, a2, a3, ret;
+       int op_64_bit, r = 1;
+
+       kvm_x86_ops->skip_emulated_instruction(vcpu);
+
+       if (kvm_hv_hypercall_enabled(vcpu->kvm))
+               return kvm_hv_hypercall(vcpu);
+
+       nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
+       a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
+       a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
+       a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
+       a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
+
+       trace_kvm_hypercall(nr, a0, a1, a2, a3);
+
+       op_64_bit = is_64_bit_mode(vcpu);
+       if (!op_64_bit) {
+               nr &= 0xFFFFFFFF;
+               a0 &= 0xFFFFFFFF;
+               a1 &= 0xFFFFFFFF;
+               a2 &= 0xFFFFFFFF;
+               a3 &= 0xFFFFFFFF;
+       }
+
+       if (kvm_x86_ops->get_cpl(vcpu) != 0) {
+               ret = -KVM_EPERM;
+               goto out;
+       }
+
+       switch (nr) {
+       case KVM_HC_VAPIC_POLL_IRQ:
+               ret = 0;
+               break;
+       case KVM_HC_KICK_CPU:
+               kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
+               ret = 0;
+               break;
+       default:
+               ret = -KVM_ENOSYS;
+               break;
+       }
+out:
+       if (!op_64_bit)
+               ret = (u32)ret;
+       kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
+       ++vcpu->stat.hypercalls;
+       return r;
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
+
+static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
+{
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+       char instruction[3];
+       unsigned long rip = kvm_rip_read(vcpu);
+
+       kvm_x86_ops->patch_hypercall(vcpu, instruction);
+
+       return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
+}
+
+/*
+ * Check if userspace requested an interrupt window, and that the
+ * interrupt window is open.
+ *
+ * No need to exit to userspace if we already have an interrupt queued.
+ */
+static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
+{
+       return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
+               vcpu->run->request_interrupt_window &&
+               kvm_arch_interrupt_allowed(vcpu));
+}
+
+static void post_kvm_run_save(struct kvm_vcpu *vcpu)
+{
+       struct kvm_run *kvm_run = vcpu->run;
+
+       kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
+       kvm_run->cr8 = kvm_get_cr8(vcpu);
+       kvm_run->apic_base = kvm_get_apic_base(vcpu);
+       if (irqchip_in_kernel(vcpu->kvm))
+               kvm_run->ready_for_interrupt_injection = 1;
+       else
+               kvm_run->ready_for_interrupt_injection =
+                       kvm_arch_interrupt_allowed(vcpu) &&
+                       !kvm_cpu_has_interrupt(vcpu) &&
+                       !kvm_event_needs_reinjection(vcpu);
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu)
+{
+       int max_irr, tpr;
+
+       if (!kvm_x86_ops->update_cr8_intercept)
+               return;
+
+       if (!vcpu->arch.apic)
+               return;
+
+       if (!vcpu->arch.apic->vapic_addr)
+               max_irr = kvm_lapic_find_highest_irr(vcpu);
+       else
+               max_irr = -1;
+
+       if (max_irr != -1)
+               max_irr >>= 4;
+
+       tpr = kvm_lapic_get_cr8(vcpu);
+
+       kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
+}
+
+static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
+{
+       int r;
+
+       /* try to reinject previous events if any */
+       if (vcpu->arch.exception.pending) {
+               trace_kvm_inj_exception(vcpu->arch.exception.nr,
+                                       vcpu->arch.exception.has_error_code,
+                                       vcpu->arch.exception.error_code);
+
+               if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
+                       __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
+                                            X86_EFLAGS_RF);
+
+               if (vcpu->arch.exception.nr == DB_VECTOR &&
+                   (vcpu->arch.dr7 & DR7_GD)) {
+                       vcpu->arch.dr7 &= ~DR7_GD;
+                       kvm_update_dr7(vcpu);
+               }
+
+               kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
+                                         vcpu->arch.exception.has_error_code,
+                                         vcpu->arch.exception.error_code,
+                                         vcpu->arch.exception.reinject);
+               return 0;
+       }
+
+       if (vcpu->arch.nmi_injected) {
+               kvm_x86_ops->set_nmi(vcpu);
+               return 0;
+       }
+
+       if (vcpu->arch.interrupt.pending) {
+               kvm_x86_ops->set_irq(vcpu);
+               return 0;
+       }
+
+       if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
+               r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
+               if (r != 0)
+                       return r;
+       }
+
+       /* try to inject new event if pending */
+       if (vcpu->arch.nmi_pending) {
+               if (kvm_x86_ops->nmi_allowed(vcpu)) {
+                       --vcpu->arch.nmi_pending;
+                       vcpu->arch.nmi_injected = true;
+                       kvm_x86_ops->set_nmi(vcpu);
+               }
+       } else if (kvm_cpu_has_injectable_intr(vcpu)) {
+               /*
+                * Because interrupts can be injected asynchronously, we are
+                * calling check_nested_events again here to avoid a race condition.
+                * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
+                * proposal and current concerns.  Perhaps we should be setting
+                * KVM_REQ_EVENT only on certain events and not unconditionally?
+                */
+               if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
+                       r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
+                       if (r != 0)
+                               return r;
+               }
+               if (kvm_x86_ops->interrupt_allowed(vcpu)) {
+                       kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
+                                           false);
+                       kvm_x86_ops->set_irq(vcpu);
+               }
+       }
+       return 0;
+}
+
+static void process_nmi(struct kvm_vcpu *vcpu)
+{
+       unsigned limit = 2;
+
+       /*
+        * x86 is limited to one NMI running, and one NMI pending after it.
+        * If an NMI is already in progress, limit further NMIs to just one.
+        * Otherwise, allow two (and we'll inject the first one immediately).
+        */
+       if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
+               limit = 1;
+
+       vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
+       vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+
+static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
+{
+       u64 eoi_exit_bitmap[4];
+       u32 tmr[8];
+
+       if (!kvm_apic_hw_enabled(vcpu->arch.apic))
+               return;
+
+       memset(eoi_exit_bitmap, 0, 32);
+       memset(tmr, 0, 32);
+
+       kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
+       kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
+       kvm_apic_update_tmr(vcpu, tmr);
+}
+
+static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
+{
+       ++vcpu->stat.tlb_flush;
+       kvm_x86_ops->tlb_flush(vcpu);
+}
+
+void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
+{
+       struct page *page = NULL;
+
+       if (!irqchip_in_kernel(vcpu->kvm))
+               return;
+
+       if (!kvm_x86_ops->set_apic_access_page_addr)
+               return;
+
+       page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+       if (is_error_page(page))
+               return;
+       kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
+
+       /*
+        * Do not pin apic access page in memory, the MMU notifier
+        * will call us again if it is migrated or swapped out.
+        */
+       put_page(page);
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
+
+void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
+                                          unsigned long address)
+{
+       /*
+        * The physical address of apic access page is stored in the VMCS.
+        * Update it when it becomes invalid.
+        */
+       if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
+               kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
+}
+
+/*
+ * Returns 1 to let vcpu_run() continue the guest execution loop without
+ * exiting to the userspace.  Otherwise, the value will be returned to the
+ * userspace.
+ */
+static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
+{
+       int r;
+       bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
+               vcpu->run->request_interrupt_window;
+       bool req_immediate_exit = false;
+
+       if (vcpu->requests) {
+               if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
+                       kvm_mmu_unload(vcpu);
+               if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
+                       __kvm_migrate_timers(vcpu);
+               if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
+                       kvm_gen_update_masterclock(vcpu->kvm);
+               if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
+                       kvm_gen_kvmclock_update(vcpu);
+               if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
+                       r = kvm_guest_time_update(vcpu);
+                       if (unlikely(r))
+                               goto out;
+               }
+               if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
+                       kvm_mmu_sync_roots(vcpu);
+               if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
+                       kvm_vcpu_flush_tlb(vcpu);
+               if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
+                       vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
+                       r = 0;
+                       goto out;
+               }
+               if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
+                       vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+                       r = 0;
+                       goto out;
+               }
+               if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
+                       vcpu->fpu_active = 0;
+                       kvm_x86_ops->fpu_deactivate(vcpu);
+               }
+               if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
+                       /* Page is swapped out. Do synthetic halt */
+                       vcpu->arch.apf.halted = true;
+                       r = 1;
+                       goto out;
+               }
+               if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
+                       record_steal_time(vcpu);
+               if (kvm_check_request(KVM_REQ_NMI, vcpu))
+                       process_nmi(vcpu);
+               if (kvm_check_request(KVM_REQ_PMU, vcpu))
+                       kvm_handle_pmu_event(vcpu);
+               if (kvm_check_request(KVM_REQ_PMI, vcpu))
+                       kvm_deliver_pmi(vcpu);
+               if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
+                       vcpu_scan_ioapic(vcpu);
+               if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
+                       kvm_vcpu_reload_apic_access_page(vcpu);
+       }
+
+       if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
+               kvm_apic_accept_events(vcpu);
+               if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
+                       r = 1;
+                       goto out;
+               }
+
+               if (inject_pending_event(vcpu, req_int_win) != 0)
+                       req_immediate_exit = true;
+               /* enable NMI/IRQ window open exits if needed */
+               else if (vcpu->arch.nmi_pending)
+                       kvm_x86_ops->enable_nmi_window(vcpu);
+               else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
+                       kvm_x86_ops->enable_irq_window(vcpu);
+
+               if (kvm_lapic_enabled(vcpu)) {
+                       /*
+                        * Update architecture specific hints for APIC
+                        * virtual interrupt delivery.
+                        */
+                       if (kvm_x86_ops->hwapic_irr_update)
+                               kvm_x86_ops->hwapic_irr_update(vcpu,
+                                       kvm_lapic_find_highest_irr(vcpu));
+                       update_cr8_intercept(vcpu);
+                       kvm_lapic_sync_to_vapic(vcpu);
+               }
+       }
+
+       r = kvm_mmu_reload(vcpu);
+       if (unlikely(r)) {
+               goto cancel_injection;
+       }
+
+       preempt_disable();
+
+       kvm_x86_ops->prepare_guest_switch(vcpu);
+       if (vcpu->fpu_active)
+               kvm_load_guest_fpu(vcpu);
+       kvm_load_guest_xcr0(vcpu);
+
+       vcpu->mode = IN_GUEST_MODE;
+
+       srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+
+       /* We should set ->mode before check ->requests,
+        * see the comment in make_all_cpus_request.
+        */
+       smp_mb__after_srcu_read_unlock();
+
+       local_irq_disable();
+
+       if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
+           || need_resched() || signal_pending(current)) {
+               vcpu->mode = OUTSIDE_GUEST_MODE;
+               smp_wmb();
+               local_irq_enable();
+               preempt_enable();
+               vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+               r = 1;
+               goto cancel_injection;
+       }
+
+       if (req_immediate_exit)
+               smp_send_reschedule(vcpu->cpu);
+
+       kvm_guest_enter();
+
+       if (unlikely(vcpu->arch.switch_db_regs)) {
+               set_debugreg(0, 7);
+               set_debugreg(vcpu->arch.eff_db[0], 0);
+               set_debugreg(vcpu->arch.eff_db[1], 1);
+               set_debugreg(vcpu->arch.eff_db[2], 2);
+               set_debugreg(vcpu->arch.eff_db[3], 3);
+               set_debugreg(vcpu->arch.dr6, 6);
+               vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
+       }
+
+       trace_kvm_entry(vcpu->vcpu_id);
+       wait_lapic_expire(vcpu);
+       kvm_x86_ops->run(vcpu);
+
+       /*
+        * Do this here before restoring debug registers on the host.  And
+        * since we do this before handling the vmexit, a DR access vmexit
+        * can (a) read the correct value of the debug registers, (b) set
+        * KVM_DEBUGREG_WONT_EXIT again.
+        */
+       if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
+               int i;
+
+               WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
+               kvm_x86_ops->sync_dirty_debug_regs(vcpu);
+               for (i = 0; i < KVM_NR_DB_REGS; i++)
+                       vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+       }
+
+       /*
+        * If the guest has used debug registers, at least dr7
+        * will be disabled while returning to the host.
+        * If we don't have active breakpoints in the host, we don't
+        * care about the messed up debug address registers. But if
+        * we have some of them active, restore the old state.
+        */
+       if (hw_breakpoint_active())
+               hw_breakpoint_restore();
+
+       vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
+                                                          native_read_tsc());
+
+       vcpu->mode = OUTSIDE_GUEST_MODE;
+       smp_wmb();
+
+       /* Interrupt is enabled by handle_external_intr() */
+       kvm_x86_ops->handle_external_intr(vcpu);
+
+       ++vcpu->stat.exits;
+
+       /*
+        * We must have an instruction between local_irq_enable() and
+        * kvm_guest_exit(), so the timer interrupt isn't delayed by
+        * the interrupt shadow.  The stat.exits increment will do nicely.
+        * But we need to prevent reordering, hence this barrier():
+        */
+       barrier();
+
+       kvm_guest_exit();
+
+       preempt_enable();
+
+       vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+       /*
+        * Profile KVM exit RIPs:
+        */
+       if (unlikely(prof_on == KVM_PROFILING)) {
+               unsigned long rip = kvm_rip_read(vcpu);
+               profile_hit(KVM_PROFILING, (void *)rip);
+       }
+
+       if (unlikely(vcpu->arch.tsc_always_catchup))
+               kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+
+       if (vcpu->arch.apic_attention)
+               kvm_lapic_sync_from_vapic(vcpu);
+
+       r = kvm_x86_ops->handle_exit(vcpu);
+       return r;
+
+cancel_injection:
+       kvm_x86_ops->cancel_injection(vcpu);
+       if (unlikely(vcpu->arch.apic_attention))
+               kvm_lapic_sync_from_vapic(vcpu);
+out:
+       return r;
+}
+
+static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
+{
+       if (!kvm_arch_vcpu_runnable(vcpu)) {
+               srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+               kvm_vcpu_block(vcpu);
+               vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+               if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
+                       return 1;
+       }
+
+       kvm_apic_accept_events(vcpu);
+       switch(vcpu->arch.mp_state) {
+       case KVM_MP_STATE_HALTED:
+               vcpu->arch.pv.pv_unhalted = false;
+               vcpu->arch.mp_state =
+                       KVM_MP_STATE_RUNNABLE;
+       case KVM_MP_STATE_RUNNABLE:
+               vcpu->arch.apf.halted = false;
+               break;
+       case KVM_MP_STATE_INIT_RECEIVED:
+               break;
+       default:
+               return -EINTR;
+               break;
+       }
+       return 1;
+}
+
+static int vcpu_run(struct kvm_vcpu *vcpu)
+{
+       int r;
+       struct kvm *kvm = vcpu->kvm;
+
+       vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+
+       for (;;) {
+               if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
+                   !vcpu->arch.apf.halted)
+                       r = vcpu_enter_guest(vcpu);
+               else
+                       r = vcpu_block(kvm, vcpu);
+               if (r <= 0)
+                       break;
+
+               clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
+               if (kvm_cpu_has_pending_timer(vcpu))
+                       kvm_inject_pending_timer_irqs(vcpu);
+
+               if (dm_request_for_irq_injection(vcpu)) {
+                       r = -EINTR;
+                       vcpu->run->exit_reason = KVM_EXIT_INTR;
+                       ++vcpu->stat.request_irq_exits;
+                       break;
+               }
+
+               kvm_check_async_pf_completion(vcpu);
+
+               if (signal_pending(current)) {
+                       r = -EINTR;
+                       vcpu->run->exit_reason = KVM_EXIT_INTR;
+                       ++vcpu->stat.signal_exits;
+                       break;
+               }
+               if (need_resched()) {
+                       srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+                       cond_resched();
+                       vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+               }
+       }
+
+       srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+
+       return r;
+}
+
+static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
+{
+       int r;
+       vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+       r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
+       srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+       if (r != EMULATE_DONE)
+               return 0;
+       return 1;
+}
+
+static int complete_emulated_pio(struct kvm_vcpu *vcpu)
+{
+       BUG_ON(!vcpu->arch.pio.count);
+
+       return complete_emulated_io(vcpu);
+}
+
+/*
+ * Implements the following, as a state machine:
+ *
+ * read:
+ *   for each fragment
+ *     for each mmio piece in the fragment
+ *       write gpa, len
+ *       exit
+ *       copy data
+ *   execute insn
+ *
+ * write:
+ *   for each fragment
+ *     for each mmio piece in the fragment
+ *       write gpa, len
+ *       copy data
+ *       exit
+ */
+static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
+{
+       struct kvm_run *run = vcpu->run;
+       struct kvm_mmio_fragment *frag;
+       unsigned len;
+
+       BUG_ON(!vcpu->mmio_needed);
+
+       /* Complete previous fragment */
+       frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
+       len = min(8u, frag->len);
+       if (!vcpu->mmio_is_write)
+               memcpy(frag->data, run->mmio.data, len);
+
+       if (frag->len <= 8) {
+               /* Switch to the next fragment. */
+               frag++;
+               vcpu->mmio_cur_fragment++;
+       } else {
+               /* Go forward to the next mmio piece. */
+               frag->data += len;
+               frag->gpa += len;
+               frag->len -= len;
+       }
+
+       if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
+               vcpu->mmio_needed = 0;
+
+               /* FIXME: return into emulator if single-stepping.  */
+               if (vcpu->mmio_is_write)
+                       return 1;
+               vcpu->mmio_read_completed = 1;
+               return complete_emulated_io(vcpu);
+       }
+
+       run->exit_reason = KVM_EXIT_MMIO;
+       run->mmio.phys_addr = frag->gpa;
+       if (vcpu->mmio_is_write)
+               memcpy(run->mmio.data, frag->data, min(8u, frag->len));
+       run->mmio.len = min(8u, frag->len);
+       run->mmio.is_write = vcpu->mmio_is_write;
+       vcpu->arch.complete_userspace_io = complete_emulated_mmio;
+       return 0;
+}
+
+
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
+{
+       int r;
+       sigset_t sigsaved;
+
+       if (!tsk_used_math(current) && init_fpu(current))
+               return -ENOMEM;
+
+       if (vcpu->sigset_active)
+               sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
+
+       if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
+               kvm_vcpu_block(vcpu);
+               kvm_apic_accept_events(vcpu);
+               clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
+               r = -EAGAIN;
+               goto out;
+       }
+
+       /* re-sync apic's tpr */
+       if (!irqchip_in_kernel(vcpu->kvm)) {
+               if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
+                       r = -EINVAL;
+                       goto out;
+               }
+       }
+
+       if (unlikely(vcpu->arch.complete_userspace_io)) {
+               int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
+               vcpu->arch.complete_userspace_io = NULL;
+               r = cui(vcpu);
+               if (r <= 0)
+                       goto out;
+       } else
+               WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
+
+       r = vcpu_run(vcpu);
+
+out:
+       post_kvm_run_save(vcpu);
+       if (vcpu->sigset_active)
+               sigprocmask(SIG_SETMASK, &sigsaved, NULL);
+
+       return r;
+}
+
+int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+       if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
+               /*
+                * We are here if userspace calls get_regs() in the middle of
+                * instruction emulation. Registers state needs to be copied
+                * back from emulation context to vcpu. Userspace shouldn't do
+                * that usually, but some bad designed PV devices (vmware
+                * backdoor interface) need this to work
+                */
+               emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
+               vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+       }
+       regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
+       regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
+       regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
+       regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
+       regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
+       regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
+       regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+       regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
+#ifdef CONFIG_X86_64
+       regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
+       regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
+       regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
+       regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
+       regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
+       regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
+       regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
+       regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
+#endif
+
+       regs->rip = kvm_rip_read(vcpu);
+       regs->rflags = kvm_get_rflags(vcpu);
+
+       return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+       vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
+       vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+
+       kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
+       kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
+       kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
+       kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
+       kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
+       kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
+       kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
+       kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
+#ifdef CONFIG_X86_64
+       kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
+       kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
+       kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
+       kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
+       kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
+       kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
+       kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
+       kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
+#endif
+
+       kvm_rip_write(vcpu, regs->rip);
+       kvm_set_rflags(vcpu, regs->rflags);
+
+       vcpu->arch.exception.pending = false;
+
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       return 0;
+}
+
+void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+       struct kvm_segment cs;
+
+       kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
+       *db = cs.db;
+       *l = cs.l;
+}
+EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
+
+int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
+                                 struct kvm_sregs *sregs)
+{
+       struct desc_ptr dt;
+
+       kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
+       kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
+       kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
+       kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
+       kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
+       kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
+
+       kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
+       kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
+
+       kvm_x86_ops->get_idt(vcpu, &dt);
+       sregs->idt.limit = dt.size;
+       sregs->idt.base = dt.address;
+       kvm_x86_ops->get_gdt(vcpu, &dt);
+       sregs->gdt.limit = dt.size;
+       sregs->gdt.base = dt.address;
+
+       sregs->cr0 = kvm_read_cr0(vcpu);
+       sregs->cr2 = vcpu->arch.cr2;
+       sregs->cr3 = kvm_read_cr3(vcpu);
+       sregs->cr4 = kvm_read_cr4(vcpu);
+       sregs->cr8 = kvm_get_cr8(vcpu);
+       sregs->efer = vcpu->arch.efer;
+       sregs->apic_base = kvm_get_apic_base(vcpu);
+
+       memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
+
+       if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
+               set_bit(vcpu->arch.interrupt.nr,
+                       (unsigned long *)sregs->interrupt_bitmap);
+
+       return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+                                   struct kvm_mp_state *mp_state)
+{
+       kvm_apic_accept_events(vcpu);
+       if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
+                                       vcpu->arch.pv.pv_unhalted)
+               mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+       else
+               mp_state->mp_state = vcpu->arch.mp_state;
+
+       return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+                                   struct kvm_mp_state *mp_state)
+{
+       if (!kvm_vcpu_has_lapic(vcpu) &&
+           mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
+               return -EINVAL;
+
+       if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
+               vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
+               set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
+       } else
+               vcpu->arch.mp_state = mp_state->mp_state;
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+       return 0;
+}
+
+int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
+                   int reason, bool has_error_code, u32 error_code)
+{
+       struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+       int ret;
+
+       init_emulate_ctxt(vcpu);
+
+       ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
+                                  has_error_code, error_code);
+
+       if (ret)
+               return EMULATE_FAIL;
+
+       kvm_rip_write(vcpu, ctxt->eip);
+       kvm_set_rflags(vcpu, ctxt->eflags);
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+       return EMULATE_DONE;
+}
+EXPORT_SYMBOL_GPL(kvm_task_switch);
+
+int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
+                                 struct kvm_sregs *sregs)
+{
+       struct msr_data apic_base_msr;
+       int mmu_reset_needed = 0;
+       int pending_vec, max_bits, idx;
+       struct desc_ptr dt;
+
+       if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
+               return -EINVAL;
+
+       dt.size = sregs->idt.limit;
+       dt.address = sregs->idt.base;
+       kvm_x86_ops->set_idt(vcpu, &dt);
+       dt.size = sregs->gdt.limit;
+       dt.address = sregs->gdt.base;
+       kvm_x86_ops->set_gdt(vcpu, &dt);
+
+       vcpu->arch.cr2 = sregs->cr2;
+       mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
+       vcpu->arch.cr3 = sregs->cr3;
+       __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+       kvm_set_cr8(vcpu, sregs->cr8);
+
+       mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
+       kvm_x86_ops->set_efer(vcpu, sregs->efer);
+       apic_base_msr.data = sregs->apic_base;
+       apic_base_msr.host_initiated = true;
+       kvm_set_apic_base(vcpu, &apic_base_msr);
+
+       mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
+       kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
+       vcpu->arch.cr0 = sregs->cr0;
+
+       mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
+       kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
+       if (sregs->cr4 & X86_CR4_OSXSAVE)
+               kvm_update_cpuid(vcpu);
+
+       idx = srcu_read_lock(&vcpu->kvm->srcu);
+       if (!is_long_mode(vcpu) && is_pae(vcpu)) {
+               load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
+               mmu_reset_needed = 1;
+       }
+       srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+       if (mmu_reset_needed)
+               kvm_mmu_reset_context(vcpu);
+
+       max_bits = KVM_NR_INTERRUPTS;
+       pending_vec = find_first_bit(
+               (const unsigned long *)sregs->interrupt_bitmap, max_bits);
+       if (pending_vec < max_bits) {
+               kvm_queue_interrupt(vcpu, pending_vec, false);
+               pr_debug("Set back pending irq %d\n", pending_vec);
+       }
+
+       kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
+       kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
+       kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
+       kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
+       kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
+       kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
+
+       kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
+       kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
+
+       update_cr8_intercept(vcpu);
+
+       /* Older userspace won't unhalt the vcpu on reset. */
+       if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
+           sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
+           !is_protmode(vcpu))
+               vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
+                                       struct kvm_guest_debug *dbg)
+{
+       unsigned long rflags;
+       int i, r;
+
+       if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
+               r = -EBUSY;
+               if (vcpu->arch.exception.pending)
+                       goto out;
+               if (dbg->control & KVM_GUESTDBG_INJECT_DB)
+                       kvm_queue_exception(vcpu, DB_VECTOR);
+               else
+                       kvm_queue_exception(vcpu, BP_VECTOR);
+       }
+
+       /*
+        * Read rflags as long as potentially injected trace flags are still
+        * filtered out.
+        */
+       rflags = kvm_get_rflags(vcpu);
+
+       vcpu->guest_debug = dbg->control;
+       if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
+               vcpu->guest_debug = 0;
+
+       if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+               for (i = 0; i < KVM_NR_DB_REGS; ++i)
+                       vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
+               vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
+       } else {
+               for (i = 0; i < KVM_NR_DB_REGS; i++)
+                       vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+       }
+       kvm_update_dr7(vcpu);
+
+       if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+               vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
+                       get_segment_base(vcpu, VCPU_SREG_CS);
+
+       /*
+        * Trigger an rflags update that will inject or remove the trace
+        * flags.
+        */
+       kvm_set_rflags(vcpu, rflags);
+
+       kvm_x86_ops->update_db_bp_intercept(vcpu);
+
+       r = 0;
+
+out:
+
+       return r;
+}
+
+/*
+ * Translate a guest virtual address to a guest physical address.
+ */
+int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
+                                   struct kvm_translation *tr)
+{
+       unsigned long vaddr = tr->linear_address;
+       gpa_t gpa;
+       int idx;
+
+       idx = srcu_read_lock(&vcpu->kvm->srcu);
+       gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
+       srcu_read_unlock(&vcpu->kvm->srcu, idx);
+       tr->physical_address = gpa;
+       tr->valid = gpa != UNMAPPED_GVA;
+       tr->writeable = 1;
+       tr->usermode = 0;
+
+       return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+       struct i387_fxsave_struct *fxsave =
+                       &vcpu->arch.guest_fpu.state->fxsave;
+
+       memcpy(fpu->fpr, fxsave->st_space, 128);
+       fpu->fcw = fxsave->cwd;
+       fpu->fsw = fxsave->swd;
+       fpu->ftwx = fxsave->twd;
+       fpu->last_opcode = fxsave->fop;
+       fpu->last_ip = fxsave->rip;
+       fpu->last_dp = fxsave->rdp;
+       memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
+
+       return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+       struct i387_fxsave_struct *fxsave =
+                       &vcpu->arch.guest_fpu.state->fxsave;
+
+       memcpy(fxsave->st_space, fpu->fpr, 128);
+       fxsave->cwd = fpu->fcw;
+       fxsave->swd = fpu->fsw;
+       fxsave->twd = fpu->ftwx;
+       fxsave->fop = fpu->last_opcode;
+       fxsave->rip = fpu->last_ip;
+       fxsave->rdp = fpu->last_dp;
+       memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
+
+       return 0;
+}
+
+int fx_init(struct kvm_vcpu *vcpu)
+{
+       int err;
+
+       err = fpu_alloc(&vcpu->arch.guest_fpu);
+       if (err)
+               return err;
+
+       fpu_finit(&vcpu->arch.guest_fpu);
+       if (cpu_has_xsaves)
+               vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
+                       host_xcr0 | XSTATE_COMPACTION_ENABLED;
+
+       /*
+        * Ensure guest xcr0 is valid for loading
+        */
+       vcpu->arch.xcr0 = XSTATE_FP;
+
+       vcpu->arch.cr0 |= X86_CR0_ET;
+
+       return 0;
+}
+EXPORT_SYMBOL_GPL(fx_init);
+
+static void fx_free(struct kvm_vcpu *vcpu)
+{
+       fpu_free(&vcpu->arch.guest_fpu);
+}
+
+void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
+{
+       if (vcpu->guest_fpu_loaded)
+               return;
+
+       /*
+        * Restore all possible states in the guest,
+        * and assume host would use all available bits.
+        * Guest xcr0 would be loaded later.
+        */
+       kvm_put_guest_xcr0(vcpu);
+       vcpu->guest_fpu_loaded = 1;
+       __kernel_fpu_begin();
+       fpu_restore_checking(&vcpu->arch.guest_fpu);
+       trace_kvm_fpu(1);
+}
+
+void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
+{
+       kvm_put_guest_xcr0(vcpu);
+
+       if (!vcpu->guest_fpu_loaded)
+               return;
+
+       vcpu->guest_fpu_loaded = 0;
+       fpu_save_init(&vcpu->arch.guest_fpu);
+       __kernel_fpu_end();
+       ++vcpu->stat.fpu_reload;
+       if (!vcpu->arch.eager_fpu)
+               kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
+
+       trace_kvm_fpu(0);
+}
+
+void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
+{
+       kvmclock_reset(vcpu);
+
+       free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
+       fx_free(vcpu);
+       kvm_x86_ops->vcpu_free(vcpu);
+}
+
+struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
+                                               unsigned int id)
+{
+       struct kvm_vcpu *vcpu;
+
+       if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
+               printk_once(KERN_WARNING
+               "kvm: SMP vm created on host with unstable TSC; "
+               "guest TSC will not be reliable\n");
+
+       vcpu = kvm_x86_ops->vcpu_create(kvm, id);
+
+       /*
+        * Activate fpu unconditionally in case the guest needs eager FPU.  It will be
+        * deactivated soon if it doesn't.
+        */
+       kvm_x86_ops->fpu_activate(vcpu);
+       return vcpu;
+}
+
+int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
+{
+       int r;
+
+       vcpu->arch.mtrr_state.have_fixed = 1;
+       r = vcpu_load(vcpu);
+       if (r)
+               return r;
+       kvm_vcpu_reset(vcpu);
+       kvm_mmu_setup(vcpu);
+       vcpu_put(vcpu);
+
+       return r;
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+       struct msr_data msr;
+       struct kvm *kvm = vcpu->kvm;
+
+       if (vcpu_load(vcpu))
+               return;
+       msr.data = 0x0;
+       msr.index = MSR_IA32_TSC;
+       msr.host_initiated = true;
+       kvm_write_tsc(vcpu, &msr);
+       vcpu_put(vcpu);
+
+       schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
+                                       KVMCLOCK_SYNC_PERIOD);
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+       int r;
+       vcpu->arch.apf.msr_val = 0;
+
+       r = vcpu_load(vcpu);
+       BUG_ON(r);
+       kvm_mmu_unload(vcpu);
+       vcpu_put(vcpu);
+
+       fx_free(vcpu);
+       kvm_x86_ops->vcpu_free(vcpu);
+}
+
+void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+       atomic_set(&vcpu->arch.nmi_queued, 0);
+       vcpu->arch.nmi_pending = 0;
+       vcpu->arch.nmi_injected = false;
+       kvm_clear_interrupt_queue(vcpu);
+       kvm_clear_exception_queue(vcpu);
+
+       memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
+       kvm_update_dr0123(vcpu);
+       vcpu->arch.dr6 = DR6_INIT;
+       kvm_update_dr6(vcpu);
+       vcpu->arch.dr7 = DR7_FIXED_1;
+       kvm_update_dr7(vcpu);
+
+       vcpu->arch.cr2 = 0;
+
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+       vcpu->arch.apf.msr_val = 0;
+       vcpu->arch.st.msr_val = 0;
+
+       kvmclock_reset(vcpu);
+
+       kvm_clear_async_pf_completion_queue(vcpu);
+       kvm_async_pf_hash_reset(vcpu);
+       vcpu->arch.apf.halted = false;
+
+       kvm_pmu_reset(vcpu);
+
+       memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
+       vcpu->arch.regs_avail = ~0;
+       vcpu->arch.regs_dirty = ~0;
+
+       kvm_x86_ops->vcpu_reset(vcpu);
+}
+
+void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
+{
+       struct kvm_segment cs;
+
+       kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
+       cs.selector = vector << 8;
+       cs.base = vector << 12;
+       kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
+       kvm_rip_write(vcpu, 0);
+}
+
+int kvm_arch_hardware_enable(void)
+{
+       struct kvm *kvm;
+       struct kvm_vcpu *vcpu;
+       int i;
+       int ret;
+       u64 local_tsc;
+       u64 max_tsc = 0;
+       bool stable, backwards_tsc = false;
+
+       kvm_shared_msr_cpu_online();
+       ret = kvm_x86_ops->hardware_enable();
+       if (ret != 0)
+               return ret;
+
+       local_tsc = native_read_tsc();
+       stable = !check_tsc_unstable();
+       list_for_each_entry(kvm, &vm_list, vm_list) {
+               kvm_for_each_vcpu(i, vcpu, kvm) {
+                       if (!stable && vcpu->cpu == smp_processor_id())
+                               kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+                       if (stable && vcpu->arch.last_host_tsc > local_tsc) {
+                               backwards_tsc = true;
+                               if (vcpu->arch.last_host_tsc > max_tsc)
+                                       max_tsc = vcpu->arch.last_host_tsc;
+                       }
+               }
+       }
+
+       /*
+        * Sometimes, even reliable TSCs go backwards.  This happens on
+        * platforms that reset TSC during suspend or hibernate actions, but
+        * maintain synchronization.  We must compensate.  Fortunately, we can
+        * detect that condition here, which happens early in CPU bringup,
+        * before any KVM threads can be running.  Unfortunately, we can't
+        * bring the TSCs fully up to date with real time, as we aren't yet far
+        * enough into CPU bringup that we know how much real time has actually
+        * elapsed; our helper function, get_kernel_ns() will be using boot
+        * variables that haven't been updated yet.
+        *
+        * So we simply find the maximum observed TSC above, then record the
+        * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
+        * the adjustment will be applied.  Note that we accumulate
+        * adjustments, in case multiple suspend cycles happen before some VCPU
+        * gets a chance to run again.  In the event that no KVM threads get a
+        * chance to run, we will miss the entire elapsed period, as we'll have
+        * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
+        * loose cycle time.  This isn't too big a deal, since the loss will be
+        * uniform across all VCPUs (not to mention the scenario is extremely
+        * unlikely). It is possible that a second hibernate recovery happens
+        * much faster than a first, causing the observed TSC here to be
+        * smaller; this would require additional padding adjustment, which is
+        * why we set last_host_tsc to the local tsc observed here.
+        *
+        * N.B. - this code below runs only on platforms with reliable TSC,
+        * as that is the only way backwards_tsc is set above.  Also note
+        * that this runs for ALL vcpus, which is not a bug; all VCPUs should
+        * have the same delta_cyc adjustment applied if backwards_tsc
+        * is detected.  Note further, this adjustment is only done once,
+        * as we reset last_host_tsc on all VCPUs to stop this from being
+        * called multiple times (one for each physical CPU bringup).
+        *
+        * Platforms with unreliable TSCs don't have to deal with this, they
+        * will be compensated by the logic in vcpu_load, which sets the TSC to
+        * catchup mode.  This will catchup all VCPUs to real time, but cannot
+        * guarantee that they stay in perfect synchronization.
+        */
+       if (backwards_tsc) {
+               u64 delta_cyc = max_tsc - local_tsc;
+               backwards_tsc_observed = true;
+               list_for_each_entry(kvm, &vm_list, vm_list) {
+                       kvm_for_each_vcpu(i, vcpu, kvm) {
+                               vcpu->arch.tsc_offset_adjustment += delta_cyc;
+                               vcpu->arch.last_host_tsc = local_tsc;
+                               kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+                       }
+
+                       /*
+                        * We have to disable TSC offset matching.. if you were
+                        * booting a VM while issuing an S4 host suspend....
+                        * you may have some problem.  Solving this issue is
+                        * left as an exercise to the reader.
+                        */
+                       kvm->arch.last_tsc_nsec = 0;
+                       kvm->arch.last_tsc_write = 0;
+               }
+
+       }
+       return 0;
+}
+
+void kvm_arch_hardware_disable(void)
+{
+       kvm_x86_ops->hardware_disable();
+       drop_user_return_notifiers();
+}
+
+int kvm_arch_hardware_setup(void)
+{
+       int r;
+
+       r = kvm_x86_ops->hardware_setup();
+       if (r != 0)
+               return r;
+
+       kvm_init_msr_list();
+       return 0;
+}
+
+void kvm_arch_hardware_unsetup(void)
+{
+       kvm_x86_ops->hardware_unsetup();
+}
+
+void kvm_arch_check_processor_compat(void *rtn)
+{
+       kvm_x86_ops->check_processor_compatibility(rtn);
+}
+
+bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
+{
+       return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
+}
+
+struct static_key kvm_no_apic_vcpu __read_mostly;
+
+int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
+{
+       struct page *page;
+       struct kvm *kvm;
+       int r;
+
+       BUG_ON(vcpu->kvm == NULL);
+       kvm = vcpu->kvm;
+
+       vcpu->arch.pv.pv_unhalted = false;
+       vcpu->arch.emulate_ctxt.ops = &emulate_ops;
+       if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
+               vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+       else
+               vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
+
+       page = alloc_page(GFP_KERNEL | __GFP_ZERO);
+       if (!page) {
+               r = -ENOMEM;
+               goto fail;
+       }
+       vcpu->arch.pio_data = page_address(page);
+
+       kvm_set_tsc_khz(vcpu, max_tsc_khz);
+
+       r = kvm_mmu_create(vcpu);
+       if (r < 0)
+               goto fail_free_pio_data;
+
+       if (irqchip_in_kernel(kvm)) {
+               r = kvm_create_lapic(vcpu);
+               if (r < 0)
+                       goto fail_mmu_destroy;
+       } else
+               static_key_slow_inc(&kvm_no_apic_vcpu);
+
+       vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
+                                      GFP_KERNEL);
+       if (!vcpu->arch.mce_banks) {
+               r = -ENOMEM;
+               goto fail_free_lapic;
+       }
+       vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
+
+       if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
+               r = -ENOMEM;
+               goto fail_free_mce_banks;
+       }
+
+       r = fx_init(vcpu);
+       if (r)
+               goto fail_free_wbinvd_dirty_mask;
+
+       vcpu->arch.ia32_tsc_adjust_msr = 0x0;
+       vcpu->arch.pv_time_enabled = false;
+
+       vcpu->arch.guest_supported_xcr0 = 0;
+       vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
+
+       vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
+
+       kvm_async_pf_hash_reset(vcpu);
+       kvm_pmu_init(vcpu);
+
+       return 0;
+fail_free_wbinvd_dirty_mask:
+       free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
+fail_free_mce_banks:
+       kfree(vcpu->arch.mce_banks);
+fail_free_lapic:
+       kvm_free_lapic(vcpu);
+fail_mmu_destroy:
+       kvm_mmu_destroy(vcpu);
+fail_free_pio_data:
+       free_page((unsigned long)vcpu->arch.pio_data);
+fail:
+       return r;
+}
+
+void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
+{
+       int idx;
+
+       kvm_pmu_destroy(vcpu);
+       kfree(vcpu->arch.mce_banks);
+       kvm_free_lapic(vcpu);
+       idx = srcu_read_lock(&vcpu->kvm->srcu);
+       kvm_mmu_destroy(vcpu);
+       srcu_read_unlock(&vcpu->kvm->srcu, idx);
+       free_page((unsigned long)vcpu->arch.pio_data);
+       if (!irqchip_in_kernel(vcpu->kvm))
+               static_key_slow_dec(&kvm_no_apic_vcpu);
+}
+
+void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+       kvm_x86_ops->sched_in(vcpu, cpu);
+}
+
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+       if (type)
+               return -EINVAL;
+
+       INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
+       INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+       INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
+       INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
+       atomic_set(&kvm->arch.noncoherent_dma_count, 0);
+
+       /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
+       set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
+       /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
+       set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
+               &kvm->arch.irq_sources_bitmap);
+
+       raw_spin_lock_init(&kvm->arch.tsc_write_lock);
+       mutex_init(&kvm->arch.apic_map_lock);
+       spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
+
+       pvclock_update_vm_gtod_copy(kvm);
+
+       INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
+       INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
+
+       return 0;
+}
+
+static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
+{
+       int r;
+       r = vcpu_load(vcpu);
+       BUG_ON(r);
+       kvm_mmu_unload(vcpu);
+       vcpu_put(vcpu);
+}
+
+static void kvm_free_vcpus(struct kvm *kvm)
+{
+       unsigned int i;
+       struct kvm_vcpu *vcpu;
+
+       /*
+        * Unpin any mmu pages first.
+        */
+       kvm_for_each_vcpu(i, vcpu, kvm) {
+               kvm_clear_async_pf_completion_queue(vcpu);
+               kvm_unload_vcpu_mmu(vcpu);
+       }
+       kvm_for_each_vcpu(i, vcpu, kvm)
+               kvm_arch_vcpu_free(vcpu);
+
+       mutex_lock(&kvm->lock);
+       for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
+               kvm->vcpus[i] = NULL;
+
+       atomic_set(&kvm->online_vcpus, 0);
+       mutex_unlock(&kvm->lock);
+}
+
+void kvm_arch_sync_events(struct kvm *kvm)
+{
+       cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
+       cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
+       kvm_free_all_assigned_devices(kvm);
+       kvm_free_pit(kvm);
+}
+
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+       if (current->mm == kvm->mm) {
+               /*
+                * Free memory regions allocated on behalf of userspace,
+                * unless the the memory map has changed due to process exit
+                * or fd copying.
+                */
+               struct kvm_userspace_memory_region mem;
+               memset(&mem, 0, sizeof(mem));
+               mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
+               kvm_set_memory_region(kvm, &mem);
+
+               mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
+               kvm_set_memory_region(kvm, &mem);
+
+               mem.slot = TSS_PRIVATE_MEMSLOT;
+               kvm_set_memory_region(kvm, &mem);
+       }
+       kvm_iommu_unmap_guest(kvm);
+       kfree(kvm->arch.vpic);
+       kfree(kvm->arch.vioapic);
+       kvm_free_vcpus(kvm);
+       kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
+                          struct kvm_memory_slot *dont)
+{
+       int i;
+
+       for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+               if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
+                       kvfree(free->arch.rmap[i]);
+                       free->arch.rmap[i] = NULL;
+               }
+               if (i == 0)
+                       continue;
+
+               if (!dont || free->arch.lpage_info[i - 1] !=
+                            dont->arch.lpage_info[i - 1]) {
+                       kvfree(free->arch.lpage_info[i - 1]);
+                       free->arch.lpage_info[i - 1] = NULL;
+               }
+       }
+}
+
+int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
+                           unsigned long npages)
+{
+       int i;
+
+       for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+               unsigned long ugfn;
+               int lpages;
+               int level = i + 1;
+
+               lpages = gfn_to_index(slot->base_gfn + npages - 1,
+                                     slot->base_gfn, level) + 1;
+
+               slot->arch.rmap[i] =
+                       kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
+               if (!slot->arch.rmap[i])
+                       goto out_free;
+               if (i == 0)
+                       continue;
+
+               slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
+                                       sizeof(*slot->arch.lpage_info[i - 1]));
+               if (!slot->arch.lpage_info[i - 1])
+                       goto out_free;
+
+               if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
+                       slot->arch.lpage_info[i - 1][0].write_count = 1;
+               if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
+                       slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
+               ugfn = slot->userspace_addr >> PAGE_SHIFT;
+               /*
+                * If the gfn and userspace address are not aligned wrt each
+                * other, or if explicitly asked to, disable large page
+                * support for this slot
+                */
+               if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
+                   !kvm_largepages_enabled()) {
+                       unsigned long j;
+
+                       for (j = 0; j < lpages; ++j)
+                               slot->arch.lpage_info[i - 1][j].write_count = 1;
+               }
+       }
+
+       return 0;
+
+out_free:
+       for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+               kvfree(slot->arch.rmap[i]);
+               slot->arch.rmap[i] = NULL;
+               if (i == 0)
+                       continue;
+
+               kvfree(slot->arch.lpage_info[i - 1]);
+               slot->arch.lpage_info[i - 1] = NULL;
+       }
+       return -ENOMEM;
+}
+
+void kvm_arch_memslots_updated(struct kvm *kvm)
+{
+       /*
+        * memslots->generation has been incremented.
+        * mmio generation may have reached its maximum value.
+        */
+       kvm_mmu_invalidate_mmio_sptes(kvm);
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+                               struct kvm_memory_slot *memslot,
+                               struct kvm_userspace_memory_region *mem,
+                               enum kvm_mr_change change)
+{
+       /*
+        * Only private memory slots need to be mapped here since
+        * KVM_SET_MEMORY_REGION ioctl is no longer supported.
+        */
+       if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
+               unsigned long userspace_addr;
+
+               /*
+                * MAP_SHARED to prevent internal slot pages from being moved
+                * by fork()/COW.
+                */
+               userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
+                                        PROT_READ | PROT_WRITE,
+                                        MAP_SHARED | MAP_ANONYMOUS, 0);
+
+               if (IS_ERR((void *)userspace_addr))
+                       return PTR_ERR((void *)userspace_addr);
+
+               memslot->userspace_addr = userspace_addr;
+       }
+
+       return 0;
+}
+
+static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
+                                    struct kvm_memory_slot *new)
+{
+       /* Still write protect RO slot */
+       if (new->flags & KVM_MEM_READONLY) {
+               kvm_mmu_slot_remove_write_access(kvm, new);
+               return;
+       }
+
+       /*
+        * Call kvm_x86_ops dirty logging hooks when they are valid.
+        *
+        * kvm_x86_ops->slot_disable_log_dirty is called when:
+        *
+        *  - KVM_MR_CREATE with dirty logging is disabled
+        *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
+        *
+        * The reason is, in case of PML, we need to set D-bit for any slots
+        * with dirty logging disabled in order to eliminate unnecessary GPA
+        * logging in PML buffer (and potential PML buffer full VMEXT). This
+        * guarantees leaving PML enabled during guest's lifetime won't have
+        * any additonal overhead from PML when guest is running with dirty
+        * logging disabled for memory slots.
+        *
+        * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
+        * to dirty logging mode.
+        *
+        * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
+        *
+        * In case of write protect:
+        *
+        * Write protect all pages for dirty logging.
+        *
+        * All the sptes including the large sptes which point to this
+        * slot are set to readonly. We can not create any new large
+        * spte on this slot until the end of the logging.
+        *
+        * See the comments in fast_page_fault().
+        */
+       if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+               if (kvm_x86_ops->slot_enable_log_dirty)
+                       kvm_x86_ops->slot_enable_log_dirty(kvm, new);
+               else
+                       kvm_mmu_slot_remove_write_access(kvm, new);
+       } else {
+               if (kvm_x86_ops->slot_disable_log_dirty)
+                       kvm_x86_ops->slot_disable_log_dirty(kvm, new);
+       }
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+                               struct kvm_userspace_memory_region *mem,
+                               const struct kvm_memory_slot *old,
+                               enum kvm_mr_change change)
+{
+       struct kvm_memory_slot *new;
+       int nr_mmu_pages = 0;
+
+       if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
+               int ret;
+
+               ret = vm_munmap(old->userspace_addr,
+                               old->npages * PAGE_SIZE);
+               if (ret < 0)
+                       printk(KERN_WARNING
+                              "kvm_vm_ioctl_set_memory_region: "
+                              "failed to munmap memory\n");
+       }
+
+       if (!kvm->arch.n_requested_mmu_pages)
+               nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
+
+       if (nr_mmu_pages)
+               kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
+
+       /* It's OK to get 'new' slot here as it has already been installed */
+       new = id_to_memslot(kvm->memslots, mem->slot);
+
+       /*
+        * Dirty logging tracks sptes in 4k granularity, meaning that large
+        * sptes have to be split.  If live migration is successful, the guest
+        * in the source machine will be destroyed and large sptes will be
+        * created in the destination. However, if the guest continues to run
+        * in the source machine (for example if live migration fails), small
+        * sptes will remain around and cause bad performance.
+        *
+        * Scan sptes if dirty logging has been stopped, dropping those
+        * which can be collapsed into a single large-page spte.  Later
+        * page faults will create the large-page sptes.
+        */
+       if ((change != KVM_MR_DELETE) &&
+               (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
+               !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
+               kvm_mmu_zap_collapsible_sptes(kvm, new);
+
+       /*
+        * Set up write protection and/or dirty logging for the new slot.
+        *
+        * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
+        * been zapped so no dirty logging staff is needed for old slot. For
+        * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
+        * new and it's also covered when dealing with the new slot.
+        */
+       if (change != KVM_MR_DELETE)
+               kvm_mmu_slot_apply_flags(kvm, new);
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+       kvm_mmu_invalidate_zap_all_pages(kvm);
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+                                  struct kvm_memory_slot *slot)
+{
+       kvm_mmu_invalidate_zap_all_pages(kvm);
+}
+
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
+{
+       if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
+               kvm_x86_ops->check_nested_events(vcpu, false);
+
+       return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
+               !vcpu->arch.apf.halted)
+               || !list_empty_careful(&vcpu->async_pf.done)
+               || kvm_apic_has_events(vcpu)
+               || vcpu->arch.pv.pv_unhalted
+               || atomic_read(&vcpu->arch.nmi_queued) ||
+               (kvm_arch_interrupt_allowed(vcpu) &&
+                kvm_cpu_has_interrupt(vcpu));
+}
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+       return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+       return kvm_x86_ops->interrupt_allowed(vcpu);
+}
+
+unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
+{
+       if (is_64_bit_mode(vcpu))
+               return kvm_rip_read(vcpu);
+       return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
+                    kvm_rip_read(vcpu));
+}
+EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
+
+bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
+{
+       return kvm_get_linear_rip(vcpu) == linear_rip;
+}
+EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
+
+unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
+{
+       unsigned long rflags;
+
+       rflags = kvm_x86_ops->get_rflags(vcpu);
+       if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+               rflags &= ~X86_EFLAGS_TF;
+       return rflags;
+}
+EXPORT_SYMBOL_GPL(kvm_get_rflags);
+
+static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+       if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
+           kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
+               rflags |= X86_EFLAGS_TF;
+       kvm_x86_ops->set_rflags(vcpu, rflags);
+}
+
+void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+       __kvm_set_rflags(vcpu, rflags);
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_set_rflags);
+
+void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
+{
+       int r;
+
+       if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
+             work->wakeup_all)
+               return;
+
+       r = kvm_mmu_reload(vcpu);
+       if (unlikely(r))
+               return;
+
+       if (!vcpu->arch.mmu.direct_map &&
+             work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
+               return;
+
+       vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
+}
+
+static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
+{
+       return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
+}
+
+static inline u32 kvm_async_pf_next_probe(u32 key)
+{
+       return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
+}
+
+static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+       u32 key = kvm_async_pf_hash_fn(gfn);
+
+       while (vcpu->arch.apf.gfns[key] != ~0)
+               key = kvm_async_pf_next_probe(key);
+
+       vcpu->arch.apf.gfns[key] = gfn;
+}
+
+static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+       int i;
+       u32 key = kvm_async_pf_hash_fn(gfn);
+
+       for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
+                    (vcpu->arch.apf.gfns[key] != gfn &&
+                     vcpu->arch.apf.gfns[key] != ~0); i++)
+               key = kvm_async_pf_next_probe(key);
+
+       return key;
+}
+
+bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+       return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
+}
+
+static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+       u32 i, j, k;
+
+       i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
+       while (true) {
+               vcpu->arch.apf.gfns[i] = ~0;
+               do {
+                       j = kvm_async_pf_next_probe(j);
+                       if (vcpu->arch.apf.gfns[j] == ~0)
+                               return;
+                       k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
+                       /*
+                        * k lies cyclically in ]i,j]
+                        * |    i.k.j |
+                        * |....j i.k.| or  |.k..j i...|
+                        */
+               } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
+               vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
+               i = j;
+       }
+}
+
+static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
+{
+
+       return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
+                                     sizeof(val));
+}
+
+void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
+                                    struct kvm_async_pf *work)
+{
+       struct x86_exception fault;
+
+       trace_kvm_async_pf_not_present(work->arch.token, work->gva);
+       kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
+
+       if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
+           (vcpu->arch.apf.send_user_only &&
+            kvm_x86_ops->get_cpl(vcpu) == 0))
+               kvm_make_request(KVM_REQ_APF_HALT, vcpu);
+       else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
+               fault.vector = PF_VECTOR;
+               fault.error_code_valid = true;
+               fault.error_code = 0;
+               fault.nested_page_fault = false;
+               fault.address = work->arch.token;
+               kvm_inject_page_fault(vcpu, &fault);
+       }
+}
+
+void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
+                                struct kvm_async_pf *work)
+{
+       struct x86_exception fault;
+
+       trace_kvm_async_pf_ready(work->arch.token, work->gva);
+       if (work->wakeup_all)
+               work->arch.token = ~0; /* broadcast wakeup */
+       else
+               kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
+
+       if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
+           !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
+               fault.vector = PF_VECTOR;
+               fault.error_code_valid = true;
+               fault.error_code = 0;
+               fault.nested_page_fault = false;
+               fault.address = work->arch.token;
+               kvm_inject_page_fault(vcpu, &fault);
+       }
+       vcpu->arch.apf.halted = false;
+       vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+}
+
+bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
+{
+       if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
+               return true;
+       else
+               return !kvm_event_needs_reinjection(vcpu) &&
+                       kvm_x86_ops->interrupt_allowed(vcpu);
+}
+
+void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
+{
+       atomic_inc(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
+
+void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
+{
+       atomic_dec(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
+
+bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
+{
+       return atomic_read(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);