Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / platforms / powernv / subcore.c
diff --git a/kernel/arch/powerpc/platforms/powernv/subcore.c b/kernel/arch/powerpc/platforms/powernv/subcore.c
new file mode 100644 (file)
index 0000000..f60f80a
--- /dev/null
@@ -0,0 +1,427 @@
+/*
+ * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#define pr_fmt(fmt)    "powernv: " fmt
+
+#include <linux/kernel.h>
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/device.h>
+#include <linux/gfp.h>
+#include <linux/smp.h>
+#include <linux/stop_machine.h>
+
+#include <asm/cputhreads.h>
+#include <asm/kvm_ppc.h>
+#include <asm/machdep.h>
+#include <asm/opal.h>
+#include <asm/smp.h>
+
+#include "subcore.h"
+#include "powernv.h"
+
+
+/*
+ * Split/unsplit procedure:
+ *
+ * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
+ *
+ * The mapping to subcores_per_core is simple:
+ *
+ *  State       | subcores_per_core
+ *  ------------|------------------
+ *  Unsplit     |        1
+ *  2-way split |        2
+ *  4-way split |        4
+ *
+ * The core is split along thread boundaries, the mapping between subcores and
+ * threads is as follows:
+ *
+ *  Unsplit:
+ *          ----------------------------
+ *  Subcore |            0             |
+ *          ----------------------------
+ *  Thread  |  0  1  2  3  4  5  6  7  |
+ *          ----------------------------
+ *
+ *  2-way split:
+ *          -------------------------------------
+ *  Subcore |        0        |        1        |
+ *          -------------------------------------
+ *  Thread  |  0   1   2   3  |  4   5   6   7  |
+ *          -------------------------------------
+ *
+ *  4-way split:
+ *          -----------------------------------------
+ *  Subcore |    0    |    1    |    2    |    3    |
+ *          -----------------------------------------
+ *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
+ *          -----------------------------------------
+ *
+ *
+ * Transitions
+ * -----------
+ *
+ * It is not possible to transition between either of the split states, the
+ * core must first be unsplit. The legal transitions are:
+ *
+ *  -----------          ---------------
+ *  |         |  <---->  | 2-way split |
+ *  |         |          ---------------
+ *  | Unsplit |
+ *  |         |          ---------------
+ *  |         |  <---->  | 4-way split |
+ *  -----------          ---------------
+ *
+ * Unsplitting
+ * -----------
+ *
+ * Unsplitting is the simpler procedure. It requires thread 0 to request the
+ * unsplit while all other threads NAP.
+ *
+ * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
+ * the hardware that if all threads except 0 are napping, the hardware should
+ * unsplit the core.
+ *
+ * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
+ * see the core unsplit.
+ *
+ * Core 0 spins waiting for the hardware to see all the other threads napping
+ * and perform the unsplit.
+ *
+ * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
+ * out of NAP. They will then see the core unsplit and exit the NAP loop.
+ *
+ * Splitting
+ * ---------
+ *
+ * The basic splitting procedure is fairly straight forward. However it is
+ * complicated by the fact that after the split occurs, the newly created
+ * subcores are not in a fully initialised state.
+ *
+ * Most notably the subcores do not have the correct value for SDR1, which
+ * means they must not be running in virtual mode when the split occurs. The
+ * subcores have separate timebases SPRs but these are pre-synchronised by
+ * opal.
+ *
+ * To begin with secondary threads are sent to an assembly routine. There they
+ * switch to real mode, so they are immune to the uninitialised SDR1 value.
+ * Once in real mode they indicate that they are in real mode, and spin waiting
+ * to see the core split.
+ *
+ * Thread 0 waits to see that all secondaries are in real mode, and then begins
+ * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
+ * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
+ * to request the split, and spins waiting to see that the split has happened.
+ *
+ * Concurrently the secondaries will notice the split. When they do they set up
+ * their SPRs, notably SDR1, and then they can return to virtual mode and exit
+ * the procedure.
+ */
+
+/* Initialised at boot by subcore_init() */
+static int subcores_per_core;
+
+/*
+ * Used to communicate to offline cpus that we want them to pop out of the
+ * offline loop and do a split or unsplit.
+ *
+ * 0 - no split happening
+ * 1 - unsplit in progress
+ * 2 - split to 2 in progress
+ * 4 - split to 4 in progress
+ */
+static int new_split_mode;
+
+static cpumask_var_t cpu_offline_mask;
+
+struct split_state {
+       u8 step;
+       u8 master;
+};
+
+static DEFINE_PER_CPU(struct split_state, split_state);
+
+static void wait_for_sync_step(int step)
+{
+       int i, cpu = smp_processor_id();
+
+       for (i = cpu + 1; i < cpu + threads_per_core; i++)
+               while(per_cpu(split_state, i).step < step)
+                       barrier();
+
+       /* Order the wait loop vs any subsequent loads/stores. */
+       mb();
+}
+
+static void update_hid_in_slw(u64 hid0)
+{
+       u64 idle_states = pnv_get_supported_cpuidle_states();
+
+       if (idle_states & OPAL_PM_WINKLE_ENABLED) {
+               /* OPAL call to patch slw with the new HID0 value */
+               u64 cpu_pir = hard_smp_processor_id();
+
+               opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
+       }
+}
+
+static void unsplit_core(void)
+{
+       u64 hid0, mask;
+       int i, cpu;
+
+       mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
+
+       cpu = smp_processor_id();
+       if (cpu_thread_in_core(cpu) != 0) {
+               while (mfspr(SPRN_HID0) & mask)
+                       power7_nap(0);
+
+               per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
+               return;
+       }
+
+       hid0 = mfspr(SPRN_HID0);
+       hid0 &= ~HID0_POWER8_DYNLPARDIS;
+       mtspr(SPRN_HID0, hid0);
+       update_hid_in_slw(hid0);
+
+       while (mfspr(SPRN_HID0) & mask)
+               cpu_relax();
+
+       /* Wake secondaries out of NAP */
+       for (i = cpu + 1; i < cpu + threads_per_core; i++)
+               smp_send_reschedule(i);
+
+       wait_for_sync_step(SYNC_STEP_UNSPLIT);
+}
+
+static void split_core(int new_mode)
+{
+       struct {  u64 value; u64 mask; } split_parms[2] = {
+               { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
+               { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
+       };
+       int i, cpu;
+       u64 hid0;
+
+       /* Convert new_mode (2 or 4) into an index into our parms array */
+       i = (new_mode >> 1) - 1;
+       BUG_ON(i < 0 || i > 1);
+
+       cpu = smp_processor_id();
+       if (cpu_thread_in_core(cpu) != 0) {
+               split_core_secondary_loop(&per_cpu(split_state, cpu).step);
+               return;
+       }
+
+       wait_for_sync_step(SYNC_STEP_REAL_MODE);
+
+       /* Write new mode */
+       hid0  = mfspr(SPRN_HID0);
+       hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
+       mtspr(SPRN_HID0, hid0);
+       update_hid_in_slw(hid0);
+
+       /* Wait for it to happen */
+       while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
+               cpu_relax();
+}
+
+static void cpu_do_split(int new_mode)
+{
+       /*
+        * At boot subcores_per_core will be 0, so we will always unsplit at
+        * boot. In the usual case where the core is already unsplit it's a
+        * nop, and this just ensures the kernel's notion of the mode is
+        * consistent with the hardware.
+        */
+       if (subcores_per_core != 1)
+               unsplit_core();
+
+       if (new_mode != 1)
+               split_core(new_mode);
+
+       mb();
+       per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
+}
+
+bool cpu_core_split_required(void)
+{
+       smp_rmb();
+
+       if (!new_split_mode)
+               return false;
+
+       cpu_do_split(new_split_mode);
+
+       return true;
+}
+
+void update_subcore_sibling_mask(void)
+{
+       int cpu;
+       /*
+        * sibling mask for the first cpu. Left shift this by required bits
+        * to get sibling mask for the rest of the cpus.
+        */
+       int sibling_mask_first_cpu =  (1 << threads_per_subcore) - 1;
+
+       for_each_possible_cpu(cpu) {
+               int tid = cpu_thread_in_core(cpu);
+               int offset = (tid / threads_per_subcore) * threads_per_subcore;
+               int mask = sibling_mask_first_cpu << offset;
+
+               paca[cpu].subcore_sibling_mask = mask;
+
+       }
+}
+
+static int cpu_update_split_mode(void *data)
+{
+       int cpu, new_mode = *(int *)data;
+
+       if (this_cpu_ptr(&split_state)->master) {
+               new_split_mode = new_mode;
+               smp_wmb();
+
+               cpumask_andnot(cpu_offline_mask, cpu_present_mask,
+                              cpu_online_mask);
+
+               /* This should work even though the cpu is offline */
+               for_each_cpu(cpu, cpu_offline_mask)
+                       smp_send_reschedule(cpu);
+       }
+
+       cpu_do_split(new_mode);
+
+       if (this_cpu_ptr(&split_state)->master) {
+               /* Wait for all cpus to finish before we touch subcores_per_core */
+               for_each_present_cpu(cpu) {
+                       if (cpu >= setup_max_cpus)
+                               break;
+
+                       while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
+                               barrier();
+               }
+
+               new_split_mode = 0;
+
+               /* Make the new mode public */
+               subcores_per_core = new_mode;
+               threads_per_subcore = threads_per_core / subcores_per_core;
+               update_subcore_sibling_mask();
+
+               /* Make sure the new mode is written before we exit */
+               mb();
+       }
+
+       return 0;
+}
+
+static int set_subcores_per_core(int new_mode)
+{
+       struct split_state *state;
+       int cpu;
+
+       if (kvm_hv_mode_active()) {
+               pr_err("Unable to change split core mode while KVM active.\n");
+               return -EBUSY;
+       }
+
+       /*
+        * We are only called at boot, or from the sysfs write. If that ever
+        * changes we'll need a lock here.
+        */
+       BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
+
+       for_each_present_cpu(cpu) {
+               state = &per_cpu(split_state, cpu);
+               state->step = SYNC_STEP_INITIAL;
+               state->master = 0;
+       }
+
+       get_online_cpus();
+
+       /* This cpu will update the globals before exiting stop machine */
+       this_cpu_ptr(&split_state)->master = 1;
+
+       /* Ensure state is consistent before we call the other cpus */
+       mb();
+
+       stop_machine(cpu_update_split_mode, &new_mode, cpu_online_mask);
+
+       put_online_cpus();
+
+       return 0;
+}
+
+static ssize_t __used store_subcores_per_core(struct device *dev,
+               struct device_attribute *attr, const char *buf,
+               size_t count)
+{
+       unsigned long val;
+       int rc;
+
+       /* We are serialised by the attribute lock */
+
+       rc = sscanf(buf, "%lx", &val);
+       if (rc != 1)
+               return -EINVAL;
+
+       switch (val) {
+       case 1:
+       case 2:
+       case 4:
+               if (subcores_per_core == val)
+                       /* Nothing to do */
+                       goto out;
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       rc = set_subcores_per_core(val);
+       if (rc)
+               return rc;
+
+out:
+       return count;
+}
+
+static ssize_t show_subcores_per_core(struct device *dev,
+               struct device_attribute *attr, char *buf)
+{
+       return sprintf(buf, "%x\n", subcores_per_core);
+}
+
+static DEVICE_ATTR(subcores_per_core, 0644,
+               show_subcores_per_core, store_subcores_per_core);
+
+static int subcore_init(void)
+{
+       if (!cpu_has_feature(CPU_FTR_ARCH_207S))
+               return 0;
+
+       /*
+        * We need all threads in a core to be present to split/unsplit so
+         * continue only if max_cpus are aligned to threads_per_core.
+        */
+       if (setup_max_cpus % threads_per_core)
+               return 0;
+
+       BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
+
+       set_subcores_per_core(1);
+
+       return device_create_file(cpu_subsys.dev_root,
+                                 &dev_attr_subcores_per_core);
+}
+machine_device_initcall(powernv, subcore_init);