Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / sparc / kernel / kprobes.c
diff --git a/kernel/arch/sparc/kernel/kprobes.c b/kernel/arch/sparc/kernel/kprobes.c
new file mode 100644 (file)
index 0000000..cd83be5
--- /dev/null
@@ -0,0 +1,603 @@
+/* arch/sparc64/kernel/kprobes.c
+ *
+ * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
+ */
+
+#include <linux/kernel.h>
+#include <linux/kprobes.h>
+#include <linux/module.h>
+#include <linux/kdebug.h>
+#include <linux/slab.h>
+#include <linux/context_tracking.h>
+#include <asm/signal.h>
+#include <asm/cacheflush.h>
+#include <asm/uaccess.h>
+
+/* We do not have hardware single-stepping on sparc64.
+ * So we implement software single-stepping with breakpoint
+ * traps.  The top-level scheme is similar to that used
+ * in the x86 kprobes implementation.
+ *
+ * In the kprobe->ainsn.insn[] array we store the original
+ * instruction at index zero and a break instruction at
+ * index one.
+ *
+ * When we hit a kprobe we:
+ * - Run the pre-handler
+ * - Remember "regs->tnpc" and interrupt level stored in
+ *   "regs->tstate" so we can restore them later
+ * - Disable PIL interrupts
+ * - Set regs->tpc to point to kprobe->ainsn.insn[0]
+ * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
+ * - Mark that we are actively in a kprobe
+ *
+ * At this point we wait for the second breakpoint at
+ * kprobe->ainsn.insn[1] to hit.  When it does we:
+ * - Run the post-handler
+ * - Set regs->tpc to "remembered" regs->tnpc stored above,
+ *   restore the PIL interrupt level in "regs->tstate" as well
+ * - Make any adjustments necessary to regs->tnpc in order
+ *   to handle relative branches correctly.  See below.
+ * - Mark that we are no longer actively in a kprobe.
+ */
+
+DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
+
+struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
+
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
+{
+       if ((unsigned long) p->addr & 0x3UL)
+               return -EILSEQ;
+
+       p->ainsn.insn[0] = *p->addr;
+       flushi(&p->ainsn.insn[0]);
+
+       p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
+       flushi(&p->ainsn.insn[1]);
+
+       p->opcode = *p->addr;
+       return 0;
+}
+
+void __kprobes arch_arm_kprobe(struct kprobe *p)
+{
+       *p->addr = BREAKPOINT_INSTRUCTION;
+       flushi(p->addr);
+}
+
+void __kprobes arch_disarm_kprobe(struct kprobe *p)
+{
+       *p->addr = p->opcode;
+       flushi(p->addr);
+}
+
+static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+       kcb->prev_kprobe.kp = kprobe_running();
+       kcb->prev_kprobe.status = kcb->kprobe_status;
+       kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
+       kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
+}
+
+static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+       __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
+       kcb->kprobe_status = kcb->prev_kprobe.status;
+       kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
+       kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
+}
+
+static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+                               struct kprobe_ctlblk *kcb)
+{
+       __this_cpu_write(current_kprobe, p);
+       kcb->kprobe_orig_tnpc = regs->tnpc;
+       kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
+}
+
+static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
+                       struct kprobe_ctlblk *kcb)
+{
+       regs->tstate |= TSTATE_PIL;
+
+       /*single step inline, if it a breakpoint instruction*/
+       if (p->opcode == BREAKPOINT_INSTRUCTION) {
+               regs->tpc = (unsigned long) p->addr;
+               regs->tnpc = kcb->kprobe_orig_tnpc;
+       } else {
+               regs->tpc = (unsigned long) &p->ainsn.insn[0];
+               regs->tnpc = (unsigned long) &p->ainsn.insn[1];
+       }
+}
+
+static int __kprobes kprobe_handler(struct pt_regs *regs)
+{
+       struct kprobe *p;
+       void *addr = (void *) regs->tpc;
+       int ret = 0;
+       struct kprobe_ctlblk *kcb;
+
+       /*
+        * We don't want to be preempted for the entire
+        * duration of kprobe processing
+        */
+       preempt_disable();
+       kcb = get_kprobe_ctlblk();
+
+       if (kprobe_running()) {
+               p = get_kprobe(addr);
+               if (p) {
+                       if (kcb->kprobe_status == KPROBE_HIT_SS) {
+                               regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
+                                       kcb->kprobe_orig_tstate_pil);
+                               goto no_kprobe;
+                       }
+                       /* We have reentered the kprobe_handler(), since
+                        * another probe was hit while within the handler.
+                        * We here save the original kprobes variables and
+                        * just single step on the instruction of the new probe
+                        * without calling any user handlers.
+                        */
+                       save_previous_kprobe(kcb);
+                       set_current_kprobe(p, regs, kcb);
+                       kprobes_inc_nmissed_count(p);
+                       kcb->kprobe_status = KPROBE_REENTER;
+                       prepare_singlestep(p, regs, kcb);
+                       return 1;
+               } else {
+                       if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
+                       /* The breakpoint instruction was removed by
+                        * another cpu right after we hit, no further
+                        * handling of this interrupt is appropriate
+                        */
+                               ret = 1;
+                               goto no_kprobe;
+                       }
+                       p = __this_cpu_read(current_kprobe);
+                       if (p->break_handler && p->break_handler(p, regs))
+                               goto ss_probe;
+               }
+               goto no_kprobe;
+       }
+
+       p = get_kprobe(addr);
+       if (!p) {
+               if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
+                       /*
+                        * The breakpoint instruction was removed right
+                        * after we hit it.  Another cpu has removed
+                        * either a probepoint or a debugger breakpoint
+                        * at this address.  In either case, no further
+                        * handling of this interrupt is appropriate.
+                        */
+                       ret = 1;
+               }
+               /* Not one of ours: let kernel handle it */
+               goto no_kprobe;
+       }
+
+       set_current_kprobe(p, regs, kcb);
+       kcb->kprobe_status = KPROBE_HIT_ACTIVE;
+       if (p->pre_handler && p->pre_handler(p, regs))
+               return 1;
+
+ss_probe:
+       prepare_singlestep(p, regs, kcb);
+       kcb->kprobe_status = KPROBE_HIT_SS;
+       return 1;
+
+no_kprobe:
+       preempt_enable_no_resched();
+       return ret;
+}
+
+/* If INSN is a relative control transfer instruction,
+ * return the corrected branch destination value.
+ *
+ * regs->tpc and regs->tnpc still hold the values of the
+ * program counters at the time of trap due to the execution
+ * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
+ * 
+ */
+static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
+                                              struct pt_regs *regs)
+{
+       unsigned long real_pc = (unsigned long) p->addr;
+
+       /* Branch not taken, no mods necessary.  */
+       if (regs->tnpc == regs->tpc + 0x4UL)
+               return real_pc + 0x8UL;
+
+       /* The three cases are call, branch w/prediction,
+        * and traditional branch.
+        */
+       if ((insn & 0xc0000000) == 0x40000000 ||
+           (insn & 0xc1c00000) == 0x00400000 ||
+           (insn & 0xc1c00000) == 0x00800000) {
+               unsigned long ainsn_addr;
+
+               ainsn_addr = (unsigned long) &p->ainsn.insn[0];
+
+               /* The instruction did all the work for us
+                * already, just apply the offset to the correct
+                * instruction location.
+                */
+               return (real_pc + (regs->tnpc - ainsn_addr));
+       }
+
+       /* It is jmpl or some other absolute PC modification instruction,
+        * leave NPC as-is.
+        */
+       return regs->tnpc;
+}
+
+/* If INSN is an instruction which writes it's PC location
+ * into a destination register, fix that up.
+ */
+static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
+                                 unsigned long real_pc)
+{
+       unsigned long *slot = NULL;
+
+       /* Simplest case is 'call', which always uses %o7 */
+       if ((insn & 0xc0000000) == 0x40000000) {
+               slot = &regs->u_regs[UREG_I7];
+       }
+
+       /* 'jmpl' encodes the register inside of the opcode */
+       if ((insn & 0xc1f80000) == 0x81c00000) {
+               unsigned long rd = ((insn >> 25) & 0x1f);
+
+               if (rd <= 15) {
+                       slot = &regs->u_regs[rd];
+               } else {
+                       /* Hard case, it goes onto the stack. */
+                       flushw_all();
+
+                       rd -= 16;
+                       slot = (unsigned long *)
+                               (regs->u_regs[UREG_FP] + STACK_BIAS);
+                       slot += rd;
+               }
+       }
+       if (slot != NULL)
+               *slot = real_pc;
+}
+
+/*
+ * Called after single-stepping.  p->addr is the address of the
+ * instruction which has been replaced by the breakpoint
+ * instruction.  To avoid the SMP problems that can occur when we
+ * temporarily put back the original opcode to single-step, we
+ * single-stepped a copy of the instruction.  The address of this
+ * copy is &p->ainsn.insn[0].
+ *
+ * This function prepares to return from the post-single-step
+ * breakpoint trap.
+ */
+static void __kprobes resume_execution(struct kprobe *p,
+               struct pt_regs *regs, struct kprobe_ctlblk *kcb)
+{
+       u32 insn = p->ainsn.insn[0];
+
+       regs->tnpc = relbranch_fixup(insn, p, regs);
+
+       /* This assignment must occur after relbranch_fixup() */
+       regs->tpc = kcb->kprobe_orig_tnpc;
+
+       retpc_fixup(regs, insn, (unsigned long) p->addr);
+
+       regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
+                       kcb->kprobe_orig_tstate_pil);
+}
+
+static int __kprobes post_kprobe_handler(struct pt_regs *regs)
+{
+       struct kprobe *cur = kprobe_running();
+       struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+       if (!cur)
+               return 0;
+
+       if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
+               kcb->kprobe_status = KPROBE_HIT_SSDONE;
+               cur->post_handler(cur, regs, 0);
+       }
+
+       resume_execution(cur, regs, kcb);
+
+       /*Restore back the original saved kprobes variables and continue. */
+       if (kcb->kprobe_status == KPROBE_REENTER) {
+               restore_previous_kprobe(kcb);
+               goto out;
+       }
+       reset_current_kprobe();
+out:
+       preempt_enable_no_resched();
+
+       return 1;
+}
+
+int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
+{
+       struct kprobe *cur = kprobe_running();
+       struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+       const struct exception_table_entry *entry;
+
+       switch(kcb->kprobe_status) {
+       case KPROBE_HIT_SS:
+       case KPROBE_REENTER:
+               /*
+                * We are here because the instruction being single
+                * stepped caused a page fault. We reset the current
+                * kprobe and the tpc points back to the probe address
+                * and allow the page fault handler to continue as a
+                * normal page fault.
+                */
+               regs->tpc = (unsigned long)cur->addr;
+               regs->tnpc = kcb->kprobe_orig_tnpc;
+               regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
+                               kcb->kprobe_orig_tstate_pil);
+               if (kcb->kprobe_status == KPROBE_REENTER)
+                       restore_previous_kprobe(kcb);
+               else
+                       reset_current_kprobe();
+               preempt_enable_no_resched();
+               break;
+       case KPROBE_HIT_ACTIVE:
+       case KPROBE_HIT_SSDONE:
+               /*
+                * We increment the nmissed count for accounting,
+                * we can also use npre/npostfault count for accounting
+                * these specific fault cases.
+                */
+               kprobes_inc_nmissed_count(cur);
+
+               /*
+                * We come here because instructions in the pre/post
+                * handler caused the page_fault, this could happen
+                * if handler tries to access user space by
+                * copy_from_user(), get_user() etc. Let the
+                * user-specified handler try to fix it first.
+                */
+               if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
+                       return 1;
+
+               /*
+                * In case the user-specified fault handler returned
+                * zero, try to fix up.
+                */
+
+               entry = search_exception_tables(regs->tpc);
+               if (entry) {
+                       regs->tpc = entry->fixup;
+                       regs->tnpc = regs->tpc + 4;
+                       return 1;
+               }
+
+               /*
+                * fixup_exception() could not handle it,
+                * Let do_page_fault() fix it.
+                */
+               break;
+       default:
+               break;
+       }
+
+       return 0;
+}
+
+/*
+ * Wrapper routine to for handling exceptions.
+ */
+int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
+                                      unsigned long val, void *data)
+{
+       struct die_args *args = (struct die_args *)data;
+       int ret = NOTIFY_DONE;
+
+       if (args->regs && user_mode(args->regs))
+               return ret;
+
+       switch (val) {
+       case DIE_DEBUG:
+               if (kprobe_handler(args->regs))
+                       ret = NOTIFY_STOP;
+               break;
+       case DIE_DEBUG_2:
+               if (post_kprobe_handler(args->regs))
+                       ret = NOTIFY_STOP;
+               break;
+       default:
+               break;
+       }
+       return ret;
+}
+
+asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
+                                     struct pt_regs *regs)
+{
+       enum ctx_state prev_state = exception_enter();
+
+       BUG_ON(trap_level != 0x170 && trap_level != 0x171);
+
+       if (user_mode(regs)) {
+               local_irq_enable();
+               bad_trap(regs, trap_level);
+               goto out;
+       }
+
+       /* trap_level == 0x170 --> ta 0x70
+        * trap_level == 0x171 --> ta 0x71
+        */
+       if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
+                      (trap_level == 0x170) ? "debug" : "debug_2",
+                      regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
+               bad_trap(regs, trap_level);
+out:
+       exception_exit(prev_state);
+}
+
+/* Jprobes support.  */
+int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+       struct jprobe *jp = container_of(p, struct jprobe, kp);
+       struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+       memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
+
+       regs->tpc  = (unsigned long) jp->entry;
+       regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
+       regs->tstate |= TSTATE_PIL;
+
+       return 1;
+}
+
+void __kprobes jprobe_return(void)
+{
+       struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+       register unsigned long orig_fp asm("g1");
+
+       orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
+       __asm__ __volatile__("\n"
+"1:    cmp             %%sp, %0\n\t"
+       "blu,a,pt       %%xcc, 1b\n\t"
+       " restore\n\t"
+       ".globl         jprobe_return_trap_instruction\n"
+"jprobe_return_trap_instruction:\n\t"
+       "ta             0x70"
+       : /* no outputs */
+       : "r" (orig_fp));
+}
+
+extern void jprobe_return_trap_instruction(void);
+
+int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
+{
+       u32 *addr = (u32 *) regs->tpc;
+       struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+       if (addr == (u32 *) jprobe_return_trap_instruction) {
+               memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
+               preempt_enable_no_resched();
+               return 1;
+       }
+       return 0;
+}
+
+/* The value stored in the return address register is actually 2
+ * instructions before where the callee will return to.
+ * Sequences usually look something like this
+ *
+ *             call    some_function   <--- return register points here
+ *              nop                    <--- call delay slot
+ *             whatever                <--- where callee returns to
+ *
+ * To keep trampoline_probe_handler logic simpler, we normalize the
+ * value kept in ri->ret_addr so we don't need to keep adjusting it
+ * back and forth.
+ */
+void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
+                                     struct pt_regs *regs)
+{
+       ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
+
+       /* Replace the return addr with trampoline addr */
+       regs->u_regs[UREG_RETPC] =
+               ((unsigned long)kretprobe_trampoline) - 8;
+}
+
+/*
+ * Called when the probe at kretprobe trampoline is hit
+ */
+static int __kprobes trampoline_probe_handler(struct kprobe *p,
+                                             struct pt_regs *regs)
+{
+       struct kretprobe_instance *ri = NULL;
+       struct hlist_head *head, empty_rp;
+       struct hlist_node *tmp;
+       unsigned long flags, orig_ret_address = 0;
+       unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
+
+       INIT_HLIST_HEAD(&empty_rp);
+       kretprobe_hash_lock(current, &head, &flags);
+
+       /*
+        * It is possible to have multiple instances associated with a given
+        * task either because an multiple functions in the call path
+        * have a return probe installed on them, and/or more than one return
+        * return probe was registered for a target function.
+        *
+        * We can handle this because:
+        *     - instances are always inserted at the head of the list
+        *     - when multiple return probes are registered for the same
+        *       function, the first instance's ret_addr will point to the
+        *       real return address, and all the rest will point to
+        *       kretprobe_trampoline
+        */
+       hlist_for_each_entry_safe(ri, tmp, head, hlist) {
+               if (ri->task != current)
+                       /* another task is sharing our hash bucket */
+                       continue;
+
+               if (ri->rp && ri->rp->handler)
+                       ri->rp->handler(ri, regs);
+
+               orig_ret_address = (unsigned long)ri->ret_addr;
+               recycle_rp_inst(ri, &empty_rp);
+
+               if (orig_ret_address != trampoline_address)
+                       /*
+                        * This is the real return address. Any other
+                        * instances associated with this task are for
+                        * other calls deeper on the call stack
+                        */
+                       break;
+       }
+
+       kretprobe_assert(ri, orig_ret_address, trampoline_address);
+       regs->tpc = orig_ret_address;
+       regs->tnpc = orig_ret_address + 4;
+
+       reset_current_kprobe();
+       kretprobe_hash_unlock(current, &flags);
+       preempt_enable_no_resched();
+
+       hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
+               hlist_del(&ri->hlist);
+               kfree(ri);
+       }
+       /*
+        * By returning a non-zero value, we are telling
+        * kprobe_handler() that we don't want the post_handler
+        * to run (and have re-enabled preemption)
+        */
+       return 1;
+}
+
+static void __used kretprobe_trampoline_holder(void)
+{
+       asm volatile(".global kretprobe_trampoline\n"
+                    "kretprobe_trampoline:\n"
+                    "\tnop\n"
+                    "\tnop\n");
+}
+static struct kprobe trampoline_p = {
+       .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
+       .pre_handler = trampoline_probe_handler
+};
+
+int __init arch_init_kprobes(void)
+{
+       return register_kprobe(&trampoline_p);
+}
+
+int __kprobes arch_trampoline_kprobe(struct kprobe *p)
+{
+       if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
+               return 1;
+
+       return 0;
+}