Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / sparc / mm / init_64.c
diff --git a/kernel/arch/sparc/mm/init_64.c b/kernel/arch/sparc/mm/init_64.c
new file mode 100644 (file)
index 0000000..c5d08b8
--- /dev/null
@@ -0,0 +1,2878 @@
+/*
+ *  arch/sparc64/mm/init.c
+ *
+ *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
+ *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
+ */
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/initrd.h>
+#include <linux/swap.h>
+#include <linux/pagemap.h>
+#include <linux/poison.h>
+#include <linux/fs.h>
+#include <linux/seq_file.h>
+#include <linux/kprobes.h>
+#include <linux/cache.h>
+#include <linux/sort.h>
+#include <linux/ioport.h>
+#include <linux/percpu.h>
+#include <linux/memblock.h>
+#include <linux/mmzone.h>
+#include <linux/gfp.h>
+
+#include <asm/head.h>
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/oplib.h>
+#include <asm/iommu.h>
+#include <asm/io.h>
+#include <asm/uaccess.h>
+#include <asm/mmu_context.h>
+#include <asm/tlbflush.h>
+#include <asm/dma.h>
+#include <asm/starfire.h>
+#include <asm/tlb.h>
+#include <asm/spitfire.h>
+#include <asm/sections.h>
+#include <asm/tsb.h>
+#include <asm/hypervisor.h>
+#include <asm/prom.h>
+#include <asm/mdesc.h>
+#include <asm/cpudata.h>
+#include <asm/setup.h>
+#include <asm/irq.h>
+
+#include "init_64.h"
+
+unsigned long kern_linear_pte_xor[4] __read_mostly;
+static unsigned long page_cache4v_flag;
+
+/* A bitmap, two bits for every 256MB of physical memory.  These two
+ * bits determine what page size we use for kernel linear
+ * translations.  They form an index into kern_linear_pte_xor[].  The
+ * value in the indexed slot is XOR'd with the TLB miss virtual
+ * address to form the resulting TTE.  The mapping is:
+ *
+ *     0       ==>     4MB
+ *     1       ==>     256MB
+ *     2       ==>     2GB
+ *     3       ==>     16GB
+ *
+ * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
+ * support 2GB pages, and hopefully future cpus will support the 16GB
+ * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
+ * if these larger page sizes are not supported by the cpu.
+ *
+ * It would be nice to determine this from the machine description
+ * 'cpu' properties, but we need to have this table setup before the
+ * MDESC is initialized.
+ */
+
+#ifndef CONFIG_DEBUG_PAGEALLOC
+/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
+ * Space is allocated for this right after the trap table in
+ * arch/sparc64/kernel/head.S
+ */
+extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
+#endif
+extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
+
+static unsigned long cpu_pgsz_mask;
+
+#define MAX_BANKS      1024
+
+static struct linux_prom64_registers pavail[MAX_BANKS];
+static int pavail_ents;
+
+static int cmp_p64(const void *a, const void *b)
+{
+       const struct linux_prom64_registers *x = a, *y = b;
+
+       if (x->phys_addr > y->phys_addr)
+               return 1;
+       if (x->phys_addr < y->phys_addr)
+               return -1;
+       return 0;
+}
+
+static void __init read_obp_memory(const char *property,
+                                  struct linux_prom64_registers *regs,
+                                  int *num_ents)
+{
+       phandle node = prom_finddevice("/memory");
+       int prop_size = prom_getproplen(node, property);
+       int ents, ret, i;
+
+       ents = prop_size / sizeof(struct linux_prom64_registers);
+       if (ents > MAX_BANKS) {
+               prom_printf("The machine has more %s property entries than "
+                           "this kernel can support (%d).\n",
+                           property, MAX_BANKS);
+               prom_halt();
+       }
+
+       ret = prom_getproperty(node, property, (char *) regs, prop_size);
+       if (ret == -1) {
+               prom_printf("Couldn't get %s property from /memory.\n",
+                               property);
+               prom_halt();
+       }
+
+       /* Sanitize what we got from the firmware, by page aligning
+        * everything.
+        */
+       for (i = 0; i < ents; i++) {
+               unsigned long base, size;
+
+               base = regs[i].phys_addr;
+               size = regs[i].reg_size;
+
+               size &= PAGE_MASK;
+               if (base & ~PAGE_MASK) {
+                       unsigned long new_base = PAGE_ALIGN(base);
+
+                       size -= new_base - base;
+                       if ((long) size < 0L)
+                               size = 0UL;
+                       base = new_base;
+               }
+               if (size == 0UL) {
+                       /* If it is empty, simply get rid of it.
+                        * This simplifies the logic of the other
+                        * functions that process these arrays.
+                        */
+                       memmove(&regs[i], &regs[i + 1],
+                               (ents - i - 1) * sizeof(regs[0]));
+                       i--;
+                       ents--;
+                       continue;
+               }
+               regs[i].phys_addr = base;
+               regs[i].reg_size = size;
+       }
+
+       *num_ents = ents;
+
+       sort(regs, ents, sizeof(struct linux_prom64_registers),
+            cmp_p64, NULL);
+}
+
+/* Kernel physical address base and size in bytes.  */
+unsigned long kern_base __read_mostly;
+unsigned long kern_size __read_mostly;
+
+/* Initial ramdisk setup */
+extern unsigned long sparc_ramdisk_image64;
+extern unsigned int sparc_ramdisk_image;
+extern unsigned int sparc_ramdisk_size;
+
+struct page *mem_map_zero __read_mostly;
+EXPORT_SYMBOL(mem_map_zero);
+
+unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
+
+unsigned long sparc64_kern_pri_context __read_mostly;
+unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
+unsigned long sparc64_kern_sec_context __read_mostly;
+
+int num_kernel_image_mappings;
+
+#ifdef CONFIG_DEBUG_DCFLUSH
+atomic_t dcpage_flushes = ATOMIC_INIT(0);
+#ifdef CONFIG_SMP
+atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
+#endif
+#endif
+
+inline void flush_dcache_page_impl(struct page *page)
+{
+       BUG_ON(tlb_type == hypervisor);
+#ifdef CONFIG_DEBUG_DCFLUSH
+       atomic_inc(&dcpage_flushes);
+#endif
+
+#ifdef DCACHE_ALIASING_POSSIBLE
+       __flush_dcache_page(page_address(page),
+                           ((tlb_type == spitfire) &&
+                            page_mapping(page) != NULL));
+#else
+       if (page_mapping(page) != NULL &&
+           tlb_type == spitfire)
+               __flush_icache_page(__pa(page_address(page)));
+#endif
+}
+
+#define PG_dcache_dirty                PG_arch_1
+#define PG_dcache_cpu_shift    32UL
+#define PG_dcache_cpu_mask     \
+       ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
+
+#define dcache_dirty_cpu(page) \
+       (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
+
+static inline void set_dcache_dirty(struct page *page, int this_cpu)
+{
+       unsigned long mask = this_cpu;
+       unsigned long non_cpu_bits;
+
+       non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
+       mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
+
+       __asm__ __volatile__("1:\n\t"
+                            "ldx       [%2], %%g7\n\t"
+                            "and       %%g7, %1, %%g1\n\t"
+                            "or        %%g1, %0, %%g1\n\t"
+                            "casx      [%2], %%g7, %%g1\n\t"
+                            "cmp       %%g7, %%g1\n\t"
+                            "bne,pn    %%xcc, 1b\n\t"
+                            " nop"
+                            : /* no outputs */
+                            : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
+                            : "g1", "g7");
+}
+
+static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
+{
+       unsigned long mask = (1UL << PG_dcache_dirty);
+
+       __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
+                            "1:\n\t"
+                            "ldx       [%2], %%g7\n\t"
+                            "srlx      %%g7, %4, %%g1\n\t"
+                            "and       %%g1, %3, %%g1\n\t"
+                            "cmp       %%g1, %0\n\t"
+                            "bne,pn    %%icc, 2f\n\t"
+                            " andn     %%g7, %1, %%g1\n\t"
+                            "casx      [%2], %%g7, %%g1\n\t"
+                            "cmp       %%g7, %%g1\n\t"
+                            "bne,pn    %%xcc, 1b\n\t"
+                            " nop\n"
+                            "2:"
+                            : /* no outputs */
+                            : "r" (cpu), "r" (mask), "r" (&page->flags),
+                              "i" (PG_dcache_cpu_mask),
+                              "i" (PG_dcache_cpu_shift)
+                            : "g1", "g7");
+}
+
+static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
+{
+       unsigned long tsb_addr = (unsigned long) ent;
+
+       if (tlb_type == cheetah_plus || tlb_type == hypervisor)
+               tsb_addr = __pa(tsb_addr);
+
+       __tsb_insert(tsb_addr, tag, pte);
+}
+
+unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
+
+static void flush_dcache(unsigned long pfn)
+{
+       struct page *page;
+
+       page = pfn_to_page(pfn);
+       if (page) {
+               unsigned long pg_flags;
+
+               pg_flags = page->flags;
+               if (pg_flags & (1UL << PG_dcache_dirty)) {
+                       int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
+                                  PG_dcache_cpu_mask);
+                       int this_cpu = get_cpu();
+
+                       /* This is just to optimize away some function calls
+                        * in the SMP case.
+                        */
+                       if (cpu == this_cpu)
+                               flush_dcache_page_impl(page);
+                       else
+                               smp_flush_dcache_page_impl(page, cpu);
+
+                       clear_dcache_dirty_cpu(page, cpu);
+
+                       put_cpu();
+               }
+       }
+}
+
+/* mm->context.lock must be held */
+static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
+                                   unsigned long tsb_hash_shift, unsigned long address,
+                                   unsigned long tte)
+{
+       struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
+       unsigned long tag;
+
+       if (unlikely(!tsb))
+               return;
+
+       tsb += ((address >> tsb_hash_shift) &
+               (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
+       tag = (address >> 22UL);
+       tsb_insert(tsb, tag, tte);
+}
+
+#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
+static inline bool is_hugetlb_pte(pte_t pte)
+{
+       if ((tlb_type == hypervisor &&
+            (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
+           (tlb_type != hypervisor &&
+            (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
+               return true;
+       return false;
+}
+#endif
+
+void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
+{
+       struct mm_struct *mm;
+       unsigned long flags;
+       pte_t pte = *ptep;
+
+       if (tlb_type != hypervisor) {
+               unsigned long pfn = pte_pfn(pte);
+
+               if (pfn_valid(pfn))
+                       flush_dcache(pfn);
+       }
+
+       mm = vma->vm_mm;
+
+       /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
+       if (!pte_accessible(mm, pte))
+               return;
+
+       spin_lock_irqsave(&mm->context.lock, flags);
+
+#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
+       if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
+               __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
+                                       address, pte_val(pte));
+       else
+#endif
+               __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
+                                       address, pte_val(pte));
+
+       spin_unlock_irqrestore(&mm->context.lock, flags);
+}
+
+void flush_dcache_page(struct page *page)
+{
+       struct address_space *mapping;
+       int this_cpu;
+
+       if (tlb_type == hypervisor)
+               return;
+
+       /* Do not bother with the expensive D-cache flush if it
+        * is merely the zero page.  The 'bigcore' testcase in GDB
+        * causes this case to run millions of times.
+        */
+       if (page == ZERO_PAGE(0))
+               return;
+
+       this_cpu = get_cpu();
+
+       mapping = page_mapping(page);
+       if (mapping && !mapping_mapped(mapping)) {
+               int dirty = test_bit(PG_dcache_dirty, &page->flags);
+               if (dirty) {
+                       int dirty_cpu = dcache_dirty_cpu(page);
+
+                       if (dirty_cpu == this_cpu)
+                               goto out;
+                       smp_flush_dcache_page_impl(page, dirty_cpu);
+               }
+               set_dcache_dirty(page, this_cpu);
+       } else {
+               /* We could delay the flush for the !page_mapping
+                * case too.  But that case is for exec env/arg
+                * pages and those are %99 certainly going to get
+                * faulted into the tlb (and thus flushed) anyways.
+                */
+               flush_dcache_page_impl(page);
+       }
+
+out:
+       put_cpu();
+}
+EXPORT_SYMBOL(flush_dcache_page);
+
+void __kprobes flush_icache_range(unsigned long start, unsigned long end)
+{
+       /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
+       if (tlb_type == spitfire) {
+               unsigned long kaddr;
+
+               /* This code only runs on Spitfire cpus so this is
+                * why we can assume _PAGE_PADDR_4U.
+                */
+               for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
+                       unsigned long paddr, mask = _PAGE_PADDR_4U;
+
+                       if (kaddr >= PAGE_OFFSET)
+                               paddr = kaddr & mask;
+                       else {
+                               pgd_t *pgdp = pgd_offset_k(kaddr);
+                               pud_t *pudp = pud_offset(pgdp, kaddr);
+                               pmd_t *pmdp = pmd_offset(pudp, kaddr);
+                               pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
+
+                               paddr = pte_val(*ptep) & mask;
+                       }
+                       __flush_icache_page(paddr);
+               }
+       }
+}
+EXPORT_SYMBOL(flush_icache_range);
+
+void mmu_info(struct seq_file *m)
+{
+       static const char *pgsz_strings[] = {
+               "8K", "64K", "512K", "4MB", "32MB",
+               "256MB", "2GB", "16GB",
+       };
+       int i, printed;
+
+       if (tlb_type == cheetah)
+               seq_printf(m, "MMU Type\t: Cheetah\n");
+       else if (tlb_type == cheetah_plus)
+               seq_printf(m, "MMU Type\t: Cheetah+\n");
+       else if (tlb_type == spitfire)
+               seq_printf(m, "MMU Type\t: Spitfire\n");
+       else if (tlb_type == hypervisor)
+               seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
+       else
+               seq_printf(m, "MMU Type\t: ???\n");
+
+       seq_printf(m, "MMU PGSZs\t: ");
+       printed = 0;
+       for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
+               if (cpu_pgsz_mask & (1UL << i)) {
+                       seq_printf(m, "%s%s",
+                                  printed ? "," : "", pgsz_strings[i]);
+                       printed++;
+               }
+       }
+       seq_putc(m, '\n');
+
+#ifdef CONFIG_DEBUG_DCFLUSH
+       seq_printf(m, "DCPageFlushes\t: %d\n",
+                  atomic_read(&dcpage_flushes));
+#ifdef CONFIG_SMP
+       seq_printf(m, "DCPageFlushesXC\t: %d\n",
+                  atomic_read(&dcpage_flushes_xcall));
+#endif /* CONFIG_SMP */
+#endif /* CONFIG_DEBUG_DCFLUSH */
+}
+
+struct linux_prom_translation prom_trans[512] __read_mostly;
+unsigned int prom_trans_ents __read_mostly;
+
+unsigned long kern_locked_tte_data;
+
+/* The obp translations are saved based on 8k pagesize, since obp can
+ * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
+ * HI_OBP_ADDRESS range are handled in ktlb.S.
+ */
+static inline int in_obp_range(unsigned long vaddr)
+{
+       return (vaddr >= LOW_OBP_ADDRESS &&
+               vaddr < HI_OBP_ADDRESS);
+}
+
+static int cmp_ptrans(const void *a, const void *b)
+{
+       const struct linux_prom_translation *x = a, *y = b;
+
+       if (x->virt > y->virt)
+               return 1;
+       if (x->virt < y->virt)
+               return -1;
+       return 0;
+}
+
+/* Read OBP translations property into 'prom_trans[]'.  */
+static void __init read_obp_translations(void)
+{
+       int n, node, ents, first, last, i;
+
+       node = prom_finddevice("/virtual-memory");
+       n = prom_getproplen(node, "translations");
+       if (unlikely(n == 0 || n == -1)) {
+               prom_printf("prom_mappings: Couldn't get size.\n");
+               prom_halt();
+       }
+       if (unlikely(n > sizeof(prom_trans))) {
+               prom_printf("prom_mappings: Size %d is too big.\n", n);
+               prom_halt();
+       }
+
+       if ((n = prom_getproperty(node, "translations",
+                                 (char *)&prom_trans[0],
+                                 sizeof(prom_trans))) == -1) {
+               prom_printf("prom_mappings: Couldn't get property.\n");
+               prom_halt();
+       }
+
+       n = n / sizeof(struct linux_prom_translation);
+
+       ents = n;
+
+       sort(prom_trans, ents, sizeof(struct linux_prom_translation),
+            cmp_ptrans, NULL);
+
+       /* Now kick out all the non-OBP entries.  */
+       for (i = 0; i < ents; i++) {
+               if (in_obp_range(prom_trans[i].virt))
+                       break;
+       }
+       first = i;
+       for (; i < ents; i++) {
+               if (!in_obp_range(prom_trans[i].virt))
+                       break;
+       }
+       last = i;
+
+       for (i = 0; i < (last - first); i++) {
+               struct linux_prom_translation *src = &prom_trans[i + first];
+               struct linux_prom_translation *dest = &prom_trans[i];
+
+               *dest = *src;
+       }
+       for (; i < ents; i++) {
+               struct linux_prom_translation *dest = &prom_trans[i];
+               dest->virt = dest->size = dest->data = 0x0UL;
+       }
+
+       prom_trans_ents = last - first;
+
+       if (tlb_type == spitfire) {
+               /* Clear diag TTE bits. */
+               for (i = 0; i < prom_trans_ents; i++)
+                       prom_trans[i].data &= ~0x0003fe0000000000UL;
+       }
+
+       /* Force execute bit on.  */
+       for (i = 0; i < prom_trans_ents; i++)
+               prom_trans[i].data |= (tlb_type == hypervisor ?
+                                      _PAGE_EXEC_4V : _PAGE_EXEC_4U);
+}
+
+static void __init hypervisor_tlb_lock(unsigned long vaddr,
+                                      unsigned long pte,
+                                      unsigned long mmu)
+{
+       unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
+
+       if (ret != 0) {
+               prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
+                           "errors with %lx\n", vaddr, 0, pte, mmu, ret);
+               prom_halt();
+       }
+}
+
+static unsigned long kern_large_tte(unsigned long paddr);
+
+static void __init remap_kernel(void)
+{
+       unsigned long phys_page, tte_vaddr, tte_data;
+       int i, tlb_ent = sparc64_highest_locked_tlbent();
+
+       tte_vaddr = (unsigned long) KERNBASE;
+       phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
+       tte_data = kern_large_tte(phys_page);
+
+       kern_locked_tte_data = tte_data;
+
+       /* Now lock us into the TLBs via Hypervisor or OBP. */
+       if (tlb_type == hypervisor) {
+               for (i = 0; i < num_kernel_image_mappings; i++) {
+                       hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
+                       hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
+                       tte_vaddr += 0x400000;
+                       tte_data += 0x400000;
+               }
+       } else {
+               for (i = 0; i < num_kernel_image_mappings; i++) {
+                       prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
+                       prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
+                       tte_vaddr += 0x400000;
+                       tte_data += 0x400000;
+               }
+               sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
+       }
+       if (tlb_type == cheetah_plus) {
+               sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
+                                           CTX_CHEETAH_PLUS_NUC);
+               sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
+               sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
+       }
+}
+
+
+static void __init inherit_prom_mappings(void)
+{
+       /* Now fixup OBP's idea about where we really are mapped. */
+       printk("Remapping the kernel... ");
+       remap_kernel();
+       printk("done.\n");
+}
+
+void prom_world(int enter)
+{
+       if (!enter)
+               set_fs(get_fs());
+
+       __asm__ __volatile__("flushw");
+}
+
+void __flush_dcache_range(unsigned long start, unsigned long end)
+{
+       unsigned long va;
+
+       if (tlb_type == spitfire) {
+               int n = 0;
+
+               for (va = start; va < end; va += 32) {
+                       spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
+                       if (++n >= 512)
+                               break;
+               }
+       } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+               start = __pa(start);
+               end = __pa(end);
+               for (va = start; va < end; va += 32)
+                       __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
+                                            "membar #Sync"
+                                            : /* no outputs */
+                                            : "r" (va),
+                                              "i" (ASI_DCACHE_INVALIDATE));
+       }
+}
+EXPORT_SYMBOL(__flush_dcache_range);
+
+/* get_new_mmu_context() uses "cache + 1".  */
+DEFINE_SPINLOCK(ctx_alloc_lock);
+unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
+#define MAX_CTX_NR     (1UL << CTX_NR_BITS)
+#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
+DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
+
+/* Caller does TLB context flushing on local CPU if necessary.
+ * The caller also ensures that CTX_VALID(mm->context) is false.
+ *
+ * We must be careful about boundary cases so that we never
+ * let the user have CTX 0 (nucleus) or we ever use a CTX
+ * version of zero (and thus NO_CONTEXT would not be caught
+ * by version mis-match tests in mmu_context.h).
+ *
+ * Always invoked with interrupts disabled.
+ */
+void get_new_mmu_context(struct mm_struct *mm)
+{
+       unsigned long ctx, new_ctx;
+       unsigned long orig_pgsz_bits;
+       int new_version;
+
+       spin_lock(&ctx_alloc_lock);
+       orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
+       ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
+       new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
+       new_version = 0;
+       if (new_ctx >= (1 << CTX_NR_BITS)) {
+               new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
+               if (new_ctx >= ctx) {
+                       int i;
+                       new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
+                               CTX_FIRST_VERSION;
+                       if (new_ctx == 1)
+                               new_ctx = CTX_FIRST_VERSION;
+
+                       /* Don't call memset, for 16 entries that's just
+                        * plain silly...
+                        */
+                       mmu_context_bmap[0] = 3;
+                       mmu_context_bmap[1] = 0;
+                       mmu_context_bmap[2] = 0;
+                       mmu_context_bmap[3] = 0;
+                       for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
+                               mmu_context_bmap[i + 0] = 0;
+                               mmu_context_bmap[i + 1] = 0;
+                               mmu_context_bmap[i + 2] = 0;
+                               mmu_context_bmap[i + 3] = 0;
+                       }
+                       new_version = 1;
+                       goto out;
+               }
+       }
+       mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
+       new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
+out:
+       tlb_context_cache = new_ctx;
+       mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
+       spin_unlock(&ctx_alloc_lock);
+
+       if (unlikely(new_version))
+               smp_new_mmu_context_version();
+}
+
+static int numa_enabled = 1;
+static int numa_debug;
+
+static int __init early_numa(char *p)
+{
+       if (!p)
+               return 0;
+
+       if (strstr(p, "off"))
+               numa_enabled = 0;
+
+       if (strstr(p, "debug"))
+               numa_debug = 1;
+
+       return 0;
+}
+early_param("numa", early_numa);
+
+#define numadbg(f, a...) \
+do {   if (numa_debug) \
+               printk(KERN_INFO f, ## a); \
+} while (0)
+
+static void __init find_ramdisk(unsigned long phys_base)
+{
+#ifdef CONFIG_BLK_DEV_INITRD
+       if (sparc_ramdisk_image || sparc_ramdisk_image64) {
+               unsigned long ramdisk_image;
+
+               /* Older versions of the bootloader only supported a
+                * 32-bit physical address for the ramdisk image
+                * location, stored at sparc_ramdisk_image.  Newer
+                * SILO versions set sparc_ramdisk_image to zero and
+                * provide a full 64-bit physical address at
+                * sparc_ramdisk_image64.
+                */
+               ramdisk_image = sparc_ramdisk_image;
+               if (!ramdisk_image)
+                       ramdisk_image = sparc_ramdisk_image64;
+
+               /* Another bootloader quirk.  The bootloader normalizes
+                * the physical address to KERNBASE, so we have to
+                * factor that back out and add in the lowest valid
+                * physical page address to get the true physical address.
+                */
+               ramdisk_image -= KERNBASE;
+               ramdisk_image += phys_base;
+
+               numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
+                       ramdisk_image, sparc_ramdisk_size);
+
+               initrd_start = ramdisk_image;
+               initrd_end = ramdisk_image + sparc_ramdisk_size;
+
+               memblock_reserve(initrd_start, sparc_ramdisk_size);
+
+               initrd_start += PAGE_OFFSET;
+               initrd_end += PAGE_OFFSET;
+       }
+#endif
+}
+
+struct node_mem_mask {
+       unsigned long mask;
+       unsigned long val;
+};
+static struct node_mem_mask node_masks[MAX_NUMNODES];
+static int num_node_masks;
+
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+
+int numa_cpu_lookup_table[NR_CPUS];
+cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
+
+struct mdesc_mblock {
+       u64     base;
+       u64     size;
+       u64     offset; /* RA-to-PA */
+};
+static struct mdesc_mblock *mblocks;
+static int num_mblocks;
+
+static unsigned long ra_to_pa(unsigned long addr)
+{
+       int i;
+
+       for (i = 0; i < num_mblocks; i++) {
+               struct mdesc_mblock *m = &mblocks[i];
+
+               if (addr >= m->base &&
+                   addr < (m->base + m->size)) {
+                       addr += m->offset;
+                       break;
+               }
+       }
+       return addr;
+}
+
+static int find_node(unsigned long addr)
+{
+       int i;
+
+       addr = ra_to_pa(addr);
+       for (i = 0; i < num_node_masks; i++) {
+               struct node_mem_mask *p = &node_masks[i];
+
+               if ((addr & p->mask) == p->val)
+                       return i;
+       }
+       /* The following condition has been observed on LDOM guests.*/
+       WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
+               " rule. Some physical memory will be owned by node 0.");
+       return 0;
+}
+
+static u64 memblock_nid_range(u64 start, u64 end, int *nid)
+{
+       *nid = find_node(start);
+       start += PAGE_SIZE;
+       while (start < end) {
+               int n = find_node(start);
+
+               if (n != *nid)
+                       break;
+               start += PAGE_SIZE;
+       }
+
+       if (start > end)
+               start = end;
+
+       return start;
+}
+#endif
+
+/* This must be invoked after performing all of the necessary
+ * memblock_set_node() calls for 'nid'.  We need to be able to get
+ * correct data from get_pfn_range_for_nid().
+ */
+static void __init allocate_node_data(int nid)
+{
+       struct pglist_data *p;
+       unsigned long start_pfn, end_pfn;
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+       unsigned long paddr;
+
+       paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
+       if (!paddr) {
+               prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
+               prom_halt();
+       }
+       NODE_DATA(nid) = __va(paddr);
+       memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
+
+       NODE_DATA(nid)->node_id = nid;
+#endif
+
+       p = NODE_DATA(nid);
+
+       get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
+       p->node_start_pfn = start_pfn;
+       p->node_spanned_pages = end_pfn - start_pfn;
+}
+
+static void init_node_masks_nonnuma(void)
+{
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+       int i;
+#endif
+
+       numadbg("Initializing tables for non-numa.\n");
+
+       node_masks[0].mask = node_masks[0].val = 0;
+       num_node_masks = 1;
+
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+       for (i = 0; i < NR_CPUS; i++)
+               numa_cpu_lookup_table[i] = 0;
+
+       cpumask_setall(&numa_cpumask_lookup_table[0]);
+#endif
+}
+
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+struct pglist_data *node_data[MAX_NUMNODES];
+
+EXPORT_SYMBOL(numa_cpu_lookup_table);
+EXPORT_SYMBOL(numa_cpumask_lookup_table);
+EXPORT_SYMBOL(node_data);
+
+struct mdesc_mlgroup {
+       u64     node;
+       u64     latency;
+       u64     match;
+       u64     mask;
+};
+static struct mdesc_mlgroup *mlgroups;
+static int num_mlgroups;
+
+static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
+                                  u32 cfg_handle)
+{
+       u64 arc;
+
+       mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
+               u64 target = mdesc_arc_target(md, arc);
+               const u64 *val;
+
+               val = mdesc_get_property(md, target,
+                                        "cfg-handle", NULL);
+               if (val && *val == cfg_handle)
+                       return 0;
+       }
+       return -ENODEV;
+}
+
+static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
+                                   u32 cfg_handle)
+{
+       u64 arc, candidate, best_latency = ~(u64)0;
+
+       candidate = MDESC_NODE_NULL;
+       mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
+               u64 target = mdesc_arc_target(md, arc);
+               const char *name = mdesc_node_name(md, target);
+               const u64 *val;
+
+               if (strcmp(name, "pio-latency-group"))
+                       continue;
+
+               val = mdesc_get_property(md, target, "latency", NULL);
+               if (!val)
+                       continue;
+
+               if (*val < best_latency) {
+                       candidate = target;
+                       best_latency = *val;
+               }
+       }
+
+       if (candidate == MDESC_NODE_NULL)
+               return -ENODEV;
+
+       return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
+}
+
+int of_node_to_nid(struct device_node *dp)
+{
+       const struct linux_prom64_registers *regs;
+       struct mdesc_handle *md;
+       u32 cfg_handle;
+       int count, nid;
+       u64 grp;
+
+       /* This is the right thing to do on currently supported
+        * SUN4U NUMA platforms as well, as the PCI controller does
+        * not sit behind any particular memory controller.
+        */
+       if (!mlgroups)
+               return -1;
+
+       regs = of_get_property(dp, "reg", NULL);
+       if (!regs)
+               return -1;
+
+       cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
+
+       md = mdesc_grab();
+
+       count = 0;
+       nid = -1;
+       mdesc_for_each_node_by_name(md, grp, "group") {
+               if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
+                       nid = count;
+                       break;
+               }
+               count++;
+       }
+
+       mdesc_release(md);
+
+       return nid;
+}
+
+static void __init add_node_ranges(void)
+{
+       struct memblock_region *reg;
+
+       for_each_memblock(memory, reg) {
+               unsigned long size = reg->size;
+               unsigned long start, end;
+
+               start = reg->base;
+               end = start + size;
+               while (start < end) {
+                       unsigned long this_end;
+                       int nid;
+
+                       this_end = memblock_nid_range(start, end, &nid);
+
+                       numadbg("Setting memblock NUMA node nid[%d] "
+                               "start[%lx] end[%lx]\n",
+                               nid, start, this_end);
+
+                       memblock_set_node(start, this_end - start,
+                                         &memblock.memory, nid);
+                       start = this_end;
+               }
+       }
+}
+
+static int __init grab_mlgroups(struct mdesc_handle *md)
+{
+       unsigned long paddr;
+       int count = 0;
+       u64 node;
+
+       mdesc_for_each_node_by_name(md, node, "memory-latency-group")
+               count++;
+       if (!count)
+               return -ENOENT;
+
+       paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
+                         SMP_CACHE_BYTES);
+       if (!paddr)
+               return -ENOMEM;
+
+       mlgroups = __va(paddr);
+       num_mlgroups = count;
+
+       count = 0;
+       mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
+               struct mdesc_mlgroup *m = &mlgroups[count++];
+               const u64 *val;
+
+               m->node = node;
+
+               val = mdesc_get_property(md, node, "latency", NULL);
+               m->latency = *val;
+               val = mdesc_get_property(md, node, "address-match", NULL);
+               m->match = *val;
+               val = mdesc_get_property(md, node, "address-mask", NULL);
+               m->mask = *val;
+
+               numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
+                       "match[%llx] mask[%llx]\n",
+                       count - 1, m->node, m->latency, m->match, m->mask);
+       }
+
+       return 0;
+}
+
+static int __init grab_mblocks(struct mdesc_handle *md)
+{
+       unsigned long paddr;
+       int count = 0;
+       u64 node;
+
+       mdesc_for_each_node_by_name(md, node, "mblock")
+               count++;
+       if (!count)
+               return -ENOENT;
+
+       paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
+                         SMP_CACHE_BYTES);
+       if (!paddr)
+               return -ENOMEM;
+
+       mblocks = __va(paddr);
+       num_mblocks = count;
+
+       count = 0;
+       mdesc_for_each_node_by_name(md, node, "mblock") {
+               struct mdesc_mblock *m = &mblocks[count++];
+               const u64 *val;
+
+               val = mdesc_get_property(md, node, "base", NULL);
+               m->base = *val;
+               val = mdesc_get_property(md, node, "size", NULL);
+               m->size = *val;
+               val = mdesc_get_property(md, node,
+                                        "address-congruence-offset", NULL);
+
+               /* The address-congruence-offset property is optional.
+                * Explicity zero it be identifty this.
+                */
+               if (val)
+                       m->offset = *val;
+               else
+                       m->offset = 0UL;
+
+               numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
+                       count - 1, m->base, m->size, m->offset);
+       }
+
+       return 0;
+}
+
+static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
+                                              u64 grp, cpumask_t *mask)
+{
+       u64 arc;
+
+       cpumask_clear(mask);
+
+       mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
+               u64 target = mdesc_arc_target(md, arc);
+               const char *name = mdesc_node_name(md, target);
+               const u64 *id;
+
+               if (strcmp(name, "cpu"))
+                       continue;
+               id = mdesc_get_property(md, target, "id", NULL);
+               if (*id < nr_cpu_ids)
+                       cpumask_set_cpu(*id, mask);
+       }
+}
+
+static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
+{
+       int i;
+
+       for (i = 0; i < num_mlgroups; i++) {
+               struct mdesc_mlgroup *m = &mlgroups[i];
+               if (m->node == node)
+                       return m;
+       }
+       return NULL;
+}
+
+static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
+                                     int index)
+{
+       struct mdesc_mlgroup *candidate = NULL;
+       u64 arc, best_latency = ~(u64)0;
+       struct node_mem_mask *n;
+
+       mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
+               u64 target = mdesc_arc_target(md, arc);
+               struct mdesc_mlgroup *m = find_mlgroup(target);
+               if (!m)
+                       continue;
+               if (m->latency < best_latency) {
+                       candidate = m;
+                       best_latency = m->latency;
+               }
+       }
+       if (!candidate)
+               return -ENOENT;
+
+       if (num_node_masks != index) {
+               printk(KERN_ERR "Inconsistent NUMA state, "
+                      "index[%d] != num_node_masks[%d]\n",
+                      index, num_node_masks);
+               return -EINVAL;
+       }
+
+       n = &node_masks[num_node_masks++];
+
+       n->mask = candidate->mask;
+       n->val = candidate->match;
+
+       numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
+               index, n->mask, n->val, candidate->latency);
+
+       return 0;
+}
+
+static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
+                                        int index)
+{
+       cpumask_t mask;
+       int cpu;
+
+       numa_parse_mdesc_group_cpus(md, grp, &mask);
+
+       for_each_cpu(cpu, &mask)
+               numa_cpu_lookup_table[cpu] = index;
+       cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
+
+       if (numa_debug) {
+               printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
+               for_each_cpu(cpu, &mask)
+                       printk("%d ", cpu);
+               printk("]\n");
+       }
+
+       return numa_attach_mlgroup(md, grp, index);
+}
+
+static int __init numa_parse_mdesc(void)
+{
+       struct mdesc_handle *md = mdesc_grab();
+       int i, err, count;
+       u64 node;
+
+       node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
+       if (node == MDESC_NODE_NULL) {
+               mdesc_release(md);
+               return -ENOENT;
+       }
+
+       err = grab_mblocks(md);
+       if (err < 0)
+               goto out;
+
+       err = grab_mlgroups(md);
+       if (err < 0)
+               goto out;
+
+       count = 0;
+       mdesc_for_each_node_by_name(md, node, "group") {
+               err = numa_parse_mdesc_group(md, node, count);
+               if (err < 0)
+                       break;
+               count++;
+       }
+
+       add_node_ranges();
+
+       for (i = 0; i < num_node_masks; i++) {
+               allocate_node_data(i);
+               node_set_online(i);
+       }
+
+       err = 0;
+out:
+       mdesc_release(md);
+       return err;
+}
+
+static int __init numa_parse_jbus(void)
+{
+       unsigned long cpu, index;
+
+       /* NUMA node id is encoded in bits 36 and higher, and there is
+        * a 1-to-1 mapping from CPU ID to NUMA node ID.
+        */
+       index = 0;
+       for_each_present_cpu(cpu) {
+               numa_cpu_lookup_table[cpu] = index;
+               cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
+               node_masks[index].mask = ~((1UL << 36UL) - 1UL);
+               node_masks[index].val = cpu << 36UL;
+
+               index++;
+       }
+       num_node_masks = index;
+
+       add_node_ranges();
+
+       for (index = 0; index < num_node_masks; index++) {
+               allocate_node_data(index);
+               node_set_online(index);
+       }
+
+       return 0;
+}
+
+static int __init numa_parse_sun4u(void)
+{
+       if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+               unsigned long ver;
+
+               __asm__ ("rdpr %%ver, %0" : "=r" (ver));
+               if ((ver >> 32UL) == __JALAPENO_ID ||
+                   (ver >> 32UL) == __SERRANO_ID)
+                       return numa_parse_jbus();
+       }
+       return -1;
+}
+
+static int __init bootmem_init_numa(void)
+{
+       int err = -1;
+
+       numadbg("bootmem_init_numa()\n");
+
+       if (numa_enabled) {
+               if (tlb_type == hypervisor)
+                       err = numa_parse_mdesc();
+               else
+                       err = numa_parse_sun4u();
+       }
+       return err;
+}
+
+#else
+
+static int bootmem_init_numa(void)
+{
+       return -1;
+}
+
+#endif
+
+static void __init bootmem_init_nonnuma(void)
+{
+       unsigned long top_of_ram = memblock_end_of_DRAM();
+       unsigned long total_ram = memblock_phys_mem_size();
+
+       numadbg("bootmem_init_nonnuma()\n");
+
+       printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
+              top_of_ram, total_ram);
+       printk(KERN_INFO "Memory hole size: %ldMB\n",
+              (top_of_ram - total_ram) >> 20);
+
+       init_node_masks_nonnuma();
+       memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
+       allocate_node_data(0);
+       node_set_online(0);
+}
+
+static unsigned long __init bootmem_init(unsigned long phys_base)
+{
+       unsigned long end_pfn;
+
+       end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
+       max_pfn = max_low_pfn = end_pfn;
+       min_low_pfn = (phys_base >> PAGE_SHIFT);
+
+       if (bootmem_init_numa() < 0)
+               bootmem_init_nonnuma();
+
+       /* Dump memblock with node info. */
+       memblock_dump_all();
+
+       /* XXX cpu notifier XXX */
+
+       sparse_memory_present_with_active_regions(MAX_NUMNODES);
+       sparse_init();
+
+       return end_pfn;
+}
+
+static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
+static int pall_ents __initdata;
+
+static unsigned long max_phys_bits = 40;
+
+bool kern_addr_valid(unsigned long addr)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+       pte_t *pte;
+
+       if ((long)addr < 0L) {
+               unsigned long pa = __pa(addr);
+
+               if ((addr >> max_phys_bits) != 0UL)
+                       return false;
+
+               return pfn_valid(pa >> PAGE_SHIFT);
+       }
+
+       if (addr >= (unsigned long) KERNBASE &&
+           addr < (unsigned long)&_end)
+               return true;
+
+       pgd = pgd_offset_k(addr);
+       if (pgd_none(*pgd))
+               return 0;
+
+       pud = pud_offset(pgd, addr);
+       if (pud_none(*pud))
+               return 0;
+
+       if (pud_large(*pud))
+               return pfn_valid(pud_pfn(*pud));
+
+       pmd = pmd_offset(pud, addr);
+       if (pmd_none(*pmd))
+               return 0;
+
+       if (pmd_large(*pmd))
+               return pfn_valid(pmd_pfn(*pmd));
+
+       pte = pte_offset_kernel(pmd, addr);
+       if (pte_none(*pte))
+               return 0;
+
+       return pfn_valid(pte_pfn(*pte));
+}
+EXPORT_SYMBOL(kern_addr_valid);
+
+static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
+                                             unsigned long vend,
+                                             pud_t *pud)
+{
+       const unsigned long mask16gb = (1UL << 34) - 1UL;
+       u64 pte_val = vstart;
+
+       /* Each PUD is 8GB */
+       if ((vstart & mask16gb) ||
+           (vend - vstart <= mask16gb)) {
+               pte_val ^= kern_linear_pte_xor[2];
+               pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
+
+               return vstart + PUD_SIZE;
+       }
+
+       pte_val ^= kern_linear_pte_xor[3];
+       pte_val |= _PAGE_PUD_HUGE;
+
+       vend = vstart + mask16gb + 1UL;
+       while (vstart < vend) {
+               pud_val(*pud) = pte_val;
+
+               pte_val += PUD_SIZE;
+               vstart += PUD_SIZE;
+               pud++;
+       }
+       return vstart;
+}
+
+static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
+                                  bool guard)
+{
+       if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
+               return true;
+
+       return false;
+}
+
+static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
+                                             unsigned long vend,
+                                             pmd_t *pmd)
+{
+       const unsigned long mask256mb = (1UL << 28) - 1UL;
+       const unsigned long mask2gb = (1UL << 31) - 1UL;
+       u64 pte_val = vstart;
+
+       /* Each PMD is 8MB */
+       if ((vstart & mask256mb) ||
+           (vend - vstart <= mask256mb)) {
+               pte_val ^= kern_linear_pte_xor[0];
+               pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
+
+               return vstart + PMD_SIZE;
+       }
+
+       if ((vstart & mask2gb) ||
+           (vend - vstart <= mask2gb)) {
+               pte_val ^= kern_linear_pte_xor[1];
+               pte_val |= _PAGE_PMD_HUGE;
+               vend = vstart + mask256mb + 1UL;
+       } else {
+               pte_val ^= kern_linear_pte_xor[2];
+               pte_val |= _PAGE_PMD_HUGE;
+               vend = vstart + mask2gb + 1UL;
+       }
+
+       while (vstart < vend) {
+               pmd_val(*pmd) = pte_val;
+
+               pte_val += PMD_SIZE;
+               vstart += PMD_SIZE;
+               pmd++;
+       }
+
+       return vstart;
+}
+
+static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
+                                  bool guard)
+{
+       if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
+               return true;
+
+       return false;
+}
+
+static unsigned long __ref kernel_map_range(unsigned long pstart,
+                                           unsigned long pend, pgprot_t prot,
+                                           bool use_huge)
+{
+       unsigned long vstart = PAGE_OFFSET + pstart;
+       unsigned long vend = PAGE_OFFSET + pend;
+       unsigned long alloc_bytes = 0UL;
+
+       if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
+               prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
+                           vstart, vend);
+               prom_halt();
+       }
+
+       while (vstart < vend) {
+               unsigned long this_end, paddr = __pa(vstart);
+               pgd_t *pgd = pgd_offset_k(vstart);
+               pud_t *pud;
+               pmd_t *pmd;
+               pte_t *pte;
+
+               if (pgd_none(*pgd)) {
+                       pud_t *new;
+
+                       new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
+                       alloc_bytes += PAGE_SIZE;
+                       pgd_populate(&init_mm, pgd, new);
+               }
+               pud = pud_offset(pgd, vstart);
+               if (pud_none(*pud)) {
+                       pmd_t *new;
+
+                       if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
+                               vstart = kernel_map_hugepud(vstart, vend, pud);
+                               continue;
+                       }
+                       new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
+                       alloc_bytes += PAGE_SIZE;
+                       pud_populate(&init_mm, pud, new);
+               }
+
+               pmd = pmd_offset(pud, vstart);
+               if (pmd_none(*pmd)) {
+                       pte_t *new;
+
+                       if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
+                               vstart = kernel_map_hugepmd(vstart, vend, pmd);
+                               continue;
+                       }
+                       new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
+                       alloc_bytes += PAGE_SIZE;
+                       pmd_populate_kernel(&init_mm, pmd, new);
+               }
+
+               pte = pte_offset_kernel(pmd, vstart);
+               this_end = (vstart + PMD_SIZE) & PMD_MASK;
+               if (this_end > vend)
+                       this_end = vend;
+
+               while (vstart < this_end) {
+                       pte_val(*pte) = (paddr | pgprot_val(prot));
+
+                       vstart += PAGE_SIZE;
+                       paddr += PAGE_SIZE;
+                       pte++;
+               }
+       }
+
+       return alloc_bytes;
+}
+
+static void __init flush_all_kernel_tsbs(void)
+{
+       int i;
+
+       for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
+               struct tsb *ent = &swapper_tsb[i];
+
+               ent->tag = (1UL << TSB_TAG_INVALID_BIT);
+       }
+#ifndef CONFIG_DEBUG_PAGEALLOC
+       for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
+               struct tsb *ent = &swapper_4m_tsb[i];
+
+               ent->tag = (1UL << TSB_TAG_INVALID_BIT);
+       }
+#endif
+}
+
+extern unsigned int kvmap_linear_patch[1];
+
+static void __init kernel_physical_mapping_init(void)
+{
+       unsigned long i, mem_alloced = 0UL;
+       bool use_huge = true;
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+       use_huge = false;
+#endif
+       for (i = 0; i < pall_ents; i++) {
+               unsigned long phys_start, phys_end;
+
+               phys_start = pall[i].phys_addr;
+               phys_end = phys_start + pall[i].reg_size;
+
+               mem_alloced += kernel_map_range(phys_start, phys_end,
+                                               PAGE_KERNEL, use_huge);
+       }
+
+       printk("Allocated %ld bytes for kernel page tables.\n",
+              mem_alloced);
+
+       kvmap_linear_patch[0] = 0x01000000; /* nop */
+       flushi(&kvmap_linear_patch[0]);
+
+       flush_all_kernel_tsbs();
+
+       __flush_tlb_all();
+}
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+void __kernel_map_pages(struct page *page, int numpages, int enable)
+{
+       unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
+       unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
+
+       kernel_map_range(phys_start, phys_end,
+                        (enable ? PAGE_KERNEL : __pgprot(0)), false);
+
+       flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
+                              PAGE_OFFSET + phys_end);
+
+       /* we should perform an IPI and flush all tlbs,
+        * but that can deadlock->flush only current cpu.
+        */
+       __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
+                                PAGE_OFFSET + phys_end);
+}
+#endif
+
+unsigned long __init find_ecache_flush_span(unsigned long size)
+{
+       int i;
+
+       for (i = 0; i < pavail_ents; i++) {
+               if (pavail[i].reg_size >= size)
+                       return pavail[i].phys_addr;
+       }
+
+       return ~0UL;
+}
+
+unsigned long PAGE_OFFSET;
+EXPORT_SYMBOL(PAGE_OFFSET);
+
+unsigned long VMALLOC_END   = 0x0000010000000000UL;
+EXPORT_SYMBOL(VMALLOC_END);
+
+unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
+unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
+
+static void __init setup_page_offset(void)
+{
+       if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+               /* Cheetah/Panther support a full 64-bit virtual
+                * address, so we can use all that our page tables
+                * support.
+                */
+               sparc64_va_hole_top =    0xfff0000000000000UL;
+               sparc64_va_hole_bottom = 0x0010000000000000UL;
+
+               max_phys_bits = 42;
+       } else if (tlb_type == hypervisor) {
+               switch (sun4v_chip_type) {
+               case SUN4V_CHIP_NIAGARA1:
+               case SUN4V_CHIP_NIAGARA2:
+                       /* T1 and T2 support 48-bit virtual addresses.  */
+                       sparc64_va_hole_top =    0xffff800000000000UL;
+                       sparc64_va_hole_bottom = 0x0000800000000000UL;
+
+                       max_phys_bits = 39;
+                       break;
+               case SUN4V_CHIP_NIAGARA3:
+                       /* T3 supports 48-bit virtual addresses.  */
+                       sparc64_va_hole_top =    0xffff800000000000UL;
+                       sparc64_va_hole_bottom = 0x0000800000000000UL;
+
+                       max_phys_bits = 43;
+                       break;
+               case SUN4V_CHIP_NIAGARA4:
+               case SUN4V_CHIP_NIAGARA5:
+               case SUN4V_CHIP_SPARC64X:
+               case SUN4V_CHIP_SPARC_M6:
+                       /* T4 and later support 52-bit virtual addresses.  */
+                       sparc64_va_hole_top =    0xfff8000000000000UL;
+                       sparc64_va_hole_bottom = 0x0008000000000000UL;
+                       max_phys_bits = 47;
+                       break;
+               case SUN4V_CHIP_SPARC_M7:
+               default:
+                       /* M7 and later support 52-bit virtual addresses.  */
+                       sparc64_va_hole_top =    0xfff8000000000000UL;
+                       sparc64_va_hole_bottom = 0x0008000000000000UL;
+                       max_phys_bits = 49;
+                       break;
+               }
+       }
+
+       if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
+               prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
+                           max_phys_bits);
+               prom_halt();
+       }
+
+       PAGE_OFFSET = sparc64_va_hole_top;
+       VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
+                      (sparc64_va_hole_bottom >> 2));
+
+       pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
+               PAGE_OFFSET, max_phys_bits);
+       pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
+               VMALLOC_START, VMALLOC_END);
+       pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
+               VMEMMAP_BASE, VMEMMAP_BASE << 1);
+}
+
+static void __init tsb_phys_patch(void)
+{
+       struct tsb_ldquad_phys_patch_entry *pquad;
+       struct tsb_phys_patch_entry *p;
+
+       pquad = &__tsb_ldquad_phys_patch;
+       while (pquad < &__tsb_ldquad_phys_patch_end) {
+               unsigned long addr = pquad->addr;
+
+               if (tlb_type == hypervisor)
+                       *(unsigned int *) addr = pquad->sun4v_insn;
+               else
+                       *(unsigned int *) addr = pquad->sun4u_insn;
+               wmb();
+               __asm__ __volatile__("flush     %0"
+                                    : /* no outputs */
+                                    : "r" (addr));
+
+               pquad++;
+       }
+
+       p = &__tsb_phys_patch;
+       while (p < &__tsb_phys_patch_end) {
+               unsigned long addr = p->addr;
+
+               *(unsigned int *) addr = p->insn;
+               wmb();
+               __asm__ __volatile__("flush     %0"
+                                    : /* no outputs */
+                                    : "r" (addr));
+
+               p++;
+       }
+}
+
+/* Don't mark as init, we give this to the Hypervisor.  */
+#ifndef CONFIG_DEBUG_PAGEALLOC
+#define NUM_KTSB_DESCR 2
+#else
+#define NUM_KTSB_DESCR 1
+#endif
+static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
+
+/* The swapper TSBs are loaded with a base sequence of:
+ *
+ *     sethi   %uhi(SYMBOL), REG1
+ *     sethi   %hi(SYMBOL), REG2
+ *     or      REG1, %ulo(SYMBOL), REG1
+ *     or      REG2, %lo(SYMBOL), REG2
+ *     sllx    REG1, 32, REG1
+ *     or      REG1, REG2, REG1
+ *
+ * When we use physical addressing for the TSB accesses, we patch the
+ * first four instructions in the above sequence.
+ */
+
+static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
+{
+       unsigned long high_bits, low_bits;
+
+       high_bits = (pa >> 32) & 0xffffffff;
+       low_bits = (pa >> 0) & 0xffffffff;
+
+       while (start < end) {
+               unsigned int *ia = (unsigned int *)(unsigned long)*start;
+
+               ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
+               __asm__ __volatile__("flush     %0" : : "r" (ia));
+
+               ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
+               __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
+
+               ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
+               __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
+
+               ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
+               __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
+
+               start++;
+       }
+}
+
+static void ktsb_phys_patch(void)
+{
+       extern unsigned int __swapper_tsb_phys_patch;
+       extern unsigned int __swapper_tsb_phys_patch_end;
+       unsigned long ktsb_pa;
+
+       ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
+       patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
+                           &__swapper_tsb_phys_patch_end, ktsb_pa);
+#ifndef CONFIG_DEBUG_PAGEALLOC
+       {
+       extern unsigned int __swapper_4m_tsb_phys_patch;
+       extern unsigned int __swapper_4m_tsb_phys_patch_end;
+       ktsb_pa = (kern_base +
+                  ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
+       patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
+                           &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
+       }
+#endif
+}
+
+static void __init sun4v_ktsb_init(void)
+{
+       unsigned long ktsb_pa;
+
+       /* First KTSB for PAGE_SIZE mappings.  */
+       ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
+
+       switch (PAGE_SIZE) {
+       case 8 * 1024:
+       default:
+               ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
+               ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
+               break;
+
+       case 64 * 1024:
+               ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
+               ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
+               break;
+
+       case 512 * 1024:
+               ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
+               ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
+               break;
+
+       case 4 * 1024 * 1024:
+               ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
+               ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
+               break;
+       }
+
+       ktsb_descr[0].assoc = 1;
+       ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
+       ktsb_descr[0].ctx_idx = 0;
+       ktsb_descr[0].tsb_base = ktsb_pa;
+       ktsb_descr[0].resv = 0;
+
+#ifndef CONFIG_DEBUG_PAGEALLOC
+       /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
+       ktsb_pa = (kern_base +
+                  ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
+
+       ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
+       ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
+                                   HV_PGSZ_MASK_256MB |
+                                   HV_PGSZ_MASK_2GB |
+                                   HV_PGSZ_MASK_16GB) &
+                                  cpu_pgsz_mask);
+       ktsb_descr[1].assoc = 1;
+       ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
+       ktsb_descr[1].ctx_idx = 0;
+       ktsb_descr[1].tsb_base = ktsb_pa;
+       ktsb_descr[1].resv = 0;
+#endif
+}
+
+void sun4v_ktsb_register(void)
+{
+       unsigned long pa, ret;
+
+       pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
+
+       ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
+       if (ret != 0) {
+               prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
+                           "errors with %lx\n", pa, ret);
+               prom_halt();
+       }
+}
+
+static void __init sun4u_linear_pte_xor_finalize(void)
+{
+#ifndef CONFIG_DEBUG_PAGEALLOC
+       /* This is where we would add Panther support for
+        * 32MB and 256MB pages.
+        */
+#endif
+}
+
+static void __init sun4v_linear_pte_xor_finalize(void)
+{
+       unsigned long pagecv_flag;
+
+       /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
+        * enables MCD error. Do not set bit 9 on M7 processor.
+        */
+       switch (sun4v_chip_type) {
+       case SUN4V_CHIP_SPARC_M7:
+               pagecv_flag = 0x00;
+               break;
+       default:
+               pagecv_flag = _PAGE_CV_4V;
+               break;
+       }
+#ifndef CONFIG_DEBUG_PAGEALLOC
+       if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
+               kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
+                       PAGE_OFFSET;
+               kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
+                                          _PAGE_P_4V | _PAGE_W_4V);
+       } else {
+               kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
+       }
+
+       if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
+               kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
+                       PAGE_OFFSET;
+               kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
+                                          _PAGE_P_4V | _PAGE_W_4V);
+       } else {
+               kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
+       }
+
+       if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
+               kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
+                       PAGE_OFFSET;
+               kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
+                                          _PAGE_P_4V | _PAGE_W_4V);
+       } else {
+               kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
+       }
+#endif
+}
+
+/* paging_init() sets up the page tables */
+
+static unsigned long last_valid_pfn;
+
+static void sun4u_pgprot_init(void);
+static void sun4v_pgprot_init(void);
+
+static phys_addr_t __init available_memory(void)
+{
+       phys_addr_t available = 0ULL;
+       phys_addr_t pa_start, pa_end;
+       u64 i;
+
+       for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL)
+               available = available + (pa_end  - pa_start);
+
+       return available;
+}
+
+#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
+#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
+#define __DIRTY_BITS_4U         (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
+#define __DIRTY_BITS_4V         (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
+#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
+#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
+
+/* We need to exclude reserved regions. This exclusion will include
+ * vmlinux and initrd. To be more precise the initrd size could be used to
+ * compute a new lower limit because it is freed later during initialization.
+ */
+static void __init reduce_memory(phys_addr_t limit_ram)
+{
+       phys_addr_t avail_ram = available_memory();
+       phys_addr_t pa_start, pa_end;
+       u64 i;
+
+       if (limit_ram >= avail_ram)
+               return;
+
+       for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL) {
+               phys_addr_t region_size = pa_end - pa_start;
+               phys_addr_t clip_start = pa_start;
+
+               avail_ram = avail_ram - region_size;
+               /* Are we consuming too much? */
+               if (avail_ram < limit_ram) {
+                       phys_addr_t give_back = limit_ram - avail_ram;
+
+                       region_size = region_size - give_back;
+                       clip_start = clip_start + give_back;
+               }
+
+               memblock_remove(clip_start, region_size);
+
+               if (avail_ram <= limit_ram)
+                       break;
+               i = 0UL;
+       }
+}
+
+void __init paging_init(void)
+{
+       unsigned long end_pfn, shift, phys_base;
+       unsigned long real_end, i;
+       int node;
+
+       setup_page_offset();
+
+       /* These build time checkes make sure that the dcache_dirty_cpu()
+        * page->flags usage will work.
+        *
+        * When a page gets marked as dcache-dirty, we store the
+        * cpu number starting at bit 32 in the page->flags.  Also,
+        * functions like clear_dcache_dirty_cpu use the cpu mask
+        * in 13-bit signed-immediate instruction fields.
+        */
+
+       /*
+        * Page flags must not reach into upper 32 bits that are used
+        * for the cpu number
+        */
+       BUILD_BUG_ON(NR_PAGEFLAGS > 32);
+
+       /*
+        * The bit fields placed in the high range must not reach below
+        * the 32 bit boundary. Otherwise we cannot place the cpu field
+        * at the 32 bit boundary.
+        */
+       BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
+               ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
+
+       BUILD_BUG_ON(NR_CPUS > 4096);
+
+       kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
+       kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
+
+       /* Invalidate both kernel TSBs.  */
+       memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
+#ifndef CONFIG_DEBUG_PAGEALLOC
+       memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
+#endif
+
+       /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
+        * bit on M7 processor. This is a conflicting usage of the same
+        * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
+        * Detection error on all pages and this will lead to problems
+        * later. Kernel does not run with MCD enabled and hence rest
+        * of the required steps to fully configure memory corruption
+        * detection are not taken. We need to ensure TTE.mcde is not
+        * set on M7 processor. Compute the value of cacheability
+        * flag for use later taking this into consideration.
+        */
+       switch (sun4v_chip_type) {
+       case SUN4V_CHIP_SPARC_M7:
+               page_cache4v_flag = _PAGE_CP_4V;
+               break;
+       default:
+               page_cache4v_flag = _PAGE_CACHE_4V;
+               break;
+       }
+
+       if (tlb_type == hypervisor)
+               sun4v_pgprot_init();
+       else
+               sun4u_pgprot_init();
+
+       if (tlb_type == cheetah_plus ||
+           tlb_type == hypervisor) {
+               tsb_phys_patch();
+               ktsb_phys_patch();
+       }
+
+       if (tlb_type == hypervisor)
+               sun4v_patch_tlb_handlers();
+
+       /* Find available physical memory...
+        *
+        * Read it twice in order to work around a bug in openfirmware.
+        * The call to grab this table itself can cause openfirmware to
+        * allocate memory, which in turn can take away some space from
+        * the list of available memory.  Reading it twice makes sure
+        * we really do get the final value.
+        */
+       read_obp_translations();
+       read_obp_memory("reg", &pall[0], &pall_ents);
+       read_obp_memory("available", &pavail[0], &pavail_ents);
+       read_obp_memory("available", &pavail[0], &pavail_ents);
+
+       phys_base = 0xffffffffffffffffUL;
+       for (i = 0; i < pavail_ents; i++) {
+               phys_base = min(phys_base, pavail[i].phys_addr);
+               memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
+       }
+
+       memblock_reserve(kern_base, kern_size);
+
+       find_ramdisk(phys_base);
+
+       if (cmdline_memory_size)
+               reduce_memory(cmdline_memory_size);
+
+       memblock_allow_resize();
+       memblock_dump_all();
+
+       set_bit(0, mmu_context_bmap);
+
+       shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
+
+       real_end = (unsigned long)_end;
+       num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
+       printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
+              num_kernel_image_mappings);
+
+       /* Set kernel pgd to upper alias so physical page computations
+        * work.
+        */
+       init_mm.pgd += ((shift) / (sizeof(pgd_t)));
+       
+       memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
+
+       inherit_prom_mappings();
+       
+       /* Ok, we can use our TLB miss and window trap handlers safely.  */
+       setup_tba();
+
+       __flush_tlb_all();
+
+       prom_build_devicetree();
+       of_populate_present_mask();
+#ifndef CONFIG_SMP
+       of_fill_in_cpu_data();
+#endif
+
+       if (tlb_type == hypervisor) {
+               sun4v_mdesc_init();
+               mdesc_populate_present_mask(cpu_all_mask);
+#ifndef CONFIG_SMP
+               mdesc_fill_in_cpu_data(cpu_all_mask);
+#endif
+               mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
+
+               sun4v_linear_pte_xor_finalize();
+
+               sun4v_ktsb_init();
+               sun4v_ktsb_register();
+       } else {
+               unsigned long impl, ver;
+
+               cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
+                                HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
+
+               __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
+               impl = ((ver >> 32) & 0xffff);
+               if (impl == PANTHER_IMPL)
+                       cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
+                                         HV_PGSZ_MASK_256MB);
+
+               sun4u_linear_pte_xor_finalize();
+       }
+
+       /* Flush the TLBs and the 4M TSB so that the updated linear
+        * pte XOR settings are realized for all mappings.
+        */
+       __flush_tlb_all();
+#ifndef CONFIG_DEBUG_PAGEALLOC
+       memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
+#endif
+       __flush_tlb_all();
+
+       /* Setup bootmem... */
+       last_valid_pfn = end_pfn = bootmem_init(phys_base);
+
+       /* Once the OF device tree and MDESC have been setup, we know
+        * the list of possible cpus.  Therefore we can allocate the
+        * IRQ stacks.
+        */
+       for_each_possible_cpu(i) {
+               node = cpu_to_node(i);
+
+               softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
+                                                       THREAD_SIZE,
+                                                       THREAD_SIZE, 0);
+               hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
+                                                       THREAD_SIZE,
+                                                       THREAD_SIZE, 0);
+       }
+
+       kernel_physical_mapping_init();
+
+       {
+               unsigned long max_zone_pfns[MAX_NR_ZONES];
+
+               memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+
+               max_zone_pfns[ZONE_NORMAL] = end_pfn;
+
+               free_area_init_nodes(max_zone_pfns);
+       }
+
+       printk("Booting Linux...\n");
+}
+
+int page_in_phys_avail(unsigned long paddr)
+{
+       int i;
+
+       paddr &= PAGE_MASK;
+
+       for (i = 0; i < pavail_ents; i++) {
+               unsigned long start, end;
+
+               start = pavail[i].phys_addr;
+               end = start + pavail[i].reg_size;
+
+               if (paddr >= start && paddr < end)
+                       return 1;
+       }
+       if (paddr >= kern_base && paddr < (kern_base + kern_size))
+               return 1;
+#ifdef CONFIG_BLK_DEV_INITRD
+       if (paddr >= __pa(initrd_start) &&
+           paddr < __pa(PAGE_ALIGN(initrd_end)))
+               return 1;
+#endif
+
+       return 0;
+}
+
+static void __init register_page_bootmem_info(void)
+{
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+       int i;
+
+       for_each_online_node(i)
+               if (NODE_DATA(i)->node_spanned_pages)
+                       register_page_bootmem_info_node(NODE_DATA(i));
+#endif
+}
+void __init mem_init(void)
+{
+       high_memory = __va(last_valid_pfn << PAGE_SHIFT);
+
+       register_page_bootmem_info();
+       free_all_bootmem();
+
+       /*
+        * Set up the zero page, mark it reserved, so that page count
+        * is not manipulated when freeing the page from user ptes.
+        */
+       mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
+       if (mem_map_zero == NULL) {
+               prom_printf("paging_init: Cannot alloc zero page.\n");
+               prom_halt();
+       }
+       mark_page_reserved(mem_map_zero);
+
+       mem_init_print_info(NULL);
+
+       if (tlb_type == cheetah || tlb_type == cheetah_plus)
+               cheetah_ecache_flush_init();
+}
+
+void free_initmem(void)
+{
+       unsigned long addr, initend;
+       int do_free = 1;
+
+       /* If the physical memory maps were trimmed by kernel command
+        * line options, don't even try freeing this initmem stuff up.
+        * The kernel image could have been in the trimmed out region
+        * and if so the freeing below will free invalid page structs.
+        */
+       if (cmdline_memory_size)
+               do_free = 0;
+
+       /*
+        * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
+        */
+       addr = PAGE_ALIGN((unsigned long)(__init_begin));
+       initend = (unsigned long)(__init_end) & PAGE_MASK;
+       for (; addr < initend; addr += PAGE_SIZE) {
+               unsigned long page;
+
+               page = (addr +
+                       ((unsigned long) __va(kern_base)) -
+                       ((unsigned long) KERNBASE));
+               memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
+
+               if (do_free)
+                       free_reserved_page(virt_to_page(page));
+       }
+}
+
+#ifdef CONFIG_BLK_DEV_INITRD
+void free_initrd_mem(unsigned long start, unsigned long end)
+{
+       free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
+                          "initrd");
+}
+#endif
+
+pgprot_t PAGE_KERNEL __read_mostly;
+EXPORT_SYMBOL(PAGE_KERNEL);
+
+pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
+pgprot_t PAGE_COPY __read_mostly;
+
+pgprot_t PAGE_SHARED __read_mostly;
+EXPORT_SYMBOL(PAGE_SHARED);
+
+unsigned long pg_iobits __read_mostly;
+
+unsigned long _PAGE_IE __read_mostly;
+EXPORT_SYMBOL(_PAGE_IE);
+
+unsigned long _PAGE_E __read_mostly;
+EXPORT_SYMBOL(_PAGE_E);
+
+unsigned long _PAGE_CACHE __read_mostly;
+EXPORT_SYMBOL(_PAGE_CACHE);
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
+                              int node)
+{
+       unsigned long pte_base;
+
+       pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
+                   _PAGE_CP_4U | _PAGE_CV_4U |
+                   _PAGE_P_4U | _PAGE_W_4U);
+       if (tlb_type == hypervisor)
+               pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
+                           page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
+
+       pte_base |= _PAGE_PMD_HUGE;
+
+       vstart = vstart & PMD_MASK;
+       vend = ALIGN(vend, PMD_SIZE);
+       for (; vstart < vend; vstart += PMD_SIZE) {
+               pgd_t *pgd = pgd_offset_k(vstart);
+               unsigned long pte;
+               pud_t *pud;
+               pmd_t *pmd;
+
+               if (pgd_none(*pgd)) {
+                       pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
+
+                       if (!new)
+                               return -ENOMEM;
+                       pgd_populate(&init_mm, pgd, new);
+               }
+
+               pud = pud_offset(pgd, vstart);
+               if (pud_none(*pud)) {
+                       pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
+
+                       if (!new)
+                               return -ENOMEM;
+                       pud_populate(&init_mm, pud, new);
+               }
+
+               pmd = pmd_offset(pud, vstart);
+
+               pte = pmd_val(*pmd);
+               if (!(pte & _PAGE_VALID)) {
+                       void *block = vmemmap_alloc_block(PMD_SIZE, node);
+
+                       if (!block)
+                               return -ENOMEM;
+
+                       pmd_val(*pmd) = pte_base | __pa(block);
+               }
+       }
+
+       return 0;
+}
+
+void vmemmap_free(unsigned long start, unsigned long end)
+{
+}
+#endif /* CONFIG_SPARSEMEM_VMEMMAP */
+
+static void prot_init_common(unsigned long page_none,
+                            unsigned long page_shared,
+                            unsigned long page_copy,
+                            unsigned long page_readonly,
+                            unsigned long page_exec_bit)
+{
+       PAGE_COPY = __pgprot(page_copy);
+       PAGE_SHARED = __pgprot(page_shared);
+
+       protection_map[0x0] = __pgprot(page_none);
+       protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
+       protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
+       protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
+       protection_map[0x4] = __pgprot(page_readonly);
+       protection_map[0x5] = __pgprot(page_readonly);
+       protection_map[0x6] = __pgprot(page_copy);
+       protection_map[0x7] = __pgprot(page_copy);
+       protection_map[0x8] = __pgprot(page_none);
+       protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
+       protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
+       protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
+       protection_map[0xc] = __pgprot(page_readonly);
+       protection_map[0xd] = __pgprot(page_readonly);
+       protection_map[0xe] = __pgprot(page_shared);
+       protection_map[0xf] = __pgprot(page_shared);
+}
+
+static void __init sun4u_pgprot_init(void)
+{
+       unsigned long page_none, page_shared, page_copy, page_readonly;
+       unsigned long page_exec_bit;
+       int i;
+
+       PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
+                               _PAGE_CACHE_4U | _PAGE_P_4U |
+                               __ACCESS_BITS_4U | __DIRTY_BITS_4U |
+                               _PAGE_EXEC_4U);
+       PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
+                                      _PAGE_CACHE_4U | _PAGE_P_4U |
+                                      __ACCESS_BITS_4U | __DIRTY_BITS_4U |
+                                      _PAGE_EXEC_4U | _PAGE_L_4U);
+
+       _PAGE_IE = _PAGE_IE_4U;
+       _PAGE_E = _PAGE_E_4U;
+       _PAGE_CACHE = _PAGE_CACHE_4U;
+
+       pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
+                    __ACCESS_BITS_4U | _PAGE_E_4U);
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+       kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
+#else
+       kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
+               PAGE_OFFSET;
+#endif
+       kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
+                                  _PAGE_P_4U | _PAGE_W_4U);
+
+       for (i = 1; i < 4; i++)
+               kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
+
+       _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
+                             _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
+                             _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
+
+
+       page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
+       page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
+                      __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
+       page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
+                      __ACCESS_BITS_4U | _PAGE_EXEC_4U);
+       page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
+                          __ACCESS_BITS_4U | _PAGE_EXEC_4U);
+
+       page_exec_bit = _PAGE_EXEC_4U;
+
+       prot_init_common(page_none, page_shared, page_copy, page_readonly,
+                        page_exec_bit);
+}
+
+static void __init sun4v_pgprot_init(void)
+{
+       unsigned long page_none, page_shared, page_copy, page_readonly;
+       unsigned long page_exec_bit;
+       int i;
+
+       PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
+                               page_cache4v_flag | _PAGE_P_4V |
+                               __ACCESS_BITS_4V | __DIRTY_BITS_4V |
+                               _PAGE_EXEC_4V);
+       PAGE_KERNEL_LOCKED = PAGE_KERNEL;
+
+       _PAGE_IE = _PAGE_IE_4V;
+       _PAGE_E = _PAGE_E_4V;
+       _PAGE_CACHE = page_cache4v_flag;
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+       kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
+#else
+       kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
+               PAGE_OFFSET;
+#endif
+       kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
+                                  _PAGE_W_4V);
+
+       for (i = 1; i < 4; i++)
+               kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
+
+       pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
+                    __ACCESS_BITS_4V | _PAGE_E_4V);
+
+       _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
+                            _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
+                            _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
+                            _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
+
+       page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
+       page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
+                      __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
+       page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
+                      __ACCESS_BITS_4V | _PAGE_EXEC_4V);
+       page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
+                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
+
+       page_exec_bit = _PAGE_EXEC_4V;
+
+       prot_init_common(page_none, page_shared, page_copy, page_readonly,
+                        page_exec_bit);
+}
+
+unsigned long pte_sz_bits(unsigned long sz)
+{
+       if (tlb_type == hypervisor) {
+               switch (sz) {
+               case 8 * 1024:
+               default:
+                       return _PAGE_SZ8K_4V;
+               case 64 * 1024:
+                       return _PAGE_SZ64K_4V;
+               case 512 * 1024:
+                       return _PAGE_SZ512K_4V;
+               case 4 * 1024 * 1024:
+                       return _PAGE_SZ4MB_4V;
+               }
+       } else {
+               switch (sz) {
+               case 8 * 1024:
+               default:
+                       return _PAGE_SZ8K_4U;
+               case 64 * 1024:
+                       return _PAGE_SZ64K_4U;
+               case 512 * 1024:
+                       return _PAGE_SZ512K_4U;
+               case 4 * 1024 * 1024:
+                       return _PAGE_SZ4MB_4U;
+               }
+       }
+}
+
+pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
+{
+       pte_t pte;
+
+       pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
+       pte_val(pte) |= (((unsigned long)space) << 32);
+       pte_val(pte) |= pte_sz_bits(page_size);
+
+       return pte;
+}
+
+static unsigned long kern_large_tte(unsigned long paddr)
+{
+       unsigned long val;
+
+       val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
+              _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
+              _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
+       if (tlb_type == hypervisor)
+               val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
+                      page_cache4v_flag | _PAGE_P_4V |
+                      _PAGE_EXEC_4V | _PAGE_W_4V);
+
+       return val | paddr;
+}
+
+/* If not locked, zap it. */
+void __flush_tlb_all(void)
+{
+       unsigned long pstate;
+       int i;
+
+       __asm__ __volatile__("flushw\n\t"
+                            "rdpr      %%pstate, %0\n\t"
+                            "wrpr      %0, %1, %%pstate"
+                            : "=r" (pstate)
+                            : "i" (PSTATE_IE));
+       if (tlb_type == hypervisor) {
+               sun4v_mmu_demap_all();
+       } else if (tlb_type == spitfire) {
+               for (i = 0; i < 64; i++) {
+                       /* Spitfire Errata #32 workaround */
+                       /* NOTE: Always runs on spitfire, so no
+                        *       cheetah+ page size encodings.
+                        */
+                       __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
+                                            "flush     %%g6"
+                                            : /* No outputs */
+                                            : "r" (0),
+                                            "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
+
+                       if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
+                               __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
+                                                    "membar #Sync"
+                                                    : /* no outputs */
+                                                    : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
+                               spitfire_put_dtlb_data(i, 0x0UL);
+                       }
+
+                       /* Spitfire Errata #32 workaround */
+                       /* NOTE: Always runs on spitfire, so no
+                        *       cheetah+ page size encodings.
+                        */
+                       __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
+                                            "flush     %%g6"
+                                            : /* No outputs */
+                                            : "r" (0),
+                                            "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
+
+                       if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
+                               __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
+                                                    "membar #Sync"
+                                                    : /* no outputs */
+                                                    : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
+                               spitfire_put_itlb_data(i, 0x0UL);
+                       }
+               }
+       } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+               cheetah_flush_dtlb_all();
+               cheetah_flush_itlb_all();
+       }
+       __asm__ __volatile__("wrpr      %0, 0, %%pstate"
+                            : : "r" (pstate));
+}
+
+pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
+                           unsigned long address)
+{
+       struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
+                                      __GFP_REPEAT | __GFP_ZERO);
+       pte_t *pte = NULL;
+
+       if (page)
+               pte = (pte_t *) page_address(page);
+
+       return pte;
+}
+
+pgtable_t pte_alloc_one(struct mm_struct *mm,
+                       unsigned long address)
+{
+       struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
+                                      __GFP_REPEAT | __GFP_ZERO);
+       if (!page)
+               return NULL;
+       if (!pgtable_page_ctor(page)) {
+               free_hot_cold_page(page, 0);
+               return NULL;
+       }
+       return (pte_t *) page_address(page);
+}
+
+void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
+{
+       free_page((unsigned long)pte);
+}
+
+static void __pte_free(pgtable_t pte)
+{
+       struct page *page = virt_to_page(pte);
+
+       pgtable_page_dtor(page);
+       __free_page(page);
+}
+
+void pte_free(struct mm_struct *mm, pgtable_t pte)
+{
+       __pte_free(pte);
+}
+
+void pgtable_free(void *table, bool is_page)
+{
+       if (is_page)
+               __pte_free(table);
+       else
+               kmem_cache_free(pgtable_cache, table);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
+                         pmd_t *pmd)
+{
+       unsigned long pte, flags;
+       struct mm_struct *mm;
+       pmd_t entry = *pmd;
+
+       if (!pmd_large(entry) || !pmd_young(entry))
+               return;
+
+       pte = pmd_val(entry);
+
+       /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
+       if (!(pte & _PAGE_VALID))
+               return;
+
+       /* We are fabricating 8MB pages using 4MB real hw pages.  */
+       pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
+
+       mm = vma->vm_mm;
+
+       spin_lock_irqsave(&mm->context.lock, flags);
+
+       if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
+               __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
+                                       addr, pte);
+
+       spin_unlock_irqrestore(&mm->context.lock, flags);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
+static void context_reload(void *__data)
+{
+       struct mm_struct *mm = __data;
+
+       if (mm == current->mm)
+               load_secondary_context(mm);
+}
+
+void hugetlb_setup(struct pt_regs *regs)
+{
+       struct mm_struct *mm = current->mm;
+       struct tsb_config *tp;
+
+       if (faulthandler_disabled() || !mm) {
+               const struct exception_table_entry *entry;
+
+               entry = search_exception_tables(regs->tpc);
+               if (entry) {
+                       regs->tpc = entry->fixup;
+                       regs->tnpc = regs->tpc + 4;
+                       return;
+               }
+               pr_alert("Unexpected HugeTLB setup in atomic context.\n");
+               die_if_kernel("HugeTSB in atomic", regs);
+       }
+
+       tp = &mm->context.tsb_block[MM_TSB_HUGE];
+       if (likely(tp->tsb == NULL))
+               tsb_grow(mm, MM_TSB_HUGE, 0);
+
+       tsb_context_switch(mm);
+       smp_tsb_sync(mm);
+
+       /* On UltraSPARC-III+ and later, configure the second half of
+        * the Data-TLB for huge pages.
+        */
+       if (tlb_type == cheetah_plus) {
+               unsigned long ctx;
+
+               spin_lock(&ctx_alloc_lock);
+               ctx = mm->context.sparc64_ctx_val;
+               ctx &= ~CTX_PGSZ_MASK;
+               ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
+               ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
+
+               if (ctx != mm->context.sparc64_ctx_val) {
+                       /* When changing the page size fields, we
+                        * must perform a context flush so that no
+                        * stale entries match.  This flush must
+                        * occur with the original context register
+                        * settings.
+                        */
+                       do_flush_tlb_mm(mm);
+
+                       /* Reload the context register of all processors
+                        * also executing in this address space.
+                        */
+                       mm->context.sparc64_ctx_val = ctx;
+                       on_each_cpu(context_reload, mm, 0);
+               }
+               spin_unlock(&ctx_alloc_lock);
+       }
+}
+#endif
+
+static struct resource code_resource = {
+       .name   = "Kernel code",
+       .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
+};
+
+static struct resource data_resource = {
+       .name   = "Kernel data",
+       .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
+};
+
+static struct resource bss_resource = {
+       .name   = "Kernel bss",
+       .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
+};
+
+static inline resource_size_t compute_kern_paddr(void *addr)
+{
+       return (resource_size_t) (addr - KERNBASE + kern_base);
+}
+
+static void __init kernel_lds_init(void)
+{
+       code_resource.start = compute_kern_paddr(_text);
+       code_resource.end   = compute_kern_paddr(_etext - 1);
+       data_resource.start = compute_kern_paddr(_etext);
+       data_resource.end   = compute_kern_paddr(_edata - 1);
+       bss_resource.start  = compute_kern_paddr(__bss_start);
+       bss_resource.end    = compute_kern_paddr(_end - 1);
+}
+
+static int __init report_memory(void)
+{
+       int i;
+       struct resource *res;
+
+       kernel_lds_init();
+
+       for (i = 0; i < pavail_ents; i++) {
+               res = kzalloc(sizeof(struct resource), GFP_KERNEL);
+
+               if (!res) {
+                       pr_warn("Failed to allocate source.\n");
+                       break;
+               }
+
+               res->name = "System RAM";
+               res->start = pavail[i].phys_addr;
+               res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
+               res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
+
+               if (insert_resource(&iomem_resource, res) < 0) {
+                       pr_warn("Resource insertion failed.\n");
+                       break;
+               }
+
+               insert_resource(res, &code_resource);
+               insert_resource(res, &data_resource);
+               insert_resource(res, &bss_resource);
+       }
+
+       return 0;
+}
+arch_initcall(report_memory);
+
+#ifdef CONFIG_SMP
+#define do_flush_tlb_kernel_range      smp_flush_tlb_kernel_range
+#else
+#define do_flush_tlb_kernel_range      __flush_tlb_kernel_range
+#endif
+
+void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+       if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
+               if (start < LOW_OBP_ADDRESS) {
+                       flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
+                       do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
+               }
+               if (end > HI_OBP_ADDRESS) {
+                       flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
+                       do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
+               }
+       } else {
+               flush_tsb_kernel_range(start, end);
+               do_flush_tlb_kernel_range(start, end);
+       }
+}