Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / x86 / kvm / vmx.c
diff --git a/kernel/arch/x86/kvm/vmx.c b/kernel/arch/x86/kvm/vmx.c
new file mode 100644 (file)
index 0000000..2d73807
--- /dev/null
@@ -0,0 +1,10286 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Avi Kivity   <avi@qumranet.com>
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2.  See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include "irq.h"
+#include "mmu.h"
+#include "cpuid.h"
+
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/sched.h>
+#include <linux/moduleparam.h>
+#include <linux/mod_devicetable.h>
+#include <linux/ftrace_event.h>
+#include <linux/slab.h>
+#include <linux/tboot.h>
+#include <linux/hrtimer.h>
+#include "kvm_cache_regs.h"
+#include "x86.h"
+
+#include <asm/io.h>
+#include <asm/desc.h>
+#include <asm/vmx.h>
+#include <asm/virtext.h>
+#include <asm/mce.h>
+#include <asm/i387.h>
+#include <asm/xcr.h>
+#include <asm/perf_event.h>
+#include <asm/debugreg.h>
+#include <asm/kexec.h>
+#include <asm/apic.h>
+
+#include "trace.h"
+
+#define __ex(x) __kvm_handle_fault_on_reboot(x)
+#define __ex_clear(x, reg) \
+       ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+static const struct x86_cpu_id vmx_cpu_id[] = {
+       X86_FEATURE_MATCH(X86_FEATURE_VMX),
+       {}
+};
+MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
+
+static bool __read_mostly enable_vpid = 1;
+module_param_named(vpid, enable_vpid, bool, 0444);
+
+static bool __read_mostly flexpriority_enabled = 1;
+module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
+
+static bool __read_mostly enable_ept = 1;
+module_param_named(ept, enable_ept, bool, S_IRUGO);
+
+static bool __read_mostly enable_unrestricted_guest = 1;
+module_param_named(unrestricted_guest,
+                       enable_unrestricted_guest, bool, S_IRUGO);
+
+static bool __read_mostly enable_ept_ad_bits = 1;
+module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
+
+static bool __read_mostly emulate_invalid_guest_state = true;
+module_param(emulate_invalid_guest_state, bool, S_IRUGO);
+
+static bool __read_mostly vmm_exclusive = 1;
+module_param(vmm_exclusive, bool, S_IRUGO);
+
+static bool __read_mostly fasteoi = 1;
+module_param(fasteoi, bool, S_IRUGO);
+
+static bool __read_mostly enable_apicv = 1;
+module_param(enable_apicv, bool, S_IRUGO);
+
+static bool __read_mostly enable_shadow_vmcs = 1;
+module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
+/*
+ * If nested=1, nested virtualization is supported, i.e., guests may use
+ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+ * use VMX instructions.
+ */
+static bool __read_mostly nested = 0;
+module_param(nested, bool, S_IRUGO);
+
+static u64 __read_mostly host_xss;
+
+static bool __read_mostly enable_pml = 1;
+module_param_named(pml, enable_pml, bool, S_IRUGO);
+
+#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
+#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
+#define KVM_VM_CR0_ALWAYS_ON                                           \
+       (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
+#define KVM_CR4_GUEST_OWNED_BITS                                     \
+       (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
+        | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
+
+#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
+#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
+
+#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
+
+#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
+
+/*
+ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+ * ple_gap:    upper bound on the amount of time between two successive
+ *             executions of PAUSE in a loop. Also indicate if ple enabled.
+ *             According to test, this time is usually smaller than 128 cycles.
+ * ple_window: upper bound on the amount of time a guest is allowed to execute
+ *             in a PAUSE loop. Tests indicate that most spinlocks are held for
+ *             less than 2^12 cycles
+ * Time is measured based on a counter that runs at the same rate as the TSC,
+ * refer SDM volume 3b section 21.6.13 & 22.1.3.
+ */
+#define KVM_VMX_DEFAULT_PLE_GAP           128
+#define KVM_VMX_DEFAULT_PLE_WINDOW        4096
+#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
+#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
+#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
+               INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
+
+static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
+module_param(ple_gap, int, S_IRUGO);
+
+static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
+module_param(ple_window, int, S_IRUGO);
+
+/* Default doubles per-vcpu window every exit. */
+static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
+module_param(ple_window_grow, int, S_IRUGO);
+
+/* Default resets per-vcpu window every exit to ple_window. */
+static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
+module_param(ple_window_shrink, int, S_IRUGO);
+
+/* Default is to compute the maximum so we can never overflow. */
+static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+module_param(ple_window_max, int, S_IRUGO);
+
+extern const ulong vmx_return;
+
+#define NR_AUTOLOAD_MSRS 8
+#define VMCS02_POOL_SIZE 1
+
+struct vmcs {
+       u32 revision_id;
+       u32 abort;
+       char data[0];
+};
+
+/*
+ * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
+ * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
+ * loaded on this CPU (so we can clear them if the CPU goes down).
+ */
+struct loaded_vmcs {
+       struct vmcs *vmcs;
+       int cpu;
+       int launched;
+       struct list_head loaded_vmcss_on_cpu_link;
+};
+
+struct shared_msr_entry {
+       unsigned index;
+       u64 data;
+       u64 mask;
+};
+
+/*
+ * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
+ * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
+ * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
+ * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
+ * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
+ * More than one of these structures may exist, if L1 runs multiple L2 guests.
+ * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
+ * underlying hardware which will be used to run L2.
+ * This structure is packed to ensure that its layout is identical across
+ * machines (necessary for live migration).
+ * If there are changes in this struct, VMCS12_REVISION must be changed.
+ */
+typedef u64 natural_width;
+struct __packed vmcs12 {
+       /* According to the Intel spec, a VMCS region must start with the
+        * following two fields. Then follow implementation-specific data.
+        */
+       u32 revision_id;
+       u32 abort;
+
+       u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
+       u32 padding[7]; /* room for future expansion */
+
+       u64 io_bitmap_a;
+       u64 io_bitmap_b;
+       u64 msr_bitmap;
+       u64 vm_exit_msr_store_addr;
+       u64 vm_exit_msr_load_addr;
+       u64 vm_entry_msr_load_addr;
+       u64 tsc_offset;
+       u64 virtual_apic_page_addr;
+       u64 apic_access_addr;
+       u64 posted_intr_desc_addr;
+       u64 ept_pointer;
+       u64 eoi_exit_bitmap0;
+       u64 eoi_exit_bitmap1;
+       u64 eoi_exit_bitmap2;
+       u64 eoi_exit_bitmap3;
+       u64 xss_exit_bitmap;
+       u64 guest_physical_address;
+       u64 vmcs_link_pointer;
+       u64 guest_ia32_debugctl;
+       u64 guest_ia32_pat;
+       u64 guest_ia32_efer;
+       u64 guest_ia32_perf_global_ctrl;
+       u64 guest_pdptr0;
+       u64 guest_pdptr1;
+       u64 guest_pdptr2;
+       u64 guest_pdptr3;
+       u64 guest_bndcfgs;
+       u64 host_ia32_pat;
+       u64 host_ia32_efer;
+       u64 host_ia32_perf_global_ctrl;
+       u64 padding64[8]; /* room for future expansion */
+       /*
+        * To allow migration of L1 (complete with its L2 guests) between
+        * machines of different natural widths (32 or 64 bit), we cannot have
+        * unsigned long fields with no explict size. We use u64 (aliased
+        * natural_width) instead. Luckily, x86 is little-endian.
+        */
+       natural_width cr0_guest_host_mask;
+       natural_width cr4_guest_host_mask;
+       natural_width cr0_read_shadow;
+       natural_width cr4_read_shadow;
+       natural_width cr3_target_value0;
+       natural_width cr3_target_value1;
+       natural_width cr3_target_value2;
+       natural_width cr3_target_value3;
+       natural_width exit_qualification;
+       natural_width guest_linear_address;
+       natural_width guest_cr0;
+       natural_width guest_cr3;
+       natural_width guest_cr4;
+       natural_width guest_es_base;
+       natural_width guest_cs_base;
+       natural_width guest_ss_base;
+       natural_width guest_ds_base;
+       natural_width guest_fs_base;
+       natural_width guest_gs_base;
+       natural_width guest_ldtr_base;
+       natural_width guest_tr_base;
+       natural_width guest_gdtr_base;
+       natural_width guest_idtr_base;
+       natural_width guest_dr7;
+       natural_width guest_rsp;
+       natural_width guest_rip;
+       natural_width guest_rflags;
+       natural_width guest_pending_dbg_exceptions;
+       natural_width guest_sysenter_esp;
+       natural_width guest_sysenter_eip;
+       natural_width host_cr0;
+       natural_width host_cr3;
+       natural_width host_cr4;
+       natural_width host_fs_base;
+       natural_width host_gs_base;
+       natural_width host_tr_base;
+       natural_width host_gdtr_base;
+       natural_width host_idtr_base;
+       natural_width host_ia32_sysenter_esp;
+       natural_width host_ia32_sysenter_eip;
+       natural_width host_rsp;
+       natural_width host_rip;
+       natural_width paddingl[8]; /* room for future expansion */
+       u32 pin_based_vm_exec_control;
+       u32 cpu_based_vm_exec_control;
+       u32 exception_bitmap;
+       u32 page_fault_error_code_mask;
+       u32 page_fault_error_code_match;
+       u32 cr3_target_count;
+       u32 vm_exit_controls;
+       u32 vm_exit_msr_store_count;
+       u32 vm_exit_msr_load_count;
+       u32 vm_entry_controls;
+       u32 vm_entry_msr_load_count;
+       u32 vm_entry_intr_info_field;
+       u32 vm_entry_exception_error_code;
+       u32 vm_entry_instruction_len;
+       u32 tpr_threshold;
+       u32 secondary_vm_exec_control;
+       u32 vm_instruction_error;
+       u32 vm_exit_reason;
+       u32 vm_exit_intr_info;
+       u32 vm_exit_intr_error_code;
+       u32 idt_vectoring_info_field;
+       u32 idt_vectoring_error_code;
+       u32 vm_exit_instruction_len;
+       u32 vmx_instruction_info;
+       u32 guest_es_limit;
+       u32 guest_cs_limit;
+       u32 guest_ss_limit;
+       u32 guest_ds_limit;
+       u32 guest_fs_limit;
+       u32 guest_gs_limit;
+       u32 guest_ldtr_limit;
+       u32 guest_tr_limit;
+       u32 guest_gdtr_limit;
+       u32 guest_idtr_limit;
+       u32 guest_es_ar_bytes;
+       u32 guest_cs_ar_bytes;
+       u32 guest_ss_ar_bytes;
+       u32 guest_ds_ar_bytes;
+       u32 guest_fs_ar_bytes;
+       u32 guest_gs_ar_bytes;
+       u32 guest_ldtr_ar_bytes;
+       u32 guest_tr_ar_bytes;
+       u32 guest_interruptibility_info;
+       u32 guest_activity_state;
+       u32 guest_sysenter_cs;
+       u32 host_ia32_sysenter_cs;
+       u32 vmx_preemption_timer_value;
+       u32 padding32[7]; /* room for future expansion */
+       u16 virtual_processor_id;
+       u16 posted_intr_nv;
+       u16 guest_es_selector;
+       u16 guest_cs_selector;
+       u16 guest_ss_selector;
+       u16 guest_ds_selector;
+       u16 guest_fs_selector;
+       u16 guest_gs_selector;
+       u16 guest_ldtr_selector;
+       u16 guest_tr_selector;
+       u16 guest_intr_status;
+       u16 host_es_selector;
+       u16 host_cs_selector;
+       u16 host_ss_selector;
+       u16 host_ds_selector;
+       u16 host_fs_selector;
+       u16 host_gs_selector;
+       u16 host_tr_selector;
+};
+
+/*
+ * VMCS12_REVISION is an arbitrary id that should be changed if the content or
+ * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
+ * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
+ */
+#define VMCS12_REVISION 0x11e57ed0
+
+/*
+ * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
+ * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
+ * current implementation, 4K are reserved to avoid future complications.
+ */
+#define VMCS12_SIZE 0x1000
+
+/* Used to remember the last vmcs02 used for some recently used vmcs12s */
+struct vmcs02_list {
+       struct list_head list;
+       gpa_t vmptr;
+       struct loaded_vmcs vmcs02;
+};
+
+/*
+ * The nested_vmx structure is part of vcpu_vmx, and holds information we need
+ * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
+ */
+struct nested_vmx {
+       /* Has the level1 guest done vmxon? */
+       bool vmxon;
+       gpa_t vmxon_ptr;
+
+       /* The guest-physical address of the current VMCS L1 keeps for L2 */
+       gpa_t current_vmptr;
+       /* The host-usable pointer to the above */
+       struct page *current_vmcs12_page;
+       struct vmcs12 *current_vmcs12;
+       struct vmcs *current_shadow_vmcs;
+       /*
+        * Indicates if the shadow vmcs must be updated with the
+        * data hold by vmcs12
+        */
+       bool sync_shadow_vmcs;
+
+       /* vmcs02_list cache of VMCSs recently used to run L2 guests */
+       struct list_head vmcs02_pool;
+       int vmcs02_num;
+       u64 vmcs01_tsc_offset;
+       /* L2 must run next, and mustn't decide to exit to L1. */
+       bool nested_run_pending;
+       /*
+        * Guest pages referred to in vmcs02 with host-physical pointers, so
+        * we must keep them pinned while L2 runs.
+        */
+       struct page *apic_access_page;
+       struct page *virtual_apic_page;
+       struct page *pi_desc_page;
+       struct pi_desc *pi_desc;
+       bool pi_pending;
+       u16 posted_intr_nv;
+       u64 msr_ia32_feature_control;
+
+       struct hrtimer preemption_timer;
+       bool preemption_timer_expired;
+
+       /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
+       u64 vmcs01_debugctl;
+
+       u32 nested_vmx_procbased_ctls_low;
+       u32 nested_vmx_procbased_ctls_high;
+       u32 nested_vmx_true_procbased_ctls_low;
+       u32 nested_vmx_secondary_ctls_low;
+       u32 nested_vmx_secondary_ctls_high;
+       u32 nested_vmx_pinbased_ctls_low;
+       u32 nested_vmx_pinbased_ctls_high;
+       u32 nested_vmx_exit_ctls_low;
+       u32 nested_vmx_exit_ctls_high;
+       u32 nested_vmx_true_exit_ctls_low;
+       u32 nested_vmx_entry_ctls_low;
+       u32 nested_vmx_entry_ctls_high;
+       u32 nested_vmx_true_entry_ctls_low;
+       u32 nested_vmx_misc_low;
+       u32 nested_vmx_misc_high;
+       u32 nested_vmx_ept_caps;
+};
+
+#define POSTED_INTR_ON  0
+/* Posted-Interrupt Descriptor */
+struct pi_desc {
+       u32 pir[8];     /* Posted interrupt requested */
+       u32 control;    /* bit 0 of control is outstanding notification bit */
+       u32 rsvd[7];
+} __aligned(64);
+
+static bool pi_test_and_set_on(struct pi_desc *pi_desc)
+{
+       return test_and_set_bit(POSTED_INTR_ON,
+                       (unsigned long *)&pi_desc->control);
+}
+
+static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
+{
+       return test_and_clear_bit(POSTED_INTR_ON,
+                       (unsigned long *)&pi_desc->control);
+}
+
+static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
+{
+       return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
+}
+
+struct vcpu_vmx {
+       struct kvm_vcpu       vcpu;
+       unsigned long         host_rsp;
+       u8                    fail;
+       bool                  nmi_known_unmasked;
+       u32                   exit_intr_info;
+       u32                   idt_vectoring_info;
+       ulong                 rflags;
+       struct shared_msr_entry *guest_msrs;
+       int                   nmsrs;
+       int                   save_nmsrs;
+       unsigned long         host_idt_base;
+#ifdef CONFIG_X86_64
+       u64                   msr_host_kernel_gs_base;
+       u64                   msr_guest_kernel_gs_base;
+#endif
+       u32 vm_entry_controls_shadow;
+       u32 vm_exit_controls_shadow;
+       /*
+        * loaded_vmcs points to the VMCS currently used in this vcpu. For a
+        * non-nested (L1) guest, it always points to vmcs01. For a nested
+        * guest (L2), it points to a different VMCS.
+        */
+       struct loaded_vmcs    vmcs01;
+       struct loaded_vmcs   *loaded_vmcs;
+       bool                  __launched; /* temporary, used in vmx_vcpu_run */
+       struct msr_autoload {
+               unsigned nr;
+               struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
+               struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
+       } msr_autoload;
+       struct {
+               int           loaded;
+               u16           fs_sel, gs_sel, ldt_sel;
+#ifdef CONFIG_X86_64
+               u16           ds_sel, es_sel;
+#endif
+               int           gs_ldt_reload_needed;
+               int           fs_reload_needed;
+               u64           msr_host_bndcfgs;
+               unsigned long vmcs_host_cr4;    /* May not match real cr4 */
+       } host_state;
+       struct {
+               int vm86_active;
+               ulong save_rflags;
+               struct kvm_segment segs[8];
+       } rmode;
+       struct {
+               u32 bitmask; /* 4 bits per segment (1 bit per field) */
+               struct kvm_save_segment {
+                       u16 selector;
+                       unsigned long base;
+                       u32 limit;
+                       u32 ar;
+               } seg[8];
+       } segment_cache;
+       int vpid;
+       bool emulation_required;
+
+       /* Support for vnmi-less CPUs */
+       int soft_vnmi_blocked;
+       ktime_t entry_time;
+       s64 vnmi_blocked_time;
+       u32 exit_reason;
+
+       bool rdtscp_enabled;
+
+       /* Posted interrupt descriptor */
+       struct pi_desc pi_desc;
+
+       /* Support for a guest hypervisor (nested VMX) */
+       struct nested_vmx nested;
+
+       /* Dynamic PLE window. */
+       int ple_window;
+       bool ple_window_dirty;
+
+       /* Support for PML */
+#define PML_ENTITY_NUM         512
+       struct page *pml_pg;
+};
+
+enum segment_cache_field {
+       SEG_FIELD_SEL = 0,
+       SEG_FIELD_BASE = 1,
+       SEG_FIELD_LIMIT = 2,
+       SEG_FIELD_AR = 3,
+
+       SEG_FIELD_NR = 4
+};
+
+static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
+{
+       return container_of(vcpu, struct vcpu_vmx, vcpu);
+}
+
+#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
+#define FIELD(number, name)    [number] = VMCS12_OFFSET(name)
+#define FIELD64(number, name)  [number] = VMCS12_OFFSET(name), \
+                               [number##_HIGH] = VMCS12_OFFSET(name)+4
+
+
+static unsigned long shadow_read_only_fields[] = {
+       /*
+        * We do NOT shadow fields that are modified when L0
+        * traps and emulates any vmx instruction (e.g. VMPTRLD,
+        * VMXON...) executed by L1.
+        * For example, VM_INSTRUCTION_ERROR is read
+        * by L1 if a vmx instruction fails (part of the error path).
+        * Note the code assumes this logic. If for some reason
+        * we start shadowing these fields then we need to
+        * force a shadow sync when L0 emulates vmx instructions
+        * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
+        * by nested_vmx_failValid)
+        */
+       VM_EXIT_REASON,
+       VM_EXIT_INTR_INFO,
+       VM_EXIT_INSTRUCTION_LEN,
+       IDT_VECTORING_INFO_FIELD,
+       IDT_VECTORING_ERROR_CODE,
+       VM_EXIT_INTR_ERROR_CODE,
+       EXIT_QUALIFICATION,
+       GUEST_LINEAR_ADDRESS,
+       GUEST_PHYSICAL_ADDRESS
+};
+static int max_shadow_read_only_fields =
+       ARRAY_SIZE(shadow_read_only_fields);
+
+static unsigned long shadow_read_write_fields[] = {
+       TPR_THRESHOLD,
+       GUEST_RIP,
+       GUEST_RSP,
+       GUEST_CR0,
+       GUEST_CR3,
+       GUEST_CR4,
+       GUEST_INTERRUPTIBILITY_INFO,
+       GUEST_RFLAGS,
+       GUEST_CS_SELECTOR,
+       GUEST_CS_AR_BYTES,
+       GUEST_CS_LIMIT,
+       GUEST_CS_BASE,
+       GUEST_ES_BASE,
+       GUEST_BNDCFGS,
+       CR0_GUEST_HOST_MASK,
+       CR0_READ_SHADOW,
+       CR4_READ_SHADOW,
+       TSC_OFFSET,
+       EXCEPTION_BITMAP,
+       CPU_BASED_VM_EXEC_CONTROL,
+       VM_ENTRY_EXCEPTION_ERROR_CODE,
+       VM_ENTRY_INTR_INFO_FIELD,
+       VM_ENTRY_INSTRUCTION_LEN,
+       VM_ENTRY_EXCEPTION_ERROR_CODE,
+       HOST_FS_BASE,
+       HOST_GS_BASE,
+       HOST_FS_SELECTOR,
+       HOST_GS_SELECTOR
+};
+static int max_shadow_read_write_fields =
+       ARRAY_SIZE(shadow_read_write_fields);
+
+static const unsigned short vmcs_field_to_offset_table[] = {
+       FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
+       FIELD(POSTED_INTR_NV, posted_intr_nv),
+       FIELD(GUEST_ES_SELECTOR, guest_es_selector),
+       FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
+       FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
+       FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
+       FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
+       FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
+       FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
+       FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
+       FIELD(GUEST_INTR_STATUS, guest_intr_status),
+       FIELD(HOST_ES_SELECTOR, host_es_selector),
+       FIELD(HOST_CS_SELECTOR, host_cs_selector),
+       FIELD(HOST_SS_SELECTOR, host_ss_selector),
+       FIELD(HOST_DS_SELECTOR, host_ds_selector),
+       FIELD(HOST_FS_SELECTOR, host_fs_selector),
+       FIELD(HOST_GS_SELECTOR, host_gs_selector),
+       FIELD(HOST_TR_SELECTOR, host_tr_selector),
+       FIELD64(IO_BITMAP_A, io_bitmap_a),
+       FIELD64(IO_BITMAP_B, io_bitmap_b),
+       FIELD64(MSR_BITMAP, msr_bitmap),
+       FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
+       FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
+       FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
+       FIELD64(TSC_OFFSET, tsc_offset),
+       FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
+       FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
+       FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
+       FIELD64(EPT_POINTER, ept_pointer),
+       FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
+       FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
+       FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
+       FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
+       FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
+       FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
+       FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
+       FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
+       FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
+       FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
+       FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
+       FIELD64(GUEST_PDPTR0, guest_pdptr0),
+       FIELD64(GUEST_PDPTR1, guest_pdptr1),
+       FIELD64(GUEST_PDPTR2, guest_pdptr2),
+       FIELD64(GUEST_PDPTR3, guest_pdptr3),
+       FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
+       FIELD64(HOST_IA32_PAT, host_ia32_pat),
+       FIELD64(HOST_IA32_EFER, host_ia32_efer),
+       FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
+       FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
+       FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
+       FIELD(EXCEPTION_BITMAP, exception_bitmap),
+       FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
+       FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
+       FIELD(CR3_TARGET_COUNT, cr3_target_count),
+       FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
+       FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
+       FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
+       FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
+       FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
+       FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
+       FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
+       FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
+       FIELD(TPR_THRESHOLD, tpr_threshold),
+       FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
+       FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
+       FIELD(VM_EXIT_REASON, vm_exit_reason),
+       FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
+       FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
+       FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
+       FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
+       FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
+       FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
+       FIELD(GUEST_ES_LIMIT, guest_es_limit),
+       FIELD(GUEST_CS_LIMIT, guest_cs_limit),
+       FIELD(GUEST_SS_LIMIT, guest_ss_limit),
+       FIELD(GUEST_DS_LIMIT, guest_ds_limit),
+       FIELD(GUEST_FS_LIMIT, guest_fs_limit),
+       FIELD(GUEST_GS_LIMIT, guest_gs_limit),
+       FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
+       FIELD(GUEST_TR_LIMIT, guest_tr_limit),
+       FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
+       FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
+       FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
+       FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
+       FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
+       FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
+       FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
+       FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
+       FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
+       FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
+       FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
+       FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
+       FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
+       FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
+       FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
+       FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
+       FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
+       FIELD(CR0_READ_SHADOW, cr0_read_shadow),
+       FIELD(CR4_READ_SHADOW, cr4_read_shadow),
+       FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
+       FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
+       FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
+       FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
+       FIELD(EXIT_QUALIFICATION, exit_qualification),
+       FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
+       FIELD(GUEST_CR0, guest_cr0),
+       FIELD(GUEST_CR3, guest_cr3),
+       FIELD(GUEST_CR4, guest_cr4),
+       FIELD(GUEST_ES_BASE, guest_es_base),
+       FIELD(GUEST_CS_BASE, guest_cs_base),
+       FIELD(GUEST_SS_BASE, guest_ss_base),
+       FIELD(GUEST_DS_BASE, guest_ds_base),
+       FIELD(GUEST_FS_BASE, guest_fs_base),
+       FIELD(GUEST_GS_BASE, guest_gs_base),
+       FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
+       FIELD(GUEST_TR_BASE, guest_tr_base),
+       FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
+       FIELD(GUEST_IDTR_BASE, guest_idtr_base),
+       FIELD(GUEST_DR7, guest_dr7),
+       FIELD(GUEST_RSP, guest_rsp),
+       FIELD(GUEST_RIP, guest_rip),
+       FIELD(GUEST_RFLAGS, guest_rflags),
+       FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
+       FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
+       FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
+       FIELD(HOST_CR0, host_cr0),
+       FIELD(HOST_CR3, host_cr3),
+       FIELD(HOST_CR4, host_cr4),
+       FIELD(HOST_FS_BASE, host_fs_base),
+       FIELD(HOST_GS_BASE, host_gs_base),
+       FIELD(HOST_TR_BASE, host_tr_base),
+       FIELD(HOST_GDTR_BASE, host_gdtr_base),
+       FIELD(HOST_IDTR_BASE, host_idtr_base),
+       FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
+       FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
+       FIELD(HOST_RSP, host_rsp),
+       FIELD(HOST_RIP, host_rip),
+};
+
+static inline short vmcs_field_to_offset(unsigned long field)
+{
+       BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
+
+       if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
+           vmcs_field_to_offset_table[field] == 0)
+               return -ENOENT;
+
+       return vmcs_field_to_offset_table[field];
+}
+
+static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
+{
+       return to_vmx(vcpu)->nested.current_vmcs12;
+}
+
+static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
+{
+       struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
+       if (is_error_page(page))
+               return NULL;
+
+       return page;
+}
+
+static void nested_release_page(struct page *page)
+{
+       kvm_release_page_dirty(page);
+}
+
+static void nested_release_page_clean(struct page *page)
+{
+       kvm_release_page_clean(page);
+}
+
+static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
+static u64 construct_eptp(unsigned long root_hpa);
+static void kvm_cpu_vmxon(u64 addr);
+static void kvm_cpu_vmxoff(void);
+static bool vmx_mpx_supported(void);
+static bool vmx_xsaves_supported(void);
+static int vmx_vm_has_apicv(struct kvm *kvm);
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
+static void vmx_set_segment(struct kvm_vcpu *vcpu,
+                           struct kvm_segment *var, int seg);
+static void vmx_get_segment(struct kvm_vcpu *vcpu,
+                           struct kvm_segment *var, int seg);
+static bool guest_state_valid(struct kvm_vcpu *vcpu);
+static u32 vmx_segment_access_rights(struct kvm_segment *var);
+static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
+static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
+static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
+static int alloc_identity_pagetable(struct kvm *kvm);
+
+static DEFINE_PER_CPU(struct vmcs *, vmxarea);
+static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
+/*
+ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+ */
+static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
+static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
+
+static unsigned long *vmx_io_bitmap_a;
+static unsigned long *vmx_io_bitmap_b;
+static unsigned long *vmx_msr_bitmap_legacy;
+static unsigned long *vmx_msr_bitmap_longmode;
+static unsigned long *vmx_msr_bitmap_legacy_x2apic;
+static unsigned long *vmx_msr_bitmap_longmode_x2apic;
+static unsigned long *vmx_msr_bitmap_nested;
+static unsigned long *vmx_vmread_bitmap;
+static unsigned long *vmx_vmwrite_bitmap;
+
+static bool cpu_has_load_ia32_efer;
+static bool cpu_has_load_perf_global_ctrl;
+
+static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
+static DEFINE_SPINLOCK(vmx_vpid_lock);
+
+static struct vmcs_config {
+       int size;
+       int order;
+       u32 revision_id;
+       u32 pin_based_exec_ctrl;
+       u32 cpu_based_exec_ctrl;
+       u32 cpu_based_2nd_exec_ctrl;
+       u32 vmexit_ctrl;
+       u32 vmentry_ctrl;
+} vmcs_config;
+
+static struct vmx_capability {
+       u32 ept;
+       u32 vpid;
+} vmx_capability;
+
+#define VMX_SEGMENT_FIELD(seg)                                 \
+       [VCPU_SREG_##seg] = {                                   \
+               .selector = GUEST_##seg##_SELECTOR,             \
+               .base = GUEST_##seg##_BASE,                     \
+               .limit = GUEST_##seg##_LIMIT,                   \
+               .ar_bytes = GUEST_##seg##_AR_BYTES,             \
+       }
+
+static const struct kvm_vmx_segment_field {
+       unsigned selector;
+       unsigned base;
+       unsigned limit;
+       unsigned ar_bytes;
+} kvm_vmx_segment_fields[] = {
+       VMX_SEGMENT_FIELD(CS),
+       VMX_SEGMENT_FIELD(DS),
+       VMX_SEGMENT_FIELD(ES),
+       VMX_SEGMENT_FIELD(FS),
+       VMX_SEGMENT_FIELD(GS),
+       VMX_SEGMENT_FIELD(SS),
+       VMX_SEGMENT_FIELD(TR),
+       VMX_SEGMENT_FIELD(LDTR),
+};
+
+static u64 host_efer;
+
+static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
+
+/*
+ * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
+ * away by decrementing the array size.
+ */
+static const u32 vmx_msr_index[] = {
+#ifdef CONFIG_X86_64
+       MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
+#endif
+       MSR_EFER, MSR_TSC_AUX, MSR_STAR,
+};
+
+static inline bool is_page_fault(u32 intr_info)
+{
+       return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+                            INTR_INFO_VALID_MASK)) ==
+               (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_no_device(u32 intr_info)
+{
+       return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+                            INTR_INFO_VALID_MASK)) ==
+               (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_invalid_opcode(u32 intr_info)
+{
+       return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+                            INTR_INFO_VALID_MASK)) ==
+               (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_external_interrupt(u32 intr_info)
+{
+       return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+               == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_machine_check(u32 intr_info)
+{
+       return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+                            INTR_INFO_VALID_MASK)) ==
+               (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool cpu_has_vmx_msr_bitmap(void)
+{
+       return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
+}
+
+static inline bool cpu_has_vmx_tpr_shadow(void)
+{
+       return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
+}
+
+static inline bool vm_need_tpr_shadow(struct kvm *kvm)
+{
+       return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
+}
+
+static inline bool cpu_has_secondary_exec_ctrls(void)
+{
+       return vmcs_config.cpu_based_exec_ctrl &
+               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+}
+
+static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+}
+
+static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+}
+
+static inline bool cpu_has_vmx_apic_register_virt(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_APIC_REGISTER_VIRT;
+}
+
+static inline bool cpu_has_vmx_virtual_intr_delivery(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
+}
+
+static inline bool cpu_has_vmx_posted_intr(void)
+{
+       return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool cpu_has_vmx_apicv(void)
+{
+       return cpu_has_vmx_apic_register_virt() &&
+               cpu_has_vmx_virtual_intr_delivery() &&
+               cpu_has_vmx_posted_intr();
+}
+
+static inline bool cpu_has_vmx_flexpriority(void)
+{
+       return cpu_has_vmx_tpr_shadow() &&
+               cpu_has_vmx_virtualize_apic_accesses();
+}
+
+static inline bool cpu_has_vmx_ept_execute_only(void)
+{
+       return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_2m_page(void)
+{
+       return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_1g_page(void)
+{
+       return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_4levels(void)
+{
+       return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_ad_bits(void)
+{
+       return vmx_capability.ept & VMX_EPT_AD_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_context(void)
+{
+       return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_global(void)
+{
+       return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_single(void)
+{
+       return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_global(void)
+{
+       return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_ept(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_ENABLE_EPT;
+}
+
+static inline bool cpu_has_vmx_unrestricted_guest(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_UNRESTRICTED_GUEST;
+}
+
+static inline bool cpu_has_vmx_ple(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+}
+
+static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
+{
+       return flexpriority_enabled && irqchip_in_kernel(kvm);
+}
+
+static inline bool cpu_has_vmx_vpid(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_ENABLE_VPID;
+}
+
+static inline bool cpu_has_vmx_rdtscp(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_RDTSCP;
+}
+
+static inline bool cpu_has_vmx_invpcid(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_ENABLE_INVPCID;
+}
+
+static inline bool cpu_has_virtual_nmis(void)
+{
+       return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline bool cpu_has_vmx_wbinvd_exit(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_WBINVD_EXITING;
+}
+
+static inline bool cpu_has_vmx_shadow_vmcs(void)
+{
+       u64 vmx_msr;
+       rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+       /* check if the cpu supports writing r/o exit information fields */
+       if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
+               return false;
+
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_SHADOW_VMCS;
+}
+
+static inline bool cpu_has_vmx_pml(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
+}
+
+static inline bool report_flexpriority(void)
+{
+       return flexpriority_enabled;
+}
+
+static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
+{
+       return vmcs12->cpu_based_vm_exec_control & bit;
+}
+
+static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
+{
+       return (vmcs12->cpu_based_vm_exec_control &
+                       CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+               (vmcs12->secondary_vm_exec_control & bit);
+}
+
+static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
+{
+       return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
+{
+       return vmcs12->pin_based_vm_exec_control &
+               PIN_BASED_VMX_PREEMPTION_TIMER;
+}
+
+static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
+{
+       return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
+}
+
+static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
+{
+       return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
+               vmx_xsaves_supported();
+}
+
+static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
+{
+       return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+}
+
+static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
+{
+       return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
+}
+
+static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
+{
+       return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+}
+
+static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
+{
+       return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool is_exception(u32 intr_info)
+{
+       return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+               == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
+}
+
+static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+                             u32 exit_intr_info,
+                             unsigned long exit_qualification);
+static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+                       struct vmcs12 *vmcs12,
+                       u32 reason, unsigned long qualification);
+
+static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
+{
+       int i;
+
+       for (i = 0; i < vmx->nmsrs; ++i)
+               if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
+                       return i;
+       return -1;
+}
+
+static inline void __invvpid(int ext, u16 vpid, gva_t gva)
+{
+    struct {
+       u64 vpid : 16;
+       u64 rsvd : 48;
+       u64 gva;
+    } operand = { vpid, 0, gva };
+
+    asm volatile (__ex(ASM_VMX_INVVPID)
+                 /* CF==1 or ZF==1 --> rc = -1 */
+                 "; ja 1f ; ud2 ; 1:"
+                 : : "a"(&operand), "c"(ext) : "cc", "memory");
+}
+
+static inline void __invept(int ext, u64 eptp, gpa_t gpa)
+{
+       struct {
+               u64 eptp, gpa;
+       } operand = {eptp, gpa};
+
+       asm volatile (__ex(ASM_VMX_INVEPT)
+                       /* CF==1 or ZF==1 --> rc = -1 */
+                       "; ja 1f ; ud2 ; 1:\n"
+                       : : "a" (&operand), "c" (ext) : "cc", "memory");
+}
+
+static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
+{
+       int i;
+
+       i = __find_msr_index(vmx, msr);
+       if (i >= 0)
+               return &vmx->guest_msrs[i];
+       return NULL;
+}
+
+static void vmcs_clear(struct vmcs *vmcs)
+{
+       u64 phys_addr = __pa(vmcs);
+       u8 error;
+
+       asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
+                     : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
+                     : "cc", "memory");
+       if (error)
+               printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
+                      vmcs, phys_addr);
+}
+
+static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
+{
+       vmcs_clear(loaded_vmcs->vmcs);
+       loaded_vmcs->cpu = -1;
+       loaded_vmcs->launched = 0;
+}
+
+static void vmcs_load(struct vmcs *vmcs)
+{
+       u64 phys_addr = __pa(vmcs);
+       u8 error;
+
+       asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
+                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
+                       : "cc", "memory");
+       if (error)
+               printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
+                      vmcs, phys_addr);
+}
+
+#ifdef CONFIG_KEXEC
+/*
+ * This bitmap is used to indicate whether the vmclear
+ * operation is enabled on all cpus. All disabled by
+ * default.
+ */
+static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
+
+static inline void crash_enable_local_vmclear(int cpu)
+{
+       cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline void crash_disable_local_vmclear(int cpu)
+{
+       cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline int crash_local_vmclear_enabled(int cpu)
+{
+       return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static void crash_vmclear_local_loaded_vmcss(void)
+{
+       int cpu = raw_smp_processor_id();
+       struct loaded_vmcs *v;
+
+       if (!crash_local_vmclear_enabled(cpu))
+               return;
+
+       list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
+                           loaded_vmcss_on_cpu_link)
+               vmcs_clear(v->vmcs);
+}
+#else
+static inline void crash_enable_local_vmclear(int cpu) { }
+static inline void crash_disable_local_vmclear(int cpu) { }
+#endif /* CONFIG_KEXEC */
+
+static void __loaded_vmcs_clear(void *arg)
+{
+       struct loaded_vmcs *loaded_vmcs = arg;
+       int cpu = raw_smp_processor_id();
+
+       if (loaded_vmcs->cpu != cpu)
+               return; /* vcpu migration can race with cpu offline */
+       if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
+               per_cpu(current_vmcs, cpu) = NULL;
+       crash_disable_local_vmclear(cpu);
+       list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+
+       /*
+        * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
+        * is before setting loaded_vmcs->vcpu to -1 which is done in
+        * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
+        * then adds the vmcs into percpu list before it is deleted.
+        */
+       smp_wmb();
+
+       loaded_vmcs_init(loaded_vmcs);
+       crash_enable_local_vmclear(cpu);
+}
+
+static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
+{
+       int cpu = loaded_vmcs->cpu;
+
+       if (cpu != -1)
+               smp_call_function_single(cpu,
+                        __loaded_vmcs_clear, loaded_vmcs, 1);
+}
+
+static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
+{
+       if (vmx->vpid == 0)
+               return;
+
+       if (cpu_has_vmx_invvpid_single())
+               __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
+}
+
+static inline void vpid_sync_vcpu_global(void)
+{
+       if (cpu_has_vmx_invvpid_global())
+               __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
+}
+
+static inline void vpid_sync_context(struct vcpu_vmx *vmx)
+{
+       if (cpu_has_vmx_invvpid_single())
+               vpid_sync_vcpu_single(vmx);
+       else
+               vpid_sync_vcpu_global();
+}
+
+static inline void ept_sync_global(void)
+{
+       if (cpu_has_vmx_invept_global())
+               __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
+}
+
+static inline void ept_sync_context(u64 eptp)
+{
+       if (enable_ept) {
+               if (cpu_has_vmx_invept_context())
+                       __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
+               else
+                       ept_sync_global();
+       }
+}
+
+static __always_inline unsigned long vmcs_readl(unsigned long field)
+{
+       unsigned long value;
+
+       asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
+                     : "=a"(value) : "d"(field) : "cc");
+       return value;
+}
+
+static __always_inline u16 vmcs_read16(unsigned long field)
+{
+       return vmcs_readl(field);
+}
+
+static __always_inline u32 vmcs_read32(unsigned long field)
+{
+       return vmcs_readl(field);
+}
+
+static __always_inline u64 vmcs_read64(unsigned long field)
+{
+#ifdef CONFIG_X86_64
+       return vmcs_readl(field);
+#else
+       return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
+#endif
+}
+
+static noinline void vmwrite_error(unsigned long field, unsigned long value)
+{
+       printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
+              field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
+       dump_stack();
+}
+
+static void vmcs_writel(unsigned long field, unsigned long value)
+{
+       u8 error;
+
+       asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
+                      : "=q"(error) : "a"(value), "d"(field) : "cc");
+       if (unlikely(error))
+               vmwrite_error(field, value);
+}
+
+static void vmcs_write16(unsigned long field, u16 value)
+{
+       vmcs_writel(field, value);
+}
+
+static void vmcs_write32(unsigned long field, u32 value)
+{
+       vmcs_writel(field, value);
+}
+
+static void vmcs_write64(unsigned long field, u64 value)
+{
+       vmcs_writel(field, value);
+#ifndef CONFIG_X86_64
+       asm volatile ("");
+       vmcs_writel(field+1, value >> 32);
+#endif
+}
+
+static void vmcs_clear_bits(unsigned long field, u32 mask)
+{
+       vmcs_writel(field, vmcs_readl(field) & ~mask);
+}
+
+static void vmcs_set_bits(unsigned long field, u32 mask)
+{
+       vmcs_writel(field, vmcs_readl(field) | mask);
+}
+
+static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+       vmcs_write32(VM_ENTRY_CONTROLS, val);
+       vmx->vm_entry_controls_shadow = val;
+}
+
+static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+       if (vmx->vm_entry_controls_shadow != val)
+               vm_entry_controls_init(vmx, val);
+}
+
+static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
+{
+       return vmx->vm_entry_controls_shadow;
+}
+
+
+static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+       vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
+}
+
+static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+       vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
+}
+
+static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+       vmcs_write32(VM_EXIT_CONTROLS, val);
+       vmx->vm_exit_controls_shadow = val;
+}
+
+static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+       if (vmx->vm_exit_controls_shadow != val)
+               vm_exit_controls_init(vmx, val);
+}
+
+static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
+{
+       return vmx->vm_exit_controls_shadow;
+}
+
+
+static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+       vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
+}
+
+static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+       vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
+}
+
+static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
+{
+       vmx->segment_cache.bitmask = 0;
+}
+
+static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
+                                      unsigned field)
+{
+       bool ret;
+       u32 mask = 1 << (seg * SEG_FIELD_NR + field);
+
+       if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
+               vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
+               vmx->segment_cache.bitmask = 0;
+       }
+       ret = vmx->segment_cache.bitmask & mask;
+       vmx->segment_cache.bitmask |= mask;
+       return ret;
+}
+
+static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
+{
+       u16 *p = &vmx->segment_cache.seg[seg].selector;
+
+       if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
+               *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
+       return *p;
+}
+
+static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
+{
+       ulong *p = &vmx->segment_cache.seg[seg].base;
+
+       if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
+               *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
+       return *p;
+}
+
+static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
+{
+       u32 *p = &vmx->segment_cache.seg[seg].limit;
+
+       if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
+               *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
+       return *p;
+}
+
+static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
+{
+       u32 *p = &vmx->segment_cache.seg[seg].ar;
+
+       if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
+               *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
+       return *p;
+}
+
+static void update_exception_bitmap(struct kvm_vcpu *vcpu)
+{
+       u32 eb;
+
+       eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
+            (1u << NM_VECTOR) | (1u << DB_VECTOR);
+       if ((vcpu->guest_debug &
+            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
+           (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
+               eb |= 1u << BP_VECTOR;
+       if (to_vmx(vcpu)->rmode.vm86_active)
+               eb = ~0;
+       if (enable_ept)
+               eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
+       if (vcpu->fpu_active)
+               eb &= ~(1u << NM_VECTOR);
+
+       /* When we are running a nested L2 guest and L1 specified for it a
+        * certain exception bitmap, we must trap the same exceptions and pass
+        * them to L1. When running L2, we will only handle the exceptions
+        * specified above if L1 did not want them.
+        */
+       if (is_guest_mode(vcpu))
+               eb |= get_vmcs12(vcpu)->exception_bitmap;
+
+       vmcs_write32(EXCEPTION_BITMAP, eb);
+}
+
+static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+               unsigned long entry, unsigned long exit)
+{
+       vm_entry_controls_clearbit(vmx, entry);
+       vm_exit_controls_clearbit(vmx, exit);
+}
+
+static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
+{
+       unsigned i;
+       struct msr_autoload *m = &vmx->msr_autoload;
+
+       switch (msr) {
+       case MSR_EFER:
+               if (cpu_has_load_ia32_efer) {
+                       clear_atomic_switch_msr_special(vmx,
+                                       VM_ENTRY_LOAD_IA32_EFER,
+                                       VM_EXIT_LOAD_IA32_EFER);
+                       return;
+               }
+               break;
+       case MSR_CORE_PERF_GLOBAL_CTRL:
+               if (cpu_has_load_perf_global_ctrl) {
+                       clear_atomic_switch_msr_special(vmx,
+                                       VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+                                       VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+                       return;
+               }
+               break;
+       }
+
+       for (i = 0; i < m->nr; ++i)
+               if (m->guest[i].index == msr)
+                       break;
+
+       if (i == m->nr)
+               return;
+       --m->nr;
+       m->guest[i] = m->guest[m->nr];
+       m->host[i] = m->host[m->nr];
+       vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
+       vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
+}
+
+static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+               unsigned long entry, unsigned long exit,
+               unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
+               u64 guest_val, u64 host_val)
+{
+       vmcs_write64(guest_val_vmcs, guest_val);
+       vmcs_write64(host_val_vmcs, host_val);
+       vm_entry_controls_setbit(vmx, entry);
+       vm_exit_controls_setbit(vmx, exit);
+}
+
+static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
+                                 u64 guest_val, u64 host_val)
+{
+       unsigned i;
+       struct msr_autoload *m = &vmx->msr_autoload;
+
+       switch (msr) {
+       case MSR_EFER:
+               if (cpu_has_load_ia32_efer) {
+                       add_atomic_switch_msr_special(vmx,
+                                       VM_ENTRY_LOAD_IA32_EFER,
+                                       VM_EXIT_LOAD_IA32_EFER,
+                                       GUEST_IA32_EFER,
+                                       HOST_IA32_EFER,
+                                       guest_val, host_val);
+                       return;
+               }
+               break;
+       case MSR_CORE_PERF_GLOBAL_CTRL:
+               if (cpu_has_load_perf_global_ctrl) {
+                       add_atomic_switch_msr_special(vmx,
+                                       VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+                                       VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
+                                       GUEST_IA32_PERF_GLOBAL_CTRL,
+                                       HOST_IA32_PERF_GLOBAL_CTRL,
+                                       guest_val, host_val);
+                       return;
+               }
+               break;
+       }
+
+       for (i = 0; i < m->nr; ++i)
+               if (m->guest[i].index == msr)
+                       break;
+
+       if (i == NR_AUTOLOAD_MSRS) {
+               printk_once(KERN_WARNING "Not enough msr switch entries. "
+                               "Can't add msr %x\n", msr);
+               return;
+       } else if (i == m->nr) {
+               ++m->nr;
+               vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
+               vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
+       }
+
+       m->guest[i].index = msr;
+       m->guest[i].value = guest_val;
+       m->host[i].index = msr;
+       m->host[i].value = host_val;
+}
+
+static void reload_tss(void)
+{
+       /*
+        * VT restores TR but not its size.  Useless.
+        */
+       struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
+       struct desc_struct *descs;
+
+       descs = (void *)gdt->address;
+       descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
+       load_TR_desc();
+}
+
+static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
+{
+       u64 guest_efer;
+       u64 ignore_bits;
+
+       guest_efer = vmx->vcpu.arch.efer;
+
+       /*
+        * NX is emulated; LMA and LME handled by hardware; SCE meaningless
+        * outside long mode
+        */
+       ignore_bits = EFER_NX | EFER_SCE;
+#ifdef CONFIG_X86_64
+       ignore_bits |= EFER_LMA | EFER_LME;
+       /* SCE is meaningful only in long mode on Intel */
+       if (guest_efer & EFER_LMA)
+               ignore_bits &= ~(u64)EFER_SCE;
+#endif
+       guest_efer &= ~ignore_bits;
+       guest_efer |= host_efer & ignore_bits;
+       vmx->guest_msrs[efer_offset].data = guest_efer;
+       vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
+
+       clear_atomic_switch_msr(vmx, MSR_EFER);
+
+       /*
+        * On EPT, we can't emulate NX, so we must switch EFER atomically.
+        * On CPUs that support "load IA32_EFER", always switch EFER
+        * atomically, since it's faster than switching it manually.
+        */
+       if (cpu_has_load_ia32_efer ||
+           (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
+               guest_efer = vmx->vcpu.arch.efer;
+               if (!(guest_efer & EFER_LMA))
+                       guest_efer &= ~EFER_LME;
+               if (guest_efer != host_efer)
+                       add_atomic_switch_msr(vmx, MSR_EFER,
+                                             guest_efer, host_efer);
+               return false;
+       }
+
+       return true;
+}
+
+static unsigned long segment_base(u16 selector)
+{
+       struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
+       struct desc_struct *d;
+       unsigned long table_base;
+       unsigned long v;
+
+       if (!(selector & ~3))
+               return 0;
+
+       table_base = gdt->address;
+
+       if (selector & 4) {           /* from ldt */
+               u16 ldt_selector = kvm_read_ldt();
+
+               if (!(ldt_selector & ~3))
+                       return 0;
+
+               table_base = segment_base(ldt_selector);
+       }
+       d = (struct desc_struct *)(table_base + (selector & ~7));
+       v = get_desc_base(d);
+#ifdef CONFIG_X86_64
+       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
+               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
+#endif
+       return v;
+}
+
+static inline unsigned long kvm_read_tr_base(void)
+{
+       u16 tr;
+       asm("str %0" : "=g"(tr));
+       return segment_base(tr);
+}
+
+static void vmx_save_host_state(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int i;
+
+       if (vmx->host_state.loaded)
+               return;
+
+       vmx->host_state.loaded = 1;
+       /*
+        * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
+        * allow segment selectors with cpl > 0 or ti == 1.
+        */
+       vmx->host_state.ldt_sel = kvm_read_ldt();
+       vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
+       savesegment(fs, vmx->host_state.fs_sel);
+       if (!(vmx->host_state.fs_sel & 7)) {
+               vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
+               vmx->host_state.fs_reload_needed = 0;
+       } else {
+               vmcs_write16(HOST_FS_SELECTOR, 0);
+               vmx->host_state.fs_reload_needed = 1;
+       }
+       savesegment(gs, vmx->host_state.gs_sel);
+       if (!(vmx->host_state.gs_sel & 7))
+               vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
+       else {
+               vmcs_write16(HOST_GS_SELECTOR, 0);
+               vmx->host_state.gs_ldt_reload_needed = 1;
+       }
+
+#ifdef CONFIG_X86_64
+       savesegment(ds, vmx->host_state.ds_sel);
+       savesegment(es, vmx->host_state.es_sel);
+#endif
+
+#ifdef CONFIG_X86_64
+       vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
+       vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
+#else
+       vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
+       vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
+#endif
+
+#ifdef CONFIG_X86_64
+       rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+       if (is_long_mode(&vmx->vcpu))
+               wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+       if (boot_cpu_has(X86_FEATURE_MPX))
+               rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
+       for (i = 0; i < vmx->save_nmsrs; ++i)
+               kvm_set_shared_msr(vmx->guest_msrs[i].index,
+                                  vmx->guest_msrs[i].data,
+                                  vmx->guest_msrs[i].mask);
+}
+
+static void __vmx_load_host_state(struct vcpu_vmx *vmx)
+{
+       if (!vmx->host_state.loaded)
+               return;
+
+       ++vmx->vcpu.stat.host_state_reload;
+       vmx->host_state.loaded = 0;
+#ifdef CONFIG_X86_64
+       if (is_long_mode(&vmx->vcpu))
+               rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+       if (vmx->host_state.gs_ldt_reload_needed) {
+               kvm_load_ldt(vmx->host_state.ldt_sel);
+#ifdef CONFIG_X86_64
+               load_gs_index(vmx->host_state.gs_sel);
+#else
+               loadsegment(gs, vmx->host_state.gs_sel);
+#endif
+       }
+       if (vmx->host_state.fs_reload_needed)
+               loadsegment(fs, vmx->host_state.fs_sel);
+#ifdef CONFIG_X86_64
+       if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
+               loadsegment(ds, vmx->host_state.ds_sel);
+               loadsegment(es, vmx->host_state.es_sel);
+       }
+#endif
+       reload_tss();
+#ifdef CONFIG_X86_64
+       wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+#endif
+       if (vmx->host_state.msr_host_bndcfgs)
+               wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
+       /*
+        * If the FPU is not active (through the host task or
+        * the guest vcpu), then restore the cr0.TS bit.
+        */
+       if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
+               stts();
+       load_gdt(this_cpu_ptr(&host_gdt));
+}
+
+static void vmx_load_host_state(struct vcpu_vmx *vmx)
+{
+       preempt_disable();
+       __vmx_load_host_state(vmx);
+       preempt_enable();
+}
+
+/*
+ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
+ * vcpu mutex is already taken.
+ */
+static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+
+       if (!vmm_exclusive)
+               kvm_cpu_vmxon(phys_addr);
+       else if (vmx->loaded_vmcs->cpu != cpu)
+               loaded_vmcs_clear(vmx->loaded_vmcs);
+
+       if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
+               per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+               vmcs_load(vmx->loaded_vmcs->vmcs);
+       }
+
+       if (vmx->loaded_vmcs->cpu != cpu) {
+               struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
+               unsigned long sysenter_esp;
+
+               kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+               local_irq_disable();
+               crash_disable_local_vmclear(cpu);
+
+               /*
+                * Read loaded_vmcs->cpu should be before fetching
+                * loaded_vmcs->loaded_vmcss_on_cpu_link.
+                * See the comments in __loaded_vmcs_clear().
+                */
+               smp_rmb();
+
+               list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+                        &per_cpu(loaded_vmcss_on_cpu, cpu));
+               crash_enable_local_vmclear(cpu);
+               local_irq_enable();
+
+               /*
+                * Linux uses per-cpu TSS and GDT, so set these when switching
+                * processors.
+                */
+               vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
+               vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
+
+               rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
+               vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+               vmx->loaded_vmcs->cpu = cpu;
+       }
+}
+
+static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
+{
+       __vmx_load_host_state(to_vmx(vcpu));
+       if (!vmm_exclusive) {
+               __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
+               vcpu->cpu = -1;
+               kvm_cpu_vmxoff();
+       }
+}
+
+static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
+{
+       ulong cr0;
+
+       if (vcpu->fpu_active)
+               return;
+       vcpu->fpu_active = 1;
+       cr0 = vmcs_readl(GUEST_CR0);
+       cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
+       cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
+       vmcs_writel(GUEST_CR0, cr0);
+       update_exception_bitmap(vcpu);
+       vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+       if (is_guest_mode(vcpu))
+               vcpu->arch.cr0_guest_owned_bits &=
+                       ~get_vmcs12(vcpu)->cr0_guest_host_mask;
+       vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
+
+/*
+ * Return the cr0 value that a nested guest would read. This is a combination
+ * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
+ * its hypervisor (cr0_read_shadow).
+ */
+static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
+{
+       return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
+               (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
+}
+static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
+{
+       return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
+               (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
+}
+
+static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
+{
+       /* Note that there is no vcpu->fpu_active = 0 here. The caller must
+        * set this *before* calling this function.
+        */
+       vmx_decache_cr0_guest_bits(vcpu);
+       vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
+       update_exception_bitmap(vcpu);
+       vcpu->arch.cr0_guest_owned_bits = 0;
+       vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+       if (is_guest_mode(vcpu)) {
+               /*
+                * L1's specified read shadow might not contain the TS bit,
+                * so now that we turned on shadowing of this bit, we need to
+                * set this bit of the shadow. Like in nested_vmx_run we need
+                * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
+                * up-to-date here because we just decached cr0.TS (and we'll
+                * only update vmcs12->guest_cr0 on nested exit).
+                */
+               struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+               vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
+                       (vcpu->arch.cr0 & X86_CR0_TS);
+               vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+       } else
+               vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
+}
+
+static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
+{
+       unsigned long rflags, save_rflags;
+
+       if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
+               __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+               rflags = vmcs_readl(GUEST_RFLAGS);
+               if (to_vmx(vcpu)->rmode.vm86_active) {
+                       rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+                       save_rflags = to_vmx(vcpu)->rmode.save_rflags;
+                       rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+               }
+               to_vmx(vcpu)->rflags = rflags;
+       }
+       return to_vmx(vcpu)->rflags;
+}
+
+static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+       __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+       to_vmx(vcpu)->rflags = rflags;
+       if (to_vmx(vcpu)->rmode.vm86_active) {
+               to_vmx(vcpu)->rmode.save_rflags = rflags;
+               rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+       }
+       vmcs_writel(GUEST_RFLAGS, rflags);
+}
+
+static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+       u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+       int ret = 0;
+
+       if (interruptibility & GUEST_INTR_STATE_STI)
+               ret |= KVM_X86_SHADOW_INT_STI;
+       if (interruptibility & GUEST_INTR_STATE_MOV_SS)
+               ret |= KVM_X86_SHADOW_INT_MOV_SS;
+
+       return ret;
+}
+
+static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+       u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+       u32 interruptibility = interruptibility_old;
+
+       interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
+
+       if (mask & KVM_X86_SHADOW_INT_MOV_SS)
+               interruptibility |= GUEST_INTR_STATE_MOV_SS;
+       else if (mask & KVM_X86_SHADOW_INT_STI)
+               interruptibility |= GUEST_INTR_STATE_STI;
+
+       if ((interruptibility != interruptibility_old))
+               vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
+}
+
+static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+       unsigned long rip;
+
+       rip = kvm_rip_read(vcpu);
+       rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+       kvm_rip_write(vcpu, rip);
+
+       /* skipping an emulated instruction also counts */
+       vmx_set_interrupt_shadow(vcpu, 0);
+}
+
+/*
+ * KVM wants to inject page-faults which it got to the guest. This function
+ * checks whether in a nested guest, we need to inject them to L1 or L2.
+ */
+static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+       if (!(vmcs12->exception_bitmap & (1u << nr)))
+               return 0;
+
+       nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
+                         vmcs_read32(VM_EXIT_INTR_INFO),
+                         vmcs_readl(EXIT_QUALIFICATION));
+       return 1;
+}
+
+static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
+                               bool has_error_code, u32 error_code,
+                               bool reinject)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+       if (!reinject && is_guest_mode(vcpu) &&
+           nested_vmx_check_exception(vcpu, nr))
+               return;
+
+       if (has_error_code) {
+               vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
+               intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+       }
+
+       if (vmx->rmode.vm86_active) {
+               int inc_eip = 0;
+               if (kvm_exception_is_soft(nr))
+                       inc_eip = vcpu->arch.event_exit_inst_len;
+               if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
+                       kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+               return;
+       }
+
+       if (kvm_exception_is_soft(nr)) {
+               vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+                            vmx->vcpu.arch.event_exit_inst_len);
+               intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+       } else
+               intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+       vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
+}
+
+static bool vmx_rdtscp_supported(void)
+{
+       return cpu_has_vmx_rdtscp();
+}
+
+static bool vmx_invpcid_supported(void)
+{
+       return cpu_has_vmx_invpcid() && enable_ept;
+}
+
+/*
+ * Swap MSR entry in host/guest MSR entry array.
+ */
+static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
+{
+       struct shared_msr_entry tmp;
+
+       tmp = vmx->guest_msrs[to];
+       vmx->guest_msrs[to] = vmx->guest_msrs[from];
+       vmx->guest_msrs[from] = tmp;
+}
+
+static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
+{
+       unsigned long *msr_bitmap;
+
+       if (is_guest_mode(vcpu))
+               msr_bitmap = vmx_msr_bitmap_nested;
+       else if (irqchip_in_kernel(vcpu->kvm) &&
+               apic_x2apic_mode(vcpu->arch.apic)) {
+               if (is_long_mode(vcpu))
+                       msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
+               else
+                       msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
+       } else {
+               if (is_long_mode(vcpu))
+                       msr_bitmap = vmx_msr_bitmap_longmode;
+               else
+                       msr_bitmap = vmx_msr_bitmap_legacy;
+       }
+
+       vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
+}
+
+/*
+ * Set up the vmcs to automatically save and restore system
+ * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
+ * mode, as fiddling with msrs is very expensive.
+ */
+static void setup_msrs(struct vcpu_vmx *vmx)
+{
+       int save_nmsrs, index;
+
+       save_nmsrs = 0;
+#ifdef CONFIG_X86_64
+       if (is_long_mode(&vmx->vcpu)) {
+               index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
+               if (index >= 0)
+                       move_msr_up(vmx, index, save_nmsrs++);
+               index = __find_msr_index(vmx, MSR_LSTAR);
+               if (index >= 0)
+                       move_msr_up(vmx, index, save_nmsrs++);
+               index = __find_msr_index(vmx, MSR_CSTAR);
+               if (index >= 0)
+                       move_msr_up(vmx, index, save_nmsrs++);
+               index = __find_msr_index(vmx, MSR_TSC_AUX);
+               if (index >= 0 && vmx->rdtscp_enabled)
+                       move_msr_up(vmx, index, save_nmsrs++);
+               /*
+                * MSR_STAR is only needed on long mode guests, and only
+                * if efer.sce is enabled.
+                */
+               index = __find_msr_index(vmx, MSR_STAR);
+               if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
+                       move_msr_up(vmx, index, save_nmsrs++);
+       }
+#endif
+       index = __find_msr_index(vmx, MSR_EFER);
+       if (index >= 0 && update_transition_efer(vmx, index))
+               move_msr_up(vmx, index, save_nmsrs++);
+
+       vmx->save_nmsrs = save_nmsrs;
+
+       if (cpu_has_vmx_msr_bitmap())
+               vmx_set_msr_bitmap(&vmx->vcpu);
+}
+
+/*
+ * reads and returns guest's timestamp counter "register"
+ * guest_tsc = host_tsc + tsc_offset    -- 21.3
+ */
+static u64 guest_read_tsc(void)
+{
+       u64 host_tsc, tsc_offset;
+
+       rdtscll(host_tsc);
+       tsc_offset = vmcs_read64(TSC_OFFSET);
+       return host_tsc + tsc_offset;
+}
+
+/*
+ * Like guest_read_tsc, but always returns L1's notion of the timestamp
+ * counter, even if a nested guest (L2) is currently running.
+ */
+static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
+{
+       u64 tsc_offset;
+
+       tsc_offset = is_guest_mode(vcpu) ?
+               to_vmx(vcpu)->nested.vmcs01_tsc_offset :
+               vmcs_read64(TSC_OFFSET);
+       return host_tsc + tsc_offset;
+}
+
+/*
+ * Engage any workarounds for mis-matched TSC rates.  Currently limited to
+ * software catchup for faster rates on slower CPUs.
+ */
+static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
+{
+       if (!scale)
+               return;
+
+       if (user_tsc_khz > tsc_khz) {
+               vcpu->arch.tsc_catchup = 1;
+               vcpu->arch.tsc_always_catchup = 1;
+       } else
+               WARN(1, "user requested TSC rate below hardware speed\n");
+}
+
+static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
+{
+       return vmcs_read64(TSC_OFFSET);
+}
+
+/*
+ * writes 'offset' into guest's timestamp counter offset register
+ */
+static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+       if (is_guest_mode(vcpu)) {
+               /*
+                * We're here if L1 chose not to trap WRMSR to TSC. According
+                * to the spec, this should set L1's TSC; The offset that L1
+                * set for L2 remains unchanged, and still needs to be added
+                * to the newly set TSC to get L2's TSC.
+                */
+               struct vmcs12 *vmcs12;
+               to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
+               /* recalculate vmcs02.TSC_OFFSET: */
+               vmcs12 = get_vmcs12(vcpu);
+               vmcs_write64(TSC_OFFSET, offset +
+                       (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
+                        vmcs12->tsc_offset : 0));
+       } else {
+               trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+                                          vmcs_read64(TSC_OFFSET), offset);
+               vmcs_write64(TSC_OFFSET, offset);
+       }
+}
+
+static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
+{
+       u64 offset = vmcs_read64(TSC_OFFSET);
+
+       vmcs_write64(TSC_OFFSET, offset + adjustment);
+       if (is_guest_mode(vcpu)) {
+               /* Even when running L2, the adjustment needs to apply to L1 */
+               to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
+       } else
+               trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
+                                          offset + adjustment);
+}
+
+static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
+{
+       return target_tsc - native_read_tsc();
+}
+
+static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
+{
+       struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
+       return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
+}
+
+/*
+ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+ * all guests if the "nested" module option is off, and can also be disabled
+ * for a single guest by disabling its VMX cpuid bit.
+ */
+static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+{
+       return nested && guest_cpuid_has_vmx(vcpu);
+}
+
+/*
+ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+ * returned for the various VMX controls MSRs when nested VMX is enabled.
+ * The same values should also be used to verify that vmcs12 control fields are
+ * valid during nested entry from L1 to L2.
+ * Each of these control msrs has a low and high 32-bit half: A low bit is on
+ * if the corresponding bit in the (32-bit) control field *must* be on, and a
+ * bit in the high half is on if the corresponding bit in the control field
+ * may be on. See also vmx_control_verify().
+ */
+static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
+{
+       /*
+        * Note that as a general rule, the high half of the MSRs (bits in
+        * the control fields which may be 1) should be initialized by the
+        * intersection of the underlying hardware's MSR (i.e., features which
+        * can be supported) and the list of features we want to expose -
+        * because they are known to be properly supported in our code.
+        * Also, usually, the low half of the MSRs (bits which must be 1) can
+        * be set to 0, meaning that L1 may turn off any of these bits. The
+        * reason is that if one of these bits is necessary, it will appear
+        * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+        * fields of vmcs01 and vmcs02, will turn these bits off - and
+        * nested_vmx_exit_handled() will not pass related exits to L1.
+        * These rules have exceptions below.
+        */
+
+       /* pin-based controls */
+       rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
+               vmx->nested.nested_vmx_pinbased_ctls_low,
+               vmx->nested.nested_vmx_pinbased_ctls_high);
+       vmx->nested.nested_vmx_pinbased_ctls_low |=
+               PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+       vmx->nested.nested_vmx_pinbased_ctls_high &=
+               PIN_BASED_EXT_INTR_MASK |
+               PIN_BASED_NMI_EXITING |
+               PIN_BASED_VIRTUAL_NMIS;
+       vmx->nested.nested_vmx_pinbased_ctls_high |=
+               PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+               PIN_BASED_VMX_PREEMPTION_TIMER;
+       if (vmx_vm_has_apicv(vmx->vcpu.kvm))
+               vmx->nested.nested_vmx_pinbased_ctls_high |=
+                       PIN_BASED_POSTED_INTR;
+
+       /* exit controls */
+       rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+               vmx->nested.nested_vmx_exit_ctls_low,
+               vmx->nested.nested_vmx_exit_ctls_high);
+       vmx->nested.nested_vmx_exit_ctls_low =
+               VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+
+       vmx->nested.nested_vmx_exit_ctls_high &=
+#ifdef CONFIG_X86_64
+               VM_EXIT_HOST_ADDR_SPACE_SIZE |
+#endif
+               VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+       vmx->nested.nested_vmx_exit_ctls_high |=
+               VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+               VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
+               VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+
+       if (vmx_mpx_supported())
+               vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
+
+       /* We support free control of debug control saving. */
+       vmx->nested.nested_vmx_true_exit_ctls_low =
+               vmx->nested.nested_vmx_exit_ctls_low &
+               ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+
+       /* entry controls */
+       rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+               vmx->nested.nested_vmx_entry_ctls_low,
+               vmx->nested.nested_vmx_entry_ctls_high);
+       vmx->nested.nested_vmx_entry_ctls_low =
+               VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+       vmx->nested.nested_vmx_entry_ctls_high &=
+#ifdef CONFIG_X86_64
+               VM_ENTRY_IA32E_MODE |
+#endif
+               VM_ENTRY_LOAD_IA32_PAT;
+       vmx->nested.nested_vmx_entry_ctls_high |=
+               (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+       if (vmx_mpx_supported())
+               vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
+
+       /* We support free control of debug control loading. */
+       vmx->nested.nested_vmx_true_entry_ctls_low =
+               vmx->nested.nested_vmx_entry_ctls_low &
+               ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+
+       /* cpu-based controls */
+       rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+               vmx->nested.nested_vmx_procbased_ctls_low,
+               vmx->nested.nested_vmx_procbased_ctls_high);
+       vmx->nested.nested_vmx_procbased_ctls_low =
+               CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+       vmx->nested.nested_vmx_procbased_ctls_high &=
+               CPU_BASED_VIRTUAL_INTR_PENDING |
+               CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+               CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+               CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+               CPU_BASED_CR3_STORE_EXITING |
+#ifdef CONFIG_X86_64
+               CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+#endif
+               CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+               CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
+               CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
+               CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
+               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+       /*
+        * We can allow some features even when not supported by the
+        * hardware. For example, L1 can specify an MSR bitmap - and we
+        * can use it to avoid exits to L1 - even when L0 runs L2
+        * without MSR bitmaps.
+        */
+       vmx->nested.nested_vmx_procbased_ctls_high |=
+               CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+               CPU_BASED_USE_MSR_BITMAPS;
+
+       /* We support free control of CR3 access interception. */
+       vmx->nested.nested_vmx_true_procbased_ctls_low =
+               vmx->nested.nested_vmx_procbased_ctls_low &
+               ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+
+       /* secondary cpu-based controls */
+       rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+               vmx->nested.nested_vmx_secondary_ctls_low,
+               vmx->nested.nested_vmx_secondary_ctls_high);
+       vmx->nested.nested_vmx_secondary_ctls_low = 0;
+       vmx->nested.nested_vmx_secondary_ctls_high &=
+               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+               SECONDARY_EXEC_RDTSCP |
+               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+               SECONDARY_EXEC_APIC_REGISTER_VIRT |
+               SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+               SECONDARY_EXEC_WBINVD_EXITING |
+               SECONDARY_EXEC_XSAVES;
+
+       if (enable_ept) {
+               /* nested EPT: emulate EPT also to L1 */
+               vmx->nested.nested_vmx_secondary_ctls_high |=
+                       SECONDARY_EXEC_ENABLE_EPT;
+               vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+                        VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
+                        VMX_EPT_INVEPT_BIT;
+               vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
+               /*
+                * For nested guests, we don't do anything specific
+                * for single context invalidation. Hence, only advertise
+                * support for global context invalidation.
+                */
+               vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
+       } else
+               vmx->nested.nested_vmx_ept_caps = 0;
+
+       if (enable_unrestricted_guest)
+               vmx->nested.nested_vmx_secondary_ctls_high |=
+                       SECONDARY_EXEC_UNRESTRICTED_GUEST;
+
+       /* miscellaneous data */
+       rdmsr(MSR_IA32_VMX_MISC,
+               vmx->nested.nested_vmx_misc_low,
+               vmx->nested.nested_vmx_misc_high);
+       vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
+       vmx->nested.nested_vmx_misc_low |=
+               VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
+               VMX_MISC_ACTIVITY_HLT;
+       vmx->nested.nested_vmx_misc_high = 0;
+}
+
+static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+{
+       /*
+        * Bits 0 in high must be 0, and bits 1 in low must be 1.
+        */
+       return ((control & high) | low) == control;
+}
+
+static inline u64 vmx_control_msr(u32 low, u32 high)
+{
+       return low | ((u64)high << 32);
+}
+
+/* Returns 0 on success, non-0 otherwise. */
+static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       switch (msr_index) {
+       case MSR_IA32_VMX_BASIC:
+               /*
+                * This MSR reports some information about VMX support. We
+                * should return information about the VMX we emulate for the
+                * guest, and the VMCS structure we give it - not about the
+                * VMX support of the underlying hardware.
+                */
+               *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
+                          ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+                          (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+               break;
+       case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+       case MSR_IA32_VMX_PINBASED_CTLS:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_pinbased_ctls_low,
+                       vmx->nested.nested_vmx_pinbased_ctls_high);
+               break;
+       case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_true_procbased_ctls_low,
+                       vmx->nested.nested_vmx_procbased_ctls_high);
+               break;
+       case MSR_IA32_VMX_PROCBASED_CTLS:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_procbased_ctls_low,
+                       vmx->nested.nested_vmx_procbased_ctls_high);
+               break;
+       case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_true_exit_ctls_low,
+                       vmx->nested.nested_vmx_exit_ctls_high);
+               break;
+       case MSR_IA32_VMX_EXIT_CTLS:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_exit_ctls_low,
+                       vmx->nested.nested_vmx_exit_ctls_high);
+               break;
+       case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_true_entry_ctls_low,
+                       vmx->nested.nested_vmx_entry_ctls_high);
+               break;
+       case MSR_IA32_VMX_ENTRY_CTLS:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_entry_ctls_low,
+                       vmx->nested.nested_vmx_entry_ctls_high);
+               break;
+       case MSR_IA32_VMX_MISC:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_misc_low,
+                       vmx->nested.nested_vmx_misc_high);
+               break;
+       /*
+        * These MSRs specify bits which the guest must keep fixed (on or off)
+        * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+        * We picked the standard core2 setting.
+        */
+#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
+       case MSR_IA32_VMX_CR0_FIXED0:
+               *pdata = VMXON_CR0_ALWAYSON;
+               break;
+       case MSR_IA32_VMX_CR0_FIXED1:
+               *pdata = -1ULL;
+               break;
+       case MSR_IA32_VMX_CR4_FIXED0:
+               *pdata = VMXON_CR4_ALWAYSON;
+               break;
+       case MSR_IA32_VMX_CR4_FIXED1:
+               *pdata = -1ULL;
+               break;
+       case MSR_IA32_VMX_VMCS_ENUM:
+               *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
+               break;
+       case MSR_IA32_VMX_PROCBASED_CTLS2:
+               *pdata = vmx_control_msr(
+                       vmx->nested.nested_vmx_secondary_ctls_low,
+                       vmx->nested.nested_vmx_secondary_ctls_high);
+               break;
+       case MSR_IA32_VMX_EPT_VPID_CAP:
+               /* Currently, no nested vpid support */
+               *pdata = vmx->nested.nested_vmx_ept_caps;
+               break;
+       default:
+               return 1;
+       }
+
+       return 0;
+}
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
+{
+       u64 data;
+       struct shared_msr_entry *msr;
+
+       if (!pdata) {
+               printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
+               return -EINVAL;
+       }
+
+       switch (msr_index) {
+#ifdef CONFIG_X86_64
+       case MSR_FS_BASE:
+               data = vmcs_readl(GUEST_FS_BASE);
+               break;
+       case MSR_GS_BASE:
+               data = vmcs_readl(GUEST_GS_BASE);
+               break;
+       case MSR_KERNEL_GS_BASE:
+               vmx_load_host_state(to_vmx(vcpu));
+               data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
+               break;
+#endif
+       case MSR_EFER:
+               return kvm_get_msr_common(vcpu, msr_index, pdata);
+       case MSR_IA32_TSC:
+               data = guest_read_tsc();
+               break;
+       case MSR_IA32_SYSENTER_CS:
+               data = vmcs_read32(GUEST_SYSENTER_CS);
+               break;
+       case MSR_IA32_SYSENTER_EIP:
+               data = vmcs_readl(GUEST_SYSENTER_EIP);
+               break;
+       case MSR_IA32_SYSENTER_ESP:
+               data = vmcs_readl(GUEST_SYSENTER_ESP);
+               break;
+       case MSR_IA32_BNDCFGS:
+               if (!vmx_mpx_supported())
+                       return 1;
+               data = vmcs_read64(GUEST_BNDCFGS);
+               break;
+       case MSR_IA32_FEATURE_CONTROL:
+               if (!nested_vmx_allowed(vcpu))
+                       return 1;
+               data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
+               break;
+       case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+               if (!nested_vmx_allowed(vcpu))
+                       return 1;
+               return vmx_get_vmx_msr(vcpu, msr_index, pdata);
+       case MSR_IA32_XSS:
+               if (!vmx_xsaves_supported())
+                       return 1;
+               data = vcpu->arch.ia32_xss;
+               break;
+       case MSR_TSC_AUX:
+               if (!to_vmx(vcpu)->rdtscp_enabled)
+                       return 1;
+               /* Otherwise falls through */
+       default:
+               msr = find_msr_entry(to_vmx(vcpu), msr_index);
+               if (msr) {
+                       data = msr->data;
+                       break;
+               }
+               return kvm_get_msr_common(vcpu, msr_index, pdata);
+       }
+
+       *pdata = data;
+       return 0;
+}
+
+static void vmx_leave_nested(struct kvm_vcpu *vcpu);
+
+/*
+ * Writes msr value into into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct shared_msr_entry *msr;
+       int ret = 0;
+       u32 msr_index = msr_info->index;
+       u64 data = msr_info->data;
+
+       switch (msr_index) {
+       case MSR_EFER:
+               ret = kvm_set_msr_common(vcpu, msr_info);
+               break;
+#ifdef CONFIG_X86_64
+       case MSR_FS_BASE:
+               vmx_segment_cache_clear(vmx);
+               vmcs_writel(GUEST_FS_BASE, data);
+               break;
+       case MSR_GS_BASE:
+               vmx_segment_cache_clear(vmx);
+               vmcs_writel(GUEST_GS_BASE, data);
+               break;
+       case MSR_KERNEL_GS_BASE:
+               vmx_load_host_state(vmx);
+               vmx->msr_guest_kernel_gs_base = data;
+               break;
+#endif
+       case MSR_IA32_SYSENTER_CS:
+               vmcs_write32(GUEST_SYSENTER_CS, data);
+               break;
+       case MSR_IA32_SYSENTER_EIP:
+               vmcs_writel(GUEST_SYSENTER_EIP, data);
+               break;
+       case MSR_IA32_SYSENTER_ESP:
+               vmcs_writel(GUEST_SYSENTER_ESP, data);
+               break;
+       case MSR_IA32_BNDCFGS:
+               if (!vmx_mpx_supported())
+                       return 1;
+               vmcs_write64(GUEST_BNDCFGS, data);
+               break;
+       case MSR_IA32_TSC:
+               kvm_write_tsc(vcpu, msr_info);
+               break;
+       case MSR_IA32_CR_PAT:
+               if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+                       if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
+                               return 1;
+                       vmcs_write64(GUEST_IA32_PAT, data);
+                       vcpu->arch.pat = data;
+                       break;
+               }
+               ret = kvm_set_msr_common(vcpu, msr_info);
+               break;
+       case MSR_IA32_TSC_ADJUST:
+               ret = kvm_set_msr_common(vcpu, msr_info);
+               break;
+       case MSR_IA32_FEATURE_CONTROL:
+               if (!nested_vmx_allowed(vcpu) ||
+                   (to_vmx(vcpu)->nested.msr_ia32_feature_control &
+                    FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
+                       return 1;
+               vmx->nested.msr_ia32_feature_control = data;
+               if (msr_info->host_initiated && data == 0)
+                       vmx_leave_nested(vcpu);
+               break;
+       case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+               return 1; /* they are read-only */
+       case MSR_IA32_XSS:
+               if (!vmx_xsaves_supported())
+                       return 1;
+               /*
+                * The only supported bit as of Skylake is bit 8, but
+                * it is not supported on KVM.
+                */
+               if (data != 0)
+                       return 1;
+               vcpu->arch.ia32_xss = data;
+               if (vcpu->arch.ia32_xss != host_xss)
+                       add_atomic_switch_msr(vmx, MSR_IA32_XSS,
+                               vcpu->arch.ia32_xss, host_xss);
+               else
+                       clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
+               break;
+       case MSR_TSC_AUX:
+               if (!vmx->rdtscp_enabled)
+                       return 1;
+               /* Check reserved bit, higher 32 bits should be zero */
+               if ((data >> 32) != 0)
+                       return 1;
+               /* Otherwise falls through */
+       default:
+               msr = find_msr_entry(vmx, msr_index);
+               if (msr) {
+                       u64 old_msr_data = msr->data;
+                       msr->data = data;
+                       if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
+                               preempt_disable();
+                               ret = kvm_set_shared_msr(msr->index, msr->data,
+                                                        msr->mask);
+                               preempt_enable();
+                               if (ret)
+                                       msr->data = old_msr_data;
+                       }
+                       break;
+               }
+               ret = kvm_set_msr_common(vcpu, msr_info);
+       }
+
+       return ret;
+}
+
+static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+       __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
+       switch (reg) {
+       case VCPU_REGS_RSP:
+               vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
+               break;
+       case VCPU_REGS_RIP:
+               vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
+               break;
+       case VCPU_EXREG_PDPTR:
+               if (enable_ept)
+                       ept_save_pdptrs(vcpu);
+               break;
+       default:
+               break;
+       }
+}
+
+static __init int cpu_has_kvm_support(void)
+{
+       return cpu_has_vmx();
+}
+
+static __init int vmx_disabled_by_bios(void)
+{
+       u64 msr;
+
+       rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
+       if (msr & FEATURE_CONTROL_LOCKED) {
+               /* launched w/ TXT and VMX disabled */
+               if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+                       && tboot_enabled())
+                       return 1;
+               /* launched w/o TXT and VMX only enabled w/ TXT */
+               if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+                       && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+                       && !tboot_enabled()) {
+                       printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
+                               "activate TXT before enabling KVM\n");
+                       return 1;
+               }
+               /* launched w/o TXT and VMX disabled */
+               if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+                       && !tboot_enabled())
+                       return 1;
+       }
+
+       return 0;
+}
+
+static void kvm_cpu_vmxon(u64 addr)
+{
+       asm volatile (ASM_VMX_VMXON_RAX
+                       : : "a"(&addr), "m"(addr)
+                       : "memory", "cc");
+}
+
+static int hardware_enable(void)
+{
+       int cpu = raw_smp_processor_id();
+       u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+       u64 old, test_bits;
+
+       if (cr4_read_shadow() & X86_CR4_VMXE)
+               return -EBUSY;
+
+       INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+
+       /*
+        * Now we can enable the vmclear operation in kdump
+        * since the loaded_vmcss_on_cpu list on this cpu
+        * has been initialized.
+        *
+        * Though the cpu is not in VMX operation now, there
+        * is no problem to enable the vmclear operation
+        * for the loaded_vmcss_on_cpu list is empty!
+        */
+       crash_enable_local_vmclear(cpu);
+
+       rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
+
+       test_bits = FEATURE_CONTROL_LOCKED;
+       test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+       if (tboot_enabled())
+               test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
+
+       if ((old & test_bits) != test_bits) {
+               /* enable and lock */
+               wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
+       }
+       cr4_set_bits(X86_CR4_VMXE);
+
+       if (vmm_exclusive) {
+               kvm_cpu_vmxon(phys_addr);
+               ept_sync_global();
+       }
+
+       native_store_gdt(this_cpu_ptr(&host_gdt));
+
+       return 0;
+}
+
+static void vmclear_local_loaded_vmcss(void)
+{
+       int cpu = raw_smp_processor_id();
+       struct loaded_vmcs *v, *n;
+
+       list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+                                loaded_vmcss_on_cpu_link)
+               __loaded_vmcs_clear(v);
+}
+
+
+/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
+ * tricks.
+ */
+static void kvm_cpu_vmxoff(void)
+{
+       asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
+}
+
+static void hardware_disable(void)
+{
+       if (vmm_exclusive) {
+               vmclear_local_loaded_vmcss();
+               kvm_cpu_vmxoff();
+       }
+       cr4_clear_bits(X86_CR4_VMXE);
+}
+
+static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
+                                     u32 msr, u32 *result)
+{
+       u32 vmx_msr_low, vmx_msr_high;
+       u32 ctl = ctl_min | ctl_opt;
+
+       rdmsr(msr, vmx_msr_low, vmx_msr_high);
+
+       ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
+       ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
+
+       /* Ensure minimum (required) set of control bits are supported. */
+       if (ctl_min & ~ctl)
+               return -EIO;
+
+       *result = ctl;
+       return 0;
+}
+
+static __init bool allow_1_setting(u32 msr, u32 ctl)
+{
+       u32 vmx_msr_low, vmx_msr_high;
+
+       rdmsr(msr, vmx_msr_low, vmx_msr_high);
+       return vmx_msr_high & ctl;
+}
+
+static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
+{
+       u32 vmx_msr_low, vmx_msr_high;
+       u32 min, opt, min2, opt2;
+       u32 _pin_based_exec_control = 0;
+       u32 _cpu_based_exec_control = 0;
+       u32 _cpu_based_2nd_exec_control = 0;
+       u32 _vmexit_control = 0;
+       u32 _vmentry_control = 0;
+
+       min = CPU_BASED_HLT_EXITING |
+#ifdef CONFIG_X86_64
+             CPU_BASED_CR8_LOAD_EXITING |
+             CPU_BASED_CR8_STORE_EXITING |
+#endif
+             CPU_BASED_CR3_LOAD_EXITING |
+             CPU_BASED_CR3_STORE_EXITING |
+             CPU_BASED_USE_IO_BITMAPS |
+             CPU_BASED_MOV_DR_EXITING |
+             CPU_BASED_USE_TSC_OFFSETING |
+             CPU_BASED_MWAIT_EXITING |
+             CPU_BASED_MONITOR_EXITING |
+             CPU_BASED_INVLPG_EXITING |
+             CPU_BASED_RDPMC_EXITING;
+
+       opt = CPU_BASED_TPR_SHADOW |
+             CPU_BASED_USE_MSR_BITMAPS |
+             CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+       if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
+                               &_cpu_based_exec_control) < 0)
+               return -EIO;
+#ifdef CONFIG_X86_64
+       if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+               _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
+                                          ~CPU_BASED_CR8_STORE_EXITING;
+#endif
+       if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
+               min2 = 0;
+               opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+                       SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+                       SECONDARY_EXEC_WBINVD_EXITING |
+                       SECONDARY_EXEC_ENABLE_VPID |
+                       SECONDARY_EXEC_ENABLE_EPT |
+                       SECONDARY_EXEC_UNRESTRICTED_GUEST |
+                       SECONDARY_EXEC_PAUSE_LOOP_EXITING |
+                       SECONDARY_EXEC_RDTSCP |
+                       SECONDARY_EXEC_ENABLE_INVPCID |
+                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
+                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+                       SECONDARY_EXEC_SHADOW_VMCS |
+                       SECONDARY_EXEC_XSAVES |
+                       SECONDARY_EXEC_ENABLE_PML;
+               if (adjust_vmx_controls(min2, opt2,
+                                       MSR_IA32_VMX_PROCBASED_CTLS2,
+                                       &_cpu_based_2nd_exec_control) < 0)
+                       return -EIO;
+       }
+#ifndef CONFIG_X86_64
+       if (!(_cpu_based_2nd_exec_control &
+                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+               _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
+#endif
+
+       if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+               _cpu_based_2nd_exec_control &= ~(
+                               SECONDARY_EXEC_APIC_REGISTER_VIRT |
+                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+                               SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+
+       if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
+               /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
+                  enabled */
+               _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
+                                            CPU_BASED_CR3_STORE_EXITING |
+                                            CPU_BASED_INVLPG_EXITING);
+               rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
+                     vmx_capability.ept, vmx_capability.vpid);
+       }
+
+       min = VM_EXIT_SAVE_DEBUG_CONTROLS;
+#ifdef CONFIG_X86_64
+       min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
+#endif
+       opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
+               VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
+       if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
+                               &_vmexit_control) < 0)
+               return -EIO;
+
+       min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
+       opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
+       if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
+                               &_pin_based_exec_control) < 0)
+               return -EIO;
+
+       if (!(_cpu_based_2nd_exec_control &
+               SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
+               !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
+               _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
+
+       min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
+       opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
+       if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
+                               &_vmentry_control) < 0)
+               return -EIO;
+
+       rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
+
+       /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
+       if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
+               return -EIO;
+
+#ifdef CONFIG_X86_64
+       /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
+       if (vmx_msr_high & (1u<<16))
+               return -EIO;
+#endif
+
+       /* Require Write-Back (WB) memory type for VMCS accesses. */
+       if (((vmx_msr_high >> 18) & 15) != 6)
+               return -EIO;
+
+       vmcs_conf->size = vmx_msr_high & 0x1fff;
+       vmcs_conf->order = get_order(vmcs_config.size);
+       vmcs_conf->revision_id = vmx_msr_low;
+
+       vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
+       vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
+       vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
+       vmcs_conf->vmexit_ctrl         = _vmexit_control;
+       vmcs_conf->vmentry_ctrl        = _vmentry_control;
+
+       cpu_has_load_ia32_efer =
+               allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
+                               VM_ENTRY_LOAD_IA32_EFER)
+               && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
+                                  VM_EXIT_LOAD_IA32_EFER);
+
+       cpu_has_load_perf_global_ctrl =
+               allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
+                               VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+               && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
+                                  VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+
+       /*
+        * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
+        * but due to arrata below it can't be used. Workaround is to use
+        * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
+        *
+        * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
+        *
+        * AAK155             (model 26)
+        * AAP115             (model 30)
+        * AAT100             (model 37)
+        * BC86,AAY89,BD102   (model 44)
+        * BA97               (model 46)
+        *
+        */
+       if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
+               switch (boot_cpu_data.x86_model) {
+               case 26:
+               case 30:
+               case 37:
+               case 44:
+               case 46:
+                       cpu_has_load_perf_global_ctrl = false;
+                       printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
+                                       "does not work properly. Using workaround\n");
+                       break;
+               default:
+                       break;
+               }
+       }
+
+       if (cpu_has_xsaves)
+               rdmsrl(MSR_IA32_XSS, host_xss);
+
+       return 0;
+}
+
+static struct vmcs *alloc_vmcs_cpu(int cpu)
+{
+       int node = cpu_to_node(cpu);
+       struct page *pages;
+       struct vmcs *vmcs;
+
+       pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
+       if (!pages)
+               return NULL;
+       vmcs = page_address(pages);
+       memset(vmcs, 0, vmcs_config.size);
+       vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
+       return vmcs;
+}
+
+static struct vmcs *alloc_vmcs(void)
+{
+       return alloc_vmcs_cpu(raw_smp_processor_id());
+}
+
+static void free_vmcs(struct vmcs *vmcs)
+{
+       free_pages((unsigned long)vmcs, vmcs_config.order);
+}
+
+/*
+ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+ */
+static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+       if (!loaded_vmcs->vmcs)
+               return;
+       loaded_vmcs_clear(loaded_vmcs);
+       free_vmcs(loaded_vmcs->vmcs);
+       loaded_vmcs->vmcs = NULL;
+}
+
+static void free_kvm_area(void)
+{
+       int cpu;
+
+       for_each_possible_cpu(cpu) {
+               free_vmcs(per_cpu(vmxarea, cpu));
+               per_cpu(vmxarea, cpu) = NULL;
+       }
+}
+
+static void init_vmcs_shadow_fields(void)
+{
+       int i, j;
+
+       /* No checks for read only fields yet */
+
+       for (i = j = 0; i < max_shadow_read_write_fields; i++) {
+               switch (shadow_read_write_fields[i]) {
+               case GUEST_BNDCFGS:
+                       if (!vmx_mpx_supported())
+                               continue;
+                       break;
+               default:
+                       break;
+               }
+
+               if (j < i)
+                       shadow_read_write_fields[j] =
+                               shadow_read_write_fields[i];
+               j++;
+       }
+       max_shadow_read_write_fields = j;
+
+       /* shadowed fields guest access without vmexit */
+       for (i = 0; i < max_shadow_read_write_fields; i++) {
+               clear_bit(shadow_read_write_fields[i],
+                         vmx_vmwrite_bitmap);
+               clear_bit(shadow_read_write_fields[i],
+                         vmx_vmread_bitmap);
+       }
+       for (i = 0; i < max_shadow_read_only_fields; i++)
+               clear_bit(shadow_read_only_fields[i],
+                         vmx_vmread_bitmap);
+}
+
+static __init int alloc_kvm_area(void)
+{
+       int cpu;
+
+       for_each_possible_cpu(cpu) {
+               struct vmcs *vmcs;
+
+               vmcs = alloc_vmcs_cpu(cpu);
+               if (!vmcs) {
+                       free_kvm_area();
+                       return -ENOMEM;
+               }
+
+               per_cpu(vmxarea, cpu) = vmcs;
+       }
+       return 0;
+}
+
+static bool emulation_required(struct kvm_vcpu *vcpu)
+{
+       return emulate_invalid_guest_state && !guest_state_valid(vcpu);
+}
+
+static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
+               struct kvm_segment *save)
+{
+       if (!emulate_invalid_guest_state) {
+               /*
+                * CS and SS RPL should be equal during guest entry according
+                * to VMX spec, but in reality it is not always so. Since vcpu
+                * is in the middle of the transition from real mode to
+                * protected mode it is safe to assume that RPL 0 is a good
+                * default value.
+                */
+               if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
+                       save->selector &= ~SEGMENT_RPL_MASK;
+               save->dpl = save->selector & SEGMENT_RPL_MASK;
+               save->s = 1;
+       }
+       vmx_set_segment(vcpu, save, seg);
+}
+
+static void enter_pmode(struct kvm_vcpu *vcpu)
+{
+       unsigned long flags;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       /*
+        * Update real mode segment cache. It may be not up-to-date if sement
+        * register was written while vcpu was in a guest mode.
+        */
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+       vmx->rmode.vm86_active = 0;
+
+       vmx_segment_cache_clear(vmx);
+
+       vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+
+       flags = vmcs_readl(GUEST_RFLAGS);
+       flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+       flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+       vmcs_writel(GUEST_RFLAGS, flags);
+
+       vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
+                       (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
+
+       update_exception_bitmap(vcpu);
+
+       fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+       fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+       fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+       fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+       fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+       fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+}
+
+static void fix_rmode_seg(int seg, struct kvm_segment *save)
+{
+       const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+       struct kvm_segment var = *save;
+
+       var.dpl = 0x3;
+       if (seg == VCPU_SREG_CS)
+               var.type = 0x3;
+
+       if (!emulate_invalid_guest_state) {
+               var.selector = var.base >> 4;
+               var.base = var.base & 0xffff0;
+               var.limit = 0xffff;
+               var.g = 0;
+               var.db = 0;
+               var.present = 1;
+               var.s = 1;
+               var.l = 0;
+               var.unusable = 0;
+               var.type = 0x3;
+               var.avl = 0;
+               if (save->base & 0xf)
+                       printk_once(KERN_WARNING "kvm: segment base is not "
+                                       "paragraph aligned when entering "
+                                       "protected mode (seg=%d)", seg);
+       }
+
+       vmcs_write16(sf->selector, var.selector);
+       vmcs_write32(sf->base, var.base);
+       vmcs_write32(sf->limit, var.limit);
+       vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
+}
+
+static void enter_rmode(struct kvm_vcpu *vcpu)
+{
+       unsigned long flags;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+       vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+       vmx->rmode.vm86_active = 1;
+
+       /*
+        * Very old userspace does not call KVM_SET_TSS_ADDR before entering
+        * vcpu. Warn the user that an update is overdue.
+        */
+       if (!vcpu->kvm->arch.tss_addr)
+               printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
+                            "called before entering vcpu\n");
+
+       vmx_segment_cache_clear(vmx);
+
+       vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
+       vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
+       vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+       flags = vmcs_readl(GUEST_RFLAGS);
+       vmx->rmode.save_rflags = flags;
+
+       flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+
+       vmcs_writel(GUEST_RFLAGS, flags);
+       vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
+       update_exception_bitmap(vcpu);
+
+       fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+       fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+       fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+       fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+       fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+       fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+
+       kvm_mmu_reset_context(vcpu);
+}
+
+static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
+
+       if (!msr)
+               return;
+
+       /*
+        * Force kernel_gs_base reloading before EFER changes, as control
+        * of this msr depends on is_long_mode().
+        */
+       vmx_load_host_state(to_vmx(vcpu));
+       vcpu->arch.efer = efer;
+       if (efer & EFER_LMA) {
+               vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+               msr->data = efer;
+       } else {
+               vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+
+               msr->data = efer & ~EFER_LME;
+       }
+       setup_msrs(vmx);
+}
+
+#ifdef CONFIG_X86_64
+
+static void enter_lmode(struct kvm_vcpu *vcpu)
+{
+       u32 guest_tr_ar;
+
+       vmx_segment_cache_clear(to_vmx(vcpu));
+
+       guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
+       if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
+               pr_debug_ratelimited("%s: tss fixup for long mode. \n",
+                                    __func__);
+               vmcs_write32(GUEST_TR_AR_BYTES,
+                            (guest_tr_ar & ~AR_TYPE_MASK)
+                            | AR_TYPE_BUSY_64_TSS);
+       }
+       vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
+}
+
+static void exit_lmode(struct kvm_vcpu *vcpu)
+{
+       vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+       vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
+}
+
+#endif
+
+static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
+{
+       vpid_sync_context(to_vmx(vcpu));
+       if (enable_ept) {
+               if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+                       return;
+               ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
+       }
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
+{
+       ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
+
+       vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
+       vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
+}
+
+static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
+{
+       if (enable_ept && is_paging(vcpu))
+               vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+       __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+}
+
+static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
+{
+       ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
+
+       vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
+       vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
+}
+
+static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
+{
+       struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+       if (!test_bit(VCPU_EXREG_PDPTR,
+                     (unsigned long *)&vcpu->arch.regs_dirty))
+               return;
+
+       if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+               vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
+               vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
+               vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
+               vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
+       }
+}
+
+static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
+{
+       struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+       if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+               mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+               mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+               mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+               mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+       }
+
+       __set_bit(VCPU_EXREG_PDPTR,
+                 (unsigned long *)&vcpu->arch.regs_avail);
+       __set_bit(VCPU_EXREG_PDPTR,
+                 (unsigned long *)&vcpu->arch.regs_dirty);
+}
+
+static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+
+static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
+                                       unsigned long cr0,
+                                       struct kvm_vcpu *vcpu)
+{
+       if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+               vmx_decache_cr3(vcpu);
+       if (!(cr0 & X86_CR0_PG)) {
+               /* From paging/starting to nonpaging */
+               vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+                            vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
+                            (CPU_BASED_CR3_LOAD_EXITING |
+                             CPU_BASED_CR3_STORE_EXITING));
+               vcpu->arch.cr0 = cr0;
+               vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+       } else if (!is_paging(vcpu)) {
+               /* From nonpaging to paging */
+               vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+                            vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+                            ~(CPU_BASED_CR3_LOAD_EXITING |
+                              CPU_BASED_CR3_STORE_EXITING));
+               vcpu->arch.cr0 = cr0;
+               vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+       }
+
+       if (!(cr0 & X86_CR0_WP))
+               *hw_cr0 &= ~X86_CR0_WP;
+}
+
+static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       unsigned long hw_cr0;
+
+       hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
+       if (enable_unrestricted_guest)
+               hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
+       else {
+               hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
+
+               if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
+                       enter_pmode(vcpu);
+
+               if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
+                       enter_rmode(vcpu);
+       }
+
+#ifdef CONFIG_X86_64
+       if (vcpu->arch.efer & EFER_LME) {
+               if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
+                       enter_lmode(vcpu);
+               if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
+                       exit_lmode(vcpu);
+       }
+#endif
+
+       if (enable_ept)
+               ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
+
+       if (!vcpu->fpu_active)
+               hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
+
+       vmcs_writel(CR0_READ_SHADOW, cr0);
+       vmcs_writel(GUEST_CR0, hw_cr0);
+       vcpu->arch.cr0 = cr0;
+
+       /* depends on vcpu->arch.cr0 to be set to a new value */
+       vmx->emulation_required = emulation_required(vcpu);
+}
+
+static u64 construct_eptp(unsigned long root_hpa)
+{
+       u64 eptp;
+
+       /* TODO write the value reading from MSR */
+       eptp = VMX_EPT_DEFAULT_MT |
+               VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
+       if (enable_ept_ad_bits)
+               eptp |= VMX_EPT_AD_ENABLE_BIT;
+       eptp |= (root_hpa & PAGE_MASK);
+
+       return eptp;
+}
+
+static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+       unsigned long guest_cr3;
+       u64 eptp;
+
+       guest_cr3 = cr3;
+       if (enable_ept) {
+               eptp = construct_eptp(cr3);
+               vmcs_write64(EPT_POINTER, eptp);
+               if (is_paging(vcpu) || is_guest_mode(vcpu))
+                       guest_cr3 = kvm_read_cr3(vcpu);
+               else
+                       guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
+               ept_load_pdptrs(vcpu);
+       }
+
+       vmx_flush_tlb(vcpu);
+       vmcs_writel(GUEST_CR3, guest_cr3);
+}
+
+static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+       /*
+        * Pass through host's Machine Check Enable value to hw_cr4, which
+        * is in force while we are in guest mode.  Do not let guests control
+        * this bit, even if host CR4.MCE == 0.
+        */
+       unsigned long hw_cr4 =
+               (cr4_read_shadow() & X86_CR4_MCE) |
+               (cr4 & ~X86_CR4_MCE) |
+               (to_vmx(vcpu)->rmode.vm86_active ?
+                KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
+
+       if (cr4 & X86_CR4_VMXE) {
+               /*
+                * To use VMXON (and later other VMX instructions), a guest
+                * must first be able to turn on cr4.VMXE (see handle_vmon()).
+                * So basically the check on whether to allow nested VMX
+                * is here.
+                */
+               if (!nested_vmx_allowed(vcpu))
+                       return 1;
+       }
+       if (to_vmx(vcpu)->nested.vmxon &&
+           ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
+               return 1;
+
+       vcpu->arch.cr4 = cr4;
+       if (enable_ept) {
+               if (!is_paging(vcpu)) {
+                       hw_cr4 &= ~X86_CR4_PAE;
+                       hw_cr4 |= X86_CR4_PSE;
+                       /*
+                        * SMEP/SMAP is disabled if CPU is in non-paging mode
+                        * in hardware. However KVM always uses paging mode to
+                        * emulate guest non-paging mode with TDP.
+                        * To emulate this behavior, SMEP/SMAP needs to be
+                        * manually disabled when guest switches to non-paging
+                        * mode.
+                        */
+                       hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
+               } else if (!(cr4 & X86_CR4_PAE)) {
+                       hw_cr4 &= ~X86_CR4_PAE;
+               }
+       }
+
+       vmcs_writel(CR4_READ_SHADOW, cr4);
+       vmcs_writel(GUEST_CR4, hw_cr4);
+       return 0;
+}
+
+static void vmx_get_segment(struct kvm_vcpu *vcpu,
+                           struct kvm_segment *var, int seg)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 ar;
+
+       if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+               *var = vmx->rmode.segs[seg];
+               if (seg == VCPU_SREG_TR
+                   || var->selector == vmx_read_guest_seg_selector(vmx, seg))
+                       return;
+               var->base = vmx_read_guest_seg_base(vmx, seg);
+               var->selector = vmx_read_guest_seg_selector(vmx, seg);
+               return;
+       }
+       var->base = vmx_read_guest_seg_base(vmx, seg);
+       var->limit = vmx_read_guest_seg_limit(vmx, seg);
+       var->selector = vmx_read_guest_seg_selector(vmx, seg);
+       ar = vmx_read_guest_seg_ar(vmx, seg);
+       var->unusable = (ar >> 16) & 1;
+       var->type = ar & 15;
+       var->s = (ar >> 4) & 1;
+       var->dpl = (ar >> 5) & 3;
+       /*
+        * Some userspaces do not preserve unusable property. Since usable
+        * segment has to be present according to VMX spec we can use present
+        * property to amend userspace bug by making unusable segment always
+        * nonpresent. vmx_segment_access_rights() already marks nonpresent
+        * segment as unusable.
+        */
+       var->present = !var->unusable;
+       var->avl = (ar >> 12) & 1;
+       var->l = (ar >> 13) & 1;
+       var->db = (ar >> 14) & 1;
+       var->g = (ar >> 15) & 1;
+}
+
+static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+       struct kvm_segment s;
+
+       if (to_vmx(vcpu)->rmode.vm86_active) {
+               vmx_get_segment(vcpu, &s, seg);
+               return s.base;
+       }
+       return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
+}
+
+static int vmx_get_cpl(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (unlikely(vmx->rmode.vm86_active))
+               return 0;
+       else {
+               int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+               return AR_DPL(ar);
+       }
+}
+
+static u32 vmx_segment_access_rights(struct kvm_segment *var)
+{
+       u32 ar;
+
+       if (var->unusable || !var->present)
+               ar = 1 << 16;
+       else {
+               ar = var->type & 15;
+               ar |= (var->s & 1) << 4;
+               ar |= (var->dpl & 3) << 5;
+               ar |= (var->present & 1) << 7;
+               ar |= (var->avl & 1) << 12;
+               ar |= (var->l & 1) << 13;
+               ar |= (var->db & 1) << 14;
+               ar |= (var->g & 1) << 15;
+       }
+
+       return ar;
+}
+
+static void vmx_set_segment(struct kvm_vcpu *vcpu,
+                           struct kvm_segment *var, int seg)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+
+       vmx_segment_cache_clear(vmx);
+
+       if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+               vmx->rmode.segs[seg] = *var;
+               if (seg == VCPU_SREG_TR)
+                       vmcs_write16(sf->selector, var->selector);
+               else if (var->s)
+                       fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
+               goto out;
+       }
+
+       vmcs_writel(sf->base, var->base);
+       vmcs_write32(sf->limit, var->limit);
+       vmcs_write16(sf->selector, var->selector);
+
+       /*
+        *   Fix the "Accessed" bit in AR field of segment registers for older
+        * qemu binaries.
+        *   IA32 arch specifies that at the time of processor reset the
+        * "Accessed" bit in the AR field of segment registers is 1. And qemu
+        * is setting it to 0 in the userland code. This causes invalid guest
+        * state vmexit when "unrestricted guest" mode is turned on.
+        *    Fix for this setup issue in cpu_reset is being pushed in the qemu
+        * tree. Newer qemu binaries with that qemu fix would not need this
+        * kvm hack.
+        */
+       if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
+               var->type |= 0x1; /* Accessed */
+
+       vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
+
+out:
+       vmx->emulation_required = emulation_required(vcpu);
+}
+
+static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+       u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
+
+       *db = (ar >> 14) & 1;
+       *l = (ar >> 13) & 1;
+}
+
+static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+       dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
+       dt->address = vmcs_readl(GUEST_IDTR_BASE);
+}
+
+static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+       vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
+       vmcs_writel(GUEST_IDTR_BASE, dt->address);
+}
+
+static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+       dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
+       dt->address = vmcs_readl(GUEST_GDTR_BASE);
+}
+
+static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+       vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
+       vmcs_writel(GUEST_GDTR_BASE, dt->address);
+}
+
+static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+       struct kvm_segment var;
+       u32 ar;
+
+       vmx_get_segment(vcpu, &var, seg);
+       var.dpl = 0x3;
+       if (seg == VCPU_SREG_CS)
+               var.type = 0x3;
+       ar = vmx_segment_access_rights(&var);
+
+       if (var.base != (var.selector << 4))
+               return false;
+       if (var.limit != 0xffff)
+               return false;
+       if (ar != 0xf3)
+               return false;
+
+       return true;
+}
+
+static bool code_segment_valid(struct kvm_vcpu *vcpu)
+{
+       struct kvm_segment cs;
+       unsigned int cs_rpl;
+
+       vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+       cs_rpl = cs.selector & SEGMENT_RPL_MASK;
+
+       if (cs.unusable)
+               return false;
+       if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
+               return false;
+       if (!cs.s)
+               return false;
+       if (cs.type & AR_TYPE_WRITEABLE_MASK) {
+               if (cs.dpl > cs_rpl)
+                       return false;
+       } else {
+               if (cs.dpl != cs_rpl)
+                       return false;
+       }
+       if (!cs.present)
+               return false;
+
+       /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
+       return true;
+}
+
+static bool stack_segment_valid(struct kvm_vcpu *vcpu)
+{
+       struct kvm_segment ss;
+       unsigned int ss_rpl;
+
+       vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+       ss_rpl = ss.selector & SEGMENT_RPL_MASK;
+
+       if (ss.unusable)
+               return true;
+       if (ss.type != 3 && ss.type != 7)
+               return false;
+       if (!ss.s)
+               return false;
+       if (ss.dpl != ss_rpl) /* DPL != RPL */
+               return false;
+       if (!ss.present)
+               return false;
+
+       return true;
+}
+
+static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+       struct kvm_segment var;
+       unsigned int rpl;
+
+       vmx_get_segment(vcpu, &var, seg);
+       rpl = var.selector & SEGMENT_RPL_MASK;
+
+       if (var.unusable)
+               return true;
+       if (!var.s)
+               return false;
+       if (!var.present)
+               return false;
+       if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
+               if (var.dpl < rpl) /* DPL < RPL */
+                       return false;
+       }
+
+       /* TODO: Add other members to kvm_segment_field to allow checking for other access
+        * rights flags
+        */
+       return true;
+}
+
+static bool tr_valid(struct kvm_vcpu *vcpu)
+{
+       struct kvm_segment tr;
+
+       vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
+
+       if (tr.unusable)
+               return false;
+       if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
+               return false;
+       if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
+               return false;
+       if (!tr.present)
+               return false;
+
+       return true;
+}
+
+static bool ldtr_valid(struct kvm_vcpu *vcpu)
+{
+       struct kvm_segment ldtr;
+
+       vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
+
+       if (ldtr.unusable)
+               return true;
+       if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
+               return false;
+       if (ldtr.type != 2)
+               return false;
+       if (!ldtr.present)
+               return false;
+
+       return true;
+}
+
+static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
+{
+       struct kvm_segment cs, ss;
+
+       vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+       vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+
+       return ((cs.selector & SEGMENT_RPL_MASK) ==
+                (ss.selector & SEGMENT_RPL_MASK));
+}
+
+/*
+ * Check if guest state is valid. Returns true if valid, false if
+ * not.
+ * We assume that registers are always usable
+ */
+static bool guest_state_valid(struct kvm_vcpu *vcpu)
+{
+       if (enable_unrestricted_guest)
+               return true;
+
+       /* real mode guest state checks */
+       if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+               if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
+                       return false;
+               if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
+                       return false;
+               if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
+                       return false;
+               if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
+                       return false;
+               if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
+                       return false;
+               if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
+                       return false;
+       } else {
+       /* protected mode guest state checks */
+               if (!cs_ss_rpl_check(vcpu))
+                       return false;
+               if (!code_segment_valid(vcpu))
+                       return false;
+               if (!stack_segment_valid(vcpu))
+                       return false;
+               if (!data_segment_valid(vcpu, VCPU_SREG_DS))
+                       return false;
+               if (!data_segment_valid(vcpu, VCPU_SREG_ES))
+                       return false;
+               if (!data_segment_valid(vcpu, VCPU_SREG_FS))
+                       return false;
+               if (!data_segment_valid(vcpu, VCPU_SREG_GS))
+                       return false;
+               if (!tr_valid(vcpu))
+                       return false;
+               if (!ldtr_valid(vcpu))
+                       return false;
+       }
+       /* TODO:
+        * - Add checks on RIP
+        * - Add checks on RFLAGS
+        */
+
+       return true;
+}
+
+static int init_rmode_tss(struct kvm *kvm)
+{
+       gfn_t fn;
+       u16 data = 0;
+       int idx, r;
+
+       idx = srcu_read_lock(&kvm->srcu);
+       fn = kvm->arch.tss_addr >> PAGE_SHIFT;
+       r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+       if (r < 0)
+               goto out;
+       data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
+       r = kvm_write_guest_page(kvm, fn++, &data,
+                       TSS_IOPB_BASE_OFFSET, sizeof(u16));
+       if (r < 0)
+               goto out;
+       r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
+       if (r < 0)
+               goto out;
+       r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+       if (r < 0)
+               goto out;
+       data = ~0;
+       r = kvm_write_guest_page(kvm, fn, &data,
+                                RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
+                                sizeof(u8));
+out:
+       srcu_read_unlock(&kvm->srcu, idx);
+       return r;
+}
+
+static int init_rmode_identity_map(struct kvm *kvm)
+{
+       int i, idx, r = 0;
+       pfn_t identity_map_pfn;
+       u32 tmp;
+
+       if (!enable_ept)
+               return 0;
+
+       /* Protect kvm->arch.ept_identity_pagetable_done. */
+       mutex_lock(&kvm->slots_lock);
+
+       if (likely(kvm->arch.ept_identity_pagetable_done))
+               goto out2;
+
+       identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
+
+       r = alloc_identity_pagetable(kvm);
+       if (r < 0)
+               goto out2;
+
+       idx = srcu_read_lock(&kvm->srcu);
+       r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
+       if (r < 0)
+               goto out;
+       /* Set up identity-mapping pagetable for EPT in real mode */
+       for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
+               tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
+                       _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
+               r = kvm_write_guest_page(kvm, identity_map_pfn,
+                               &tmp, i * sizeof(tmp), sizeof(tmp));
+               if (r < 0)
+                       goto out;
+       }
+       kvm->arch.ept_identity_pagetable_done = true;
+
+out:
+       srcu_read_unlock(&kvm->srcu, idx);
+
+out2:
+       mutex_unlock(&kvm->slots_lock);
+       return r;
+}
+
+static void seg_setup(int seg)
+{
+       const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+       unsigned int ar;
+
+       vmcs_write16(sf->selector, 0);
+       vmcs_writel(sf->base, 0);
+       vmcs_write32(sf->limit, 0xffff);
+       ar = 0x93;
+       if (seg == VCPU_SREG_CS)
+               ar |= 0x08; /* code segment */
+
+       vmcs_write32(sf->ar_bytes, ar);
+}
+
+static int alloc_apic_access_page(struct kvm *kvm)
+{
+       struct page *page;
+       struct kvm_userspace_memory_region kvm_userspace_mem;
+       int r = 0;
+
+       mutex_lock(&kvm->slots_lock);
+       if (kvm->arch.apic_access_page_done)
+               goto out;
+       kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
+       kvm_userspace_mem.flags = 0;
+       kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
+       kvm_userspace_mem.memory_size = PAGE_SIZE;
+       r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
+       if (r)
+               goto out;
+
+       page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+       if (is_error_page(page)) {
+               r = -EFAULT;
+               goto out;
+       }
+
+       /*
+        * Do not pin the page in memory, so that memory hot-unplug
+        * is able to migrate it.
+        */
+       put_page(page);
+       kvm->arch.apic_access_page_done = true;
+out:
+       mutex_unlock(&kvm->slots_lock);
+       return r;
+}
+
+static int alloc_identity_pagetable(struct kvm *kvm)
+{
+       /* Called with kvm->slots_lock held. */
+
+       struct kvm_userspace_memory_region kvm_userspace_mem;
+       int r = 0;
+
+       BUG_ON(kvm->arch.ept_identity_pagetable_done);
+
+       kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
+       kvm_userspace_mem.flags = 0;
+       kvm_userspace_mem.guest_phys_addr =
+               kvm->arch.ept_identity_map_addr;
+       kvm_userspace_mem.memory_size = PAGE_SIZE;
+       r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
+
+       return r;
+}
+
+static void allocate_vpid(struct vcpu_vmx *vmx)
+{
+       int vpid;
+
+       vmx->vpid = 0;
+       if (!enable_vpid)
+               return;
+       spin_lock(&vmx_vpid_lock);
+       vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
+       if (vpid < VMX_NR_VPIDS) {
+               vmx->vpid = vpid;
+               __set_bit(vpid, vmx_vpid_bitmap);
+       }
+       spin_unlock(&vmx_vpid_lock);
+}
+
+static void free_vpid(struct vcpu_vmx *vmx)
+{
+       if (!enable_vpid)
+               return;
+       spin_lock(&vmx_vpid_lock);
+       if (vmx->vpid != 0)
+               __clear_bit(vmx->vpid, vmx_vpid_bitmap);
+       spin_unlock(&vmx_vpid_lock);
+}
+
+#define MSR_TYPE_R     1
+#define MSR_TYPE_W     2
+static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+                                               u32 msr, int type)
+{
+       int f = sizeof(unsigned long);
+
+       if (!cpu_has_vmx_msr_bitmap())
+               return;
+
+       /*
+        * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+        * have the write-low and read-high bitmap offsets the wrong way round.
+        * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+        */
+       if (msr <= 0x1fff) {
+               if (type & MSR_TYPE_R)
+                       /* read-low */
+                       __clear_bit(msr, msr_bitmap + 0x000 / f);
+
+               if (type & MSR_TYPE_W)
+                       /* write-low */
+                       __clear_bit(msr, msr_bitmap + 0x800 / f);
+
+       } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+               msr &= 0x1fff;
+               if (type & MSR_TYPE_R)
+                       /* read-high */
+                       __clear_bit(msr, msr_bitmap + 0x400 / f);
+
+               if (type & MSR_TYPE_W)
+                       /* write-high */
+                       __clear_bit(msr, msr_bitmap + 0xc00 / f);
+
+       }
+}
+
+static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
+                                               u32 msr, int type)
+{
+       int f = sizeof(unsigned long);
+
+       if (!cpu_has_vmx_msr_bitmap())
+               return;
+
+       /*
+        * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+        * have the write-low and read-high bitmap offsets the wrong way round.
+        * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+        */
+       if (msr <= 0x1fff) {
+               if (type & MSR_TYPE_R)
+                       /* read-low */
+                       __set_bit(msr, msr_bitmap + 0x000 / f);
+
+               if (type & MSR_TYPE_W)
+                       /* write-low */
+                       __set_bit(msr, msr_bitmap + 0x800 / f);
+
+       } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+               msr &= 0x1fff;
+               if (type & MSR_TYPE_R)
+                       /* read-high */
+                       __set_bit(msr, msr_bitmap + 0x400 / f);
+
+               if (type & MSR_TYPE_W)
+                       /* write-high */
+                       __set_bit(msr, msr_bitmap + 0xc00 / f);
+
+       }
+}
+
+/*
+ * If a msr is allowed by L0, we should check whether it is allowed by L1.
+ * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+ */
+static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
+                                              unsigned long *msr_bitmap_nested,
+                                              u32 msr, int type)
+{
+       int f = sizeof(unsigned long);
+
+       if (!cpu_has_vmx_msr_bitmap()) {
+               WARN_ON(1);
+               return;
+       }
+
+       /*
+        * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+        * have the write-low and read-high bitmap offsets the wrong way round.
+        * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+        */
+       if (msr <= 0x1fff) {
+               if (type & MSR_TYPE_R &&
+                  !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
+                       /* read-low */
+                       __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+
+               if (type & MSR_TYPE_W &&
+                  !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
+                       /* write-low */
+                       __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
+
+       } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+               msr &= 0x1fff;
+               if (type & MSR_TYPE_R &&
+                  !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
+                       /* read-high */
+                       __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
+
+               if (type & MSR_TYPE_W &&
+                  !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
+                       /* write-high */
+                       __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
+
+       }
+}
+
+static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
+{
+       if (!longmode_only)
+               __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
+                                               msr, MSR_TYPE_R | MSR_TYPE_W);
+       __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
+                                               msr, MSR_TYPE_R | MSR_TYPE_W);
+}
+
+static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
+{
+       __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
+                       msr, MSR_TYPE_R);
+       __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
+                       msr, MSR_TYPE_R);
+}
+
+static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
+{
+       __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
+                       msr, MSR_TYPE_R);
+       __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
+                       msr, MSR_TYPE_R);
+}
+
+static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
+{
+       __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
+                       msr, MSR_TYPE_W);
+       __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
+                       msr, MSR_TYPE_W);
+}
+
+static int vmx_vm_has_apicv(struct kvm *kvm)
+{
+       return enable_apicv && irqchip_in_kernel(kvm);
+}
+
+static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int max_irr;
+       void *vapic_page;
+       u16 status;
+
+       if (vmx->nested.pi_desc &&
+           vmx->nested.pi_pending) {
+               vmx->nested.pi_pending = false;
+               if (!pi_test_and_clear_on(vmx->nested.pi_desc))
+                       return 0;
+
+               max_irr = find_last_bit(
+                       (unsigned long *)vmx->nested.pi_desc->pir, 256);
+
+               if (max_irr == 256)
+                       return 0;
+
+               vapic_page = kmap(vmx->nested.virtual_apic_page);
+               if (!vapic_page) {
+                       WARN_ON(1);
+                       return -ENOMEM;
+               }
+               __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
+               kunmap(vmx->nested.virtual_apic_page);
+
+               status = vmcs_read16(GUEST_INTR_STATUS);
+               if ((u8)max_irr > ((u8)status & 0xff)) {
+                       status &= ~0xff;
+                       status |= (u8)max_irr;
+                       vmcs_write16(GUEST_INTR_STATUS, status);
+               }
+       }
+       return 0;
+}
+
+static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_SMP
+       if (vcpu->mode == IN_GUEST_MODE) {
+               apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
+                               POSTED_INTR_VECTOR);
+               return true;
+       }
+#endif
+       return false;
+}
+
+static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
+                                               int vector)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (is_guest_mode(vcpu) &&
+           vector == vmx->nested.posted_intr_nv) {
+               /* the PIR and ON have been set by L1. */
+               kvm_vcpu_trigger_posted_interrupt(vcpu);
+               /*
+                * If a posted intr is not recognized by hardware,
+                * we will accomplish it in the next vmentry.
+                */
+               vmx->nested.pi_pending = true;
+               kvm_make_request(KVM_REQ_EVENT, vcpu);
+               return 0;
+       }
+       return -1;
+}
+/*
+ * Send interrupt to vcpu via posted interrupt way.
+ * 1. If target vcpu is running(non-root mode), send posted interrupt
+ * notification to vcpu and hardware will sync PIR to vIRR atomically.
+ * 2. If target vcpu isn't running(root mode), kick it to pick up the
+ * interrupt from PIR in next vmentry.
+ */
+static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int r;
+
+       r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
+       if (!r)
+               return;
+
+       if (pi_test_and_set_pir(vector, &vmx->pi_desc))
+               return;
+
+       r = pi_test_and_set_on(&vmx->pi_desc);
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+       if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
+               kvm_vcpu_kick(vcpu);
+}
+
+static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (!pi_test_and_clear_on(&vmx->pi_desc))
+               return;
+
+       kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
+}
+
+static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
+{
+       return;
+}
+
+/*
+ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+ * will not change in the lifetime of the guest.
+ * Note that host-state that does change is set elsewhere. E.g., host-state
+ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+ */
+static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
+{
+       u32 low32, high32;
+       unsigned long tmpl;
+       struct desc_ptr dt;
+       unsigned long cr4;
+
+       vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
+       vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
+
+       /* Save the most likely value for this task's CR4 in the VMCS. */
+       cr4 = cr4_read_shadow();
+       vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
+       vmx->host_state.vmcs_host_cr4 = cr4;
+
+       vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
+#ifdef CONFIG_X86_64
+       /*
+        * Load null selectors, so we can avoid reloading them in
+        * __vmx_load_host_state(), in case userspace uses the null selectors
+        * too (the expected case).
+        */
+       vmcs_write16(HOST_DS_SELECTOR, 0);
+       vmcs_write16(HOST_ES_SELECTOR, 0);
+#else
+       vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+       vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+#endif
+       vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+       vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
+
+       native_store_idt(&dt);
+       vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
+       vmx->host_idt_base = dt.address;
+
+       vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
+
+       rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+       vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+       rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+       vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
+
+       if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+               rdmsr(MSR_IA32_CR_PAT, low32, high32);
+               vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+       }
+}
+
+static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+{
+       vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
+       if (enable_ept)
+               vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
+       if (is_guest_mode(&vmx->vcpu))
+               vmx->vcpu.arch.cr4_guest_owned_bits &=
+                       ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
+       vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+}
+
+static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
+{
+       u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
+
+       if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
+               pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+       return pin_based_exec_ctrl;
+}
+
+static u32 vmx_exec_control(struct vcpu_vmx *vmx)
+{
+       u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+
+       if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
+               exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+
+       if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
+               exec_control &= ~CPU_BASED_TPR_SHADOW;
+#ifdef CONFIG_X86_64
+               exec_control |= CPU_BASED_CR8_STORE_EXITING |
+                               CPU_BASED_CR8_LOAD_EXITING;
+#endif
+       }
+       if (!enable_ept)
+               exec_control |= CPU_BASED_CR3_STORE_EXITING |
+                               CPU_BASED_CR3_LOAD_EXITING  |
+                               CPU_BASED_INVLPG_EXITING;
+       return exec_control;
+}
+
+static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+       u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+       if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
+               exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+       if (vmx->vpid == 0)
+               exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+       if (!enable_ept) {
+               exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+               enable_unrestricted_guest = 0;
+               /* Enable INVPCID for non-ept guests may cause performance regression. */
+               exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+       }
+       if (!enable_unrestricted_guest)
+               exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+       if (!ple_gap)
+               exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+       if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
+               exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
+                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+       exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+       /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
+          (handle_vmptrld).
+          We can NOT enable shadow_vmcs here because we don't have yet
+          a current VMCS12
+       */
+       exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+       /* PML is enabled/disabled in creating/destorying vcpu */
+       exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+
+       return exec_control;
+}
+
+static void ept_set_mmio_spte_mask(void)
+{
+       /*
+        * EPT Misconfigurations can be generated if the value of bits 2:0
+        * of an EPT paging-structure entry is 110b (write/execute).
+        * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
+        * spte.
+        */
+       kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
+}
+
+#define VMX_XSS_EXIT_BITMAP 0
+/*
+ * Sets up the vmcs for emulated real mode.
+ */
+static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
+{
+#ifdef CONFIG_X86_64
+       unsigned long a;
+#endif
+       int i;
+
+       /* I/O */
+       vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
+       vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
+
+       if (enable_shadow_vmcs) {
+               vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
+               vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
+       }
+       if (cpu_has_vmx_msr_bitmap())
+               vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
+
+       vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
+
+       /* Control */
+       vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
+
+       if (cpu_has_secondary_exec_ctrls()) {
+               vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+                               vmx_secondary_exec_control(vmx));
+       }
+
+       if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
+               vmcs_write64(EOI_EXIT_BITMAP0, 0);
+               vmcs_write64(EOI_EXIT_BITMAP1, 0);
+               vmcs_write64(EOI_EXIT_BITMAP2, 0);
+               vmcs_write64(EOI_EXIT_BITMAP3, 0);
+
+               vmcs_write16(GUEST_INTR_STATUS, 0);
+
+               vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+               vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
+       }
+
+       if (ple_gap) {
+               vmcs_write32(PLE_GAP, ple_gap);
+               vmx->ple_window = ple_window;
+               vmx->ple_window_dirty = true;
+       }
+
+       vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+       vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
+       vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
+
+       vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
+       vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
+       vmx_set_constant_host_state(vmx);
+#ifdef CONFIG_X86_64
+       rdmsrl(MSR_FS_BASE, a);
+       vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
+       rdmsrl(MSR_GS_BASE, a);
+       vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
+#else
+       vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
+       vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
+#endif
+
+       vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+       vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+       vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
+       vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+       vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
+
+       if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+               u32 msr_low, msr_high;
+               u64 host_pat;
+               rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
+               host_pat = msr_low | ((u64) msr_high << 32);
+               /* Write the default value follow host pat */
+               vmcs_write64(GUEST_IA32_PAT, host_pat);
+               /* Keep arch.pat sync with GUEST_IA32_PAT */
+               vmx->vcpu.arch.pat = host_pat;
+       }
+
+       for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
+               u32 index = vmx_msr_index[i];
+               u32 data_low, data_high;
+               int j = vmx->nmsrs;
+
+               if (rdmsr_safe(index, &data_low, &data_high) < 0)
+                       continue;
+               if (wrmsr_safe(index, data_low, data_high) < 0)
+                       continue;
+               vmx->guest_msrs[j].index = i;
+               vmx->guest_msrs[j].data = 0;
+               vmx->guest_msrs[j].mask = -1ull;
+               ++vmx->nmsrs;
+       }
+
+
+       vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
+
+       /* 22.2.1, 20.8.1 */
+       vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
+
+       vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
+       set_cr4_guest_host_mask(vmx);
+
+       if (vmx_xsaves_supported())
+               vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
+
+       return 0;
+}
+
+static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct msr_data apic_base_msr;
+
+       vmx->rmode.vm86_active = 0;
+
+       vmx->soft_vnmi_blocked = 0;
+
+       vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
+       kvm_set_cr8(&vmx->vcpu, 0);
+       apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
+       if (kvm_vcpu_is_reset_bsp(&vmx->vcpu))
+               apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
+       apic_base_msr.host_initiated = true;
+       kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
+
+       vmx_segment_cache_clear(vmx);
+
+       seg_setup(VCPU_SREG_CS);
+       vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
+       vmcs_write32(GUEST_CS_BASE, 0xffff0000);
+
+       seg_setup(VCPU_SREG_DS);
+       seg_setup(VCPU_SREG_ES);
+       seg_setup(VCPU_SREG_FS);
+       seg_setup(VCPU_SREG_GS);
+       seg_setup(VCPU_SREG_SS);
+
+       vmcs_write16(GUEST_TR_SELECTOR, 0);
+       vmcs_writel(GUEST_TR_BASE, 0);
+       vmcs_write32(GUEST_TR_LIMIT, 0xffff);
+       vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+       vmcs_write16(GUEST_LDTR_SELECTOR, 0);
+       vmcs_writel(GUEST_LDTR_BASE, 0);
+       vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
+       vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
+
+       vmcs_write32(GUEST_SYSENTER_CS, 0);
+       vmcs_writel(GUEST_SYSENTER_ESP, 0);
+       vmcs_writel(GUEST_SYSENTER_EIP, 0);
+
+       vmcs_writel(GUEST_RFLAGS, 0x02);
+       kvm_rip_write(vcpu, 0xfff0);
+
+       vmcs_writel(GUEST_GDTR_BASE, 0);
+       vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
+
+       vmcs_writel(GUEST_IDTR_BASE, 0);
+       vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
+
+       vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+       vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
+       vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+
+       /* Special registers */
+       vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+
+       setup_msrs(vmx);
+
+       vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
+
+       if (cpu_has_vmx_tpr_shadow()) {
+               vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
+               if (vm_need_tpr_shadow(vmx->vcpu.kvm))
+                       vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+                                    __pa(vmx->vcpu.arch.apic->regs));
+               vmcs_write32(TPR_THRESHOLD, 0);
+       }
+
+       kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+       if (vmx_vm_has_apicv(vcpu->kvm))
+               memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
+
+       if (vmx->vpid != 0)
+               vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+
+       vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
+       vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
+       vmx_set_cr4(&vmx->vcpu, 0);
+       vmx_set_efer(&vmx->vcpu, 0);
+       vmx_fpu_activate(&vmx->vcpu);
+       update_exception_bitmap(&vmx->vcpu);
+
+       vpid_sync_context(vmx);
+}
+
+/*
+ * In nested virtualization, check if L1 asked to exit on external interrupts.
+ * For most existing hypervisors, this will always return true.
+ */
+static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
+{
+       return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+               PIN_BASED_EXT_INTR_MASK;
+}
+
+/*
+ * In nested virtualization, check if L1 has set
+ * VM_EXIT_ACK_INTR_ON_EXIT
+ */
+static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+{
+       return get_vmcs12(vcpu)->vm_exit_controls &
+               VM_EXIT_ACK_INTR_ON_EXIT;
+}
+
+static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
+{
+       return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+               PIN_BASED_NMI_EXITING;
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+       u32 cpu_based_vm_exec_control;
+
+       cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+       cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+       u32 cpu_based_vm_exec_control;
+
+       if (!cpu_has_virtual_nmis() ||
+           vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
+               enable_irq_window(vcpu);
+               return;
+       }
+
+       cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+       cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+}
+
+static void vmx_inject_irq(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       uint32_t intr;
+       int irq = vcpu->arch.interrupt.nr;
+
+       trace_kvm_inj_virq(irq);
+
+       ++vcpu->stat.irq_injections;
+       if (vmx->rmode.vm86_active) {
+               int inc_eip = 0;
+               if (vcpu->arch.interrupt.soft)
+                       inc_eip = vcpu->arch.event_exit_inst_len;
+               if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
+                       kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+               return;
+       }
+       intr = irq | INTR_INFO_VALID_MASK;
+       if (vcpu->arch.interrupt.soft) {
+               intr |= INTR_TYPE_SOFT_INTR;
+               vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+                            vmx->vcpu.arch.event_exit_inst_len);
+       } else
+               intr |= INTR_TYPE_EXT_INTR;
+       vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
+}
+
+static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (is_guest_mode(vcpu))
+               return;
+
+       if (!cpu_has_virtual_nmis()) {
+               /*
+                * Tracking the NMI-blocked state in software is built upon
+                * finding the next open IRQ window. This, in turn, depends on
+                * well-behaving guests: They have to keep IRQs disabled at
+                * least as long as the NMI handler runs. Otherwise we may
+                * cause NMI nesting, maybe breaking the guest. But as this is
+                * highly unlikely, we can live with the residual risk.
+                */
+               vmx->soft_vnmi_blocked = 1;
+               vmx->vnmi_blocked_time = 0;
+       }
+
+       ++vcpu->stat.nmi_injections;
+       vmx->nmi_known_unmasked = false;
+       if (vmx->rmode.vm86_active) {
+               if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
+                       kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+               return;
+       }
+       vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+                       INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
+}
+
+static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+       if (!cpu_has_virtual_nmis())
+               return to_vmx(vcpu)->soft_vnmi_blocked;
+       if (to_vmx(vcpu)->nmi_known_unmasked)
+               return false;
+       return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
+}
+
+static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (!cpu_has_virtual_nmis()) {
+               if (vmx->soft_vnmi_blocked != masked) {
+                       vmx->soft_vnmi_blocked = masked;
+                       vmx->vnmi_blocked_time = 0;
+               }
+       } else {
+               vmx->nmi_known_unmasked = !masked;
+               if (masked)
+                       vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+                                     GUEST_INTR_STATE_NMI);
+               else
+                       vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
+                                       GUEST_INTR_STATE_NMI);
+       }
+}
+
+static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
+{
+       if (to_vmx(vcpu)->nested.nested_run_pending)
+               return 0;
+
+       if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
+               return 0;
+
+       return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
+                  | GUEST_INTR_STATE_NMI));
+}
+
+static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+       return (!to_vmx(vcpu)->nested.nested_run_pending &&
+               vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
+               !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+                       (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
+}
+
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+       int ret;
+       struct kvm_userspace_memory_region tss_mem = {
+               .slot = TSS_PRIVATE_MEMSLOT,
+               .guest_phys_addr = addr,
+               .memory_size = PAGE_SIZE * 3,
+               .flags = 0,
+       };
+
+       ret = kvm_set_memory_region(kvm, &tss_mem);
+       if (ret)
+               return ret;
+       kvm->arch.tss_addr = addr;
+       return init_rmode_tss(kvm);
+}
+
+static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
+{
+       switch (vec) {
+       case BP_VECTOR:
+               /*
+                * Update instruction length as we may reinject the exception
+                * from user space while in guest debugging mode.
+                */
+               to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
+                       vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+               if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+                       return false;
+               /* fall through */
+       case DB_VECTOR:
+               if (vcpu->guest_debug &
+                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+                       return false;
+               /* fall through */
+       case DE_VECTOR:
+       case OF_VECTOR:
+       case BR_VECTOR:
+       case UD_VECTOR:
+       case DF_VECTOR:
+       case SS_VECTOR:
+       case GP_VECTOR:
+       case MF_VECTOR:
+               return true;
+       break;
+       }
+       return false;
+}
+
+static int handle_rmode_exception(struct kvm_vcpu *vcpu,
+                                 int vec, u32 err_code)
+{
+       /*
+        * Instruction with address size override prefix opcode 0x67
+        * Cause the #SS fault with 0 error code in VM86 mode.
+        */
+       if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
+               if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
+                       if (vcpu->arch.halt_request) {
+                               vcpu->arch.halt_request = 0;
+                               return kvm_vcpu_halt(vcpu);
+                       }
+                       return 1;
+               }
+               return 0;
+       }
+
+       /*
+        * Forward all other exceptions that are valid in real mode.
+        * FIXME: Breaks guest debugging in real mode, needs to be fixed with
+        *        the required debugging infrastructure rework.
+        */
+       kvm_queue_exception(vcpu, vec);
+       return 1;
+}
+
+/*
+ * Trigger machine check on the host. We assume all the MSRs are already set up
+ * by the CPU and that we still run on the same CPU as the MCE occurred on.
+ * We pass a fake environment to the machine check handler because we want
+ * the guest to be always treated like user space, no matter what context
+ * it used internally.
+ */
+static void kvm_machine_check(void)
+{
+#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
+       struct pt_regs regs = {
+               .cs = 3, /* Fake ring 3 no matter what the guest ran on */
+               .flags = X86_EFLAGS_IF,
+       };
+
+       do_machine_check(&regs, 0);
+#endif
+}
+
+static int handle_machine_check(struct kvm_vcpu *vcpu)
+{
+       /* already handled by vcpu_run */
+       return 1;
+}
+
+static int handle_exception(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct kvm_run *kvm_run = vcpu->run;
+       u32 intr_info, ex_no, error_code;
+       unsigned long cr2, rip, dr6;
+       u32 vect_info;
+       enum emulation_result er;
+
+       vect_info = vmx->idt_vectoring_info;
+       intr_info = vmx->exit_intr_info;
+
+       if (is_machine_check(intr_info))
+               return handle_machine_check(vcpu);
+
+       if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
+               return 1;  /* already handled by vmx_vcpu_run() */
+
+       if (is_no_device(intr_info)) {
+               vmx_fpu_activate(vcpu);
+               return 1;
+       }
+
+       if (is_invalid_opcode(intr_info)) {
+               if (is_guest_mode(vcpu)) {
+                       kvm_queue_exception(vcpu, UD_VECTOR);
+                       return 1;
+               }
+               er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
+               if (er != EMULATE_DONE)
+                       kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+
+       error_code = 0;
+       if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
+               error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+
+       /*
+        * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
+        * MMIO, it is better to report an internal error.
+        * See the comments in vmx_handle_exit.
+        */
+       if ((vect_info & VECTORING_INFO_VALID_MASK) &&
+           !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
+               vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+               vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
+               vcpu->run->internal.ndata = 3;
+               vcpu->run->internal.data[0] = vect_info;
+               vcpu->run->internal.data[1] = intr_info;
+               vcpu->run->internal.data[2] = error_code;
+               return 0;
+       }
+
+       if (is_page_fault(intr_info)) {
+               /* EPT won't cause page fault directly */
+               BUG_ON(enable_ept);
+               cr2 = vmcs_readl(EXIT_QUALIFICATION);
+               trace_kvm_page_fault(cr2, error_code);
+
+               if (kvm_event_needs_reinjection(vcpu))
+                       kvm_mmu_unprotect_page_virt(vcpu, cr2);
+               return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
+       }
+
+       ex_no = intr_info & INTR_INFO_VECTOR_MASK;
+
+       if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
+               return handle_rmode_exception(vcpu, ex_no, error_code);
+
+       switch (ex_no) {
+       case DB_VECTOR:
+               dr6 = vmcs_readl(EXIT_QUALIFICATION);
+               if (!(vcpu->guest_debug &
+                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
+                       vcpu->arch.dr6 &= ~15;
+                       vcpu->arch.dr6 |= dr6 | DR6_RTM;
+                       if (!(dr6 & ~DR6_RESERVED)) /* icebp */
+                               skip_emulated_instruction(vcpu);
+
+                       kvm_queue_exception(vcpu, DB_VECTOR);
+                       return 1;
+               }
+               kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
+               kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
+               /* fall through */
+       case BP_VECTOR:
+               /*
+                * Update instruction length as we may reinject #BP from
+                * user space while in guest debugging mode. Reading it for
+                * #DB as well causes no harm, it is not used in that case.
+                */
+               vmx->vcpu.arch.event_exit_inst_len =
+                       vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+               kvm_run->exit_reason = KVM_EXIT_DEBUG;
+               rip = kvm_rip_read(vcpu);
+               kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
+               kvm_run->debug.arch.exception = ex_no;
+               break;
+       default:
+               kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
+               kvm_run->ex.exception = ex_no;
+               kvm_run->ex.error_code = error_code;
+               break;
+       }
+       return 0;
+}
+
+static int handle_external_interrupt(struct kvm_vcpu *vcpu)
+{
+       ++vcpu->stat.irq_exits;
+       return 1;
+}
+
+static int handle_triple_fault(struct kvm_vcpu *vcpu)
+{
+       vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+       return 0;
+}
+
+static int handle_io(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification;
+       int size, in, string;
+       unsigned port;
+
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       string = (exit_qualification & 16) != 0;
+       in = (exit_qualification & 8) != 0;
+
+       ++vcpu->stat.io_exits;
+
+       if (string || in)
+               return emulate_instruction(vcpu, 0) == EMULATE_DONE;
+
+       port = exit_qualification >> 16;
+       size = (exit_qualification & 7) + 1;
+       skip_emulated_instruction(vcpu);
+
+       return kvm_fast_pio_out(vcpu, size, port);
+}
+
+static void
+vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+       /*
+        * Patch in the VMCALL instruction:
+        */
+       hypercall[0] = 0x0f;
+       hypercall[1] = 0x01;
+       hypercall[2] = 0xc1;
+}
+
+static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+       unsigned long always_on = VMXON_CR0_ALWAYSON;
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+       if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
+               SECONDARY_EXEC_UNRESTRICTED_GUEST &&
+           nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
+               always_on &= ~(X86_CR0_PE | X86_CR0_PG);
+       return (val & always_on) == always_on;
+}
+
+/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+       if (is_guest_mode(vcpu)) {
+               struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+               unsigned long orig_val = val;
+
+               /*
+                * We get here when L2 changed cr0 in a way that did not change
+                * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+                * but did change L0 shadowed bits. So we first calculate the
+                * effective cr0 value that L1 would like to write into the
+                * hardware. It consists of the L2-owned bits from the new
+                * value combined with the L1-owned bits from L1's guest_cr0.
+                */
+               val = (val & ~vmcs12->cr0_guest_host_mask) |
+                       (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
+
+               if (!nested_cr0_valid(vcpu, val))
+                       return 1;
+
+               if (kvm_set_cr0(vcpu, val))
+                       return 1;
+               vmcs_writel(CR0_READ_SHADOW, orig_val);
+               return 0;
+       } else {
+               if (to_vmx(vcpu)->nested.vmxon &&
+                   ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
+                       return 1;
+               return kvm_set_cr0(vcpu, val);
+       }
+}
+
+static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+{
+       if (is_guest_mode(vcpu)) {
+               struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+               unsigned long orig_val = val;
+
+               /* analogously to handle_set_cr0 */
+               val = (val & ~vmcs12->cr4_guest_host_mask) |
+                       (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
+               if (kvm_set_cr4(vcpu, val))
+                       return 1;
+               vmcs_writel(CR4_READ_SHADOW, orig_val);
+               return 0;
+       } else
+               return kvm_set_cr4(vcpu, val);
+}
+
+/* called to set cr0 as approriate for clts instruction exit. */
+static void handle_clts(struct kvm_vcpu *vcpu)
+{
+       if (is_guest_mode(vcpu)) {
+               /*
+                * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
+                * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
+                * just pretend it's off (also in arch.cr0 for fpu_activate).
+                */
+               vmcs_writel(CR0_READ_SHADOW,
+                       vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
+               vcpu->arch.cr0 &= ~X86_CR0_TS;
+       } else
+               vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+}
+
+static int handle_cr(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification, val;
+       int cr;
+       int reg;
+       int err;
+
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       cr = exit_qualification & 15;
+       reg = (exit_qualification >> 8) & 15;
+       switch ((exit_qualification >> 4) & 3) {
+       case 0: /* mov to cr */
+               val = kvm_register_readl(vcpu, reg);
+               trace_kvm_cr_write(cr, val);
+               switch (cr) {
+               case 0:
+                       err = handle_set_cr0(vcpu, val);
+                       kvm_complete_insn_gp(vcpu, err);
+                       return 1;
+               case 3:
+                       err = kvm_set_cr3(vcpu, val);
+                       kvm_complete_insn_gp(vcpu, err);
+                       return 1;
+               case 4:
+                       err = handle_set_cr4(vcpu, val);
+                       kvm_complete_insn_gp(vcpu, err);
+                       return 1;
+               case 8: {
+                               u8 cr8_prev = kvm_get_cr8(vcpu);
+                               u8 cr8 = (u8)val;
+                               err = kvm_set_cr8(vcpu, cr8);
+                               kvm_complete_insn_gp(vcpu, err);
+                               if (irqchip_in_kernel(vcpu->kvm))
+                                       return 1;
+                               if (cr8_prev <= cr8)
+                                       return 1;
+                               vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
+                               return 0;
+                       }
+               }
+               break;
+       case 2: /* clts */
+               handle_clts(vcpu);
+               trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
+               skip_emulated_instruction(vcpu);
+               vmx_fpu_activate(vcpu);
+               return 1;
+       case 1: /*mov from cr*/
+               switch (cr) {
+               case 3:
+                       val = kvm_read_cr3(vcpu);
+                       kvm_register_write(vcpu, reg, val);
+                       trace_kvm_cr_read(cr, val);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               case 8:
+                       val = kvm_get_cr8(vcpu);
+                       kvm_register_write(vcpu, reg, val);
+                       trace_kvm_cr_read(cr, val);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+               break;
+       case 3: /* lmsw */
+               val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+               trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
+               kvm_lmsw(vcpu, val);
+
+               skip_emulated_instruction(vcpu);
+               return 1;
+       default:
+               break;
+       }
+       vcpu->run->exit_reason = 0;
+       vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
+              (int)(exit_qualification >> 4) & 3, cr);
+       return 0;
+}
+
+static int handle_dr(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification;
+       int dr, dr7, reg;
+
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
+
+       /* First, if DR does not exist, trigger UD */
+       if (!kvm_require_dr(vcpu, dr))
+               return 1;
+
+       /* Do not handle if the CPL > 0, will trigger GP on re-entry */
+       if (!kvm_require_cpl(vcpu, 0))
+               return 1;
+       dr7 = vmcs_readl(GUEST_DR7);
+       if (dr7 & DR7_GD) {
+               /*
+                * As the vm-exit takes precedence over the debug trap, we
+                * need to emulate the latter, either for the host or the
+                * guest debugging itself.
+                */
+               if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+                       vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
+                       vcpu->run->debug.arch.dr7 = dr7;
+                       vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+                       vcpu->run->debug.arch.exception = DB_VECTOR;
+                       vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+                       return 0;
+               } else {
+                       vcpu->arch.dr6 &= ~15;
+                       vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
+                       kvm_queue_exception(vcpu, DB_VECTOR);
+                       return 1;
+               }
+       }
+
+       if (vcpu->guest_debug == 0) {
+               u32 cpu_based_vm_exec_control;
+
+               cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+               cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+               vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+
+               /*
+                * No more DR vmexits; force a reload of the debug registers
+                * and reenter on this instruction.  The next vmexit will
+                * retrieve the full state of the debug registers.
+                */
+               vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+               return 1;
+       }
+
+       reg = DEBUG_REG_ACCESS_REG(exit_qualification);
+       if (exit_qualification & TYPE_MOV_FROM_DR) {
+               unsigned long val;
+
+               if (kvm_get_dr(vcpu, dr, &val))
+                       return 1;
+               kvm_register_write(vcpu, reg, val);
+       } else
+               if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
+                       return 1;
+
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
+{
+       return vcpu->arch.dr6;
+}
+
+static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
+{
+}
+
+static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+       u32 cpu_based_vm_exec_control;
+
+       get_debugreg(vcpu->arch.db[0], 0);
+       get_debugreg(vcpu->arch.db[1], 1);
+       get_debugreg(vcpu->arch.db[2], 2);
+       get_debugreg(vcpu->arch.db[3], 3);
+       get_debugreg(vcpu->arch.dr6, 6);
+       vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
+
+       vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+
+       cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+       cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+}
+
+static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
+{
+       vmcs_writel(GUEST_DR7, val);
+}
+
+static int handle_cpuid(struct kvm_vcpu *vcpu)
+{
+       kvm_emulate_cpuid(vcpu);
+       return 1;
+}
+
+static int handle_rdmsr(struct kvm_vcpu *vcpu)
+{
+       u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+       u64 data;
+
+       if (vmx_get_msr(vcpu, ecx, &data)) {
+               trace_kvm_msr_read_ex(ecx);
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+
+       trace_kvm_msr_read(ecx, data);
+
+       /* FIXME: handling of bits 32:63 of rax, rdx */
+       vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
+       vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+static int handle_wrmsr(struct kvm_vcpu *vcpu)
+{
+       struct msr_data msr;
+       u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+       u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
+               | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
+
+       msr.data = data;
+       msr.index = ecx;
+       msr.host_initiated = false;
+       if (kvm_set_msr(vcpu, &msr) != 0) {
+               trace_kvm_msr_write_ex(ecx, data);
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+
+       trace_kvm_msr_write(ecx, data);
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
+{
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+       return 1;
+}
+
+static int handle_interrupt_window(struct kvm_vcpu *vcpu)
+{
+       u32 cpu_based_vm_exec_control;
+
+       /* clear pending irq */
+       cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+       cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       ++vcpu->stat.irq_window_exits;
+
+       /*
+        * If the user space waits to inject interrupts, exit as soon as
+        * possible
+        */
+       if (!irqchip_in_kernel(vcpu->kvm) &&
+           vcpu->run->request_interrupt_window &&
+           !kvm_cpu_has_interrupt(vcpu)) {
+               vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
+               return 0;
+       }
+       return 1;
+}
+
+static int handle_halt(struct kvm_vcpu *vcpu)
+{
+       return kvm_emulate_halt(vcpu);
+}
+
+static int handle_vmcall(struct kvm_vcpu *vcpu)
+{
+       kvm_emulate_hypercall(vcpu);
+       return 1;
+}
+
+static int handle_invd(struct kvm_vcpu *vcpu)
+{
+       return emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_invlpg(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+       kvm_mmu_invlpg(vcpu, exit_qualification);
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+static int handle_rdpmc(struct kvm_vcpu *vcpu)
+{
+       int err;
+
+       err = kvm_rdpmc(vcpu);
+       kvm_complete_insn_gp(vcpu, err);
+
+       return 1;
+}
+
+static int handle_wbinvd(struct kvm_vcpu *vcpu)
+{
+       kvm_emulate_wbinvd(vcpu);
+       return 1;
+}
+
+static int handle_xsetbv(struct kvm_vcpu *vcpu)
+{
+       u64 new_bv = kvm_read_edx_eax(vcpu);
+       u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
+
+       if (kvm_set_xcr(vcpu, index, new_bv) == 0)
+               skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+static int handle_xsaves(struct kvm_vcpu *vcpu)
+{
+       skip_emulated_instruction(vcpu);
+       WARN(1, "this should never happen\n");
+       return 1;
+}
+
+static int handle_xrstors(struct kvm_vcpu *vcpu)
+{
+       skip_emulated_instruction(vcpu);
+       WARN(1, "this should never happen\n");
+       return 1;
+}
+
+static int handle_apic_access(struct kvm_vcpu *vcpu)
+{
+       if (likely(fasteoi)) {
+               unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+               int access_type, offset;
+
+               access_type = exit_qualification & APIC_ACCESS_TYPE;
+               offset = exit_qualification & APIC_ACCESS_OFFSET;
+               /*
+                * Sane guest uses MOV to write EOI, with written value
+                * not cared. So make a short-circuit here by avoiding
+                * heavy instruction emulation.
+                */
+               if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
+                   (offset == APIC_EOI)) {
+                       kvm_lapic_set_eoi(vcpu);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+       }
+       return emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       int vector = exit_qualification & 0xff;
+
+       /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
+       kvm_apic_set_eoi_accelerated(vcpu, vector);
+       return 1;
+}
+
+static int handle_apic_write(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       u32 offset = exit_qualification & 0xfff;
+
+       /* APIC-write VM exit is trap-like and thus no need to adjust IP */
+       kvm_apic_write_nodecode(vcpu, offset);
+       return 1;
+}
+
+static int handle_task_switch(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       unsigned long exit_qualification;
+       bool has_error_code = false;
+       u32 error_code = 0;
+       u16 tss_selector;
+       int reason, type, idt_v, idt_index;
+
+       idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
+       idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
+       type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
+
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+       reason = (u32)exit_qualification >> 30;
+       if (reason == TASK_SWITCH_GATE && idt_v) {
+               switch (type) {
+               case INTR_TYPE_NMI_INTR:
+                       vcpu->arch.nmi_injected = false;
+                       vmx_set_nmi_mask(vcpu, true);
+                       break;
+               case INTR_TYPE_EXT_INTR:
+               case INTR_TYPE_SOFT_INTR:
+                       kvm_clear_interrupt_queue(vcpu);
+                       break;
+               case INTR_TYPE_HARD_EXCEPTION:
+                       if (vmx->idt_vectoring_info &
+                           VECTORING_INFO_DELIVER_CODE_MASK) {
+                               has_error_code = true;
+                               error_code =
+                                       vmcs_read32(IDT_VECTORING_ERROR_CODE);
+                       }
+                       /* fall through */
+               case INTR_TYPE_SOFT_EXCEPTION:
+                       kvm_clear_exception_queue(vcpu);
+                       break;
+               default:
+                       break;
+               }
+       }
+       tss_selector = exit_qualification;
+
+       if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
+                      type != INTR_TYPE_EXT_INTR &&
+                      type != INTR_TYPE_NMI_INTR))
+               skip_emulated_instruction(vcpu);
+
+       if (kvm_task_switch(vcpu, tss_selector,
+                           type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
+                           has_error_code, error_code) == EMULATE_FAIL) {
+               vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+               vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+               vcpu->run->internal.ndata = 0;
+               return 0;
+       }
+
+       /* clear all local breakpoint enable flags */
+       vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
+
+       /*
+        * TODO: What about debug traps on tss switch?
+        *       Are we supposed to inject them and update dr6?
+        */
+
+       return 1;
+}
+
+static int handle_ept_violation(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification;
+       gpa_t gpa;
+       u32 error_code;
+       int gla_validity;
+
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+       gla_validity = (exit_qualification >> 7) & 0x3;
+       if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
+               printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
+               printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
+                       (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
+                       vmcs_readl(GUEST_LINEAR_ADDRESS));
+               printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
+                       (long unsigned int)exit_qualification);
+               vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
+               vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
+               return 0;
+       }
+
+       /*
+        * EPT violation happened while executing iret from NMI,
+        * "blocked by NMI" bit has to be set before next VM entry.
+        * There are errata that may cause this bit to not be set:
+        * AAK134, BY25.
+        */
+       if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+                       cpu_has_virtual_nmis() &&
+                       (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+               vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
+
+       gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+       trace_kvm_page_fault(gpa, exit_qualification);
+
+       /* It is a write fault? */
+       error_code = exit_qualification & PFERR_WRITE_MASK;
+       /* It is a fetch fault? */
+       error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
+       /* ept page table is present? */
+       error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
+
+       vcpu->arch.exit_qualification = exit_qualification;
+
+       return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
+}
+
+static u64 ept_rsvd_mask(u64 spte, int level)
+{
+       int i;
+       u64 mask = 0;
+
+       for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
+               mask |= (1ULL << i);
+
+       if (level == 4)
+               /* bits 7:3 reserved */
+               mask |= 0xf8;
+       else if (spte & (1ULL << 7))
+               /*
+                * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
+                * level == 1 if the hypervisor is using the ignored bit 7.
+                */
+               mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
+       else if (level > 1)
+               /* bits 6:3 reserved */
+               mask |= 0x78;
+
+       return mask;
+}
+
+static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
+                                      int level)
+{
+       printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
+
+       /* 010b (write-only) */
+       WARN_ON((spte & 0x7) == 0x2);
+
+       /* 110b (write/execute) */
+       WARN_ON((spte & 0x7) == 0x6);
+
+       /* 100b (execute-only) and value not supported by logical processor */
+       if (!cpu_has_vmx_ept_execute_only())
+               WARN_ON((spte & 0x7) == 0x4);
+
+       /* not 000b */
+       if ((spte & 0x7)) {
+               u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
+
+               if (rsvd_bits != 0) {
+                       printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
+                                        __func__, rsvd_bits);
+                       WARN_ON(1);
+               }
+
+               /* bits 5:3 are _not_ reserved for large page or leaf page */
+               if ((rsvd_bits & 0x38) == 0) {
+                       u64 ept_mem_type = (spte & 0x38) >> 3;
+
+                       if (ept_mem_type == 2 || ept_mem_type == 3 ||
+                           ept_mem_type == 7) {
+                               printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
+                                               __func__, ept_mem_type);
+                               WARN_ON(1);
+                       }
+               }
+       }
+}
+
+static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
+{
+       u64 sptes[4];
+       int nr_sptes, i, ret;
+       gpa_t gpa;
+
+       gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+       if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+               skip_emulated_instruction(vcpu);
+               return 1;
+       }
+
+       ret = handle_mmio_page_fault_common(vcpu, gpa, true);
+       if (likely(ret == RET_MMIO_PF_EMULATE))
+               return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
+                                             EMULATE_DONE;
+
+       if (unlikely(ret == RET_MMIO_PF_INVALID))
+               return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
+
+       if (unlikely(ret == RET_MMIO_PF_RETRY))
+               return 1;
+
+       /* It is the real ept misconfig */
+       printk(KERN_ERR "EPT: Misconfiguration.\n");
+       printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
+
+       nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
+
+       for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
+               ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
+
+       vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
+       vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
+
+       return 0;
+}
+
+static int handle_nmi_window(struct kvm_vcpu *vcpu)
+{
+       u32 cpu_based_vm_exec_control;
+
+       /* clear pending NMI */
+       cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+       cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+       ++vcpu->stat.nmi_window_exits;
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       return 1;
+}
+
+static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       enum emulation_result err = EMULATE_DONE;
+       int ret = 1;
+       u32 cpu_exec_ctrl;
+       bool intr_window_requested;
+       unsigned count = 130;
+
+       cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+       intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
+
+       while (vmx->emulation_required && count-- != 0) {
+               if (intr_window_requested && vmx_interrupt_allowed(vcpu))
+                       return handle_interrupt_window(&vmx->vcpu);
+
+               if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
+                       return 1;
+
+               err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
+
+               if (err == EMULATE_USER_EXIT) {
+                       ++vcpu->stat.mmio_exits;
+                       ret = 0;
+                       goto out;
+               }
+
+               if (err != EMULATE_DONE) {
+                       vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+                       vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+                       vcpu->run->internal.ndata = 0;
+                       return 0;
+               }
+
+               if (vcpu->arch.halt_request) {
+                       vcpu->arch.halt_request = 0;
+                       ret = kvm_vcpu_halt(vcpu);
+                       goto out;
+               }
+
+               if (signal_pending(current))
+                       goto out;
+               if (need_resched())
+                       schedule();
+       }
+
+out:
+       return ret;
+}
+
+static int __grow_ple_window(int val)
+{
+       if (ple_window_grow < 1)
+               return ple_window;
+
+       val = min(val, ple_window_actual_max);
+
+       if (ple_window_grow < ple_window)
+               val *= ple_window_grow;
+       else
+               val += ple_window_grow;
+
+       return val;
+}
+
+static int __shrink_ple_window(int val, int modifier, int minimum)
+{
+       if (modifier < 1)
+               return ple_window;
+
+       if (modifier < ple_window)
+               val /= modifier;
+       else
+               val -= modifier;
+
+       return max(val, minimum);
+}
+
+static void grow_ple_window(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int old = vmx->ple_window;
+
+       vmx->ple_window = __grow_ple_window(old);
+
+       if (vmx->ple_window != old)
+               vmx->ple_window_dirty = true;
+
+       trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+static void shrink_ple_window(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int old = vmx->ple_window;
+
+       vmx->ple_window = __shrink_ple_window(old,
+                                             ple_window_shrink, ple_window);
+
+       if (vmx->ple_window != old)
+               vmx->ple_window_dirty = true;
+
+       trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+/*
+ * ple_window_actual_max is computed to be one grow_ple_window() below
+ * ple_window_max. (See __grow_ple_window for the reason.)
+ * This prevents overflows, because ple_window_max is int.
+ * ple_window_max effectively rounded down to a multiple of ple_window_grow in
+ * this process.
+ * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
+ */
+static void update_ple_window_actual_max(void)
+{
+       ple_window_actual_max =
+                       __shrink_ple_window(max(ple_window_max, ple_window),
+                                           ple_window_grow, INT_MIN);
+}
+
+static __init int hardware_setup(void)
+{
+       int r = -ENOMEM, i, msr;
+
+       rdmsrl_safe(MSR_EFER, &host_efer);
+
+       for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
+               kvm_define_shared_msr(i, vmx_msr_index[i]);
+
+       vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_io_bitmap_a)
+               return r;
+
+       vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_io_bitmap_b)
+               goto out;
+
+       vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_msr_bitmap_legacy)
+               goto out1;
+
+       vmx_msr_bitmap_legacy_x2apic =
+                               (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_msr_bitmap_legacy_x2apic)
+               goto out2;
+
+       vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_msr_bitmap_longmode)
+               goto out3;
+
+       vmx_msr_bitmap_longmode_x2apic =
+                               (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_msr_bitmap_longmode_x2apic)
+               goto out4;
+
+       if (nested) {
+               vmx_msr_bitmap_nested =
+                       (unsigned long *)__get_free_page(GFP_KERNEL);
+               if (!vmx_msr_bitmap_nested)
+                       goto out5;
+       }
+
+       vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_vmread_bitmap)
+               goto out6;
+
+       vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
+       if (!vmx_vmwrite_bitmap)
+               goto out7;
+
+       memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
+       memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
+
+       /*
+        * Allow direct access to the PC debug port (it is often used for I/O
+        * delays, but the vmexits simply slow things down).
+        */
+       memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
+       clear_bit(0x80, vmx_io_bitmap_a);
+
+       memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
+
+       memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
+       memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
+       if (nested)
+               memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
+
+       if (setup_vmcs_config(&vmcs_config) < 0) {
+               r = -EIO;
+               goto out8;
+       }
+
+       if (boot_cpu_has(X86_FEATURE_NX))
+               kvm_enable_efer_bits(EFER_NX);
+
+       if (!cpu_has_vmx_vpid())
+               enable_vpid = 0;
+       if (!cpu_has_vmx_shadow_vmcs())
+               enable_shadow_vmcs = 0;
+       if (enable_shadow_vmcs)
+               init_vmcs_shadow_fields();
+
+       if (!cpu_has_vmx_ept() ||
+           !cpu_has_vmx_ept_4levels()) {
+               enable_ept = 0;
+               enable_unrestricted_guest = 0;
+               enable_ept_ad_bits = 0;
+       }
+
+       if (!cpu_has_vmx_ept_ad_bits())
+               enable_ept_ad_bits = 0;
+
+       if (!cpu_has_vmx_unrestricted_guest())
+               enable_unrestricted_guest = 0;
+
+       if (!cpu_has_vmx_flexpriority())
+               flexpriority_enabled = 0;
+
+       /*
+        * set_apic_access_page_addr() is used to reload apic access
+        * page upon invalidation.  No need to do anything if not
+        * using the APIC_ACCESS_ADDR VMCS field.
+        */
+       if (!flexpriority_enabled)
+               kvm_x86_ops->set_apic_access_page_addr = NULL;
+
+       if (!cpu_has_vmx_tpr_shadow())
+               kvm_x86_ops->update_cr8_intercept = NULL;
+
+       if (enable_ept && !cpu_has_vmx_ept_2m_page())
+               kvm_disable_largepages();
+
+       if (!cpu_has_vmx_ple())
+               ple_gap = 0;
+
+       if (!cpu_has_vmx_apicv())
+               enable_apicv = 0;
+
+       if (enable_apicv)
+               kvm_x86_ops->update_cr8_intercept = NULL;
+       else {
+               kvm_x86_ops->hwapic_irr_update = NULL;
+               kvm_x86_ops->hwapic_isr_update = NULL;
+               kvm_x86_ops->deliver_posted_interrupt = NULL;
+               kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
+       }
+
+       vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
+       vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
+       vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
+       vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
+       vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
+       vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
+       vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
+
+       memcpy(vmx_msr_bitmap_legacy_x2apic,
+                       vmx_msr_bitmap_legacy, PAGE_SIZE);
+       memcpy(vmx_msr_bitmap_longmode_x2apic,
+                       vmx_msr_bitmap_longmode, PAGE_SIZE);
+
+       if (enable_apicv) {
+               for (msr = 0x800; msr <= 0x8ff; msr++)
+                       vmx_disable_intercept_msr_read_x2apic(msr);
+
+               /* According SDM, in x2apic mode, the whole id reg is used.
+                * But in KVM, it only use the highest eight bits. Need to
+                * intercept it */
+               vmx_enable_intercept_msr_read_x2apic(0x802);
+               /* TMCCT */
+               vmx_enable_intercept_msr_read_x2apic(0x839);
+               /* TPR */
+               vmx_disable_intercept_msr_write_x2apic(0x808);
+               /* EOI */
+               vmx_disable_intercept_msr_write_x2apic(0x80b);
+               /* SELF-IPI */
+               vmx_disable_intercept_msr_write_x2apic(0x83f);
+       }
+
+       if (enable_ept) {
+               kvm_mmu_set_mask_ptes(0ull,
+                       (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
+                       (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
+                       0ull, VMX_EPT_EXECUTABLE_MASK);
+               ept_set_mmio_spte_mask();
+               kvm_enable_tdp();
+       } else
+               kvm_disable_tdp();
+
+       update_ple_window_actual_max();
+
+       /*
+        * Only enable PML when hardware supports PML feature, and both EPT
+        * and EPT A/D bit features are enabled -- PML depends on them to work.
+        */
+       if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
+               enable_pml = 0;
+
+       if (!enable_pml) {
+               kvm_x86_ops->slot_enable_log_dirty = NULL;
+               kvm_x86_ops->slot_disable_log_dirty = NULL;
+               kvm_x86_ops->flush_log_dirty = NULL;
+               kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
+       }
+
+       return alloc_kvm_area();
+
+out8:
+       free_page((unsigned long)vmx_vmwrite_bitmap);
+out7:
+       free_page((unsigned long)vmx_vmread_bitmap);
+out6:
+       if (nested)
+               free_page((unsigned long)vmx_msr_bitmap_nested);
+out5:
+       free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
+out4:
+       free_page((unsigned long)vmx_msr_bitmap_longmode);
+out3:
+       free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
+out2:
+       free_page((unsigned long)vmx_msr_bitmap_legacy);
+out1:
+       free_page((unsigned long)vmx_io_bitmap_b);
+out:
+       free_page((unsigned long)vmx_io_bitmap_a);
+
+    return r;
+}
+
+static __exit void hardware_unsetup(void)
+{
+       free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
+       free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
+       free_page((unsigned long)vmx_msr_bitmap_legacy);
+       free_page((unsigned long)vmx_msr_bitmap_longmode);
+       free_page((unsigned long)vmx_io_bitmap_b);
+       free_page((unsigned long)vmx_io_bitmap_a);
+       free_page((unsigned long)vmx_vmwrite_bitmap);
+       free_page((unsigned long)vmx_vmread_bitmap);
+       if (nested)
+               free_page((unsigned long)vmx_msr_bitmap_nested);
+
+       free_kvm_area();
+}
+
+/*
+ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
+ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
+ */
+static int handle_pause(struct kvm_vcpu *vcpu)
+{
+       if (ple_gap)
+               grow_ple_window(vcpu);
+
+       skip_emulated_instruction(vcpu);
+       kvm_vcpu_on_spin(vcpu);
+
+       return 1;
+}
+
+static int handle_nop(struct kvm_vcpu *vcpu)
+{
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+static int handle_mwait(struct kvm_vcpu *vcpu)
+{
+       printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+       return handle_nop(vcpu);
+}
+
+static int handle_monitor(struct kvm_vcpu *vcpu)
+{
+       printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+       return handle_nop(vcpu);
+}
+
+/*
+ * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
+ * We could reuse a single VMCS for all the L2 guests, but we also want the
+ * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
+ * allows keeping them loaded on the processor, and in the future will allow
+ * optimizations where prepare_vmcs02 doesn't need to set all the fields on
+ * every entry if they never change.
+ * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
+ * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
+ *
+ * The following functions allocate and free a vmcs02 in this pool.
+ */
+
+/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
+static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
+{
+       struct vmcs02_list *item;
+       list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
+               if (item->vmptr == vmx->nested.current_vmptr) {
+                       list_move(&item->list, &vmx->nested.vmcs02_pool);
+                       return &item->vmcs02;
+               }
+
+       if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
+               /* Recycle the least recently used VMCS. */
+               item = list_entry(vmx->nested.vmcs02_pool.prev,
+                       struct vmcs02_list, list);
+               item->vmptr = vmx->nested.current_vmptr;
+               list_move(&item->list, &vmx->nested.vmcs02_pool);
+               return &item->vmcs02;
+       }
+
+       /* Create a new VMCS */
+       item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
+       if (!item)
+               return NULL;
+       item->vmcs02.vmcs = alloc_vmcs();
+       if (!item->vmcs02.vmcs) {
+               kfree(item);
+               return NULL;
+       }
+       loaded_vmcs_init(&item->vmcs02);
+       item->vmptr = vmx->nested.current_vmptr;
+       list_add(&(item->list), &(vmx->nested.vmcs02_pool));
+       vmx->nested.vmcs02_num++;
+       return &item->vmcs02;
+}
+
+/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
+static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
+{
+       struct vmcs02_list *item;
+       list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
+               if (item->vmptr == vmptr) {
+                       free_loaded_vmcs(&item->vmcs02);
+                       list_del(&item->list);
+                       kfree(item);
+                       vmx->nested.vmcs02_num--;
+                       return;
+               }
+}
+
+/*
+ * Free all VMCSs saved for this vcpu, except the one pointed by
+ * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
+ * must be &vmx->vmcs01.
+ */
+static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
+{
+       struct vmcs02_list *item, *n;
+
+       WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
+       list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
+               /*
+                * Something will leak if the above WARN triggers.  Better than
+                * a use-after-free.
+                */
+               if (vmx->loaded_vmcs == &item->vmcs02)
+                       continue;
+
+               free_loaded_vmcs(&item->vmcs02);
+               list_del(&item->list);
+               kfree(item);
+               vmx->nested.vmcs02_num--;
+       }
+}
+
+/*
+ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+ * set the success or error code of an emulated VMX instruction, as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions".
+ */
+static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
+{
+       vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+                       & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+                           X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+}
+
+static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+{
+       vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+                       & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+                           X86_EFLAGS_SF | X86_EFLAGS_OF))
+                       | X86_EFLAGS_CF);
+}
+
+static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
+                                       u32 vm_instruction_error)
+{
+       if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
+               /*
+                * failValid writes the error number to the current VMCS, which
+                * can't be done there isn't a current VMCS.
+                */
+               nested_vmx_failInvalid(vcpu);
+               return;
+       }
+       vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+                       & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+                           X86_EFLAGS_SF | X86_EFLAGS_OF))
+                       | X86_EFLAGS_ZF);
+       get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+       /*
+        * We don't need to force a shadow sync because
+        * VM_INSTRUCTION_ERROR is not shadowed
+        */
+}
+
+static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
+{
+       /* TODO: not to reset guest simply here. */
+       kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+       pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
+}
+
+static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
+{
+       struct vcpu_vmx *vmx =
+               container_of(timer, struct vcpu_vmx, nested.preemption_timer);
+
+       vmx->nested.preemption_timer_expired = true;
+       kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+       kvm_vcpu_kick(&vmx->vcpu);
+
+       return HRTIMER_NORESTART;
+}
+
+/*
+ * Decode the memory-address operand of a vmx instruction, as recorded on an
+ * exit caused by such an instruction (run by a guest hypervisor).
+ * On success, returns 0. When the operand is invalid, returns 1 and throws
+ * #UD or #GP.
+ */
+static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
+                                unsigned long exit_qualification,
+                                u32 vmx_instruction_info, gva_t *ret)
+{
+       /*
+        * According to Vol. 3B, "Information for VM Exits Due to Instruction
+        * Execution", on an exit, vmx_instruction_info holds most of the
+        * addressing components of the operand. Only the displacement part
+        * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+        * For how an actual address is calculated from all these components,
+        * refer to Vol. 1, "Operand Addressing".
+        */
+       int  scaling = vmx_instruction_info & 3;
+       int  addr_size = (vmx_instruction_info >> 7) & 7;
+       bool is_reg = vmx_instruction_info & (1u << 10);
+       int  seg_reg = (vmx_instruction_info >> 15) & 7;
+       int  index_reg = (vmx_instruction_info >> 18) & 0xf;
+       bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+       int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
+       bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
+
+       if (is_reg) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+
+       /* Addr = segment_base + offset */
+       /* offset = base + [index * scale] + displacement */
+       *ret = vmx_get_segment_base(vcpu, seg_reg);
+       if (base_is_valid)
+               *ret += kvm_register_read(vcpu, base_reg);
+       if (index_is_valid)
+               *ret += kvm_register_read(vcpu, index_reg)<<scaling;
+       *ret += exit_qualification; /* holds the displacement */
+
+       if (addr_size == 1) /* 32 bit */
+               *ret &= 0xffffffff;
+
+       /*
+        * TODO: throw #GP (and return 1) in various cases that the VM*
+        * instructions require it - e.g., offset beyond segment limit,
+        * unusable or unreadable/unwritable segment, non-canonical 64-bit
+        * address, and so on. Currently these are not checked.
+        */
+       return 0;
+}
+
+/*
+ * This function performs the various checks including
+ * - if it's 4KB aligned
+ * - No bits beyond the physical address width are set
+ * - Returns 0 on success or else 1
+ * (Intel SDM Section 30.3)
+ */
+static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
+                                 gpa_t *vmpointer)
+{
+       gva_t gva;
+       gpa_t vmptr;
+       struct x86_exception e;
+       struct page *page;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+       if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+                       vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
+               return 1;
+
+       if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
+                               sizeof(vmptr), &e)) {
+               kvm_inject_page_fault(vcpu, &e);
+               return 1;
+       }
+
+       switch (exit_reason) {
+       case EXIT_REASON_VMON:
+               /*
+                * SDM 3: 24.11.5
+                * The first 4 bytes of VMXON region contain the supported
+                * VMCS revision identifier
+                *
+                * Note - IA32_VMX_BASIC[48] will never be 1
+                * for the nested case;
+                * which replaces physical address width with 32
+                *
+                */
+               if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
+                       nested_vmx_failInvalid(vcpu);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+
+               page = nested_get_page(vcpu, vmptr);
+               if (page == NULL ||
+                   *(u32 *)kmap(page) != VMCS12_REVISION) {
+                       nested_vmx_failInvalid(vcpu);
+                       kunmap(page);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+               kunmap(page);
+               vmx->nested.vmxon_ptr = vmptr;
+               break;
+       case EXIT_REASON_VMCLEAR:
+               if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
+                       nested_vmx_failValid(vcpu,
+                                            VMXERR_VMCLEAR_INVALID_ADDRESS);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+
+               if (vmptr == vmx->nested.vmxon_ptr) {
+                       nested_vmx_failValid(vcpu,
+                                            VMXERR_VMCLEAR_VMXON_POINTER);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+               break;
+       case EXIT_REASON_VMPTRLD:
+               if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
+                       nested_vmx_failValid(vcpu,
+                                            VMXERR_VMPTRLD_INVALID_ADDRESS);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+
+               if (vmptr == vmx->nested.vmxon_ptr) {
+                       nested_vmx_failValid(vcpu,
+                                            VMXERR_VMCLEAR_VMXON_POINTER);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+               break;
+       default:
+               return 1; /* shouldn't happen */
+       }
+
+       if (vmpointer)
+               *vmpointer = vmptr;
+       return 0;
+}
+
+/*
+ * Emulate the VMXON instruction.
+ * Currently, we just remember that VMX is active, and do not save or even
+ * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+ * do not currently need to store anything in that guest-allocated memory
+ * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+ * argument is different from the VMXON pointer (which the spec says they do).
+ */
+static int handle_vmon(struct kvm_vcpu *vcpu)
+{
+       struct kvm_segment cs;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs *shadow_vmcs;
+       const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+               | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+
+       /* The Intel VMX Instruction Reference lists a bunch of bits that
+        * are prerequisite to running VMXON, most notably cr4.VMXE must be
+        * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
+        * Otherwise, we should fail with #UD. We test these now:
+        */
+       if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
+           !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
+           (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+
+       vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+       if (is_long_mode(vcpu) && !cs.l) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+
+       if (vmx_get_cpl(vcpu)) {
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+
+       if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
+               return 1;
+
+       if (vmx->nested.vmxon) {
+               nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+               skip_emulated_instruction(vcpu);
+               return 1;
+       }
+
+       if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+                       != VMXON_NEEDED_FEATURES) {
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+
+       if (enable_shadow_vmcs) {
+               shadow_vmcs = alloc_vmcs();
+               if (!shadow_vmcs)
+                       return -ENOMEM;
+               /* mark vmcs as shadow */
+               shadow_vmcs->revision_id |= (1u << 31);
+               /* init shadow vmcs */
+               vmcs_clear(shadow_vmcs);
+               vmx->nested.current_shadow_vmcs = shadow_vmcs;
+       }
+
+       INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
+       vmx->nested.vmcs02_num = 0;
+
+       hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+                    HRTIMER_MODE_REL);
+       vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+
+       vmx->nested.vmxon = true;
+
+       skip_emulated_instruction(vcpu);
+       nested_vmx_succeed(vcpu);
+       return 1;
+}
+
+/*
+ * Intel's VMX Instruction Reference specifies a common set of prerequisites
+ * for running VMX instructions (except VMXON, whose prerequisites are
+ * slightly different). It also specifies what exception to inject otherwise.
+ */
+static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+{
+       struct kvm_segment cs;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (!vmx->nested.vmxon) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 0;
+       }
+
+       vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+       if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
+           (is_long_mode(vcpu) && !cs.l)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 0;
+       }
+
+       if (vmx_get_cpl(vcpu)) {
+               kvm_inject_gp(vcpu, 0);
+               return 0;
+       }
+
+       return 1;
+}
+
+static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
+{
+       u32 exec_control;
+       if (vmx->nested.current_vmptr == -1ull)
+               return;
+
+       /* current_vmptr and current_vmcs12 are always set/reset together */
+       if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
+               return;
+
+       if (enable_shadow_vmcs) {
+               /* copy to memory all shadowed fields in case
+                  they were modified */
+               copy_shadow_to_vmcs12(vmx);
+               vmx->nested.sync_shadow_vmcs = false;
+               exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+               exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+               vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+               vmcs_write64(VMCS_LINK_POINTER, -1ull);
+       }
+       vmx->nested.posted_intr_nv = -1;
+       kunmap(vmx->nested.current_vmcs12_page);
+       nested_release_page(vmx->nested.current_vmcs12_page);
+       vmx->nested.current_vmptr = -1ull;
+       vmx->nested.current_vmcs12 = NULL;
+}
+
+/*
+ * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+ * just stops using VMX.
+ */
+static void free_nested(struct vcpu_vmx *vmx)
+{
+       if (!vmx->nested.vmxon)
+               return;
+
+       vmx->nested.vmxon = false;
+       nested_release_vmcs12(vmx);
+       if (enable_shadow_vmcs)
+               free_vmcs(vmx->nested.current_shadow_vmcs);
+       /* Unpin physical memory we referred to in current vmcs02 */
+       if (vmx->nested.apic_access_page) {
+               nested_release_page(vmx->nested.apic_access_page);
+               vmx->nested.apic_access_page = NULL;
+       }
+       if (vmx->nested.virtual_apic_page) {
+               nested_release_page(vmx->nested.virtual_apic_page);
+               vmx->nested.virtual_apic_page = NULL;
+       }
+       if (vmx->nested.pi_desc_page) {
+               kunmap(vmx->nested.pi_desc_page);
+               nested_release_page(vmx->nested.pi_desc_page);
+               vmx->nested.pi_desc_page = NULL;
+               vmx->nested.pi_desc = NULL;
+       }
+
+       nested_free_all_saved_vmcss(vmx);
+}
+
+/* Emulate the VMXOFF instruction */
+static int handle_vmoff(struct kvm_vcpu *vcpu)
+{
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       free_nested(to_vmx(vcpu));
+       skip_emulated_instruction(vcpu);
+       nested_vmx_succeed(vcpu);
+       return 1;
+}
+
+/* Emulate the VMCLEAR instruction */
+static int handle_vmclear(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       gpa_t vmptr;
+       struct vmcs12 *vmcs12;
+       struct page *page;
+
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+
+       if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
+               return 1;
+
+       if (vmptr == vmx->nested.current_vmptr)
+               nested_release_vmcs12(vmx);
+
+       page = nested_get_page(vcpu, vmptr);
+       if (page == NULL) {
+               /*
+                * For accurate processor emulation, VMCLEAR beyond available
+                * physical memory should do nothing at all. However, it is
+                * possible that a nested vmx bug, not a guest hypervisor bug,
+                * resulted in this case, so let's shut down before doing any
+                * more damage:
+                */
+               kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+               return 1;
+       }
+       vmcs12 = kmap(page);
+       vmcs12->launch_state = 0;
+       kunmap(page);
+       nested_release_page(page);
+
+       nested_free_vmcs02(vmx, vmptr);
+
+       skip_emulated_instruction(vcpu);
+       nested_vmx_succeed(vcpu);
+       return 1;
+}
+
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+
+/* Emulate the VMLAUNCH instruction */
+static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+{
+       return nested_vmx_run(vcpu, true);
+}
+
+/* Emulate the VMRESUME instruction */
+static int handle_vmresume(struct kvm_vcpu *vcpu)
+{
+
+       return nested_vmx_run(vcpu, false);
+}
+
+enum vmcs_field_type {
+       VMCS_FIELD_TYPE_U16 = 0,
+       VMCS_FIELD_TYPE_U64 = 1,
+       VMCS_FIELD_TYPE_U32 = 2,
+       VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
+};
+
+static inline int vmcs_field_type(unsigned long field)
+{
+       if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
+               return VMCS_FIELD_TYPE_U32;
+       return (field >> 13) & 0x3 ;
+}
+
+static inline int vmcs_field_readonly(unsigned long field)
+{
+       return (((field >> 10) & 0x3) == 1);
+}
+
+/*
+ * Read a vmcs12 field. Since these can have varying lengths and we return
+ * one type, we chose the biggest type (u64) and zero-extend the return value
+ * to that size. Note that the caller, handle_vmread, might need to use only
+ * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
+ * 64-bit fields are to be returned).
+ */
+static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
+                                 unsigned long field, u64 *ret)
+{
+       short offset = vmcs_field_to_offset(field);
+       char *p;
+
+       if (offset < 0)
+               return offset;
+
+       p = ((char *)(get_vmcs12(vcpu))) + offset;
+
+       switch (vmcs_field_type(field)) {
+       case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+               *ret = *((natural_width *)p);
+               return 0;
+       case VMCS_FIELD_TYPE_U16:
+               *ret = *((u16 *)p);
+               return 0;
+       case VMCS_FIELD_TYPE_U32:
+               *ret = *((u32 *)p);
+               return 0;
+       case VMCS_FIELD_TYPE_U64:
+               *ret = *((u64 *)p);
+               return 0;
+       default:
+               WARN_ON(1);
+               return -ENOENT;
+       }
+}
+
+
+static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
+                                  unsigned long field, u64 field_value){
+       short offset = vmcs_field_to_offset(field);
+       char *p = ((char *) get_vmcs12(vcpu)) + offset;
+       if (offset < 0)
+               return offset;
+
+       switch (vmcs_field_type(field)) {
+       case VMCS_FIELD_TYPE_U16:
+               *(u16 *)p = field_value;
+               return 0;
+       case VMCS_FIELD_TYPE_U32:
+               *(u32 *)p = field_value;
+               return 0;
+       case VMCS_FIELD_TYPE_U64:
+               *(u64 *)p = field_value;
+               return 0;
+       case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+               *(natural_width *)p = field_value;
+               return 0;
+       default:
+               WARN_ON(1);
+               return -ENOENT;
+       }
+
+}
+
+static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
+{
+       int i;
+       unsigned long field;
+       u64 field_value;
+       struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
+       const unsigned long *fields = shadow_read_write_fields;
+       const int num_fields = max_shadow_read_write_fields;
+
+       preempt_disable();
+
+       vmcs_load(shadow_vmcs);
+
+       for (i = 0; i < num_fields; i++) {
+               field = fields[i];
+               switch (vmcs_field_type(field)) {
+               case VMCS_FIELD_TYPE_U16:
+                       field_value = vmcs_read16(field);
+                       break;
+               case VMCS_FIELD_TYPE_U32:
+                       field_value = vmcs_read32(field);
+                       break;
+               case VMCS_FIELD_TYPE_U64:
+                       field_value = vmcs_read64(field);
+                       break;
+               case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+                       field_value = vmcs_readl(field);
+                       break;
+               default:
+                       WARN_ON(1);
+                       continue;
+               }
+               vmcs12_write_any(&vmx->vcpu, field, field_value);
+       }
+
+       vmcs_clear(shadow_vmcs);
+       vmcs_load(vmx->loaded_vmcs->vmcs);
+
+       preempt_enable();
+}
+
+static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
+{
+       const unsigned long *fields[] = {
+               shadow_read_write_fields,
+               shadow_read_only_fields
+       };
+       const int max_fields[] = {
+               max_shadow_read_write_fields,
+               max_shadow_read_only_fields
+       };
+       int i, q;
+       unsigned long field;
+       u64 field_value = 0;
+       struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
+
+       vmcs_load(shadow_vmcs);
+
+       for (q = 0; q < ARRAY_SIZE(fields); q++) {
+               for (i = 0; i < max_fields[q]; i++) {
+                       field = fields[q][i];
+                       vmcs12_read_any(&vmx->vcpu, field, &field_value);
+
+                       switch (vmcs_field_type(field)) {
+                       case VMCS_FIELD_TYPE_U16:
+                               vmcs_write16(field, (u16)field_value);
+                               break;
+                       case VMCS_FIELD_TYPE_U32:
+                               vmcs_write32(field, (u32)field_value);
+                               break;
+                       case VMCS_FIELD_TYPE_U64:
+                               vmcs_write64(field, (u64)field_value);
+                               break;
+                       case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+                               vmcs_writel(field, (long)field_value);
+                               break;
+                       default:
+                               WARN_ON(1);
+                               break;
+                       }
+               }
+       }
+
+       vmcs_clear(shadow_vmcs);
+       vmcs_load(vmx->loaded_vmcs->vmcs);
+}
+
+/*
+ * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
+ * used before) all generate the same failure when it is missing.
+ */
+static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (vmx->nested.current_vmptr == -1ull) {
+               nested_vmx_failInvalid(vcpu);
+               skip_emulated_instruction(vcpu);
+               return 0;
+       }
+       return 1;
+}
+
+static int handle_vmread(struct kvm_vcpu *vcpu)
+{
+       unsigned long field;
+       u64 field_value;
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       gva_t gva = 0;
+
+       if (!nested_vmx_check_permission(vcpu) ||
+           !nested_vmx_check_vmcs12(vcpu))
+               return 1;
+
+       /* Decode instruction info and find the field to read */
+       field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+       /* Read the field, zero-extended to a u64 field_value */
+       if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
+               nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+               skip_emulated_instruction(vcpu);
+               return 1;
+       }
+       /*
+        * Now copy part of this value to register or memory, as requested.
+        * Note that the number of bits actually copied is 32 or 64 depending
+        * on the guest's mode (32 or 64 bit), not on the given field's length.
+        */
+       if (vmx_instruction_info & (1u << 10)) {
+               kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+                       field_value);
+       } else {
+               if (get_vmx_mem_address(vcpu, exit_qualification,
+                               vmx_instruction_info, &gva))
+                       return 1;
+               /* _system ok, as nested_vmx_check_permission verified cpl=0 */
+               kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
+                            &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
+       }
+
+       nested_vmx_succeed(vcpu);
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+
+static int handle_vmwrite(struct kvm_vcpu *vcpu)
+{
+       unsigned long field;
+       gva_t gva;
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       /* The value to write might be 32 or 64 bits, depending on L1's long
+        * mode, and eventually we need to write that into a field of several
+        * possible lengths. The code below first zero-extends the value to 64
+        * bit (field_value), and then copies only the approriate number of
+        * bits into the vmcs12 field.
+        */
+       u64 field_value = 0;
+       struct x86_exception e;
+
+       if (!nested_vmx_check_permission(vcpu) ||
+           !nested_vmx_check_vmcs12(vcpu))
+               return 1;
+
+       if (vmx_instruction_info & (1u << 10))
+               field_value = kvm_register_readl(vcpu,
+                       (((vmx_instruction_info) >> 3) & 0xf));
+       else {
+               if (get_vmx_mem_address(vcpu, exit_qualification,
+                               vmx_instruction_info, &gva))
+                       return 1;
+               if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
+                          &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
+                       kvm_inject_page_fault(vcpu, &e);
+                       return 1;
+               }
+       }
+
+
+       field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+       if (vmcs_field_readonly(field)) {
+               nested_vmx_failValid(vcpu,
+                       VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+               skip_emulated_instruction(vcpu);
+               return 1;
+       }
+
+       if (vmcs12_write_any(vcpu, field, field_value) < 0) {
+               nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+               skip_emulated_instruction(vcpu);
+               return 1;
+       }
+
+       nested_vmx_succeed(vcpu);
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+/* Emulate the VMPTRLD instruction */
+static int handle_vmptrld(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       gpa_t vmptr;
+       u32 exec_control;
+
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+
+       if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
+               return 1;
+
+       if (vmx->nested.current_vmptr != vmptr) {
+               struct vmcs12 *new_vmcs12;
+               struct page *page;
+               page = nested_get_page(vcpu, vmptr);
+               if (page == NULL) {
+                       nested_vmx_failInvalid(vcpu);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+               new_vmcs12 = kmap(page);
+               if (new_vmcs12->revision_id != VMCS12_REVISION) {
+                       kunmap(page);
+                       nested_release_page_clean(page);
+                       nested_vmx_failValid(vcpu,
+                               VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+                       skip_emulated_instruction(vcpu);
+                       return 1;
+               }
+
+               nested_release_vmcs12(vmx);
+               vmx->nested.current_vmptr = vmptr;
+               vmx->nested.current_vmcs12 = new_vmcs12;
+               vmx->nested.current_vmcs12_page = page;
+               if (enable_shadow_vmcs) {
+                       exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+                       exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
+                       vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+                       vmcs_write64(VMCS_LINK_POINTER,
+                                    __pa(vmx->nested.current_shadow_vmcs));
+                       vmx->nested.sync_shadow_vmcs = true;
+               }
+       }
+
+       nested_vmx_succeed(vcpu);
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+/* Emulate the VMPTRST instruction */
+static int handle_vmptrst(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       gva_t vmcs_gva;
+       struct x86_exception e;
+
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+
+       if (get_vmx_mem_address(vcpu, exit_qualification,
+                       vmx_instruction_info, &vmcs_gva))
+               return 1;
+       /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
+       if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
+                                (void *)&to_vmx(vcpu)->nested.current_vmptr,
+                                sizeof(u64), &e)) {
+               kvm_inject_page_fault(vcpu, &e);
+               return 1;
+       }
+       nested_vmx_succeed(vcpu);
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+/* Emulate the INVEPT instruction */
+static int handle_invept(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 vmx_instruction_info, types;
+       unsigned long type;
+       gva_t gva;
+       struct x86_exception e;
+       struct {
+               u64 eptp, gpa;
+       } operand;
+
+       if (!(vmx->nested.nested_vmx_secondary_ctls_high &
+             SECONDARY_EXEC_ENABLE_EPT) ||
+           !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+
+       if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+
+       vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+       types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+
+       if (!(types & (1UL << type))) {
+               nested_vmx_failValid(vcpu,
+                               VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+               return 1;
+       }
+
+       /* According to the Intel VMX instruction reference, the memory
+        * operand is read even if it isn't needed (e.g., for type==global)
+        */
+       if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+                       vmx_instruction_info, &gva))
+               return 1;
+       if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
+                               sizeof(operand), &e)) {
+               kvm_inject_page_fault(vcpu, &e);
+               return 1;
+       }
+
+       switch (type) {
+       case VMX_EPT_EXTENT_GLOBAL:
+               kvm_mmu_sync_roots(vcpu);
+               kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+               nested_vmx_succeed(vcpu);
+               break;
+       default:
+               /* Trap single context invalidation invept calls */
+               BUG_ON(1);
+               break;
+       }
+
+       skip_emulated_instruction(vcpu);
+       return 1;
+}
+
+static int handle_invvpid(struct kvm_vcpu *vcpu)
+{
+       kvm_queue_exception(vcpu, UD_VECTOR);
+       return 1;
+}
+
+static int handle_pml_full(struct kvm_vcpu *vcpu)
+{
+       unsigned long exit_qualification;
+
+       trace_kvm_pml_full(vcpu->vcpu_id);
+
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+       /*
+        * PML buffer FULL happened while executing iret from NMI,
+        * "blocked by NMI" bit has to be set before next VM entry.
+        */
+       if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+                       cpu_has_virtual_nmis() &&
+                       (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+               vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+                               GUEST_INTR_STATE_NMI);
+
+       /*
+        * PML buffer already flushed at beginning of VMEXIT. Nothing to do
+        * here.., and there's no userspace involvement needed for PML.
+        */
+       return 1;
+}
+
+/*
+ * The exit handlers return 1 if the exit was handled fully and guest execution
+ * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
+ * to be done to userspace and return 0.
+ */
+static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
+       [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
+       [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
+       [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
+       [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
+       [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
+       [EXIT_REASON_CR_ACCESS]               = handle_cr,
+       [EXIT_REASON_DR_ACCESS]               = handle_dr,
+       [EXIT_REASON_CPUID]                   = handle_cpuid,
+       [EXIT_REASON_MSR_READ]                = handle_rdmsr,
+       [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
+       [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
+       [EXIT_REASON_HLT]                     = handle_halt,
+       [EXIT_REASON_INVD]                    = handle_invd,
+       [EXIT_REASON_INVLPG]                  = handle_invlpg,
+       [EXIT_REASON_RDPMC]                   = handle_rdpmc,
+       [EXIT_REASON_VMCALL]                  = handle_vmcall,
+       [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
+       [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
+       [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
+       [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
+       [EXIT_REASON_VMREAD]                  = handle_vmread,
+       [EXIT_REASON_VMRESUME]                = handle_vmresume,
+       [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
+       [EXIT_REASON_VMOFF]                   = handle_vmoff,
+       [EXIT_REASON_VMON]                    = handle_vmon,
+       [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
+       [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
+       [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
+       [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
+       [EXIT_REASON_WBINVD]                  = handle_wbinvd,
+       [EXIT_REASON_XSETBV]                  = handle_xsetbv,
+       [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
+       [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
+       [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
+       [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
+       [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
+       [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
+       [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
+       [EXIT_REASON_INVEPT]                  = handle_invept,
+       [EXIT_REASON_INVVPID]                 = handle_invvpid,
+       [EXIT_REASON_XSAVES]                  = handle_xsaves,
+       [EXIT_REASON_XRSTORS]                 = handle_xrstors,
+       [EXIT_REASON_PML_FULL]                = handle_pml_full,
+};
+
+static const int kvm_vmx_max_exit_handlers =
+       ARRAY_SIZE(kvm_vmx_exit_handlers);
+
+static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
+                                      struct vmcs12 *vmcs12)
+{
+       unsigned long exit_qualification;
+       gpa_t bitmap, last_bitmap;
+       unsigned int port;
+       int size;
+       u8 b;
+
+       if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+               return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
+
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+       port = exit_qualification >> 16;
+       size = (exit_qualification & 7) + 1;
+
+       last_bitmap = (gpa_t)-1;
+       b = -1;
+
+       while (size > 0) {
+               if (port < 0x8000)
+                       bitmap = vmcs12->io_bitmap_a;
+               else if (port < 0x10000)
+                       bitmap = vmcs12->io_bitmap_b;
+               else
+                       return true;
+               bitmap += (port & 0x7fff) / 8;
+
+               if (last_bitmap != bitmap)
+                       if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
+                               return true;
+               if (b & (1 << (port & 7)))
+                       return true;
+
+               port++;
+               size--;
+               last_bitmap = bitmap;
+       }
+
+       return false;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+ * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+ * disinterest in the current event (read or write a specific MSR) by using an
+ * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+ */
+static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+       struct vmcs12 *vmcs12, u32 exit_reason)
+{
+       u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+       gpa_t bitmap;
+
+       if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+               return true;
+
+       /*
+        * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+        * for the four combinations of read/write and low/high MSR numbers.
+        * First we need to figure out which of the four to use:
+        */
+       bitmap = vmcs12->msr_bitmap;
+       if (exit_reason == EXIT_REASON_MSR_WRITE)
+               bitmap += 2048;
+       if (msr_index >= 0xc0000000) {
+               msr_index -= 0xc0000000;
+               bitmap += 1024;
+       }
+
+       /* Then read the msr_index'th bit from this bitmap: */
+       if (msr_index < 1024*8) {
+               unsigned char b;
+               if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
+                       return true;
+               return 1 & (b >> (msr_index & 7));
+       } else
+               return true; /* let L1 handle the wrong parameter */
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+ * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+ * intercept (via guest_host_mask etc.) the current event.
+ */
+static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+       struct vmcs12 *vmcs12)
+{
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       int cr = exit_qualification & 15;
+       int reg = (exit_qualification >> 8) & 15;
+       unsigned long val = kvm_register_readl(vcpu, reg);
+
+       switch ((exit_qualification >> 4) & 3) {
+       case 0: /* mov to cr */
+               switch (cr) {
+               case 0:
+                       if (vmcs12->cr0_guest_host_mask &
+                           (val ^ vmcs12->cr0_read_shadow))
+                               return true;
+                       break;
+               case 3:
+                       if ((vmcs12->cr3_target_count >= 1 &&
+                                       vmcs12->cr3_target_value0 == val) ||
+                               (vmcs12->cr3_target_count >= 2 &&
+                                       vmcs12->cr3_target_value1 == val) ||
+                               (vmcs12->cr3_target_count >= 3 &&
+                                       vmcs12->cr3_target_value2 == val) ||
+                               (vmcs12->cr3_target_count >= 4 &&
+                                       vmcs12->cr3_target_value3 == val))
+                               return false;
+                       if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+                               return true;
+                       break;
+               case 4:
+                       if (vmcs12->cr4_guest_host_mask &
+                           (vmcs12->cr4_read_shadow ^ val))
+                               return true;
+                       break;
+               case 8:
+                       if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+                               return true;
+                       break;
+               }
+               break;
+       case 2: /* clts */
+               if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+                   (vmcs12->cr0_read_shadow & X86_CR0_TS))
+                       return true;
+               break;
+       case 1: /* mov from cr */
+               switch (cr) {
+               case 3:
+                       if (vmcs12->cpu_based_vm_exec_control &
+                           CPU_BASED_CR3_STORE_EXITING)
+                               return true;
+                       break;
+               case 8:
+                       if (vmcs12->cpu_based_vm_exec_control &
+                           CPU_BASED_CR8_STORE_EXITING)
+                               return true;
+                       break;
+               }
+               break;
+       case 3: /* lmsw */
+               /*
+                * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+                * cr0. Other attempted changes are ignored, with no exit.
+                */
+               if (vmcs12->cr0_guest_host_mask & 0xe &
+                   (val ^ vmcs12->cr0_read_shadow))
+                       return true;
+               if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+                   !(vmcs12->cr0_read_shadow & 0x1) &&
+                   (val & 0x1))
+                       return true;
+               break;
+       }
+       return false;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+ * should handle it ourselves in L0 (and then continue L2). Only call this
+ * when in is_guest_mode (L2).
+ */
+static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
+{
+       u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       u32 exit_reason = vmx->exit_reason;
+
+       trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
+                               vmcs_readl(EXIT_QUALIFICATION),
+                               vmx->idt_vectoring_info,
+                               intr_info,
+                               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+                               KVM_ISA_VMX);
+
+       if (vmx->nested.nested_run_pending)
+               return false;
+
+       if (unlikely(vmx->fail)) {
+               pr_info_ratelimited("%s failed vm entry %x\n", __func__,
+                                   vmcs_read32(VM_INSTRUCTION_ERROR));
+               return true;
+       }
+
+       switch (exit_reason) {
+       case EXIT_REASON_EXCEPTION_NMI:
+               if (!is_exception(intr_info))
+                       return false;
+               else if (is_page_fault(intr_info))
+                       return enable_ept;
+               else if (is_no_device(intr_info) &&
+                        !(vmcs12->guest_cr0 & X86_CR0_TS))
+                       return false;
+               return vmcs12->exception_bitmap &
+                               (1u << (intr_info & INTR_INFO_VECTOR_MASK));
+       case EXIT_REASON_EXTERNAL_INTERRUPT:
+               return false;
+       case EXIT_REASON_TRIPLE_FAULT:
+               return true;
+       case EXIT_REASON_PENDING_INTERRUPT:
+               return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
+       case EXIT_REASON_NMI_WINDOW:
+               return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
+       case EXIT_REASON_TASK_SWITCH:
+               return true;
+       case EXIT_REASON_CPUID:
+               if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
+                       return false;
+               return true;
+       case EXIT_REASON_HLT:
+               return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+       case EXIT_REASON_INVD:
+               return true;
+       case EXIT_REASON_INVLPG:
+               return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+       case EXIT_REASON_RDPMC:
+               return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+       case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
+               return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+       case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+       case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+       case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
+       case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
+       case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+       case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
+               /*
+                * VMX instructions trap unconditionally. This allows L1 to
+                * emulate them for its L2 guest, i.e., allows 3-level nesting!
+                */
+               return true;
+       case EXIT_REASON_CR_ACCESS:
+               return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+       case EXIT_REASON_DR_ACCESS:
+               return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+       case EXIT_REASON_IO_INSTRUCTION:
+               return nested_vmx_exit_handled_io(vcpu, vmcs12);
+       case EXIT_REASON_MSR_READ:
+       case EXIT_REASON_MSR_WRITE:
+               return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+       case EXIT_REASON_INVALID_STATE:
+               return true;
+       case EXIT_REASON_MWAIT_INSTRUCTION:
+               return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+       case EXIT_REASON_MONITOR_INSTRUCTION:
+               return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+       case EXIT_REASON_PAUSE_INSTRUCTION:
+               return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+                       nested_cpu_has2(vmcs12,
+                               SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+       case EXIT_REASON_MCE_DURING_VMENTRY:
+               return false;
+       case EXIT_REASON_TPR_BELOW_THRESHOLD:
+               return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
+       case EXIT_REASON_APIC_ACCESS:
+               return nested_cpu_has2(vmcs12,
+                       SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+       case EXIT_REASON_APIC_WRITE:
+       case EXIT_REASON_EOI_INDUCED:
+               /* apic_write and eoi_induced should exit unconditionally. */
+               return true;
+       case EXIT_REASON_EPT_VIOLATION:
+               /*
+                * L0 always deals with the EPT violation. If nested EPT is
+                * used, and the nested mmu code discovers that the address is
+                * missing in the guest EPT table (EPT12), the EPT violation
+                * will be injected with nested_ept_inject_page_fault()
+                */
+               return false;
+       case EXIT_REASON_EPT_MISCONFIG:
+               /*
+                * L2 never uses directly L1's EPT, but rather L0's own EPT
+                * table (shadow on EPT) or a merged EPT table that L0 built
+                * (EPT on EPT). So any problems with the structure of the
+                * table is L0's fault.
+                */
+               return false;
+       case EXIT_REASON_WBINVD:
+               return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+       case EXIT_REASON_XSETBV:
+               return true;
+       case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+               /*
+                * This should never happen, since it is not possible to
+                * set XSS to a non-zero value---neither in L1 nor in L2.
+                * If if it were, XSS would have to be checked against
+                * the XSS exit bitmap in vmcs12.
+                */
+               return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+       default:
+               return true;
+       }
+}
+
+static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
+{
+       *info1 = vmcs_readl(EXIT_QUALIFICATION);
+       *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
+}
+
+static int vmx_enable_pml(struct vcpu_vmx *vmx)
+{
+       struct page *pml_pg;
+       u32 exec_control;
+
+       pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
+       if (!pml_pg)
+               return -ENOMEM;
+
+       vmx->pml_pg = pml_pg;
+
+       vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+       vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+
+       exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+       exec_control |= SECONDARY_EXEC_ENABLE_PML;
+       vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+
+       return 0;
+}
+
+static void vmx_disable_pml(struct vcpu_vmx *vmx)
+{
+       u32 exec_control;
+
+       ASSERT(vmx->pml_pg);
+       __free_page(vmx->pml_pg);
+       vmx->pml_pg = NULL;
+
+       exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+       exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+       vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+}
+
+static void vmx_flush_pml_buffer(struct vcpu_vmx *vmx)
+{
+       struct kvm *kvm = vmx->vcpu.kvm;
+       u64 *pml_buf;
+       u16 pml_idx;
+
+       pml_idx = vmcs_read16(GUEST_PML_INDEX);
+
+       /* Do nothing if PML buffer is empty */
+       if (pml_idx == (PML_ENTITY_NUM - 1))
+               return;
+
+       /* PML index always points to next available PML buffer entity */
+       if (pml_idx >= PML_ENTITY_NUM)
+               pml_idx = 0;
+       else
+               pml_idx++;
+
+       pml_buf = page_address(vmx->pml_pg);
+       for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
+               u64 gpa;
+
+               gpa = pml_buf[pml_idx];
+               WARN_ON(gpa & (PAGE_SIZE - 1));
+               mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
+       }
+
+       /* reset PML index */
+       vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+}
+
+/*
+ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
+ * Called before reporting dirty_bitmap to userspace.
+ */
+static void kvm_flush_pml_buffers(struct kvm *kvm)
+{
+       int i;
+       struct kvm_vcpu *vcpu;
+       /*
+        * We only need to kick vcpu out of guest mode here, as PML buffer
+        * is flushed at beginning of all VMEXITs, and it's obvious that only
+        * vcpus running in guest are possible to have unflushed GPAs in PML
+        * buffer.
+        */
+       kvm_for_each_vcpu(i, vcpu, kvm)
+               kvm_vcpu_kick(vcpu);
+}
+
+/*
+ * The guest has exited.  See if we can fix it or if we need userspace
+ * assistance.
+ */
+static int vmx_handle_exit(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 exit_reason = vmx->exit_reason;
+       u32 vectoring_info = vmx->idt_vectoring_info;
+
+       /*
+        * Flush logged GPAs PML buffer, this will make dirty_bitmap more
+        * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
+        * querying dirty_bitmap, we only need to kick all vcpus out of guest
+        * mode as if vcpus is in root mode, the PML buffer must has been
+        * flushed already.
+        */
+       if (enable_pml)
+               vmx_flush_pml_buffer(vmx);
+
+       /* If guest state is invalid, start emulating */
+       if (vmx->emulation_required)
+               return handle_invalid_guest_state(vcpu);
+
+       if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
+               nested_vmx_vmexit(vcpu, exit_reason,
+                                 vmcs_read32(VM_EXIT_INTR_INFO),
+                                 vmcs_readl(EXIT_QUALIFICATION));
+               return 1;
+       }
+
+       if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
+               vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+               vcpu->run->fail_entry.hardware_entry_failure_reason
+                       = exit_reason;
+               return 0;
+       }
+
+       if (unlikely(vmx->fail)) {
+               vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+               vcpu->run->fail_entry.hardware_entry_failure_reason
+                       = vmcs_read32(VM_INSTRUCTION_ERROR);
+               return 0;
+       }
+
+       /*
+        * Note:
+        * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
+        * delivery event since it indicates guest is accessing MMIO.
+        * The vm-exit can be triggered again after return to guest that
+        * will cause infinite loop.
+        */
+       if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
+                       (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
+                       exit_reason != EXIT_REASON_EPT_VIOLATION &&
+                       exit_reason != EXIT_REASON_TASK_SWITCH)) {
+               vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+               vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
+               vcpu->run->internal.ndata = 2;
+               vcpu->run->internal.data[0] = vectoring_info;
+               vcpu->run->internal.data[1] = exit_reason;
+               return 0;
+       }
+
+       if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
+           !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
+                                       get_vmcs12(vcpu))))) {
+               if (vmx_interrupt_allowed(vcpu)) {
+                       vmx->soft_vnmi_blocked = 0;
+               } else if (vmx->vnmi_blocked_time > 1000000000LL &&
+                          vcpu->arch.nmi_pending) {
+                       /*
+                        * This CPU don't support us in finding the end of an
+                        * NMI-blocked window if the guest runs with IRQs
+                        * disabled. So we pull the trigger after 1 s of
+                        * futile waiting, but inform the user about this.
+                        */
+                       printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
+                              "state on VCPU %d after 1 s timeout\n",
+                              __func__, vcpu->vcpu_id);
+                       vmx->soft_vnmi_blocked = 0;
+               }
+       }
+
+       if (exit_reason < kvm_vmx_max_exit_handlers
+           && kvm_vmx_exit_handlers[exit_reason])
+               return kvm_vmx_exit_handlers[exit_reason](vcpu);
+       else {
+               WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+       if (is_guest_mode(vcpu) &&
+               nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+               return;
+
+       if (irr == -1 || tpr < irr) {
+               vmcs_write32(TPR_THRESHOLD, 0);
+               return;
+       }
+
+       vmcs_write32(TPR_THRESHOLD, irr);
+}
+
+static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
+{
+       u32 sec_exec_control;
+
+       /*
+        * There is not point to enable virtualize x2apic without enable
+        * apicv
+        */
+       if (!cpu_has_vmx_virtualize_x2apic_mode() ||
+                               !vmx_vm_has_apicv(vcpu->kvm))
+               return;
+
+       if (!vm_need_tpr_shadow(vcpu->kvm))
+               return;
+
+       sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+       if (set) {
+               sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+               sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+       } else {
+               sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+               sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+       }
+       vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
+
+       vmx_set_msr_bitmap(vcpu);
+}
+
+static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       /*
+        * Currently we do not handle the nested case where L2 has an
+        * APIC access page of its own; that page is still pinned.
+        * Hence, we skip the case where the VCPU is in guest mode _and_
+        * L1 prepared an APIC access page for L2.
+        *
+        * For the case where L1 and L2 share the same APIC access page
+        * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
+        * in the vmcs12), this function will only update either the vmcs01
+        * or the vmcs02.  If the former, the vmcs02 will be updated by
+        * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
+        * the next L2->L1 exit.
+        */
+       if (!is_guest_mode(vcpu) ||
+           !nested_cpu_has2(vmx->nested.current_vmcs12,
+                            SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+               vmcs_write64(APIC_ACCESS_ADDR, hpa);
+}
+
+static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
+{
+       u16 status;
+       u8 old;
+
+       if (isr == -1)
+               isr = 0;
+
+       status = vmcs_read16(GUEST_INTR_STATUS);
+       old = status >> 8;
+       if (isr != old) {
+               status &= 0xff;
+               status |= isr << 8;
+               vmcs_write16(GUEST_INTR_STATUS, status);
+       }
+}
+
+static void vmx_set_rvi(int vector)
+{
+       u16 status;
+       u8 old;
+
+       if (vector == -1)
+               vector = 0;
+
+       status = vmcs_read16(GUEST_INTR_STATUS);
+       old = (u8)status & 0xff;
+       if ((u8)vector != old) {
+               status &= ~0xff;
+               status |= (u8)vector;
+               vmcs_write16(GUEST_INTR_STATUS, status);
+       }
+}
+
+static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+       if (!is_guest_mode(vcpu)) {
+               vmx_set_rvi(max_irr);
+               return;
+       }
+
+       if (max_irr == -1)
+               return;
+
+       /*
+        * In guest mode.  If a vmexit is needed, vmx_check_nested_events
+        * handles it.
+        */
+       if (nested_exit_on_intr(vcpu))
+               return;
+
+       /*
+        * Else, fall back to pre-APICv interrupt injection since L2
+        * is run without virtual interrupt delivery.
+        */
+       if (!kvm_event_needs_reinjection(vcpu) &&
+           vmx_interrupt_allowed(vcpu)) {
+               kvm_queue_interrupt(vcpu, max_irr, false);
+               vmx_inject_irq(vcpu);
+       }
+}
+
+static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+       if (!vmx_vm_has_apicv(vcpu->kvm))
+               return;
+
+       vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
+       vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
+       vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
+       vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
+}
+
+static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
+{
+       u32 exit_intr_info;
+
+       if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
+             || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
+               return;
+
+       vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+       exit_intr_info = vmx->exit_intr_info;
+
+       /* Handle machine checks before interrupts are enabled */
+       if (is_machine_check(exit_intr_info))
+               kvm_machine_check();
+
+       /* We need to handle NMIs before interrupts are enabled */
+       if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
+           (exit_intr_info & INTR_INFO_VALID_MASK)) {
+               kvm_before_handle_nmi(&vmx->vcpu);
+               asm("int $2");
+               kvm_after_handle_nmi(&vmx->vcpu);
+       }
+}
+
+static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
+{
+       u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+       /*
+        * If external interrupt exists, IF bit is set in rflags/eflags on the
+        * interrupt stack frame, and interrupt will be enabled on a return
+        * from interrupt handler.
+        */
+       if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
+                       == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
+               unsigned int vector;
+               unsigned long entry;
+               gate_desc *desc;
+               struct vcpu_vmx *vmx = to_vmx(vcpu);
+#ifdef CONFIG_X86_64
+               unsigned long tmp;
+#endif
+
+               vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
+               desc = (gate_desc *)vmx->host_idt_base + vector;
+               entry = gate_offset(*desc);
+               asm volatile(
+#ifdef CONFIG_X86_64
+                       "mov %%" _ASM_SP ", %[sp]\n\t"
+                       "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
+                       "push $%c[ss]\n\t"
+                       "push %[sp]\n\t"
+#endif
+                       "pushf\n\t"
+                       "orl $0x200, (%%" _ASM_SP ")\n\t"
+                       __ASM_SIZE(push) " $%c[cs]\n\t"
+                       "call *%[entry]\n\t"
+                       :
+#ifdef CONFIG_X86_64
+                       [sp]"=&r"(tmp)
+#endif
+                       :
+                       [entry]"r"(entry),
+                       [ss]"i"(__KERNEL_DS),
+                       [cs]"i"(__KERNEL_CS)
+                       );
+       } else
+               local_irq_enable();
+}
+
+static bool vmx_mpx_supported(void)
+{
+       return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
+               (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
+}
+
+static bool vmx_xsaves_supported(void)
+{
+       return vmcs_config.cpu_based_2nd_exec_ctrl &
+               SECONDARY_EXEC_XSAVES;
+}
+
+static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+{
+       u32 exit_intr_info;
+       bool unblock_nmi;
+       u8 vector;
+       bool idtv_info_valid;
+
+       idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+       if (cpu_has_virtual_nmis()) {
+               if (vmx->nmi_known_unmasked)
+                       return;
+               /*
+                * Can't use vmx->exit_intr_info since we're not sure what
+                * the exit reason is.
+                */
+               exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+               unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
+               vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+               /*
+                * SDM 3: 27.7.1.2 (September 2008)
+                * Re-set bit "block by NMI" before VM entry if vmexit caused by
+                * a guest IRET fault.
+                * SDM 3: 23.2.2 (September 2008)
+                * Bit 12 is undefined in any of the following cases:
+                *  If the VM exit sets the valid bit in the IDT-vectoring
+                *   information field.
+                *  If the VM exit is due to a double fault.
+                */
+               if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
+                   vector != DF_VECTOR && !idtv_info_valid)
+                       vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+                                     GUEST_INTR_STATE_NMI);
+               else
+                       vmx->nmi_known_unmasked =
+                               !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
+                                 & GUEST_INTR_STATE_NMI);
+       } else if (unlikely(vmx->soft_vnmi_blocked))
+               vmx->vnmi_blocked_time +=
+                       ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
+}
+
+static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
+                                     u32 idt_vectoring_info,
+                                     int instr_len_field,
+                                     int error_code_field)
+{
+       u8 vector;
+       int type;
+       bool idtv_info_valid;
+
+       idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+       vcpu->arch.nmi_injected = false;
+       kvm_clear_exception_queue(vcpu);
+       kvm_clear_interrupt_queue(vcpu);
+
+       if (!idtv_info_valid)
+               return;
+
+       kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
+       type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
+
+       switch (type) {
+       case INTR_TYPE_NMI_INTR:
+               vcpu->arch.nmi_injected = true;
+               /*
+                * SDM 3: 27.7.1.2 (September 2008)
+                * Clear bit "block by NMI" before VM entry if a NMI
+                * delivery faulted.
+                */
+               vmx_set_nmi_mask(vcpu, false);
+               break;
+       case INTR_TYPE_SOFT_EXCEPTION:
+               vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+               /* fall through */
+       case INTR_TYPE_HARD_EXCEPTION:
+               if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
+                       u32 err = vmcs_read32(error_code_field);
+                       kvm_requeue_exception_e(vcpu, vector, err);
+               } else
+                       kvm_requeue_exception(vcpu, vector);
+               break;
+       case INTR_TYPE_SOFT_INTR:
+               vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+               /* fall through */
+       case INTR_TYPE_EXT_INTR:
+               kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
+               break;
+       default:
+               break;
+       }
+}
+
+static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+{
+       __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
+                                 VM_EXIT_INSTRUCTION_LEN,
+                                 IDT_VECTORING_ERROR_CODE);
+}
+
+static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+{
+       __vmx_complete_interrupts(vcpu,
+                                 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+                                 VM_ENTRY_INSTRUCTION_LEN,
+                                 VM_ENTRY_EXCEPTION_ERROR_CODE);
+
+       vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+}
+
+static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
+{
+       int i, nr_msrs;
+       struct perf_guest_switch_msr *msrs;
+
+       msrs = perf_guest_get_msrs(&nr_msrs);
+
+       if (!msrs)
+               return;
+
+       for (i = 0; i < nr_msrs; i++)
+               if (msrs[i].host == msrs[i].guest)
+                       clear_atomic_switch_msr(vmx, msrs[i].msr);
+               else
+                       add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
+                                       msrs[i].host);
+}
+
+static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       unsigned long debugctlmsr, cr4;
+
+       /* Record the guest's net vcpu time for enforced NMI injections. */
+       if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
+               vmx->entry_time = ktime_get();
+
+       /* Don't enter VMX if guest state is invalid, let the exit handler
+          start emulation until we arrive back to a valid state */
+       if (vmx->emulation_required)
+               return;
+
+       if (vmx->ple_window_dirty) {
+               vmx->ple_window_dirty = false;
+               vmcs_write32(PLE_WINDOW, vmx->ple_window);
+       }
+
+       if (vmx->nested.sync_shadow_vmcs) {
+               copy_vmcs12_to_shadow(vmx);
+               vmx->nested.sync_shadow_vmcs = false;
+       }
+
+       if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
+               vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
+       if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
+               vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
+
+       cr4 = cr4_read_shadow();
+       if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
+               vmcs_writel(HOST_CR4, cr4);
+               vmx->host_state.vmcs_host_cr4 = cr4;
+       }
+
+       /* When single-stepping over STI and MOV SS, we must clear the
+        * corresponding interruptibility bits in the guest state. Otherwise
+        * vmentry fails as it then expects bit 14 (BS) in pending debug
+        * exceptions being set, but that's not correct for the guest debugging
+        * case. */
+       if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+               vmx_set_interrupt_shadow(vcpu, 0);
+
+       atomic_switch_perf_msrs(vmx);
+       debugctlmsr = get_debugctlmsr();
+
+       vmx->__launched = vmx->loaded_vmcs->launched;
+       asm(
+               /* Store host registers */
+               "push %%" _ASM_DX "; push %%" _ASM_BP ";"
+               "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
+               "push %%" _ASM_CX " \n\t"
+               "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
+               "je 1f \n\t"
+               "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
+               __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
+               "1: \n\t"
+               /* Reload cr2 if changed */
+               "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
+               "mov %%cr2, %%" _ASM_DX " \n\t"
+               "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
+               "je 2f \n\t"
+               "mov %%" _ASM_AX", %%cr2 \n\t"
+               "2: \n\t"
+               /* Check if vmlaunch of vmresume is needed */
+               "cmpl $0, %c[launched](%0) \n\t"
+               /* Load guest registers.  Don't clobber flags. */
+               "mov %c[rax](%0), %%" _ASM_AX " \n\t"
+               "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
+               "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
+               "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
+               "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
+               "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
+#ifdef CONFIG_X86_64
+               "mov %c[r8](%0),  %%r8  \n\t"
+               "mov %c[r9](%0),  %%r9  \n\t"
+               "mov %c[r10](%0), %%r10 \n\t"
+               "mov %c[r11](%0), %%r11 \n\t"
+               "mov %c[r12](%0), %%r12 \n\t"
+               "mov %c[r13](%0), %%r13 \n\t"
+               "mov %c[r14](%0), %%r14 \n\t"
+               "mov %c[r15](%0), %%r15 \n\t"
+#endif
+               "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
+
+               /* Enter guest mode */
+               "jne 1f \n\t"
+               __ex(ASM_VMX_VMLAUNCH) "\n\t"
+               "jmp 2f \n\t"
+               "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
+               "2: "
+               /* Save guest registers, load host registers, keep flags */
+               "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
+               "pop %0 \n\t"
+               "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
+               "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
+               __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
+               "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
+               "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
+               "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
+               "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
+#ifdef CONFIG_X86_64
+               "mov %%r8,  %c[r8](%0) \n\t"
+               "mov %%r9,  %c[r9](%0) \n\t"
+               "mov %%r10, %c[r10](%0) \n\t"
+               "mov %%r11, %c[r11](%0) \n\t"
+               "mov %%r12, %c[r12](%0) \n\t"
+               "mov %%r13, %c[r13](%0) \n\t"
+               "mov %%r14, %c[r14](%0) \n\t"
+               "mov %%r15, %c[r15](%0) \n\t"
+#endif
+               "mov %%cr2, %%" _ASM_AX "   \n\t"
+               "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
+
+               "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
+               "setbe %c[fail](%0) \n\t"
+               ".pushsection .rodata \n\t"
+               ".global vmx_return \n\t"
+               "vmx_return: " _ASM_PTR " 2b \n\t"
+               ".popsection"
+             : : "c"(vmx), "d"((unsigned long)HOST_RSP),
+               [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+               [fail]"i"(offsetof(struct vcpu_vmx, fail)),
+               [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+               [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
+               [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
+               [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
+               [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
+               [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
+               [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
+               [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
+#ifdef CONFIG_X86_64
+               [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
+               [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
+               [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
+               [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
+               [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
+               [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
+               [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
+               [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
+#endif
+               [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
+               [wordsize]"i"(sizeof(ulong))
+             : "cc", "memory"
+#ifdef CONFIG_X86_64
+               , "rax", "rbx", "rdi", "rsi"
+               , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+#else
+               , "eax", "ebx", "edi", "esi"
+#endif
+             );
+
+       /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
+       if (debugctlmsr)
+               update_debugctlmsr(debugctlmsr);
+
+#ifndef CONFIG_X86_64
+       /*
+        * The sysexit path does not restore ds/es, so we must set them to
+        * a reasonable value ourselves.
+        *
+        * We can't defer this to vmx_load_host_state() since that function
+        * may be executed in interrupt context, which saves and restore segments
+        * around it, nullifying its effect.
+        */
+       loadsegment(ds, __USER_DS);
+       loadsegment(es, __USER_DS);
+#endif
+
+       vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
+                                 | (1 << VCPU_EXREG_RFLAGS)
+                                 | (1 << VCPU_EXREG_PDPTR)
+                                 | (1 << VCPU_EXREG_SEGMENTS)
+                                 | (1 << VCPU_EXREG_CR3));
+       vcpu->arch.regs_dirty = 0;
+
+       vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+
+       vmx->loaded_vmcs->launched = 1;
+
+       vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
+       trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
+
+       /*
+        * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
+        * we did not inject a still-pending event to L1 now because of
+        * nested_run_pending, we need to re-enable this bit.
+        */
+       if (vmx->nested.nested_run_pending)
+               kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+       vmx->nested.nested_run_pending = 0;
+
+       vmx_complete_atomic_exit(vmx);
+       vmx_recover_nmi_blocking(vmx);
+       vmx_complete_interrupts(vmx);
+}
+
+static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int cpu;
+
+       if (vmx->loaded_vmcs == &vmx->vmcs01)
+               return;
+
+       cpu = get_cpu();
+       vmx->loaded_vmcs = &vmx->vmcs01;
+       vmx_vcpu_put(vcpu);
+       vmx_vcpu_load(vcpu, cpu);
+       vcpu->cpu = cpu;
+       put_cpu();
+}
+
+static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (enable_pml)
+               vmx_disable_pml(vmx);
+       free_vpid(vmx);
+       leave_guest_mode(vcpu);
+       vmx_load_vmcs01(vcpu);
+       free_nested(vmx);
+       free_loaded_vmcs(vmx->loaded_vmcs);
+       kfree(vmx->guest_msrs);
+       kvm_vcpu_uninit(vcpu);
+       kmem_cache_free(kvm_vcpu_cache, vmx);
+}
+
+static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
+{
+       int err;
+       struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+       int cpu;
+
+       if (!vmx)
+               return ERR_PTR(-ENOMEM);
+
+       allocate_vpid(vmx);
+
+       err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
+       if (err)
+               goto free_vcpu;
+
+       vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
+       BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
+                    > PAGE_SIZE);
+
+       err = -ENOMEM;
+       if (!vmx->guest_msrs) {
+               goto uninit_vcpu;
+       }
+
+       vmx->loaded_vmcs = &vmx->vmcs01;
+       vmx->loaded_vmcs->vmcs = alloc_vmcs();
+       if (!vmx->loaded_vmcs->vmcs)
+               goto free_msrs;
+       if (!vmm_exclusive)
+               kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
+       loaded_vmcs_init(vmx->loaded_vmcs);
+       if (!vmm_exclusive)
+               kvm_cpu_vmxoff();
+
+       cpu = get_cpu();
+       vmx_vcpu_load(&vmx->vcpu, cpu);
+       vmx->vcpu.cpu = cpu;
+       err = vmx_vcpu_setup(vmx);
+       vmx_vcpu_put(&vmx->vcpu);
+       put_cpu();
+       if (err)
+               goto free_vmcs;
+       if (vm_need_virtualize_apic_accesses(kvm)) {
+               err = alloc_apic_access_page(kvm);
+               if (err)
+                       goto free_vmcs;
+       }
+
+       if (enable_ept) {
+               if (!kvm->arch.ept_identity_map_addr)
+                       kvm->arch.ept_identity_map_addr =
+                               VMX_EPT_IDENTITY_PAGETABLE_ADDR;
+               err = init_rmode_identity_map(kvm);
+               if (err)
+                       goto free_vmcs;
+       }
+
+       if (nested)
+               nested_vmx_setup_ctls_msrs(vmx);
+
+       vmx->nested.posted_intr_nv = -1;
+       vmx->nested.current_vmptr = -1ull;
+       vmx->nested.current_vmcs12 = NULL;
+
+       /*
+        * If PML is turned on, failure on enabling PML just results in failure
+        * of creating the vcpu, therefore we can simplify PML logic (by
+        * avoiding dealing with cases, such as enabling PML partially on vcpus
+        * for the guest, etc.
+        */
+       if (enable_pml) {
+               err = vmx_enable_pml(vmx);
+               if (err)
+                       goto free_vmcs;
+       }
+
+       return &vmx->vcpu;
+
+free_vmcs:
+       free_loaded_vmcs(vmx->loaded_vmcs);
+free_msrs:
+       kfree(vmx->guest_msrs);
+uninit_vcpu:
+       kvm_vcpu_uninit(&vmx->vcpu);
+free_vcpu:
+       free_vpid(vmx);
+       kmem_cache_free(kvm_vcpu_cache, vmx);
+       return ERR_PTR(err);
+}
+
+static void __init vmx_check_processor_compat(void *rtn)
+{
+       struct vmcs_config vmcs_conf;
+
+       *(int *)rtn = 0;
+       if (setup_vmcs_config(&vmcs_conf) < 0)
+               *(int *)rtn = -EIO;
+       if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
+               printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
+                               smp_processor_id());
+               *(int *)rtn = -EIO;
+       }
+}
+
+static int get_ept_level(void)
+{
+       return VMX_EPT_DEFAULT_GAW + 1;
+}
+
+static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+       u64 ret;
+
+       /* For VT-d and EPT combination
+        * 1. MMIO: always map as UC
+        * 2. EPT with VT-d:
+        *   a. VT-d without snooping control feature: can't guarantee the
+        *      result, try to trust guest.
+        *   b. VT-d with snooping control feature: snooping control feature of
+        *      VT-d engine can guarantee the cache correctness. Just set it
+        *      to WB to keep consistent with host. So the same as item 3.
+        * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
+        *    consistent with host MTRR
+        */
+       if (is_mmio)
+               ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
+       else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
+               ret = kvm_get_guest_memory_type(vcpu, gfn) <<
+                     VMX_EPT_MT_EPTE_SHIFT;
+       else
+               ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
+                       | VMX_EPT_IPAT_BIT;
+
+       return ret;
+}
+
+static int vmx_get_lpage_level(void)
+{
+       if (enable_ept && !cpu_has_vmx_ept_1g_page())
+               return PT_DIRECTORY_LEVEL;
+       else
+               /* For shadow and EPT supported 1GB page */
+               return PT_PDPE_LEVEL;
+}
+
+static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
+{
+       struct kvm_cpuid_entry2 *best;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 exec_control;
+
+       vmx->rdtscp_enabled = false;
+       if (vmx_rdtscp_supported()) {
+               exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+               if (exec_control & SECONDARY_EXEC_RDTSCP) {
+                       best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+                       if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
+                               vmx->rdtscp_enabled = true;
+                       else {
+                               exec_control &= ~SECONDARY_EXEC_RDTSCP;
+                               vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+                                               exec_control);
+                       }
+               }
+               if (nested && !vmx->rdtscp_enabled)
+                       vmx->nested.nested_vmx_secondary_ctls_high &=
+                               ~SECONDARY_EXEC_RDTSCP;
+       }
+
+       /* Exposing INVPCID only when PCID is exposed */
+       best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
+       if (vmx_invpcid_supported() &&
+           best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
+           guest_cpuid_has_pcid(vcpu)) {
+               exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+               exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
+               vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+                            exec_control);
+       } else {
+               if (cpu_has_secondary_exec_ctrls()) {
+                       exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+                       exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+                       vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+                                    exec_control);
+               }
+               if (best)
+                       best->ebx &= ~bit(X86_FEATURE_INVPCID);
+       }
+}
+
+static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
+{
+       if (func == 1 && nested)
+               entry->ecx |= bit(X86_FEATURE_VMX);
+}
+
+static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+               struct x86_exception *fault)
+{
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       u32 exit_reason;
+
+       if (fault->error_code & PFERR_RSVD_MASK)
+               exit_reason = EXIT_REASON_EPT_MISCONFIG;
+       else
+               exit_reason = EXIT_REASON_EPT_VIOLATION;
+       nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
+       vmcs12->guest_physical_address = fault->address;
+}
+
+/* Callbacks for nested_ept_init_mmu_context: */
+
+static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
+{
+       /* return the page table to be shadowed - in our case, EPT12 */
+       return get_vmcs12(vcpu)->ept_pointer;
+}
+
+static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+       WARN_ON(mmu_is_nested(vcpu));
+       kvm_init_shadow_ept_mmu(vcpu,
+                       to_vmx(vcpu)->nested.nested_vmx_ept_caps &
+                       VMX_EPT_EXECUTE_ONLY_BIT);
+       vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
+       vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
+       vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
+
+       vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
+}
+
+static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+       vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+}
+
+static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+                                           u16 error_code)
+{
+       bool inequality, bit;
+
+       bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
+       inequality =
+               (error_code & vmcs12->page_fault_error_code_mask) !=
+                vmcs12->page_fault_error_code_match;
+       return inequality ^ bit;
+}
+
+static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
+               struct x86_exception *fault)
+{
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+       WARN_ON(!is_guest_mode(vcpu));
+
+       if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
+               nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
+                                 vmcs_read32(VM_EXIT_INTR_INFO),
+                                 vmcs_readl(EXIT_QUALIFICATION));
+       else
+               kvm_inject_page_fault(vcpu, fault);
+}
+
+static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
+                                       struct vmcs12 *vmcs12)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+       if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+               if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
+                   vmcs12->apic_access_addr >> maxphyaddr)
+                       return false;
+
+               /*
+                * Translate L1 physical address to host physical
+                * address for vmcs02. Keep the page pinned, so this
+                * physical address remains valid. We keep a reference
+                * to it so we can release it later.
+                */
+               if (vmx->nested.apic_access_page) /* shouldn't happen */
+                       nested_release_page(vmx->nested.apic_access_page);
+               vmx->nested.apic_access_page =
+                       nested_get_page(vcpu, vmcs12->apic_access_addr);
+       }
+
+       if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+               if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
+                   vmcs12->virtual_apic_page_addr >> maxphyaddr)
+                       return false;
+
+               if (vmx->nested.virtual_apic_page) /* shouldn't happen */
+                       nested_release_page(vmx->nested.virtual_apic_page);
+               vmx->nested.virtual_apic_page =
+                       nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
+
+               /*
+                * Failing the vm entry is _not_ what the processor does
+                * but it's basically the only possibility we have.
+                * We could still enter the guest if CR8 load exits are
+                * enabled, CR8 store exits are enabled, and virtualize APIC
+                * access is disabled; in this case the processor would never
+                * use the TPR shadow and we could simply clear the bit from
+                * the execution control.  But such a configuration is useless,
+                * so let's keep the code simple.
+                */
+               if (!vmx->nested.virtual_apic_page)
+                       return false;
+       }
+
+       if (nested_cpu_has_posted_intr(vmcs12)) {
+               if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
+                   vmcs12->posted_intr_desc_addr >> maxphyaddr)
+                       return false;
+
+               if (vmx->nested.pi_desc_page) { /* shouldn't happen */
+                       kunmap(vmx->nested.pi_desc_page);
+                       nested_release_page(vmx->nested.pi_desc_page);
+               }
+               vmx->nested.pi_desc_page =
+                       nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
+               if (!vmx->nested.pi_desc_page)
+                       return false;
+
+               vmx->nested.pi_desc =
+                       (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
+               if (!vmx->nested.pi_desc) {
+                       nested_release_page_clean(vmx->nested.pi_desc_page);
+                       return false;
+               }
+               vmx->nested.pi_desc =
+                       (struct pi_desc *)((void *)vmx->nested.pi_desc +
+                       (unsigned long)(vmcs12->posted_intr_desc_addr &
+                       (PAGE_SIZE - 1)));
+       }
+
+       return true;
+}
+
+static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
+{
+       u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (vcpu->arch.virtual_tsc_khz == 0)
+               return;
+
+       /* Make sure short timeouts reliably trigger an immediate vmexit.
+        * hrtimer_start does not guarantee this. */
+       if (preemption_timeout <= 1) {
+               vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
+               return;
+       }
+
+       preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+       preemption_timeout *= 1000000;
+       do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
+       hrtimer_start(&vmx->nested.preemption_timer,
+                     ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
+}
+
+static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
+                                               struct vmcs12 *vmcs12)
+{
+       int maxphyaddr;
+       u64 addr;
+
+       if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+               return 0;
+
+       if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
+               WARN_ON(1);
+               return -EINVAL;
+       }
+       maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+       if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
+          ((addr + PAGE_SIZE) >> maxphyaddr))
+               return -EINVAL;
+
+       return 0;
+}
+
+/*
+ * Merge L0's and L1's MSR bitmap, return false to indicate that
+ * we do not use the hardware.
+ */
+static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
+                                              struct vmcs12 *vmcs12)
+{
+       int msr;
+       struct page *page;
+       unsigned long *msr_bitmap;
+
+       if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
+               return false;
+
+       page = nested_get_page(vcpu, vmcs12->msr_bitmap);
+       if (!page) {
+               WARN_ON(1);
+               return false;
+       }
+       msr_bitmap = (unsigned long *)kmap(page);
+       if (!msr_bitmap) {
+               nested_release_page_clean(page);
+               WARN_ON(1);
+               return false;
+       }
+
+       if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
+               if (nested_cpu_has_apic_reg_virt(vmcs12))
+                       for (msr = 0x800; msr <= 0x8ff; msr++)
+                               nested_vmx_disable_intercept_for_msr(
+                                       msr_bitmap,
+                                       vmx_msr_bitmap_nested,
+                                       msr, MSR_TYPE_R);
+               /* TPR is allowed */
+               nested_vmx_disable_intercept_for_msr(msr_bitmap,
+                               vmx_msr_bitmap_nested,
+                               APIC_BASE_MSR + (APIC_TASKPRI >> 4),
+                               MSR_TYPE_R | MSR_TYPE_W);
+               if (nested_cpu_has_vid(vmcs12)) {
+                       /* EOI and self-IPI are allowed */
+                       nested_vmx_disable_intercept_for_msr(
+                               msr_bitmap,
+                               vmx_msr_bitmap_nested,
+                               APIC_BASE_MSR + (APIC_EOI >> 4),
+                               MSR_TYPE_W);
+                       nested_vmx_disable_intercept_for_msr(
+                               msr_bitmap,
+                               vmx_msr_bitmap_nested,
+                               APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
+                               MSR_TYPE_W);
+               }
+       } else {
+               /*
+                * Enable reading intercept of all the x2apic
+                * MSRs. We should not rely on vmcs12 to do any
+                * optimizations here, it may have been modified
+                * by L1.
+                */
+               for (msr = 0x800; msr <= 0x8ff; msr++)
+                       __vmx_enable_intercept_for_msr(
+                               vmx_msr_bitmap_nested,
+                               msr,
+                               MSR_TYPE_R);
+
+               __vmx_enable_intercept_for_msr(
+                               vmx_msr_bitmap_nested,
+                               APIC_BASE_MSR + (APIC_TASKPRI >> 4),
+                               MSR_TYPE_W);
+               __vmx_enable_intercept_for_msr(
+                               vmx_msr_bitmap_nested,
+                               APIC_BASE_MSR + (APIC_EOI >> 4),
+                               MSR_TYPE_W);
+               __vmx_enable_intercept_for_msr(
+                               vmx_msr_bitmap_nested,
+                               APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
+                               MSR_TYPE_W);
+       }
+       kunmap(page);
+       nested_release_page_clean(page);
+
+       return true;
+}
+
+static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
+                                          struct vmcs12 *vmcs12)
+{
+       if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+           !nested_cpu_has_apic_reg_virt(vmcs12) &&
+           !nested_cpu_has_vid(vmcs12) &&
+           !nested_cpu_has_posted_intr(vmcs12))
+               return 0;
+
+       /*
+        * If virtualize x2apic mode is enabled,
+        * virtualize apic access must be disabled.
+        */
+       if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+           nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+               return -EINVAL;
+
+       /*
+        * If virtual interrupt delivery is enabled,
+        * we must exit on external interrupts.
+        */
+       if (nested_cpu_has_vid(vmcs12) &&
+          !nested_exit_on_intr(vcpu))
+               return -EINVAL;
+
+       /*
+        * bits 15:8 should be zero in posted_intr_nv,
+        * the descriptor address has been already checked
+        * in nested_get_vmcs12_pages.
+        */
+       if (nested_cpu_has_posted_intr(vmcs12) &&
+          (!nested_cpu_has_vid(vmcs12) ||
+           !nested_exit_intr_ack_set(vcpu) ||
+           vmcs12->posted_intr_nv & 0xff00))
+               return -EINVAL;
+
+       /* tpr shadow is needed by all apicv features. */
+       if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+               return -EINVAL;
+
+       return 0;
+}
+
+static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
+                                      unsigned long count_field,
+                                      unsigned long addr_field)
+{
+       int maxphyaddr;
+       u64 count, addr;
+
+       if (vmcs12_read_any(vcpu, count_field, &count) ||
+           vmcs12_read_any(vcpu, addr_field, &addr)) {
+               WARN_ON(1);
+               return -EINVAL;
+       }
+       if (count == 0)
+               return 0;
+       maxphyaddr = cpuid_maxphyaddr(vcpu);
+       if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
+           (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
+               pr_warn_ratelimited(
+                       "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
+                       addr_field, maxphyaddr, count, addr);
+               return -EINVAL;
+       }
+       return 0;
+}
+
+static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
+                                               struct vmcs12 *vmcs12)
+{
+       if (vmcs12->vm_exit_msr_load_count == 0 &&
+           vmcs12->vm_exit_msr_store_count == 0 &&
+           vmcs12->vm_entry_msr_load_count == 0)
+               return 0; /* Fast path */
+       if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
+                                       VM_EXIT_MSR_LOAD_ADDR) ||
+           nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
+                                       VM_EXIT_MSR_STORE_ADDR) ||
+           nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
+                                       VM_ENTRY_MSR_LOAD_ADDR))
+               return -EINVAL;
+       return 0;
+}
+
+static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
+                                      struct vmx_msr_entry *e)
+{
+       /* x2APIC MSR accesses are not allowed */
+       if (apic_x2apic_mode(vcpu->arch.apic) && e->index >> 8 == 0x8)
+               return -EINVAL;
+       if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
+           e->index == MSR_IA32_UCODE_REV)
+               return -EINVAL;
+       if (e->reserved != 0)
+               return -EINVAL;
+       return 0;
+}
+
+static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
+                                    struct vmx_msr_entry *e)
+{
+       if (e->index == MSR_FS_BASE ||
+           e->index == MSR_GS_BASE ||
+           e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
+           nested_vmx_msr_check_common(vcpu, e))
+               return -EINVAL;
+       return 0;
+}
+
+static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
+                                     struct vmx_msr_entry *e)
+{
+       if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
+           nested_vmx_msr_check_common(vcpu, e))
+               return -EINVAL;
+       return 0;
+}
+
+/*
+ * Load guest's/host's msr at nested entry/exit.
+ * return 0 for success, entry index for failure.
+ */
+static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+       u32 i;
+       struct vmx_msr_entry e;
+       struct msr_data msr;
+
+       msr.host_initiated = false;
+       for (i = 0; i < count; i++) {
+               if (kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e),
+                                  &e, sizeof(e))) {
+                       pr_warn_ratelimited(
+                               "%s cannot read MSR entry (%u, 0x%08llx)\n",
+                               __func__, i, gpa + i * sizeof(e));
+                       goto fail;
+               }
+               if (nested_vmx_load_msr_check(vcpu, &e)) {
+                       pr_warn_ratelimited(
+                               "%s check failed (%u, 0x%x, 0x%x)\n",
+                               __func__, i, e.index, e.reserved);
+                       goto fail;
+               }
+               msr.index = e.index;
+               msr.data = e.value;
+               if (kvm_set_msr(vcpu, &msr)) {
+                       pr_warn_ratelimited(
+                               "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+                               __func__, i, e.index, e.value);
+                       goto fail;
+               }
+       }
+       return 0;
+fail:
+       return i + 1;
+}
+
+static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+       u32 i;
+       struct vmx_msr_entry e;
+
+       for (i = 0; i < count; i++) {
+               if (kvm_read_guest(vcpu->kvm,
+                                  gpa + i * sizeof(e),
+                                  &e, 2 * sizeof(u32))) {
+                       pr_warn_ratelimited(
+                               "%s cannot read MSR entry (%u, 0x%08llx)\n",
+                               __func__, i, gpa + i * sizeof(e));
+                       return -EINVAL;
+               }
+               if (nested_vmx_store_msr_check(vcpu, &e)) {
+                       pr_warn_ratelimited(
+                               "%s check failed (%u, 0x%x, 0x%x)\n",
+                               __func__, i, e.index, e.reserved);
+                       return -EINVAL;
+               }
+               if (kvm_get_msr(vcpu, e.index, &e.value)) {
+                       pr_warn_ratelimited(
+                               "%s cannot read MSR (%u, 0x%x)\n",
+                               __func__, i, e.index);
+                       return -EINVAL;
+               }
+               if (kvm_write_guest(vcpu->kvm,
+                                   gpa + i * sizeof(e) +
+                                       offsetof(struct vmx_msr_entry, value),
+                                   &e.value, sizeof(e.value))) {
+                       pr_warn_ratelimited(
+                               "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+                               __func__, i, e.index, e.value);
+                       return -EINVAL;
+               }
+       }
+       return 0;
+}
+
+/*
+ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+ * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+ * guest in a way that will both be appropriate to L1's requests, and our
+ * needs. In addition to modifying the active vmcs (which is vmcs02), this
+ * function also has additional necessary side-effects, like setting various
+ * vcpu->arch fields.
+ */
+static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 exec_control;
+
+       vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+       vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+       vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+       vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+       vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+       vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+       vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+       vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+       vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+       vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+       vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+       vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+       vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+       vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+       vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+       vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+       vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+       vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+       vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+       vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+       vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+       vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+       vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+       vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+       vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+       vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+       vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+       vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+       vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+       vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+       vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+       vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+       vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+       vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+       vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+       vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+
+       if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+               kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+               vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+       } else {
+               kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+               vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+       }
+       vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+               vmcs12->vm_entry_intr_info_field);
+       vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+               vmcs12->vm_entry_exception_error_code);
+       vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+               vmcs12->vm_entry_instruction_len);
+       vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+               vmcs12->guest_interruptibility_info);
+       vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+       vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+       vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+               vmcs12->guest_pending_dbg_exceptions);
+       vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+       vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+
+       if (nested_cpu_has_xsaves(vmcs12))
+               vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+       vmcs_write64(VMCS_LINK_POINTER, -1ull);
+
+       exec_control = vmcs12->pin_based_vm_exec_control;
+       exec_control |= vmcs_config.pin_based_exec_ctrl;
+       exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+
+       if (nested_cpu_has_posted_intr(vmcs12)) {
+               /*
+                * Note that we use L0's vector here and in
+                * vmx_deliver_nested_posted_interrupt.
+                */
+               vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
+               vmx->nested.pi_pending = false;
+               vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+               vmcs_write64(POSTED_INTR_DESC_ADDR,
+                       page_to_phys(vmx->nested.pi_desc_page) +
+                       (unsigned long)(vmcs12->posted_intr_desc_addr &
+                       (PAGE_SIZE - 1)));
+       } else
+               exec_control &= ~PIN_BASED_POSTED_INTR;
+
+       vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
+
+       vmx->nested.preemption_timer_expired = false;
+       if (nested_cpu_has_preemption_timer(vmcs12))
+               vmx_start_preemption_timer(vcpu);
+
+       /*
+        * Whether page-faults are trapped is determined by a combination of
+        * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+        * If enable_ept, L0 doesn't care about page faults and we should
+        * set all of these to L1's desires. However, if !enable_ept, L0 does
+        * care about (at least some) page faults, and because it is not easy
+        * (if at all possible?) to merge L0 and L1's desires, we simply ask
+        * to exit on each and every L2 page fault. This is done by setting
+        * MASK=MATCH=0 and (see below) EB.PF=1.
+        * Note that below we don't need special code to set EB.PF beyond the
+        * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+        * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+        * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+        *
+        * A problem with this approach (when !enable_ept) is that L1 may be
+        * injected with more page faults than it asked for. This could have
+        * caused problems, but in practice existing hypervisors don't care.
+        * To fix this, we will need to emulate the PFEC checking (on the L1
+        * page tables), using walk_addr(), when injecting PFs to L1.
+        */
+       vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+               enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+       vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+               enable_ept ? vmcs12->page_fault_error_code_match : 0);
+
+       if (cpu_has_secondary_exec_ctrls()) {
+               exec_control = vmx_secondary_exec_control(vmx);
+               if (!vmx->rdtscp_enabled)
+                       exec_control &= ~SECONDARY_EXEC_RDTSCP;
+               /* Take the following fields only from vmcs12 */
+               exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+                                 SECONDARY_EXEC_RDTSCP |
+                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+                                 SECONDARY_EXEC_APIC_REGISTER_VIRT);
+               if (nested_cpu_has(vmcs12,
+                               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
+                       exec_control |= vmcs12->secondary_vm_exec_control;
+
+               if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
+                       /*
+                        * If translation failed, no matter: This feature asks
+                        * to exit when accessing the given address, and if it
+                        * can never be accessed, this feature won't do
+                        * anything anyway.
+                        */
+                       if (!vmx->nested.apic_access_page)
+                               exec_control &=
+                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+                       else
+                               vmcs_write64(APIC_ACCESS_ADDR,
+                                 page_to_phys(vmx->nested.apic_access_page));
+               } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
+                           (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
+                       exec_control |=
+                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+                       kvm_vcpu_reload_apic_access_page(vcpu);
+               }
+
+               if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
+                       vmcs_write64(EOI_EXIT_BITMAP0,
+                               vmcs12->eoi_exit_bitmap0);
+                       vmcs_write64(EOI_EXIT_BITMAP1,
+                               vmcs12->eoi_exit_bitmap1);
+                       vmcs_write64(EOI_EXIT_BITMAP2,
+                               vmcs12->eoi_exit_bitmap2);
+                       vmcs_write64(EOI_EXIT_BITMAP3,
+                               vmcs12->eoi_exit_bitmap3);
+                       vmcs_write16(GUEST_INTR_STATUS,
+                               vmcs12->guest_intr_status);
+               }
+
+               vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+       }
+
+
+       /*
+        * Set host-state according to L0's settings (vmcs12 is irrelevant here)
+        * Some constant fields are set here by vmx_set_constant_host_state().
+        * Other fields are different per CPU, and will be set later when
+        * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
+        */
+       vmx_set_constant_host_state(vmx);
+
+       /*
+        * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+        * entry, but only if the current (host) sp changed from the value
+        * we wrote last (vmx->host_rsp). This cache is no longer relevant
+        * if we switch vmcs, and rather than hold a separate cache per vmcs,
+        * here we just force the write to happen on entry.
+        */
+       vmx->host_rsp = 0;
+
+       exec_control = vmx_exec_control(vmx); /* L0's desires */
+       exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+       exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+       exec_control &= ~CPU_BASED_TPR_SHADOW;
+       exec_control |= vmcs12->cpu_based_vm_exec_control;
+
+       if (exec_control & CPU_BASED_TPR_SHADOW) {
+               vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+                               page_to_phys(vmx->nested.virtual_apic_page));
+               vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+       }
+
+       if (cpu_has_vmx_msr_bitmap() &&
+           exec_control & CPU_BASED_USE_MSR_BITMAPS) {
+               nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
+               /* MSR_BITMAP will be set by following vmx_set_efer. */
+       } else
+               exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
+
+       /*
+        * Merging of IO bitmap not currently supported.
+        * Rather, exit every time.
+        */
+       exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+       exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+
+       /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+        * bitwise-or of what L1 wants to trap for L2, and what we want to
+        * trap. Note that CR0.TS also needs updating - we do this later.
+        */
+       update_exception_bitmap(vcpu);
+       vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+       vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+       /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
+        * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+        * bits are further modified by vmx_set_efer() below.
+        */
+       vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
+
+       /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
+        * emulated by vmx_set_efer(), below.
+        */
+       vm_entry_controls_init(vmx, 
+               (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
+                       ~VM_ENTRY_IA32E_MODE) |
+               (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
+
+       if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
+               vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+               vcpu->arch.pat = vmcs12->guest_ia32_pat;
+       } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+               vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+
+
+       set_cr4_guest_host_mask(vmx);
+
+       if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
+               vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+
+       if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+               vmcs_write64(TSC_OFFSET,
+                       vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
+       else
+               vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
+
+       if (enable_vpid) {
+               /*
+                * Trivially support vpid by letting L2s share their parent
+                * L1's vpid. TODO: move to a more elaborate solution, giving
+                * each L2 its own vpid and exposing the vpid feature to L1.
+                */
+               vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+               vmx_flush_tlb(vcpu);
+       }
+
+       if (nested_cpu_has_ept(vmcs12)) {
+               kvm_mmu_unload(vcpu);
+               nested_ept_init_mmu_context(vcpu);
+       }
+
+       if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
+               vcpu->arch.efer = vmcs12->guest_ia32_efer;
+       else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+               vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+       else
+               vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+       /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+       vmx_set_efer(vcpu, vcpu->arch.efer);
+
+       /*
+        * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
+        * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
+        * The CR0_READ_SHADOW is what L2 should have expected to read given
+        * the specifications by L1; It's not enough to take
+        * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+        * have more bits than L1 expected.
+        */
+       vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+       vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+
+       vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+       vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+
+       /* shadow page tables on either EPT or shadow page tables */
+       kvm_set_cr3(vcpu, vmcs12->guest_cr3);
+       kvm_mmu_reset_context(vcpu);
+
+       if (!enable_ept)
+               vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
+
+       /*
+        * L1 may access the L2's PDPTR, so save them to construct vmcs12
+        */
+       if (enable_ept) {
+               vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+               vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+               vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+               vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+       }
+
+       kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+       kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+}
+
+/*
+ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+ * for running an L2 nested guest.
+ */
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+{
+       struct vmcs12 *vmcs12;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int cpu;
+       struct loaded_vmcs *vmcs02;
+       bool ia32e;
+       u32 msr_entry_idx;
+
+       if (!nested_vmx_check_permission(vcpu) ||
+           !nested_vmx_check_vmcs12(vcpu))
+               return 1;
+
+       skip_emulated_instruction(vcpu);
+       vmcs12 = get_vmcs12(vcpu);
+
+       if (enable_shadow_vmcs)
+               copy_shadow_to_vmcs12(vmx);
+
+       /*
+        * The nested entry process starts with enforcing various prerequisites
+        * on vmcs12 as required by the Intel SDM, and act appropriately when
+        * they fail: As the SDM explains, some conditions should cause the
+        * instruction to fail, while others will cause the instruction to seem
+        * to succeed, but return an EXIT_REASON_INVALID_STATE.
+        * To speed up the normal (success) code path, we should avoid checking
+        * for misconfigurations which will anyway be caught by the processor
+        * when using the merged vmcs02.
+        */
+       if (vmcs12->launch_state == launch) {
+               nested_vmx_failValid(vcpu,
+                       launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+                              : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+               return 1;
+       }
+
+       if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
+           vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
+               nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               return 1;
+       }
+
+       if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
+               nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               return 1;
+       }
+
+       if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
+               nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               return 1;
+       }
+
+       if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
+               nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               return 1;
+       }
+
+       if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
+               nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               return 1;
+       }
+
+       if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+                               vmx->nested.nested_vmx_true_procbased_ctls_low,
+                               vmx->nested.nested_vmx_procbased_ctls_high) ||
+           !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+                               vmx->nested.nested_vmx_secondary_ctls_low,
+                               vmx->nested.nested_vmx_secondary_ctls_high) ||
+           !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+                               vmx->nested.nested_vmx_pinbased_ctls_low,
+                               vmx->nested.nested_vmx_pinbased_ctls_high) ||
+           !vmx_control_verify(vmcs12->vm_exit_controls,
+                               vmx->nested.nested_vmx_true_exit_ctls_low,
+                               vmx->nested.nested_vmx_exit_ctls_high) ||
+           !vmx_control_verify(vmcs12->vm_entry_controls,
+                               vmx->nested.nested_vmx_true_entry_ctls_low,
+                               vmx->nested.nested_vmx_entry_ctls_high))
+       {
+               nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               return 1;
+       }
+
+       if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
+           ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
+               nested_vmx_failValid(vcpu,
+                       VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
+               return 1;
+       }
+
+       if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+           ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
+               nested_vmx_entry_failure(vcpu, vmcs12,
+                       EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+               return 1;
+       }
+       if (vmcs12->vmcs_link_pointer != -1ull) {
+               nested_vmx_entry_failure(vcpu, vmcs12,
+                       EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
+               return 1;
+       }
+
+       /*
+        * If the load IA32_EFER VM-entry control is 1, the following checks
+        * are performed on the field for the IA32_EFER MSR:
+        * - Bits reserved in the IA32_EFER MSR must be 0.
+        * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+        *   the IA-32e mode guest VM-exit control. It must also be identical
+        *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+        *   CR0.PG) is 1.
+        */
+       if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
+               ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+               if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+                   ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+                   ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
+                       nested_vmx_entry_failure(vcpu, vmcs12,
+                               EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+                       return 1;
+               }
+       }
+
+       /*
+        * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+        * IA32_EFER MSR must be 0 in the field for that register. In addition,
+        * the values of the LMA and LME bits in the field must each be that of
+        * the host address-space size VM-exit control.
+        */
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+               ia32e = (vmcs12->vm_exit_controls &
+                        VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+               if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+                   ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+                   ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
+                       nested_vmx_entry_failure(vcpu, vmcs12,
+                               EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+                       return 1;
+               }
+       }
+
+       /*
+        * We're finally done with prerequisite checking, and can start with
+        * the nested entry.
+        */
+
+       vmcs02 = nested_get_current_vmcs02(vmx);
+       if (!vmcs02)
+               return -ENOMEM;
+
+       enter_guest_mode(vcpu);
+
+       vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
+
+       if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+               vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+
+       cpu = get_cpu();
+       vmx->loaded_vmcs = vmcs02;
+       vmx_vcpu_put(vcpu);
+       vmx_vcpu_load(vcpu, cpu);
+       vcpu->cpu = cpu;
+       put_cpu();
+
+       vmx_segment_cache_clear(vmx);
+
+       prepare_vmcs02(vcpu, vmcs12);
+
+       msr_entry_idx = nested_vmx_load_msr(vcpu,
+                                           vmcs12->vm_entry_msr_load_addr,
+                                           vmcs12->vm_entry_msr_load_count);
+       if (msr_entry_idx) {
+               leave_guest_mode(vcpu);
+               vmx_load_vmcs01(vcpu);
+               nested_vmx_entry_failure(vcpu, vmcs12,
+                               EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
+               return 1;
+       }
+
+       vmcs12->launch_state = 1;
+
+       if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
+               return kvm_vcpu_halt(vcpu);
+
+       vmx->nested.nested_run_pending = 1;
+
+       /*
+        * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+        * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+        * returned as far as L1 is concerned. It will only return (and set
+        * the success flag) when L2 exits (see nested_vmx_vmexit()).
+        */
+       return 1;
+}
+
+/*
+ * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+ * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+ * This function returns the new value we should put in vmcs12.guest_cr0.
+ * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+ *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+ *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+ *     didn't trap the bit, because if L1 did, so would L0).
+ *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+ *     been modified by L2, and L1 knows it. So just leave the old value of
+ *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+ *     isn't relevant, because if L0 traps this bit it can set it to anything.
+ *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+ *     changed these bits, and therefore they need to be updated, but L0
+ *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+ *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+ */
+static inline unsigned long
+vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+       return
+       /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+       /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+       /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+                       vcpu->arch.cr0_guest_owned_bits));
+}
+
+static inline unsigned long
+vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+       return
+       /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+       /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+       /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+                       vcpu->arch.cr4_guest_owned_bits));
+}
+
+static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
+                                      struct vmcs12 *vmcs12)
+{
+       u32 idt_vectoring;
+       unsigned int nr;
+
+       if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
+               nr = vcpu->arch.exception.nr;
+               idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+               if (kvm_exception_is_soft(nr)) {
+                       vmcs12->vm_exit_instruction_len =
+                               vcpu->arch.event_exit_inst_len;
+                       idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
+               } else
+                       idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
+
+               if (vcpu->arch.exception.has_error_code) {
+                       idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
+                       vmcs12->idt_vectoring_error_code =
+                               vcpu->arch.exception.error_code;
+               }
+
+               vmcs12->idt_vectoring_info_field = idt_vectoring;
+       } else if (vcpu->arch.nmi_injected) {
+               vmcs12->idt_vectoring_info_field =
+                       INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
+       } else if (vcpu->arch.interrupt.pending) {
+               nr = vcpu->arch.interrupt.nr;
+               idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+               if (vcpu->arch.interrupt.soft) {
+                       idt_vectoring |= INTR_TYPE_SOFT_INTR;
+                       vmcs12->vm_entry_instruction_len =
+                               vcpu->arch.event_exit_inst_len;
+               } else
+                       idt_vectoring |= INTR_TYPE_EXT_INTR;
+
+               vmcs12->idt_vectoring_info_field = idt_vectoring;
+       }
+}
+
+static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+       if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
+           vmx->nested.preemption_timer_expired) {
+               if (vmx->nested.nested_run_pending)
+                       return -EBUSY;
+               nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
+               return 0;
+       }
+
+       if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
+               if (vmx->nested.nested_run_pending ||
+                   vcpu->arch.interrupt.pending)
+                       return -EBUSY;
+               nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+                                 NMI_VECTOR | INTR_TYPE_NMI_INTR |
+                                 INTR_INFO_VALID_MASK, 0);
+               /*
+                * The NMI-triggered VM exit counts as injection:
+                * clear this one and block further NMIs.
+                */
+               vcpu->arch.nmi_pending = 0;
+               vmx_set_nmi_mask(vcpu, true);
+               return 0;
+       }
+
+       if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
+           nested_exit_on_intr(vcpu)) {
+               if (vmx->nested.nested_run_pending)
+                       return -EBUSY;
+               nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+               return 0;
+       }
+
+       return vmx_complete_nested_posted_interrupt(vcpu);
+}
+
+static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
+{
+       ktime_t remaining =
+               hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
+       u64 value;
+
+       if (ktime_to_ns(remaining) <= 0)
+               return 0;
+
+       value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
+       do_div(value, 1000000);
+       return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+}
+
+/*
+ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+ * and this function updates it to reflect the changes to the guest state while
+ * L2 was running (and perhaps made some exits which were handled directly by L0
+ * without going back to L1), and to reflect the exit reason.
+ * Note that we do not have to copy here all VMCS fields, just those that
+ * could have changed by the L2 guest or the exit - i.e., the guest-state and
+ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+ * which already writes to vmcs12 directly.
+ */
+static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+                          u32 exit_reason, u32 exit_intr_info,
+                          unsigned long exit_qualification)
+{
+       /* update guest state fields: */
+       vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+       vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+
+       vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+       vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+       vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+
+       vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+       vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+       vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+       vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+       vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+       vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+       vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+       vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+       vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+       vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+       vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+       vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+       vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+       vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+       vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+       vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+       vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+       vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+       vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+       vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+       vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+       vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+       vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+       vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+       vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+       vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+       vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+       vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+       vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+       vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+       vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+       vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+       vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+       vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+       vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+       vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+
+       vmcs12->guest_interruptibility_info =
+               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+       vmcs12->guest_pending_dbg_exceptions =
+               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+       if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
+               vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
+       else
+               vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
+
+       if (nested_cpu_has_preemption_timer(vmcs12)) {
+               if (vmcs12->vm_exit_controls &
+                   VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
+                       vmcs12->vmx_preemption_timer_value =
+                               vmx_get_preemption_timer_value(vcpu);
+               hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
+       }
+
+       /*
+        * In some cases (usually, nested EPT), L2 is allowed to change its
+        * own CR3 without exiting. If it has changed it, we must keep it.
+        * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+        * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+        *
+        * Additionally, restore L2's PDPTR to vmcs12.
+        */
+       if (enable_ept) {
+               vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
+               vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+               vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+               vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+               vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+       }
+
+       if (nested_cpu_has_vid(vmcs12))
+               vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
+
+       vmcs12->vm_entry_controls =
+               (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
+               (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+
+       if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
+               kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+               vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+       }
+
+       /* TODO: These cannot have changed unless we have MSR bitmaps and
+        * the relevant bit asks not to trap the change */
+       if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+               vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+       if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
+               vmcs12->guest_ia32_efer = vcpu->arch.efer;
+       vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+       vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+       vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+       if (vmx_mpx_supported())
+               vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+       if (nested_cpu_has_xsaves(vmcs12))
+               vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
+
+       /* update exit information fields: */
+
+       vmcs12->vm_exit_reason = exit_reason;
+       vmcs12->exit_qualification = exit_qualification;
+
+       vmcs12->vm_exit_intr_info = exit_intr_info;
+       if ((vmcs12->vm_exit_intr_info &
+            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
+           (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
+               vmcs12->vm_exit_intr_error_code =
+                       vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+       vmcs12->idt_vectoring_info_field = 0;
+       vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+       vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+       if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
+               /* vm_entry_intr_info_field is cleared on exit. Emulate this
+                * instead of reading the real value. */
+               vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+
+               /*
+                * Transfer the event that L0 or L1 may wanted to inject into
+                * L2 to IDT_VECTORING_INFO_FIELD.
+                */
+               vmcs12_save_pending_event(vcpu, vmcs12);
+       }
+
+       /*
+        * Drop what we picked up for L2 via vmx_complete_interrupts. It is
+        * preserved above and would only end up incorrectly in L1.
+        */
+       vcpu->arch.nmi_injected = false;
+       kvm_clear_exception_queue(vcpu);
+       kvm_clear_interrupt_queue(vcpu);
+}
+
+/*
+ * A part of what we need to when the nested L2 guest exits and we want to
+ * run its L1 parent, is to reset L1's guest state to the host state specified
+ * in vmcs12.
+ * This function is to be called not only on normal nested exit, but also on
+ * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+ * Failures During or After Loading Guest State").
+ * This function should be called when the active VMCS is L1's (vmcs01).
+ */
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+                                  struct vmcs12 *vmcs12)
+{
+       struct kvm_segment seg;
+
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+               vcpu->arch.efer = vmcs12->host_ia32_efer;
+       else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+               vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+       else
+               vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+       vmx_set_efer(vcpu, vcpu->arch.efer);
+
+       kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+       kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+       vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+       /*
+        * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+        * actually changed, because it depends on the current state of
+        * fpu_active (which may have changed).
+        * Note that vmx_set_cr0 refers to efer set above.
+        */
+       vmx_set_cr0(vcpu, vmcs12->host_cr0);
+       /*
+        * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
+        * to apply the same changes to L1's vmcs. We just set cr0 correctly,
+        * but we also need to update cr0_guest_host_mask and exception_bitmap.
+        */
+       update_exception_bitmap(vcpu);
+       vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
+       vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+       /*
+        * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
+        * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
+        */
+       vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+       kvm_set_cr4(vcpu, vmcs12->host_cr4);
+
+       nested_ept_uninit_mmu_context(vcpu);
+
+       kvm_set_cr3(vcpu, vmcs12->host_cr3);
+       kvm_mmu_reset_context(vcpu);
+
+       if (!enable_ept)
+               vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+
+       if (enable_vpid) {
+               /*
+                * Trivially support vpid by letting L2s share their parent
+                * L1's vpid. TODO: move to a more elaborate solution, giving
+                * each L2 its own vpid and exposing the vpid feature to L1.
+                */
+               vmx_flush_tlb(vcpu);
+       }
+
+
+       vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+       vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+       vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+       vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+       vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+
+       /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
+       if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
+               vmcs_write64(GUEST_BNDCFGS, 0);
+
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
+               vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+               vcpu->arch.pat = vmcs12->host_ia32_pat;
+       }
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+               vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+                       vmcs12->host_ia32_perf_global_ctrl);
+
+       /* Set L1 segment info according to Intel SDM
+           27.5.2 Loading Host Segment and Descriptor-Table Registers */
+       seg = (struct kvm_segment) {
+               .base = 0,
+               .limit = 0xFFFFFFFF,
+               .selector = vmcs12->host_cs_selector,
+               .type = 11,
+               .present = 1,
+               .s = 1,
+               .g = 1
+       };
+       if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+               seg.l = 1;
+       else
+               seg.db = 1;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+       seg = (struct kvm_segment) {
+               .base = 0,
+               .limit = 0xFFFFFFFF,
+               .type = 3,
+               .present = 1,
+               .s = 1,
+               .db = 1,
+               .g = 1
+       };
+       seg.selector = vmcs12->host_ds_selector;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+       seg.selector = vmcs12->host_es_selector;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+       seg.selector = vmcs12->host_ss_selector;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+       seg.selector = vmcs12->host_fs_selector;
+       seg.base = vmcs12->host_fs_base;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+       seg.selector = vmcs12->host_gs_selector;
+       seg.base = vmcs12->host_gs_base;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+       seg = (struct kvm_segment) {
+               .base = vmcs12->host_tr_base,
+               .limit = 0x67,
+               .selector = vmcs12->host_tr_selector,
+               .type = 11,
+               .present = 1
+       };
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+
+       kvm_set_dr(vcpu, 7, 0x400);
+       vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+
+       if (cpu_has_vmx_msr_bitmap())
+               vmx_set_msr_bitmap(vcpu);
+
+       if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
+                               vmcs12->vm_exit_msr_load_count))
+               nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+/*
+ * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+ * and modify vmcs12 to make it see what it would expect to see there if
+ * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+ */
+static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+                             u32 exit_intr_info,
+                             unsigned long exit_qualification)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+       /* trying to cancel vmlaunch/vmresume is a bug */
+       WARN_ON_ONCE(vmx->nested.nested_run_pending);
+
+       leave_guest_mode(vcpu);
+       prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
+                      exit_qualification);
+
+       if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
+                                vmcs12->vm_exit_msr_store_count))
+               nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+
+       vmx_load_vmcs01(vcpu);
+
+       if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
+           && nested_exit_intr_ack_set(vcpu)) {
+               int irq = kvm_cpu_get_interrupt(vcpu);
+               WARN_ON(irq < 0);
+               vmcs12->vm_exit_intr_info = irq |
+                       INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+       }
+
+       trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
+                                      vmcs12->exit_qualification,
+                                      vmcs12->idt_vectoring_info_field,
+                                      vmcs12->vm_exit_intr_info,
+                                      vmcs12->vm_exit_intr_error_code,
+                                      KVM_ISA_VMX);
+
+       vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
+       vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
+       vmx_segment_cache_clear(vmx);
+
+       /* if no vmcs02 cache requested, remove the one we used */
+       if (VMCS02_POOL_SIZE == 0)
+               nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
+
+       load_vmcs12_host_state(vcpu, vmcs12);
+
+       /* Update TSC_OFFSET if TSC was changed while L2 ran */
+       vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
+
+       /* This is needed for same reason as it was needed in prepare_vmcs02 */
+       vmx->host_rsp = 0;
+
+       /* Unpin physical memory we referred to in vmcs02 */
+       if (vmx->nested.apic_access_page) {
+               nested_release_page(vmx->nested.apic_access_page);
+               vmx->nested.apic_access_page = NULL;
+       }
+       if (vmx->nested.virtual_apic_page) {
+               nested_release_page(vmx->nested.virtual_apic_page);
+               vmx->nested.virtual_apic_page = NULL;
+       }
+       if (vmx->nested.pi_desc_page) {
+               kunmap(vmx->nested.pi_desc_page);
+               nested_release_page(vmx->nested.pi_desc_page);
+               vmx->nested.pi_desc_page = NULL;
+               vmx->nested.pi_desc = NULL;
+       }
+
+       /*
+        * We are now running in L2, mmu_notifier will force to reload the
+        * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
+        */
+       kvm_vcpu_reload_apic_access_page(vcpu);
+
+       /*
+        * Exiting from L2 to L1, we're now back to L1 which thinks it just
+        * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
+        * success or failure flag accordingly.
+        */
+       if (unlikely(vmx->fail)) {
+               vmx->fail = 0;
+               nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
+       } else
+               nested_vmx_succeed(vcpu);
+       if (enable_shadow_vmcs)
+               vmx->nested.sync_shadow_vmcs = true;
+
+       /* in case we halted in L2 */
+       vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+}
+
+/*
+ * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+ */
+static void vmx_leave_nested(struct kvm_vcpu *vcpu)
+{
+       if (is_guest_mode(vcpu))
+               nested_vmx_vmexit(vcpu, -1, 0, 0);
+       free_nested(to_vmx(vcpu));
+}
+
+/*
+ * L1's failure to enter L2 is a subset of a normal exit, as explained in
+ * 23.7 "VM-entry failures during or after loading guest state" (this also
+ * lists the acceptable exit-reason and exit-qualification parameters).
+ * It should only be called before L2 actually succeeded to run, and when
+ * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
+ */
+static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+                       struct vmcs12 *vmcs12,
+                       u32 reason, unsigned long qualification)
+{
+       load_vmcs12_host_state(vcpu, vmcs12);
+       vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+       vmcs12->exit_qualification = qualification;
+       nested_vmx_succeed(vcpu);
+       if (enable_shadow_vmcs)
+               to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
+}
+
+static int vmx_check_intercept(struct kvm_vcpu *vcpu,
+                              struct x86_instruction_info *info,
+                              enum x86_intercept_stage stage)
+{
+       return X86EMUL_CONTINUE;
+}
+
+static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+       if (ple_gap)
+               shrink_ple_window(vcpu);
+}
+
+static void vmx_slot_enable_log_dirty(struct kvm *kvm,
+                                    struct kvm_memory_slot *slot)
+{
+       kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
+       kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
+}
+
+static void vmx_slot_disable_log_dirty(struct kvm *kvm,
+                                      struct kvm_memory_slot *slot)
+{
+       kvm_mmu_slot_set_dirty(kvm, slot);
+}
+
+static void vmx_flush_log_dirty(struct kvm *kvm)
+{
+       kvm_flush_pml_buffers(kvm);
+}
+
+static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
+                                          struct kvm_memory_slot *memslot,
+                                          gfn_t offset, unsigned long mask)
+{
+       kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
+}
+
+static struct kvm_x86_ops vmx_x86_ops = {
+       .cpu_has_kvm_support = cpu_has_kvm_support,
+       .disabled_by_bios = vmx_disabled_by_bios,
+       .hardware_setup = hardware_setup,
+       .hardware_unsetup = hardware_unsetup,
+       .check_processor_compatibility = vmx_check_processor_compat,
+       .hardware_enable = hardware_enable,
+       .hardware_disable = hardware_disable,
+       .cpu_has_accelerated_tpr = report_flexpriority,
+
+       .vcpu_create = vmx_create_vcpu,
+       .vcpu_free = vmx_free_vcpu,
+       .vcpu_reset = vmx_vcpu_reset,
+
+       .prepare_guest_switch = vmx_save_host_state,
+       .vcpu_load = vmx_vcpu_load,
+       .vcpu_put = vmx_vcpu_put,
+
+       .update_db_bp_intercept = update_exception_bitmap,
+       .get_msr = vmx_get_msr,
+       .set_msr = vmx_set_msr,
+       .get_segment_base = vmx_get_segment_base,
+       .get_segment = vmx_get_segment,
+       .set_segment = vmx_set_segment,
+       .get_cpl = vmx_get_cpl,
+       .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
+       .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
+       .decache_cr3 = vmx_decache_cr3,
+       .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
+       .set_cr0 = vmx_set_cr0,
+       .set_cr3 = vmx_set_cr3,
+       .set_cr4 = vmx_set_cr4,
+       .set_efer = vmx_set_efer,
+       .get_idt = vmx_get_idt,
+       .set_idt = vmx_set_idt,
+       .get_gdt = vmx_get_gdt,
+       .set_gdt = vmx_set_gdt,
+       .get_dr6 = vmx_get_dr6,
+       .set_dr6 = vmx_set_dr6,
+       .set_dr7 = vmx_set_dr7,
+       .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
+       .cache_reg = vmx_cache_reg,
+       .get_rflags = vmx_get_rflags,
+       .set_rflags = vmx_set_rflags,
+       .fpu_activate = vmx_fpu_activate,
+       .fpu_deactivate = vmx_fpu_deactivate,
+
+       .tlb_flush = vmx_flush_tlb,
+
+       .run = vmx_vcpu_run,
+       .handle_exit = vmx_handle_exit,
+       .skip_emulated_instruction = skip_emulated_instruction,
+       .set_interrupt_shadow = vmx_set_interrupt_shadow,
+       .get_interrupt_shadow = vmx_get_interrupt_shadow,
+       .patch_hypercall = vmx_patch_hypercall,
+       .set_irq = vmx_inject_irq,
+       .set_nmi = vmx_inject_nmi,
+       .queue_exception = vmx_queue_exception,
+       .cancel_injection = vmx_cancel_injection,
+       .interrupt_allowed = vmx_interrupt_allowed,
+       .nmi_allowed = vmx_nmi_allowed,
+       .get_nmi_mask = vmx_get_nmi_mask,
+       .set_nmi_mask = vmx_set_nmi_mask,
+       .enable_nmi_window = enable_nmi_window,
+       .enable_irq_window = enable_irq_window,
+       .update_cr8_intercept = update_cr8_intercept,
+       .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
+       .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
+       .vm_has_apicv = vmx_vm_has_apicv,
+       .load_eoi_exitmap = vmx_load_eoi_exitmap,
+       .hwapic_irr_update = vmx_hwapic_irr_update,
+       .hwapic_isr_update = vmx_hwapic_isr_update,
+       .sync_pir_to_irr = vmx_sync_pir_to_irr,
+       .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
+
+       .set_tss_addr = vmx_set_tss_addr,
+       .get_tdp_level = get_ept_level,
+       .get_mt_mask = vmx_get_mt_mask,
+
+       .get_exit_info = vmx_get_exit_info,
+
+       .get_lpage_level = vmx_get_lpage_level,
+
+       .cpuid_update = vmx_cpuid_update,
+
+       .rdtscp_supported = vmx_rdtscp_supported,
+       .invpcid_supported = vmx_invpcid_supported,
+
+       .set_supported_cpuid = vmx_set_supported_cpuid,
+
+       .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+
+       .set_tsc_khz = vmx_set_tsc_khz,
+       .read_tsc_offset = vmx_read_tsc_offset,
+       .write_tsc_offset = vmx_write_tsc_offset,
+       .adjust_tsc_offset = vmx_adjust_tsc_offset,
+       .compute_tsc_offset = vmx_compute_tsc_offset,
+       .read_l1_tsc = vmx_read_l1_tsc,
+
+       .set_tdp_cr3 = vmx_set_cr3,
+
+       .check_intercept = vmx_check_intercept,
+       .handle_external_intr = vmx_handle_external_intr,
+       .mpx_supported = vmx_mpx_supported,
+       .xsaves_supported = vmx_xsaves_supported,
+
+       .check_nested_events = vmx_check_nested_events,
+
+       .sched_in = vmx_sched_in,
+
+       .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
+       .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
+       .flush_log_dirty = vmx_flush_log_dirty,
+       .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
+};
+
+static int __init vmx_init(void)
+{
+       int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
+                     __alignof__(struct vcpu_vmx), THIS_MODULE);
+       if (r)
+               return r;
+
+#ifdef CONFIG_KEXEC
+       rcu_assign_pointer(crash_vmclear_loaded_vmcss,
+                          crash_vmclear_local_loaded_vmcss);
+#endif
+
+       return 0;
+}
+
+static void __exit vmx_exit(void)
+{
+#ifdef CONFIG_KEXEC
+       RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
+       synchronize_rcu();
+#endif
+
+       kvm_exit();
+}
+
+module_init(vmx_init)
+module_exit(vmx_exit)