Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / perf / core-book3s.c
diff --git a/kernel/arch/powerpc/perf/core-book3s.c b/kernel/arch/powerpc/perf/core-book3s.c
new file mode 100644 (file)
index 0000000..d90893b
--- /dev/null
@@ -0,0 +1,2187 @@
+/*
+ * Performance event support - powerpc architecture code
+ *
+ * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/perf_event.h>
+#include <linux/percpu.h>
+#include <linux/hardirq.h>
+#include <linux/uaccess.h>
+#include <asm/reg.h>
+#include <asm/pmc.h>
+#include <asm/machdep.h>
+#include <asm/firmware.h>
+#include <asm/ptrace.h>
+#include <asm/code-patching.h>
+
+#define BHRB_MAX_ENTRIES       32
+#define BHRB_TARGET            0x0000000000000002
+#define BHRB_PREDICTION                0x0000000000000001
+#define BHRB_EA                        0xFFFFFFFFFFFFFFFCUL
+
+struct cpu_hw_events {
+       int n_events;
+       int n_percpu;
+       int disabled;
+       int n_added;
+       int n_limited;
+       u8  pmcs_enabled;
+       struct perf_event *event[MAX_HWEVENTS];
+       u64 events[MAX_HWEVENTS];
+       unsigned int flags[MAX_HWEVENTS];
+       /*
+        * The order of the MMCR array is:
+        *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
+        *  - 32-bit, MMCR0, MMCR1, MMCR2
+        */
+       unsigned long mmcr[4];
+       struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
+       u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
+       u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
+       unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
+       unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
+
+       unsigned int group_flag;
+       int n_txn_start;
+
+       /* BHRB bits */
+       u64                             bhrb_filter;    /* BHRB HW branch filter */
+       int                             bhrb_users;
+       void                            *bhrb_context;
+       struct  perf_branch_stack       bhrb_stack;
+       struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
+};
+
+static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
+
+static struct power_pmu *ppmu;
+
+/*
+ * Normally, to ignore kernel events we set the FCS (freeze counters
+ * in supervisor mode) bit in MMCR0, but if the kernel runs with the
+ * hypervisor bit set in the MSR, or if we are running on a processor
+ * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
+ * then we need to use the FCHV bit to ignore kernel events.
+ */
+static unsigned int freeze_events_kernel = MMCR0_FCS;
+
+/*
+ * 32-bit doesn't have MMCRA but does have an MMCR2,
+ * and a few other names are different.
+ */
+#ifdef CONFIG_PPC32
+
+#define MMCR0_FCHV             0
+#define MMCR0_PMCjCE           MMCR0_PMCnCE
+#define MMCR0_FC56             0
+#define MMCR0_PMAO             0
+#define MMCR0_EBE              0
+#define MMCR0_BHRBA            0
+#define MMCR0_PMCC             0
+#define MMCR0_PMCC_U6          0
+
+#define SPRN_MMCRA             SPRN_MMCR2
+#define MMCRA_SAMPLE_ENABLE    0
+
+static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
+{
+       return 0;
+}
+static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
+static inline u32 perf_get_misc_flags(struct pt_regs *regs)
+{
+       return 0;
+}
+static inline void perf_read_regs(struct pt_regs *regs)
+{
+       regs->result = 0;
+}
+static inline int perf_intr_is_nmi(struct pt_regs *regs)
+{
+       return 0;
+}
+
+static inline int siar_valid(struct pt_regs *regs)
+{
+       return 1;
+}
+
+static bool is_ebb_event(struct perf_event *event) { return false; }
+static int ebb_event_check(struct perf_event *event) { return 0; }
+static void ebb_event_add(struct perf_event *event) { }
+static void ebb_switch_out(unsigned long mmcr0) { }
+static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
+{
+       return cpuhw->mmcr[0];
+}
+
+static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
+static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
+static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
+static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
+static void pmao_restore_workaround(bool ebb) { }
+#endif /* CONFIG_PPC32 */
+
+static bool regs_use_siar(struct pt_regs *regs)
+{
+       /*
+        * When we take a performance monitor exception the regs are setup
+        * using perf_read_regs() which overloads some fields, in particular
+        * regs->result to tell us whether to use SIAR.
+        *
+        * However if the regs are from another exception, eg. a syscall, then
+        * they have not been setup using perf_read_regs() and so regs->result
+        * is something random.
+        */
+       return ((TRAP(regs) == 0xf00) && regs->result);
+}
+
+/*
+ * Things that are specific to 64-bit implementations.
+ */
+#ifdef CONFIG_PPC64
+
+static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
+{
+       unsigned long mmcra = regs->dsisr;
+
+       if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
+               unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
+               if (slot > 1)
+                       return 4 * (slot - 1);
+       }
+
+       return 0;
+}
+
+/*
+ * The user wants a data address recorded.
+ * If we're not doing instruction sampling, give them the SDAR
+ * (sampled data address).  If we are doing instruction sampling, then
+ * only give them the SDAR if it corresponds to the instruction
+ * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
+ * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
+ */
+static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
+{
+       unsigned long mmcra = regs->dsisr;
+       bool sdar_valid;
+
+       if (ppmu->flags & PPMU_HAS_SIER)
+               sdar_valid = regs->dar & SIER_SDAR_VALID;
+       else {
+               unsigned long sdsync;
+
+               if (ppmu->flags & PPMU_SIAR_VALID)
+                       sdsync = POWER7P_MMCRA_SDAR_VALID;
+               else if (ppmu->flags & PPMU_ALT_SIPR)
+                       sdsync = POWER6_MMCRA_SDSYNC;
+               else
+                       sdsync = MMCRA_SDSYNC;
+
+               sdar_valid = mmcra & sdsync;
+       }
+
+       if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
+               *addrp = mfspr(SPRN_SDAR);
+}
+
+static bool regs_sihv(struct pt_regs *regs)
+{
+       unsigned long sihv = MMCRA_SIHV;
+
+       if (ppmu->flags & PPMU_HAS_SIER)
+               return !!(regs->dar & SIER_SIHV);
+
+       if (ppmu->flags & PPMU_ALT_SIPR)
+               sihv = POWER6_MMCRA_SIHV;
+
+       return !!(regs->dsisr & sihv);
+}
+
+static bool regs_sipr(struct pt_regs *regs)
+{
+       unsigned long sipr = MMCRA_SIPR;
+
+       if (ppmu->flags & PPMU_HAS_SIER)
+               return !!(regs->dar & SIER_SIPR);
+
+       if (ppmu->flags & PPMU_ALT_SIPR)
+               sipr = POWER6_MMCRA_SIPR;
+
+       return !!(regs->dsisr & sipr);
+}
+
+static inline u32 perf_flags_from_msr(struct pt_regs *regs)
+{
+       if (regs->msr & MSR_PR)
+               return PERF_RECORD_MISC_USER;
+       if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
+               return PERF_RECORD_MISC_HYPERVISOR;
+       return PERF_RECORD_MISC_KERNEL;
+}
+
+static inline u32 perf_get_misc_flags(struct pt_regs *regs)
+{
+       bool use_siar = regs_use_siar(regs);
+
+       if (!use_siar)
+               return perf_flags_from_msr(regs);
+
+       /*
+        * If we don't have flags in MMCRA, rather than using
+        * the MSR, we intuit the flags from the address in
+        * SIAR which should give slightly more reliable
+        * results
+        */
+       if (ppmu->flags & PPMU_NO_SIPR) {
+               unsigned long siar = mfspr(SPRN_SIAR);
+               if (siar >= PAGE_OFFSET)
+                       return PERF_RECORD_MISC_KERNEL;
+               return PERF_RECORD_MISC_USER;
+       }
+
+       /* PR has priority over HV, so order below is important */
+       if (regs_sipr(regs))
+               return PERF_RECORD_MISC_USER;
+
+       if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
+               return PERF_RECORD_MISC_HYPERVISOR;
+
+       return PERF_RECORD_MISC_KERNEL;
+}
+
+/*
+ * Overload regs->dsisr to store MMCRA so we only need to read it once
+ * on each interrupt.
+ * Overload regs->dar to store SIER if we have it.
+ * Overload regs->result to specify whether we should use the MSR (result
+ * is zero) or the SIAR (result is non zero).
+ */
+static inline void perf_read_regs(struct pt_regs *regs)
+{
+       unsigned long mmcra = mfspr(SPRN_MMCRA);
+       int marked = mmcra & MMCRA_SAMPLE_ENABLE;
+       int use_siar;
+
+       regs->dsisr = mmcra;
+
+       if (ppmu->flags & PPMU_HAS_SIER)
+               regs->dar = mfspr(SPRN_SIER);
+
+       /*
+        * If this isn't a PMU exception (eg a software event) the SIAR is
+        * not valid. Use pt_regs.
+        *
+        * If it is a marked event use the SIAR.
+        *
+        * If the PMU doesn't update the SIAR for non marked events use
+        * pt_regs.
+        *
+        * If the PMU has HV/PR flags then check to see if they
+        * place the exception in userspace. If so, use pt_regs. In
+        * continuous sampling mode the SIAR and the PMU exception are
+        * not synchronised, so they may be many instructions apart.
+        * This can result in confusing backtraces. We still want
+        * hypervisor samples as well as samples in the kernel with
+        * interrupts off hence the userspace check.
+        */
+       if (TRAP(regs) != 0xf00)
+               use_siar = 0;
+       else if (marked)
+               use_siar = 1;
+       else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
+               use_siar = 0;
+       else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
+               use_siar = 0;
+       else
+               use_siar = 1;
+
+       regs->result = use_siar;
+}
+
+/*
+ * If interrupts were soft-disabled when a PMU interrupt occurs, treat
+ * it as an NMI.
+ */
+static inline int perf_intr_is_nmi(struct pt_regs *regs)
+{
+       return !regs->softe;
+}
+
+/*
+ * On processors like P7+ that have the SIAR-Valid bit, marked instructions
+ * must be sampled only if the SIAR-valid bit is set.
+ *
+ * For unmarked instructions and for processors that don't have the SIAR-Valid
+ * bit, assume that SIAR is valid.
+ */
+static inline int siar_valid(struct pt_regs *regs)
+{
+       unsigned long mmcra = regs->dsisr;
+       int marked = mmcra & MMCRA_SAMPLE_ENABLE;
+
+       if (marked) {
+               if (ppmu->flags & PPMU_HAS_SIER)
+                       return regs->dar & SIER_SIAR_VALID;
+
+               if (ppmu->flags & PPMU_SIAR_VALID)
+                       return mmcra & POWER7P_MMCRA_SIAR_VALID;
+       }
+
+       return 1;
+}
+
+
+/* Reset all possible BHRB entries */
+static void power_pmu_bhrb_reset(void)
+{
+       asm volatile(PPC_CLRBHRB);
+}
+
+static void power_pmu_bhrb_enable(struct perf_event *event)
+{
+       struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+       if (!ppmu->bhrb_nr)
+               return;
+
+       /* Clear BHRB if we changed task context to avoid data leaks */
+       if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
+               power_pmu_bhrb_reset();
+               cpuhw->bhrb_context = event->ctx;
+       }
+       cpuhw->bhrb_users++;
+       perf_sched_cb_inc(event->ctx->pmu);
+}
+
+static void power_pmu_bhrb_disable(struct perf_event *event)
+{
+       struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+       if (!ppmu->bhrb_nr)
+               return;
+
+       cpuhw->bhrb_users--;
+       WARN_ON_ONCE(cpuhw->bhrb_users < 0);
+       perf_sched_cb_dec(event->ctx->pmu);
+
+       if (!cpuhw->disabled && !cpuhw->bhrb_users) {
+               /* BHRB cannot be turned off when other
+                * events are active on the PMU.
+                */
+
+               /* avoid stale pointer */
+               cpuhw->bhrb_context = NULL;
+       }
+}
+
+/* Called from ctxsw to prevent one process's branch entries to
+ * mingle with the other process's entries during context switch.
+ */
+static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
+{
+       if (!ppmu->bhrb_nr)
+               return;
+
+       if (sched_in)
+               power_pmu_bhrb_reset();
+}
+/* Calculate the to address for a branch */
+static __u64 power_pmu_bhrb_to(u64 addr)
+{
+       unsigned int instr;
+       int ret;
+       __u64 target;
+
+       if (is_kernel_addr(addr))
+               return branch_target((unsigned int *)addr);
+
+       /* Userspace: need copy instruction here then translate it */
+       pagefault_disable();
+       ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
+       if (ret) {
+               pagefault_enable();
+               return 0;
+       }
+       pagefault_enable();
+
+       target = branch_target(&instr);
+       if ((!target) || (instr & BRANCH_ABSOLUTE))
+               return target;
+
+       /* Translate relative branch target from kernel to user address */
+       return target - (unsigned long)&instr + addr;
+}
+
+/* Processing BHRB entries */
+static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
+{
+       u64 val;
+       u64 addr;
+       int r_index, u_index, pred;
+
+       r_index = 0;
+       u_index = 0;
+       while (r_index < ppmu->bhrb_nr) {
+               /* Assembly read function */
+               val = read_bhrb(r_index++);
+               if (!val)
+                       /* Terminal marker: End of valid BHRB entries */
+                       break;
+               else {
+                       addr = val & BHRB_EA;
+                       pred = val & BHRB_PREDICTION;
+
+                       if (!addr)
+                               /* invalid entry */
+                               continue;
+
+                       /* Branches are read most recent first (ie. mfbhrb 0 is
+                        * the most recent branch).
+                        * There are two types of valid entries:
+                        * 1) a target entry which is the to address of a
+                        *    computed goto like a blr,bctr,btar.  The next
+                        *    entry read from the bhrb will be branch
+                        *    corresponding to this target (ie. the actual
+                        *    blr/bctr/btar instruction).
+                        * 2) a from address which is an actual branch.  If a
+                        *    target entry proceeds this, then this is the
+                        *    matching branch for that target.  If this is not
+                        *    following a target entry, then this is a branch
+                        *    where the target is given as an immediate field
+                        *    in the instruction (ie. an i or b form branch).
+                        *    In this case we need to read the instruction from
+                        *    memory to determine the target/to address.
+                        */
+
+                       if (val & BHRB_TARGET) {
+                               /* Target branches use two entries
+                                * (ie. computed gotos/XL form)
+                                */
+                               cpuhw->bhrb_entries[u_index].to = addr;
+                               cpuhw->bhrb_entries[u_index].mispred = pred;
+                               cpuhw->bhrb_entries[u_index].predicted = ~pred;
+
+                               /* Get from address in next entry */
+                               val = read_bhrb(r_index++);
+                               addr = val & BHRB_EA;
+                               if (val & BHRB_TARGET) {
+                                       /* Shouldn't have two targets in a
+                                          row.. Reset index and try again */
+                                       r_index--;
+                                       addr = 0;
+                               }
+                               cpuhw->bhrb_entries[u_index].from = addr;
+                       } else {
+                               /* Branches to immediate field 
+                                  (ie I or B form) */
+                               cpuhw->bhrb_entries[u_index].from = addr;
+                               cpuhw->bhrb_entries[u_index].to =
+                                       power_pmu_bhrb_to(addr);
+                               cpuhw->bhrb_entries[u_index].mispred = pred;
+                               cpuhw->bhrb_entries[u_index].predicted = ~pred;
+                       }
+                       u_index++;
+
+               }
+       }
+       cpuhw->bhrb_stack.nr = u_index;
+       return;
+}
+
+static bool is_ebb_event(struct perf_event *event)
+{
+       /*
+        * This could be a per-PMU callback, but we'd rather avoid the cost. We
+        * check that the PMU supports EBB, meaning those that don't can still
+        * use bit 63 of the event code for something else if they wish.
+        */
+       return (ppmu->flags & PPMU_ARCH_207S) &&
+              ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
+}
+
+static int ebb_event_check(struct perf_event *event)
+{
+       struct perf_event *leader = event->group_leader;
+
+       /* Event and group leader must agree on EBB */
+       if (is_ebb_event(leader) != is_ebb_event(event))
+               return -EINVAL;
+
+       if (is_ebb_event(event)) {
+               if (!(event->attach_state & PERF_ATTACH_TASK))
+                       return -EINVAL;
+
+               if (!leader->attr.pinned || !leader->attr.exclusive)
+                       return -EINVAL;
+
+               if (event->attr.freq ||
+                   event->attr.inherit ||
+                   event->attr.sample_type ||
+                   event->attr.sample_period ||
+                   event->attr.enable_on_exec)
+                       return -EINVAL;
+       }
+
+       return 0;
+}
+
+static void ebb_event_add(struct perf_event *event)
+{
+       if (!is_ebb_event(event) || current->thread.used_ebb)
+               return;
+
+       /*
+        * IFF this is the first time we've added an EBB event, set
+        * PMXE in the user MMCR0 so we can detect when it's cleared by
+        * userspace. We need this so that we can context switch while
+        * userspace is in the EBB handler (where PMXE is 0).
+        */
+       current->thread.used_ebb = 1;
+       current->thread.mmcr0 |= MMCR0_PMXE;
+}
+
+static void ebb_switch_out(unsigned long mmcr0)
+{
+       if (!(mmcr0 & MMCR0_EBE))
+               return;
+
+       current->thread.siar  = mfspr(SPRN_SIAR);
+       current->thread.sier  = mfspr(SPRN_SIER);
+       current->thread.sdar  = mfspr(SPRN_SDAR);
+       current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
+       current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
+}
+
+static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
+{
+       unsigned long mmcr0 = cpuhw->mmcr[0];
+
+       if (!ebb)
+               goto out;
+
+       /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
+       mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
+
+       /*
+        * Add any bits from the user MMCR0, FC or PMAO. This is compatible
+        * with pmao_restore_workaround() because we may add PMAO but we never
+        * clear it here.
+        */
+       mmcr0 |= current->thread.mmcr0;
+
+       /*
+        * Be careful not to set PMXE if userspace had it cleared. This is also
+        * compatible with pmao_restore_workaround() because it has already
+        * cleared PMXE and we leave PMAO alone.
+        */
+       if (!(current->thread.mmcr0 & MMCR0_PMXE))
+               mmcr0 &= ~MMCR0_PMXE;
+
+       mtspr(SPRN_SIAR, current->thread.siar);
+       mtspr(SPRN_SIER, current->thread.sier);
+       mtspr(SPRN_SDAR, current->thread.sdar);
+
+       /*
+        * Merge the kernel & user values of MMCR2. The semantics we implement
+        * are that the user MMCR2 can set bits, ie. cause counters to freeze,
+        * but not clear bits. If a task wants to be able to clear bits, ie.
+        * unfreeze counters, it should not set exclude_xxx in its events and
+        * instead manage the MMCR2 entirely by itself.
+        */
+       mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
+out:
+       return mmcr0;
+}
+
+static void pmao_restore_workaround(bool ebb)
+{
+       unsigned pmcs[6];
+
+       if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
+               return;
+
+       /*
+        * On POWER8E there is a hardware defect which affects the PMU context
+        * switch logic, ie. power_pmu_disable/enable().
+        *
+        * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
+        * by the hardware. Sometime later the actual PMU exception is
+        * delivered.
+        *
+        * If we context switch, or simply disable/enable, the PMU prior to the
+        * exception arriving, the exception will be lost when we clear PMAO.
+        *
+        * When we reenable the PMU, we will write the saved MMCR0 with PMAO
+        * set, and this _should_ generate an exception. However because of the
+        * defect no exception is generated when we write PMAO, and we get
+        * stuck with no counters counting but no exception delivered.
+        *
+        * The workaround is to detect this case and tweak the hardware to
+        * create another pending PMU exception.
+        *
+        * We do that by setting up PMC6 (cycles) for an imminent overflow and
+        * enabling the PMU. That causes a new exception to be generated in the
+        * chip, but we don't take it yet because we have interrupts hard
+        * disabled. We then write back the PMU state as we want it to be seen
+        * by the exception handler. When we reenable interrupts the exception
+        * handler will be called and see the correct state.
+        *
+        * The logic is the same for EBB, except that the exception is gated by
+        * us having interrupts hard disabled as well as the fact that we are
+        * not in userspace. The exception is finally delivered when we return
+        * to userspace.
+        */
+
+       /* Only if PMAO is set and PMAO_SYNC is clear */
+       if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
+               return;
+
+       /* If we're doing EBB, only if BESCR[GE] is set */
+       if (ebb && !(current->thread.bescr & BESCR_GE))
+               return;
+
+       /*
+        * We are already soft-disabled in power_pmu_enable(). We need to hard
+        * enable to actually prevent the PMU exception from firing.
+        */
+       hard_irq_disable();
+
+       /*
+        * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
+        * Using read/write_pmc() in a for loop adds 12 function calls and
+        * almost doubles our code size.
+        */
+       pmcs[0] = mfspr(SPRN_PMC1);
+       pmcs[1] = mfspr(SPRN_PMC2);
+       pmcs[2] = mfspr(SPRN_PMC3);
+       pmcs[3] = mfspr(SPRN_PMC4);
+       pmcs[4] = mfspr(SPRN_PMC5);
+       pmcs[5] = mfspr(SPRN_PMC6);
+
+       /* Ensure all freeze bits are unset */
+       mtspr(SPRN_MMCR2, 0);
+
+       /* Set up PMC6 to overflow in one cycle */
+       mtspr(SPRN_PMC6, 0x7FFFFFFE);
+
+       /* Enable exceptions and unfreeze PMC6 */
+       mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
+
+       /* Now we need to refreeze and restore the PMCs */
+       mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
+
+       mtspr(SPRN_PMC1, pmcs[0]);
+       mtspr(SPRN_PMC2, pmcs[1]);
+       mtspr(SPRN_PMC3, pmcs[2]);
+       mtspr(SPRN_PMC4, pmcs[3]);
+       mtspr(SPRN_PMC5, pmcs[4]);
+       mtspr(SPRN_PMC6, pmcs[5]);
+}
+#endif /* CONFIG_PPC64 */
+
+static void perf_event_interrupt(struct pt_regs *regs);
+
+/*
+ * Read one performance monitor counter (PMC).
+ */
+static unsigned long read_pmc(int idx)
+{
+       unsigned long val;
+
+       switch (idx) {
+       case 1:
+               val = mfspr(SPRN_PMC1);
+               break;
+       case 2:
+               val = mfspr(SPRN_PMC2);
+               break;
+       case 3:
+               val = mfspr(SPRN_PMC3);
+               break;
+       case 4:
+               val = mfspr(SPRN_PMC4);
+               break;
+       case 5:
+               val = mfspr(SPRN_PMC5);
+               break;
+       case 6:
+               val = mfspr(SPRN_PMC6);
+               break;
+#ifdef CONFIG_PPC64
+       case 7:
+               val = mfspr(SPRN_PMC7);
+               break;
+       case 8:
+               val = mfspr(SPRN_PMC8);
+               break;
+#endif /* CONFIG_PPC64 */
+       default:
+               printk(KERN_ERR "oops trying to read PMC%d\n", idx);
+               val = 0;
+       }
+       return val;
+}
+
+/*
+ * Write one PMC.
+ */
+static void write_pmc(int idx, unsigned long val)
+{
+       switch (idx) {
+       case 1:
+               mtspr(SPRN_PMC1, val);
+               break;
+       case 2:
+               mtspr(SPRN_PMC2, val);
+               break;
+       case 3:
+               mtspr(SPRN_PMC3, val);
+               break;
+       case 4:
+               mtspr(SPRN_PMC4, val);
+               break;
+       case 5:
+               mtspr(SPRN_PMC5, val);
+               break;
+       case 6:
+               mtspr(SPRN_PMC6, val);
+               break;
+#ifdef CONFIG_PPC64
+       case 7:
+               mtspr(SPRN_PMC7, val);
+               break;
+       case 8:
+               mtspr(SPRN_PMC8, val);
+               break;
+#endif /* CONFIG_PPC64 */
+       default:
+               printk(KERN_ERR "oops trying to write PMC%d\n", idx);
+       }
+}
+
+/* Called from sysrq_handle_showregs() */
+void perf_event_print_debug(void)
+{
+       unsigned long sdar, sier, flags;
+       u32 pmcs[MAX_HWEVENTS];
+       int i;
+
+       if (!ppmu->n_counter)
+               return;
+
+       local_irq_save(flags);
+
+       pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
+                smp_processor_id(), ppmu->name, ppmu->n_counter);
+
+       for (i = 0; i < ppmu->n_counter; i++)
+               pmcs[i] = read_pmc(i + 1);
+
+       for (; i < MAX_HWEVENTS; i++)
+               pmcs[i] = 0xdeadbeef;
+
+       pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
+                pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
+
+       if (ppmu->n_counter > 4)
+               pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
+                        pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
+
+       pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
+               mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
+
+       sdar = sier = 0;
+#ifdef CONFIG_PPC64
+       sdar = mfspr(SPRN_SDAR);
+
+       if (ppmu->flags & PPMU_HAS_SIER)
+               sier = mfspr(SPRN_SIER);
+
+       if (ppmu->flags & PPMU_ARCH_207S) {
+               pr_info("MMCR2: %016lx EBBHR: %016lx\n",
+                       mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
+               pr_info("EBBRR: %016lx BESCR: %016lx\n",
+                       mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
+       }
+#endif
+       pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
+               mfspr(SPRN_SIAR), sdar, sier);
+
+       local_irq_restore(flags);
+}
+
+/*
+ * Check if a set of events can all go on the PMU at once.
+ * If they can't, this will look at alternative codes for the events
+ * and see if any combination of alternative codes is feasible.
+ * The feasible set is returned in event_id[].
+ */
+static int power_check_constraints(struct cpu_hw_events *cpuhw,
+                                  u64 event_id[], unsigned int cflags[],
+                                  int n_ev)
+{
+       unsigned long mask, value, nv;
+       unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
+       int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
+       int i, j;
+       unsigned long addf = ppmu->add_fields;
+       unsigned long tadd = ppmu->test_adder;
+
+       if (n_ev > ppmu->n_counter)
+               return -1;
+
+       /* First see if the events will go on as-is */
+       for (i = 0; i < n_ev; ++i) {
+               if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
+                   && !ppmu->limited_pmc_event(event_id[i])) {
+                       ppmu->get_alternatives(event_id[i], cflags[i],
+                                              cpuhw->alternatives[i]);
+                       event_id[i] = cpuhw->alternatives[i][0];
+               }
+               if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
+                                        &cpuhw->avalues[i][0]))
+                       return -1;
+       }
+       value = mask = 0;
+       for (i = 0; i < n_ev; ++i) {
+               nv = (value | cpuhw->avalues[i][0]) +
+                       (value & cpuhw->avalues[i][0] & addf);
+               if ((((nv + tadd) ^ value) & mask) != 0 ||
+                   (((nv + tadd) ^ cpuhw->avalues[i][0]) &
+                    cpuhw->amasks[i][0]) != 0)
+                       break;
+               value = nv;
+               mask |= cpuhw->amasks[i][0];
+       }
+       if (i == n_ev)
+               return 0;       /* all OK */
+
+       /* doesn't work, gather alternatives... */
+       if (!ppmu->get_alternatives)
+               return -1;
+       for (i = 0; i < n_ev; ++i) {
+               choice[i] = 0;
+               n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
+                                                 cpuhw->alternatives[i]);
+               for (j = 1; j < n_alt[i]; ++j)
+                       ppmu->get_constraint(cpuhw->alternatives[i][j],
+                                            &cpuhw->amasks[i][j],
+                                            &cpuhw->avalues[i][j]);
+       }
+
+       /* enumerate all possibilities and see if any will work */
+       i = 0;
+       j = -1;
+       value = mask = nv = 0;
+       while (i < n_ev) {
+               if (j >= 0) {
+                       /* we're backtracking, restore context */
+                       value = svalues[i];
+                       mask = smasks[i];
+                       j = choice[i];
+               }
+               /*
+                * See if any alternative k for event_id i,
+                * where k > j, will satisfy the constraints.
+                */
+               while (++j < n_alt[i]) {
+                       nv = (value | cpuhw->avalues[i][j]) +
+                               (value & cpuhw->avalues[i][j] & addf);
+                       if ((((nv + tadd) ^ value) & mask) == 0 &&
+                           (((nv + tadd) ^ cpuhw->avalues[i][j])
+                            & cpuhw->amasks[i][j]) == 0)
+                               break;
+               }
+               if (j >= n_alt[i]) {
+                       /*
+                        * No feasible alternative, backtrack
+                        * to event_id i-1 and continue enumerating its
+                        * alternatives from where we got up to.
+                        */
+                       if (--i < 0)
+                               return -1;
+               } else {
+                       /*
+                        * Found a feasible alternative for event_id i,
+                        * remember where we got up to with this event_id,
+                        * go on to the next event_id, and start with
+                        * the first alternative for it.
+                        */
+                       choice[i] = j;
+                       svalues[i] = value;
+                       smasks[i] = mask;
+                       value = nv;
+                       mask |= cpuhw->amasks[i][j];
+                       ++i;
+                       j = -1;
+               }
+       }
+
+       /* OK, we have a feasible combination, tell the caller the solution */
+       for (i = 0; i < n_ev; ++i)
+               event_id[i] = cpuhw->alternatives[i][choice[i]];
+       return 0;
+}
+
+/*
+ * Check if newly-added events have consistent settings for
+ * exclude_{user,kernel,hv} with each other and any previously
+ * added events.
+ */
+static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
+                         int n_prev, int n_new)
+{
+       int eu = 0, ek = 0, eh = 0;
+       int i, n, first;
+       struct perf_event *event;
+
+       /*
+        * If the PMU we're on supports per event exclude settings then we
+        * don't need to do any of this logic. NB. This assumes no PMU has both
+        * per event exclude and limited PMCs.
+        */
+       if (ppmu->flags & PPMU_ARCH_207S)
+               return 0;
+
+       n = n_prev + n_new;
+       if (n <= 1)
+               return 0;
+
+       first = 1;
+       for (i = 0; i < n; ++i) {
+               if (cflags[i] & PPMU_LIMITED_PMC_OK) {
+                       cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
+                       continue;
+               }
+               event = ctrs[i];
+               if (first) {
+                       eu = event->attr.exclude_user;
+                       ek = event->attr.exclude_kernel;
+                       eh = event->attr.exclude_hv;
+                       first = 0;
+               } else if (event->attr.exclude_user != eu ||
+                          event->attr.exclude_kernel != ek ||
+                          event->attr.exclude_hv != eh) {
+                       return -EAGAIN;
+               }
+       }
+
+       if (eu || ek || eh)
+               for (i = 0; i < n; ++i)
+                       if (cflags[i] & PPMU_LIMITED_PMC_OK)
+                               cflags[i] |= PPMU_LIMITED_PMC_REQD;
+
+       return 0;
+}
+
+static u64 check_and_compute_delta(u64 prev, u64 val)
+{
+       u64 delta = (val - prev) & 0xfffffffful;
+
+       /*
+        * POWER7 can roll back counter values, if the new value is smaller
+        * than the previous value it will cause the delta and the counter to
+        * have bogus values unless we rolled a counter over.  If a coutner is
+        * rolled back, it will be smaller, but within 256, which is the maximum
+        * number of events to rollback at once.  If we dectect a rollback
+        * return 0.  This can lead to a small lack of precision in the
+        * counters.
+        */
+       if (prev > val && (prev - val) < 256)
+               delta = 0;
+
+       return delta;
+}
+
+static void power_pmu_read(struct perf_event *event)
+{
+       s64 val, delta, prev;
+
+       if (event->hw.state & PERF_HES_STOPPED)
+               return;
+
+       if (!event->hw.idx)
+               return;
+
+       if (is_ebb_event(event)) {
+               val = read_pmc(event->hw.idx);
+               local64_set(&event->hw.prev_count, val);
+               return;
+       }
+
+       /*
+        * Performance monitor interrupts come even when interrupts
+        * are soft-disabled, as long as interrupts are hard-enabled.
+        * Therefore we treat them like NMIs.
+        */
+       do {
+               prev = local64_read(&event->hw.prev_count);
+               barrier();
+               val = read_pmc(event->hw.idx);
+               delta = check_and_compute_delta(prev, val);
+               if (!delta)
+                       return;
+       } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
+
+       local64_add(delta, &event->count);
+
+       /*
+        * A number of places program the PMC with (0x80000000 - period_left).
+        * We never want period_left to be less than 1 because we will program
+        * the PMC with a value >= 0x800000000 and an edge detected PMC will
+        * roll around to 0 before taking an exception. We have seen this
+        * on POWER8.
+        *
+        * To fix this, clamp the minimum value of period_left to 1.
+        */
+       do {
+               prev = local64_read(&event->hw.period_left);
+               val = prev - delta;
+               if (val < 1)
+                       val = 1;
+       } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
+}
+
+/*
+ * On some machines, PMC5 and PMC6 can't be written, don't respect
+ * the freeze conditions, and don't generate interrupts.  This tells
+ * us if `event' is using such a PMC.
+ */
+static int is_limited_pmc(int pmcnum)
+{
+       return (ppmu->flags & PPMU_LIMITED_PMC5_6)
+               && (pmcnum == 5 || pmcnum == 6);
+}
+
+static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
+                                   unsigned long pmc5, unsigned long pmc6)
+{
+       struct perf_event *event;
+       u64 val, prev, delta;
+       int i;
+
+       for (i = 0; i < cpuhw->n_limited; ++i) {
+               event = cpuhw->limited_counter[i];
+               if (!event->hw.idx)
+                       continue;
+               val = (event->hw.idx == 5) ? pmc5 : pmc6;
+               prev = local64_read(&event->hw.prev_count);
+               event->hw.idx = 0;
+               delta = check_and_compute_delta(prev, val);
+               if (delta)
+                       local64_add(delta, &event->count);
+       }
+}
+
+static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
+                                 unsigned long pmc5, unsigned long pmc6)
+{
+       struct perf_event *event;
+       u64 val, prev;
+       int i;
+
+       for (i = 0; i < cpuhw->n_limited; ++i) {
+               event = cpuhw->limited_counter[i];
+               event->hw.idx = cpuhw->limited_hwidx[i];
+               val = (event->hw.idx == 5) ? pmc5 : pmc6;
+               prev = local64_read(&event->hw.prev_count);
+               if (check_and_compute_delta(prev, val))
+                       local64_set(&event->hw.prev_count, val);
+               perf_event_update_userpage(event);
+       }
+}
+
+/*
+ * Since limited events don't respect the freeze conditions, we
+ * have to read them immediately after freezing or unfreezing the
+ * other events.  We try to keep the values from the limited
+ * events as consistent as possible by keeping the delay (in
+ * cycles and instructions) between freezing/unfreezing and reading
+ * the limited events as small and consistent as possible.
+ * Therefore, if any limited events are in use, we read them
+ * both, and always in the same order, to minimize variability,
+ * and do it inside the same asm that writes MMCR0.
+ */
+static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
+{
+       unsigned long pmc5, pmc6;
+
+       if (!cpuhw->n_limited) {
+               mtspr(SPRN_MMCR0, mmcr0);
+               return;
+       }
+
+       /*
+        * Write MMCR0, then read PMC5 and PMC6 immediately.
+        * To ensure we don't get a performance monitor interrupt
+        * between writing MMCR0 and freezing/thawing the limited
+        * events, we first write MMCR0 with the event overflow
+        * interrupt enable bits turned off.
+        */
+       asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
+                    : "=&r" (pmc5), "=&r" (pmc6)
+                    : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
+                      "i" (SPRN_MMCR0),
+                      "i" (SPRN_PMC5), "i" (SPRN_PMC6));
+
+       if (mmcr0 & MMCR0_FC)
+               freeze_limited_counters(cpuhw, pmc5, pmc6);
+       else
+               thaw_limited_counters(cpuhw, pmc5, pmc6);
+
+       /*
+        * Write the full MMCR0 including the event overflow interrupt
+        * enable bits, if necessary.
+        */
+       if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
+               mtspr(SPRN_MMCR0, mmcr0);
+}
+
+/*
+ * Disable all events to prevent PMU interrupts and to allow
+ * events to be added or removed.
+ */
+static void power_pmu_disable(struct pmu *pmu)
+{
+       struct cpu_hw_events *cpuhw;
+       unsigned long flags, mmcr0, val;
+
+       if (!ppmu)
+               return;
+       local_irq_save(flags);
+       cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+       if (!cpuhw->disabled) {
+               /*
+                * Check if we ever enabled the PMU on this cpu.
+                */
+               if (!cpuhw->pmcs_enabled) {
+                       ppc_enable_pmcs();
+                       cpuhw->pmcs_enabled = 1;
+               }
+
+               /*
+                * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
+                */
+               val  = mmcr0 = mfspr(SPRN_MMCR0);
+               val |= MMCR0_FC;
+               val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
+                        MMCR0_FC56);
+
+               /*
+                * The barrier is to make sure the mtspr has been
+                * executed and the PMU has frozen the events etc.
+                * before we return.
+                */
+               write_mmcr0(cpuhw, val);
+               mb();
+
+               /*
+                * Disable instruction sampling if it was enabled
+                */
+               if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
+                       mtspr(SPRN_MMCRA,
+                             cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
+                       mb();
+               }
+
+               cpuhw->disabled = 1;
+               cpuhw->n_added = 0;
+
+               ebb_switch_out(mmcr0);
+       }
+
+       local_irq_restore(flags);
+}
+
+/*
+ * Re-enable all events if disable == 0.
+ * If we were previously disabled and events were added, then
+ * put the new config on the PMU.
+ */
+static void power_pmu_enable(struct pmu *pmu)
+{
+       struct perf_event *event;
+       struct cpu_hw_events *cpuhw;
+       unsigned long flags;
+       long i;
+       unsigned long val, mmcr0;
+       s64 left;
+       unsigned int hwc_index[MAX_HWEVENTS];
+       int n_lim;
+       int idx;
+       bool ebb;
+
+       if (!ppmu)
+               return;
+       local_irq_save(flags);
+
+       cpuhw = this_cpu_ptr(&cpu_hw_events);
+       if (!cpuhw->disabled)
+               goto out;
+
+       if (cpuhw->n_events == 0) {
+               ppc_set_pmu_inuse(0);
+               goto out;
+       }
+
+       cpuhw->disabled = 0;
+
+       /*
+        * EBB requires an exclusive group and all events must have the EBB
+        * flag set, or not set, so we can just check a single event. Also we
+        * know we have at least one event.
+        */
+       ebb = is_ebb_event(cpuhw->event[0]);
+
+       /*
+        * If we didn't change anything, or only removed events,
+        * no need to recalculate MMCR* settings and reset the PMCs.
+        * Just reenable the PMU with the current MMCR* settings
+        * (possibly updated for removal of events).
+        */
+       if (!cpuhw->n_added) {
+               mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
+               mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
+               goto out_enable;
+       }
+
+       /*
+        * Clear all MMCR settings and recompute them for the new set of events.
+        */
+       memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
+
+       if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
+                              cpuhw->mmcr, cpuhw->event)) {
+               /* shouldn't ever get here */
+               printk(KERN_ERR "oops compute_mmcr failed\n");
+               goto out;
+       }
+
+       if (!(ppmu->flags & PPMU_ARCH_207S)) {
+               /*
+                * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
+                * bits for the first event. We have already checked that all
+                * events have the same value for these bits as the first event.
+                */
+               event = cpuhw->event[0];
+               if (event->attr.exclude_user)
+                       cpuhw->mmcr[0] |= MMCR0_FCP;
+               if (event->attr.exclude_kernel)
+                       cpuhw->mmcr[0] |= freeze_events_kernel;
+               if (event->attr.exclude_hv)
+                       cpuhw->mmcr[0] |= MMCR0_FCHV;
+       }
+
+       /*
+        * Write the new configuration to MMCR* with the freeze
+        * bit set and set the hardware events to their initial values.
+        * Then unfreeze the events.
+        */
+       ppc_set_pmu_inuse(1);
+       mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
+       mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
+       mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
+                               | MMCR0_FC);
+       if (ppmu->flags & PPMU_ARCH_207S)
+               mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
+
+       /*
+        * Read off any pre-existing events that need to move
+        * to another PMC.
+        */
+       for (i = 0; i < cpuhw->n_events; ++i) {
+               event = cpuhw->event[i];
+               if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
+                       power_pmu_read(event);
+                       write_pmc(event->hw.idx, 0);
+                       event->hw.idx = 0;
+               }
+       }
+
+       /*
+        * Initialize the PMCs for all the new and moved events.
+        */
+       cpuhw->n_limited = n_lim = 0;
+       for (i = 0; i < cpuhw->n_events; ++i) {
+               event = cpuhw->event[i];
+               if (event->hw.idx)
+                       continue;
+               idx = hwc_index[i] + 1;
+               if (is_limited_pmc(idx)) {
+                       cpuhw->limited_counter[n_lim] = event;
+                       cpuhw->limited_hwidx[n_lim] = idx;
+                       ++n_lim;
+                       continue;
+               }
+
+               if (ebb)
+                       val = local64_read(&event->hw.prev_count);
+               else {
+                       val = 0;
+                       if (event->hw.sample_period) {
+                               left = local64_read(&event->hw.period_left);
+                               if (left < 0x80000000L)
+                                       val = 0x80000000L - left;
+                       }
+                       local64_set(&event->hw.prev_count, val);
+               }
+
+               event->hw.idx = idx;
+               if (event->hw.state & PERF_HES_STOPPED)
+                       val = 0;
+               write_pmc(idx, val);
+
+               perf_event_update_userpage(event);
+       }
+       cpuhw->n_limited = n_lim;
+       cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
+
+ out_enable:
+       pmao_restore_workaround(ebb);
+
+       mmcr0 = ebb_switch_in(ebb, cpuhw);
+
+       mb();
+       if (cpuhw->bhrb_users)
+               ppmu->config_bhrb(cpuhw->bhrb_filter);
+
+       write_mmcr0(cpuhw, mmcr0);
+
+       /*
+        * Enable instruction sampling if necessary
+        */
+       if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
+               mb();
+               mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
+       }
+
+ out:
+
+       local_irq_restore(flags);
+}
+
+static int collect_events(struct perf_event *group, int max_count,
+                         struct perf_event *ctrs[], u64 *events,
+                         unsigned int *flags)
+{
+       int n = 0;
+       struct perf_event *event;
+
+       if (!is_software_event(group)) {
+               if (n >= max_count)
+                       return -1;
+               ctrs[n] = group;
+               flags[n] = group->hw.event_base;
+               events[n++] = group->hw.config;
+       }
+       list_for_each_entry(event, &group->sibling_list, group_entry) {
+               if (!is_software_event(event) &&
+                   event->state != PERF_EVENT_STATE_OFF) {
+                       if (n >= max_count)
+                               return -1;
+                       ctrs[n] = event;
+                       flags[n] = event->hw.event_base;
+                       events[n++] = event->hw.config;
+               }
+       }
+       return n;
+}
+
+/*
+ * Add a event to the PMU.
+ * If all events are not already frozen, then we disable and
+ * re-enable the PMU in order to get hw_perf_enable to do the
+ * actual work of reconfiguring the PMU.
+ */
+static int power_pmu_add(struct perf_event *event, int ef_flags)
+{
+       struct cpu_hw_events *cpuhw;
+       unsigned long flags;
+       int n0;
+       int ret = -EAGAIN;
+
+       local_irq_save(flags);
+       perf_pmu_disable(event->pmu);
+
+       /*
+        * Add the event to the list (if there is room)
+        * and check whether the total set is still feasible.
+        */
+       cpuhw = this_cpu_ptr(&cpu_hw_events);
+       n0 = cpuhw->n_events;
+       if (n0 >= ppmu->n_counter)
+               goto out;
+       cpuhw->event[n0] = event;
+       cpuhw->events[n0] = event->hw.config;
+       cpuhw->flags[n0] = event->hw.event_base;
+
+       /*
+        * This event may have been disabled/stopped in record_and_restart()
+        * because we exceeded the ->event_limit. If re-starting the event,
+        * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
+        * notification is re-enabled.
+        */
+       if (!(ef_flags & PERF_EF_START))
+               event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
+       else
+               event->hw.state = 0;
+
+       /*
+        * If group events scheduling transaction was started,
+        * skip the schedulability test here, it will be performed
+        * at commit time(->commit_txn) as a whole
+        */
+       if (cpuhw->group_flag & PERF_EVENT_TXN)
+               goto nocheck;
+
+       if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
+               goto out;
+       if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
+               goto out;
+       event->hw.config = cpuhw->events[n0];
+
+nocheck:
+       ebb_event_add(event);
+
+       ++cpuhw->n_events;
+       ++cpuhw->n_added;
+
+       ret = 0;
+ out:
+       if (has_branch_stack(event)) {
+               power_pmu_bhrb_enable(event);
+               cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
+                                       event->attr.branch_sample_type);
+       }
+
+       perf_pmu_enable(event->pmu);
+       local_irq_restore(flags);
+       return ret;
+}
+
+/*
+ * Remove a event from the PMU.
+ */
+static void power_pmu_del(struct perf_event *event, int ef_flags)
+{
+       struct cpu_hw_events *cpuhw;
+       long i;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       perf_pmu_disable(event->pmu);
+
+       power_pmu_read(event);
+
+       cpuhw = this_cpu_ptr(&cpu_hw_events);
+       for (i = 0; i < cpuhw->n_events; ++i) {
+               if (event == cpuhw->event[i]) {
+                       while (++i < cpuhw->n_events) {
+                               cpuhw->event[i-1] = cpuhw->event[i];
+                               cpuhw->events[i-1] = cpuhw->events[i];
+                               cpuhw->flags[i-1] = cpuhw->flags[i];
+                       }
+                       --cpuhw->n_events;
+                       ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
+                       if (event->hw.idx) {
+                               write_pmc(event->hw.idx, 0);
+                               event->hw.idx = 0;
+                       }
+                       perf_event_update_userpage(event);
+                       break;
+               }
+       }
+       for (i = 0; i < cpuhw->n_limited; ++i)
+               if (event == cpuhw->limited_counter[i])
+                       break;
+       if (i < cpuhw->n_limited) {
+               while (++i < cpuhw->n_limited) {
+                       cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
+                       cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
+               }
+               --cpuhw->n_limited;
+       }
+       if (cpuhw->n_events == 0) {
+               /* disable exceptions if no events are running */
+               cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
+       }
+
+       if (has_branch_stack(event))
+               power_pmu_bhrb_disable(event);
+
+       perf_pmu_enable(event->pmu);
+       local_irq_restore(flags);
+}
+
+/*
+ * POWER-PMU does not support disabling individual counters, hence
+ * program their cycle counter to their max value and ignore the interrupts.
+ */
+
+static void power_pmu_start(struct perf_event *event, int ef_flags)
+{
+       unsigned long flags;
+       s64 left;
+       unsigned long val;
+
+       if (!event->hw.idx || !event->hw.sample_period)
+               return;
+
+       if (!(event->hw.state & PERF_HES_STOPPED))
+               return;
+
+       if (ef_flags & PERF_EF_RELOAD)
+               WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
+
+       local_irq_save(flags);
+       perf_pmu_disable(event->pmu);
+
+       event->hw.state = 0;
+       left = local64_read(&event->hw.period_left);
+
+       val = 0;
+       if (left < 0x80000000L)
+               val = 0x80000000L - left;
+
+       write_pmc(event->hw.idx, val);
+
+       perf_event_update_userpage(event);
+       perf_pmu_enable(event->pmu);
+       local_irq_restore(flags);
+}
+
+static void power_pmu_stop(struct perf_event *event, int ef_flags)
+{
+       unsigned long flags;
+
+       if (!event->hw.idx || !event->hw.sample_period)
+               return;
+
+       if (event->hw.state & PERF_HES_STOPPED)
+               return;
+
+       local_irq_save(flags);
+       perf_pmu_disable(event->pmu);
+
+       power_pmu_read(event);
+       event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
+       write_pmc(event->hw.idx, 0);
+
+       perf_event_update_userpage(event);
+       perf_pmu_enable(event->pmu);
+       local_irq_restore(flags);
+}
+
+/*
+ * Start group events scheduling transaction
+ * Set the flag to make pmu::enable() not perform the
+ * schedulability test, it will be performed at commit time
+ */
+static void power_pmu_start_txn(struct pmu *pmu)
+{
+       struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+       perf_pmu_disable(pmu);
+       cpuhw->group_flag |= PERF_EVENT_TXN;
+       cpuhw->n_txn_start = cpuhw->n_events;
+}
+
+/*
+ * Stop group events scheduling transaction
+ * Clear the flag and pmu::enable() will perform the
+ * schedulability test.
+ */
+static void power_pmu_cancel_txn(struct pmu *pmu)
+{
+       struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+       cpuhw->group_flag &= ~PERF_EVENT_TXN;
+       perf_pmu_enable(pmu);
+}
+
+/*
+ * Commit group events scheduling transaction
+ * Perform the group schedulability test as a whole
+ * Return 0 if success
+ */
+static int power_pmu_commit_txn(struct pmu *pmu)
+{
+       struct cpu_hw_events *cpuhw;
+       long i, n;
+
+       if (!ppmu)
+               return -EAGAIN;
+       cpuhw = this_cpu_ptr(&cpu_hw_events);
+       n = cpuhw->n_events;
+       if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
+               return -EAGAIN;
+       i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
+       if (i < 0)
+               return -EAGAIN;
+
+       for (i = cpuhw->n_txn_start; i < n; ++i)
+               cpuhw->event[i]->hw.config = cpuhw->events[i];
+
+       cpuhw->group_flag &= ~PERF_EVENT_TXN;
+       perf_pmu_enable(pmu);
+       return 0;
+}
+
+/*
+ * Return 1 if we might be able to put event on a limited PMC,
+ * or 0 if not.
+ * A event can only go on a limited PMC if it counts something
+ * that a limited PMC can count, doesn't require interrupts, and
+ * doesn't exclude any processor mode.
+ */
+static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
+                                unsigned int flags)
+{
+       int n;
+       u64 alt[MAX_EVENT_ALTERNATIVES];
+
+       if (event->attr.exclude_user
+           || event->attr.exclude_kernel
+           || event->attr.exclude_hv
+           || event->attr.sample_period)
+               return 0;
+
+       if (ppmu->limited_pmc_event(ev))
+               return 1;
+
+       /*
+        * The requested event_id isn't on a limited PMC already;
+        * see if any alternative code goes on a limited PMC.
+        */
+       if (!ppmu->get_alternatives)
+               return 0;
+
+       flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
+       n = ppmu->get_alternatives(ev, flags, alt);
+
+       return n > 0;
+}
+
+/*
+ * Find an alternative event_id that goes on a normal PMC, if possible,
+ * and return the event_id code, or 0 if there is no such alternative.
+ * (Note: event_id code 0 is "don't count" on all machines.)
+ */
+static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
+{
+       u64 alt[MAX_EVENT_ALTERNATIVES];
+       int n;
+
+       flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
+       n = ppmu->get_alternatives(ev, flags, alt);
+       if (!n)
+               return 0;
+       return alt[0];
+}
+
+/* Number of perf_events counting hardware events */
+static atomic_t num_events;
+/* Used to avoid races in calling reserve/release_pmc_hardware */
+static DEFINE_MUTEX(pmc_reserve_mutex);
+
+/*
+ * Release the PMU if this is the last perf_event.
+ */
+static void hw_perf_event_destroy(struct perf_event *event)
+{
+       if (!atomic_add_unless(&num_events, -1, 1)) {
+               mutex_lock(&pmc_reserve_mutex);
+               if (atomic_dec_return(&num_events) == 0)
+                       release_pmc_hardware();
+               mutex_unlock(&pmc_reserve_mutex);
+       }
+}
+
+/*
+ * Translate a generic cache event_id config to a raw event_id code.
+ */
+static int hw_perf_cache_event(u64 config, u64 *eventp)
+{
+       unsigned long type, op, result;
+       int ev;
+
+       if (!ppmu->cache_events)
+               return -EINVAL;
+
+       /* unpack config */
+       type = config & 0xff;
+       op = (config >> 8) & 0xff;
+       result = (config >> 16) & 0xff;
+
+       if (type >= PERF_COUNT_HW_CACHE_MAX ||
+           op >= PERF_COUNT_HW_CACHE_OP_MAX ||
+           result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
+               return -EINVAL;
+
+       ev = (*ppmu->cache_events)[type][op][result];
+       if (ev == 0)
+               return -EOPNOTSUPP;
+       if (ev == -1)
+               return -EINVAL;
+       *eventp = ev;
+       return 0;
+}
+
+static int power_pmu_event_init(struct perf_event *event)
+{
+       u64 ev;
+       unsigned long flags;
+       struct perf_event *ctrs[MAX_HWEVENTS];
+       u64 events[MAX_HWEVENTS];
+       unsigned int cflags[MAX_HWEVENTS];
+       int n;
+       int err;
+       struct cpu_hw_events *cpuhw;
+
+       if (!ppmu)
+               return -ENOENT;
+
+       if (has_branch_stack(event)) {
+               /* PMU has BHRB enabled */
+               if (!(ppmu->flags & PPMU_ARCH_207S))
+                       return -EOPNOTSUPP;
+       }
+
+       switch (event->attr.type) {
+       case PERF_TYPE_HARDWARE:
+               ev = event->attr.config;
+               if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
+                       return -EOPNOTSUPP;
+               ev = ppmu->generic_events[ev];
+               break;
+       case PERF_TYPE_HW_CACHE:
+               err = hw_perf_cache_event(event->attr.config, &ev);
+               if (err)
+                       return err;
+               break;
+       case PERF_TYPE_RAW:
+               ev = event->attr.config;
+               break;
+       default:
+               return -ENOENT;
+       }
+
+       event->hw.config_base = ev;
+       event->hw.idx = 0;
+
+       /*
+        * If we are not running on a hypervisor, force the
+        * exclude_hv bit to 0 so that we don't care what
+        * the user set it to.
+        */
+       if (!firmware_has_feature(FW_FEATURE_LPAR))
+               event->attr.exclude_hv = 0;
+
+       /*
+        * If this is a per-task event, then we can use
+        * PM_RUN_* events interchangeably with their non RUN_*
+        * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
+        * XXX we should check if the task is an idle task.
+        */
+       flags = 0;
+       if (event->attach_state & PERF_ATTACH_TASK)
+               flags |= PPMU_ONLY_COUNT_RUN;
+
+       /*
+        * If this machine has limited events, check whether this
+        * event_id could go on a limited event.
+        */
+       if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
+               if (can_go_on_limited_pmc(event, ev, flags)) {
+                       flags |= PPMU_LIMITED_PMC_OK;
+               } else if (ppmu->limited_pmc_event(ev)) {
+                       /*
+                        * The requested event_id is on a limited PMC,
+                        * but we can't use a limited PMC; see if any
+                        * alternative goes on a normal PMC.
+                        */
+                       ev = normal_pmc_alternative(ev, flags);
+                       if (!ev)
+                               return -EINVAL;
+               }
+       }
+
+       /* Extra checks for EBB */
+       err = ebb_event_check(event);
+       if (err)
+               return err;
+
+       /*
+        * If this is in a group, check if it can go on with all the
+        * other hardware events in the group.  We assume the event
+        * hasn't been linked into its leader's sibling list at this point.
+        */
+       n = 0;
+       if (event->group_leader != event) {
+               n = collect_events(event->group_leader, ppmu->n_counter - 1,
+                                  ctrs, events, cflags);
+               if (n < 0)
+                       return -EINVAL;
+       }
+       events[n] = ev;
+       ctrs[n] = event;
+       cflags[n] = flags;
+       if (check_excludes(ctrs, cflags, n, 1))
+               return -EINVAL;
+
+       cpuhw = &get_cpu_var(cpu_hw_events);
+       err = power_check_constraints(cpuhw, events, cflags, n + 1);
+
+       if (has_branch_stack(event)) {
+               cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
+                                       event->attr.branch_sample_type);
+
+               if (cpuhw->bhrb_filter == -1) {
+                       put_cpu_var(cpu_hw_events);
+                       return -EOPNOTSUPP;
+               }
+       }
+
+       put_cpu_var(cpu_hw_events);
+       if (err)
+               return -EINVAL;
+
+       event->hw.config = events[n];
+       event->hw.event_base = cflags[n];
+       event->hw.last_period = event->hw.sample_period;
+       local64_set(&event->hw.period_left, event->hw.last_period);
+
+       /*
+        * For EBB events we just context switch the PMC value, we don't do any
+        * of the sample_period logic. We use hw.prev_count for this.
+        */
+       if (is_ebb_event(event))
+               local64_set(&event->hw.prev_count, 0);
+
+       /*
+        * See if we need to reserve the PMU.
+        * If no events are currently in use, then we have to take a
+        * mutex to ensure that we don't race with another task doing
+        * reserve_pmc_hardware or release_pmc_hardware.
+        */
+       err = 0;
+       if (!atomic_inc_not_zero(&num_events)) {
+               mutex_lock(&pmc_reserve_mutex);
+               if (atomic_read(&num_events) == 0 &&
+                   reserve_pmc_hardware(perf_event_interrupt))
+                       err = -EBUSY;
+               else
+                       atomic_inc(&num_events);
+               mutex_unlock(&pmc_reserve_mutex);
+       }
+       event->destroy = hw_perf_event_destroy;
+
+       return err;
+}
+
+static int power_pmu_event_idx(struct perf_event *event)
+{
+       return event->hw.idx;
+}
+
+ssize_t power_events_sysfs_show(struct device *dev,
+                               struct device_attribute *attr, char *page)
+{
+       struct perf_pmu_events_attr *pmu_attr;
+
+       pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
+
+       return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
+}
+
+static struct pmu power_pmu = {
+       .pmu_enable     = power_pmu_enable,
+       .pmu_disable    = power_pmu_disable,
+       .event_init     = power_pmu_event_init,
+       .add            = power_pmu_add,
+       .del            = power_pmu_del,
+       .start          = power_pmu_start,
+       .stop           = power_pmu_stop,
+       .read           = power_pmu_read,
+       .start_txn      = power_pmu_start_txn,
+       .cancel_txn     = power_pmu_cancel_txn,
+       .commit_txn     = power_pmu_commit_txn,
+       .event_idx      = power_pmu_event_idx,
+       .sched_task     = power_pmu_sched_task,
+};
+
+/*
+ * A counter has overflowed; update its count and record
+ * things if requested.  Note that interrupts are hard-disabled
+ * here so there is no possibility of being interrupted.
+ */
+static void record_and_restart(struct perf_event *event, unsigned long val,
+                              struct pt_regs *regs)
+{
+       u64 period = event->hw.sample_period;
+       s64 prev, delta, left;
+       int record = 0;
+
+       if (event->hw.state & PERF_HES_STOPPED) {
+               write_pmc(event->hw.idx, 0);
+               return;
+       }
+
+       /* we don't have to worry about interrupts here */
+       prev = local64_read(&event->hw.prev_count);
+       delta = check_and_compute_delta(prev, val);
+       local64_add(delta, &event->count);
+
+       /*
+        * See if the total period for this event has expired,
+        * and update for the next period.
+        */
+       val = 0;
+       left = local64_read(&event->hw.period_left) - delta;
+       if (delta == 0)
+               left++;
+       if (period) {
+               if (left <= 0) {
+                       left += period;
+                       if (left <= 0)
+                               left = period;
+                       record = siar_valid(regs);
+                       event->hw.last_period = event->hw.sample_period;
+               }
+               if (left < 0x80000000LL)
+                       val = 0x80000000LL - left;
+       }
+
+       write_pmc(event->hw.idx, val);
+       local64_set(&event->hw.prev_count, val);
+       local64_set(&event->hw.period_left, left);
+       perf_event_update_userpage(event);
+
+       /*
+        * Finally record data if requested.
+        */
+       if (record) {
+               struct perf_sample_data data;
+
+               perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
+
+               if (event->attr.sample_type & PERF_SAMPLE_ADDR)
+                       perf_get_data_addr(regs, &data.addr);
+
+               if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
+                       struct cpu_hw_events *cpuhw;
+                       cpuhw = this_cpu_ptr(&cpu_hw_events);
+                       power_pmu_bhrb_read(cpuhw);
+                       data.br_stack = &cpuhw->bhrb_stack;
+               }
+
+               if (perf_event_overflow(event, &data, regs))
+                       power_pmu_stop(event, 0);
+       }
+}
+
+/*
+ * Called from generic code to get the misc flags (i.e. processor mode)
+ * for an event_id.
+ */
+unsigned long perf_misc_flags(struct pt_regs *regs)
+{
+       u32 flags = perf_get_misc_flags(regs);
+
+       if (flags)
+               return flags;
+       return user_mode(regs) ? PERF_RECORD_MISC_USER :
+               PERF_RECORD_MISC_KERNEL;
+}
+
+/*
+ * Called from generic code to get the instruction pointer
+ * for an event_id.
+ */
+unsigned long perf_instruction_pointer(struct pt_regs *regs)
+{
+       bool use_siar = regs_use_siar(regs);
+
+       if (use_siar && siar_valid(regs))
+               return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
+       else if (use_siar)
+               return 0;               // no valid instruction pointer
+       else
+               return regs->nip;
+}
+
+static bool pmc_overflow_power7(unsigned long val)
+{
+       /*
+        * Events on POWER7 can roll back if a speculative event doesn't
+        * eventually complete. Unfortunately in some rare cases they will
+        * raise a performance monitor exception. We need to catch this to
+        * ensure we reset the PMC. In all cases the PMC will be 256 or less
+        * cycles from overflow.
+        *
+        * We only do this if the first pass fails to find any overflowing
+        * PMCs because a user might set a period of less than 256 and we
+        * don't want to mistakenly reset them.
+        */
+       if ((0x80000000 - val) <= 256)
+               return true;
+
+       return false;
+}
+
+static bool pmc_overflow(unsigned long val)
+{
+       if ((int)val < 0)
+               return true;
+
+       return false;
+}
+
+/*
+ * Performance monitor interrupt stuff
+ */
+static void perf_event_interrupt(struct pt_regs *regs)
+{
+       int i, j;
+       struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+       struct perf_event *event;
+       unsigned long val[8];
+       int found, active;
+       int nmi;
+
+       if (cpuhw->n_limited)
+               freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
+                                       mfspr(SPRN_PMC6));
+
+       perf_read_regs(regs);
+
+       nmi = perf_intr_is_nmi(regs);
+       if (nmi)
+               nmi_enter();
+       else
+               irq_enter();
+
+       /* Read all the PMCs since we'll need them a bunch of times */
+       for (i = 0; i < ppmu->n_counter; ++i)
+               val[i] = read_pmc(i + 1);
+
+       /* Try to find what caused the IRQ */
+       found = 0;
+       for (i = 0; i < ppmu->n_counter; ++i) {
+               if (!pmc_overflow(val[i]))
+                       continue;
+               if (is_limited_pmc(i + 1))
+                       continue; /* these won't generate IRQs */
+               /*
+                * We've found one that's overflowed.  For active
+                * counters we need to log this.  For inactive
+                * counters, we need to reset it anyway
+                */
+               found = 1;
+               active = 0;
+               for (j = 0; j < cpuhw->n_events; ++j) {
+                       event = cpuhw->event[j];
+                       if (event->hw.idx == (i + 1)) {
+                               active = 1;
+                               record_and_restart(event, val[i], regs);
+                               break;
+                       }
+               }
+               if (!active)
+                       /* reset non active counters that have overflowed */
+                       write_pmc(i + 1, 0);
+       }
+       if (!found && pvr_version_is(PVR_POWER7)) {
+               /* check active counters for special buggy p7 overflow */
+               for (i = 0; i < cpuhw->n_events; ++i) {
+                       event = cpuhw->event[i];
+                       if (!event->hw.idx || is_limited_pmc(event->hw.idx))
+                               continue;
+                       if (pmc_overflow_power7(val[event->hw.idx - 1])) {
+                               /* event has overflowed in a buggy way*/
+                               found = 1;
+                               record_and_restart(event,
+                                                  val[event->hw.idx - 1],
+                                                  regs);
+                       }
+               }
+       }
+       if (!found && !nmi && printk_ratelimit())
+               printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
+
+       /*
+        * Reset MMCR0 to its normal value.  This will set PMXE and
+        * clear FC (freeze counters) and PMAO (perf mon alert occurred)
+        * and thus allow interrupts to occur again.
+        * XXX might want to use MSR.PM to keep the events frozen until
+        * we get back out of this interrupt.
+        */
+       write_mmcr0(cpuhw, cpuhw->mmcr[0]);
+
+       if (nmi)
+               nmi_exit();
+       else
+               irq_exit();
+}
+
+static void power_pmu_setup(int cpu)
+{
+       struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
+
+       if (!ppmu)
+               return;
+       memset(cpuhw, 0, sizeof(*cpuhw));
+       cpuhw->mmcr[0] = MMCR0_FC;
+}
+
+static int
+power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
+{
+       unsigned int cpu = (long)hcpu;
+
+       switch (action & ~CPU_TASKS_FROZEN) {
+       case CPU_UP_PREPARE:
+               power_pmu_setup(cpu);
+               break;
+
+       default:
+               break;
+       }
+
+       return NOTIFY_OK;
+}
+
+int register_power_pmu(struct power_pmu *pmu)
+{
+       if (ppmu)
+               return -EBUSY;          /* something's already registered */
+
+       ppmu = pmu;
+       pr_info("%s performance monitor hardware support registered\n",
+               pmu->name);
+
+       power_pmu.attr_groups = ppmu->attr_groups;
+
+#ifdef MSR_HV
+       /*
+        * Use FCHV to ignore kernel events if MSR.HV is set.
+        */
+       if (mfmsr() & MSR_HV)
+               freeze_events_kernel = MMCR0_FCHV;
+#endif /* CONFIG_PPC64 */
+
+       perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
+       perf_cpu_notifier(power_pmu_notifier);
+
+       return 0;
+}