Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / oprofile / op_model_cell.c
diff --git a/kernel/arch/powerpc/oprofile/op_model_cell.c b/kernel/arch/powerpc/oprofile/op_model_cell.c
new file mode 100644 (file)
index 0000000..863d893
--- /dev/null
@@ -0,0 +1,1717 @@
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: David Erb (djerb@us.ibm.com)
+ * Modifications:
+ *        Carl Love <carll@us.ibm.com>
+ *        Maynard Johnson <maynardj@us.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/cpufreq.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/kthread.h>
+#include <linux/oprofile.h>
+#include <linux/percpu.h>
+#include <linux/smp.h>
+#include <linux/spinlock.h>
+#include <linux/timer.h>
+#include <asm/cell-pmu.h>
+#include <asm/cputable.h>
+#include <asm/firmware.h>
+#include <asm/io.h>
+#include <asm/oprofile_impl.h>
+#include <asm/processor.h>
+#include <asm/prom.h>
+#include <asm/ptrace.h>
+#include <asm/reg.h>
+#include <asm/rtas.h>
+#include <asm/cell-regs.h>
+
+#include "../platforms/cell/interrupt.h"
+#include "cell/pr_util.h"
+
+#define PPU_PROFILING            0
+#define SPU_PROFILING_CYCLES     1
+#define SPU_PROFILING_EVENTS     2
+
+#define SPU_EVENT_NUM_START      4100
+#define SPU_EVENT_NUM_STOP       4399
+#define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
+#define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
+#define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
+
+#define NUM_SPUS_PER_NODE    8
+#define SPU_CYCLES_EVENT_NUM 2 /*  event number for SPU_CYCLES */
+
+#define PPU_CYCLES_EVENT_NUM 1 /*  event number for CYCLES */
+#define PPU_CYCLES_GRP_NUM   1 /* special group number for identifying
+                                * PPU_CYCLES event
+                                */
+#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
+
+#define NUM_THREADS 2         /* number of physical threads in
+                              * physical processor
+                              */
+#define NUM_DEBUG_BUS_WORDS 4
+#define NUM_INPUT_BUS_WORDS 2
+
+#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
+
+/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
+ * To configure counter to send value every N cycles set counter to
+ * 2^32 - 1 - N.
+ */
+#define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
+
+/*
+ * spu_cycle_reset is the number of cycles between samples.
+ * This variable is used for SPU profiling and should ONLY be set
+ * at the beginning of cell_reg_setup; otherwise, it's read-only.
+ */
+static unsigned int spu_cycle_reset;
+static unsigned int profiling_mode;
+static int spu_evnt_phys_spu_indx;
+
+struct pmc_cntrl_data {
+       unsigned long vcntr;
+       unsigned long evnts;
+       unsigned long masks;
+       unsigned long enabled;
+};
+
+/*
+ * ibm,cbe-perftools rtas parameters
+ */
+struct pm_signal {
+       u16 cpu;                /* Processor to modify */
+       u16 sub_unit;           /* hw subunit this applies to (if applicable)*/
+       short int signal_group; /* Signal Group to Enable/Disable */
+       u8 bus_word;            /* Enable/Disable on this Trace/Trigger/Event
+                                * Bus Word(s) (bitmask)
+                                */
+       u8 bit;                 /* Trigger/Event bit (if applicable) */
+};
+
+/*
+ * rtas call arguments
+ */
+enum {
+       SUBFUNC_RESET = 1,
+       SUBFUNC_ACTIVATE = 2,
+       SUBFUNC_DEACTIVATE = 3,
+
+       PASSTHRU_IGNORE = 0,
+       PASSTHRU_ENABLE = 1,
+       PASSTHRU_DISABLE = 2,
+};
+
+struct pm_cntrl {
+       u16 enable;
+       u16 stop_at_max;
+       u16 trace_mode;
+       u16 freeze;
+       u16 count_mode;
+       u16 spu_addr_trace;
+       u8  trace_buf_ovflw;
+};
+
+static struct {
+       u32 group_control;
+       u32 debug_bus_control;
+       struct pm_cntrl pm_cntrl;
+       u32 pm07_cntrl[NR_PHYS_CTRS];
+} pm_regs;
+
+#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
+#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
+#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
+#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
+#define GET_COUNT_CYCLES(x) (x & 0x00000001)
+#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
+
+static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
+static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
+static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
+
+/*
+ * The CELL profiling code makes rtas calls to setup the debug bus to
+ * route the performance signals.  Additionally, SPU profiling requires
+ * a second rtas call to setup the hardware to capture the SPU PCs.
+ * The EIO error value is returned if the token lookups or the rtas
+ * call fail.  The EIO error number is the best choice of the existing
+ * error numbers.  The probability of rtas related error is very low.  But
+ * by returning EIO and printing additional information to dmsg the user
+ * will know that OProfile did not start and dmesg will tell them why.
+ * OProfile does not support returning errors on Stop. Not a huge issue
+ * since failure to reset the debug bus or stop the SPU PC collection is
+ * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
+ * either.
+ */
+
+/*
+ * Interpetation of hdw_thread:
+ * 0 - even virtual cpus 0, 2, 4,...
+ * 1 - odd virtual cpus 1, 3, 5, ...
+ *
+ * FIXME: this is strictly wrong, we need to clean this up in a number
+ * of places. It works for now. -arnd
+ */
+static u32 hdw_thread;
+
+static u32 virt_cntr_inter_mask;
+static struct timer_list timer_virt_cntr;
+static struct timer_list timer_spu_event_swap;
+
+/*
+ * pm_signal needs to be global since it is initialized in
+ * cell_reg_setup at the time when the necessary information
+ * is available.
+ */
+static struct pm_signal pm_signal[NR_PHYS_CTRS];
+static int pm_rtas_token;    /* token for debug bus setup call */
+static int spu_rtas_token;   /* token for SPU cycle profiling */
+
+static u32 reset_value[NR_PHYS_CTRS];
+static int num_counters;
+static int oprofile_running;
+static DEFINE_SPINLOCK(cntr_lock);
+
+static u32 ctr_enabled;
+
+static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
+
+/*
+ * Firmware interface functions
+ */
+static int
+rtas_ibm_cbe_perftools(int subfunc, int passthru,
+                      void *address, unsigned long length)
+{
+       u64 paddr = __pa(address);
+
+       return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
+                        passthru, paddr >> 32, paddr & 0xffffffff, length);
+}
+
+static void pm_rtas_reset_signals(u32 node)
+{
+       int ret;
+       struct pm_signal pm_signal_local;
+
+       /*
+        * The debug bus is being set to the passthru disable state.
+        * However, the FW still expects atleast one legal signal routing
+        * entry or it will return an error on the arguments.   If we don't
+        * supply a valid entry, we must ignore all return values.  Ignoring
+        * all return values means we might miss an error we should be
+        * concerned about.
+        */
+
+       /*  fw expects physical cpu #. */
+       pm_signal_local.cpu = node;
+       pm_signal_local.signal_group = 21;
+       pm_signal_local.bus_word = 1;
+       pm_signal_local.sub_unit = 0;
+       pm_signal_local.bit = 0;
+
+       ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
+                                    &pm_signal_local,
+                                    sizeof(struct pm_signal));
+
+       if (unlikely(ret))
+               /*
+                * Not a fatal error. For Oprofile stop, the oprofile
+                * functions do not support returning an error for
+                * failure to stop OProfile.
+                */
+               printk(KERN_WARNING "%s: rtas returned: %d\n",
+                      __func__, ret);
+}
+
+static int pm_rtas_activate_signals(u32 node, u32 count)
+{
+       int ret;
+       int i, j;
+       struct pm_signal pm_signal_local[NR_PHYS_CTRS];
+
+       /*
+        * There is no debug setup required for the cycles event.
+        * Note that only events in the same group can be used.
+        * Otherwise, there will be conflicts in correctly routing
+        * the signals on the debug bus.  It is the responsibility
+        * of the OProfile user tool to check the events are in
+        * the same group.
+        */
+       i = 0;
+       for (j = 0; j < count; j++) {
+               if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
+
+                       /* fw expects physical cpu # */
+                       pm_signal_local[i].cpu = node;
+                       pm_signal_local[i].signal_group
+                               = pm_signal[j].signal_group;
+                       pm_signal_local[i].bus_word = pm_signal[j].bus_word;
+                       pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
+                       pm_signal_local[i].bit = pm_signal[j].bit;
+                       i++;
+               }
+       }
+
+       if (i != 0) {
+               ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
+                                            pm_signal_local,
+                                            i * sizeof(struct pm_signal));
+
+               if (unlikely(ret)) {
+                       printk(KERN_WARNING "%s: rtas returned: %d\n",
+                              __func__, ret);
+                       return -EIO;
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * PM Signal functions
+ */
+static void set_pm_event(u32 ctr, int event, u32 unit_mask)
+{
+       struct pm_signal *p;
+       u32 signal_bit;
+       u32 bus_word, bus_type, count_cycles, polarity, input_control;
+       int j, i;
+
+       if (event == PPU_CYCLES_EVENT_NUM) {
+               /* Special Event: Count all cpu cycles */
+               pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
+               p = &(pm_signal[ctr]);
+               p->signal_group = PPU_CYCLES_GRP_NUM;
+               p->bus_word = 1;
+               p->sub_unit = 0;
+               p->bit = 0;
+               goto out;
+       } else {
+               pm_regs.pm07_cntrl[ctr] = 0;
+       }
+
+       bus_word = GET_BUS_WORD(unit_mask);
+       bus_type = GET_BUS_TYPE(unit_mask);
+       count_cycles = GET_COUNT_CYCLES(unit_mask);
+       polarity = GET_POLARITY(unit_mask);
+       input_control = GET_INPUT_CONTROL(unit_mask);
+       signal_bit = (event % 100);
+
+       p = &(pm_signal[ctr]);
+
+       p->signal_group = event / 100;
+       p->bus_word = bus_word;
+       p->sub_unit = GET_SUB_UNIT(unit_mask);
+
+       pm_regs.pm07_cntrl[ctr] = 0;
+       pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
+       pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
+       pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
+
+       /*
+        * Some of the islands signal selection is based on 64 bit words.
+        * The debug bus words are 32 bits, the input words to the performance
+        * counters are defined as 32 bits.  Need to convert the 64 bit island
+        * specification to the appropriate 32 input bit and bus word for the
+        * performance counter event selection.  See the CELL Performance
+        * monitoring signals manual and the Perf cntr hardware descriptions
+        * for the details.
+        */
+       if (input_control == 0) {
+               if (signal_bit > 31) {
+                       signal_bit -= 32;
+                       if (bus_word == 0x3)
+                               bus_word = 0x2;
+                       else if (bus_word == 0xc)
+                               bus_word = 0x8;
+               }
+
+               if ((bus_type == 0) && p->signal_group >= 60)
+                       bus_type = 2;
+               if ((bus_type == 1) && p->signal_group >= 50)
+                       bus_type = 0;
+
+               pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
+       } else {
+               pm_regs.pm07_cntrl[ctr] = 0;
+               p->bit = signal_bit;
+       }
+
+       for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
+               if (bus_word & (1 << i)) {
+                       pm_regs.debug_bus_control |=
+                               (bus_type << (30 - (2 * i)));
+
+                       for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
+                               if (input_bus[j] == 0xff) {
+                                       input_bus[j] = i;
+                                       pm_regs.group_control |=
+                                               (i << (30 - (2 * j)));
+
+                                       break;
+                               }
+                       }
+               }
+       }
+out:
+       ;
+}
+
+static void write_pm_cntrl(int cpu)
+{
+       /*
+        * Oprofile will use 32 bit counters, set bits 7:10 to 0
+        * pmregs.pm_cntrl is a global
+        */
+
+       u32 val = 0;
+       if (pm_regs.pm_cntrl.enable == 1)
+               val |= CBE_PM_ENABLE_PERF_MON;
+
+       if (pm_regs.pm_cntrl.stop_at_max == 1)
+               val |= CBE_PM_STOP_AT_MAX;
+
+       if (pm_regs.pm_cntrl.trace_mode != 0)
+               val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
+
+       if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
+               val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
+       if (pm_regs.pm_cntrl.freeze == 1)
+               val |= CBE_PM_FREEZE_ALL_CTRS;
+
+       val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
+
+       /*
+        * Routine set_count_mode must be called previously to set
+        * the count mode based on the user selection of user and kernel.
+        */
+       val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
+       cbe_write_pm(cpu, pm_control, val);
+}
+
+static inline void
+set_count_mode(u32 kernel, u32 user)
+{
+       /*
+        * The user must specify user and kernel if they want them. If
+        *  neither is specified, OProfile will count in hypervisor mode.
+        *  pm_regs.pm_cntrl is a global
+        */
+       if (kernel) {
+               if (user)
+                       pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
+               else
+                       pm_regs.pm_cntrl.count_mode =
+                               CBE_COUNT_SUPERVISOR_MODE;
+       } else {
+               if (user)
+                       pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
+               else
+                       pm_regs.pm_cntrl.count_mode =
+                               CBE_COUNT_HYPERVISOR_MODE;
+       }
+}
+
+static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
+{
+
+       pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
+       cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
+}
+
+/*
+ * Oprofile is expected to collect data on all CPUs simultaneously.
+ * However, there is one set of performance counters per node. There are
+ * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
+ * multiplex in time the performance counter collection on the two virtual
+ * CPUs.  The multiplexing of the performance counters is done by this
+ * virtual counter routine.
+ *
+ * The pmc_values used below is defined as 'per-cpu' but its use is
+ * more akin to 'per-node'.  We need to store two sets of counter
+ * values per node -- one for the previous run and one for the next.
+ * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
+ * pair of per-cpu arrays is used for storing the previous and next
+ * pmc values for a given node.
+ * NOTE: We use the per-cpu variable to improve cache performance.
+ *
+ * This routine will alternate loading the virtual counters for
+ * virtual CPUs
+ */
+static void cell_virtual_cntr(unsigned long data)
+{
+       int i, prev_hdw_thread, next_hdw_thread;
+       u32 cpu;
+       unsigned long flags;
+
+       /*
+        * Make sure that the interrupt_hander and the virt counter are
+        * not both playing with the counters on the same node.
+        */
+
+       spin_lock_irqsave(&cntr_lock, flags);
+
+       prev_hdw_thread = hdw_thread;
+
+       /* switch the cpu handling the interrupts */
+       hdw_thread = 1 ^ hdw_thread;
+       next_hdw_thread = hdw_thread;
+
+       pm_regs.group_control = 0;
+       pm_regs.debug_bus_control = 0;
+
+       for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
+               input_bus[i] = 0xff;
+
+       /*
+        * There are some per thread events.  Must do the
+        * set event, for the thread that is being started
+        */
+       for (i = 0; i < num_counters; i++)
+               set_pm_event(i,
+                       pmc_cntrl[next_hdw_thread][i].evnts,
+                       pmc_cntrl[next_hdw_thread][i].masks);
+
+       /*
+        * The following is done only once per each node, but
+        * we need cpu #, not node #, to pass to the cbe_xxx functions.
+        */
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               /*
+                * stop counters, save counter values, restore counts
+                * for previous thread
+                */
+               cbe_disable_pm(cpu);
+               cbe_disable_pm_interrupts(cpu);
+               for (i = 0; i < num_counters; i++) {
+                       per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
+                               = cbe_read_ctr(cpu, i);
+
+                       if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
+                           == 0xFFFFFFFF)
+                               /* If the cntr value is 0xffffffff, we must
+                                * reset that to 0xfffffff0 when the current
+                                * thread is restarted.  This will generate a
+                                * new interrupt and make sure that we never
+                                * restore the counters to the max value.  If
+                                * the counters were restored to the max value,
+                                * they do not increment and no interrupts are
+                                * generated.  Hence no more samples will be
+                                * collected on that cpu.
+                                */
+                               cbe_write_ctr(cpu, i, 0xFFFFFFF0);
+                       else
+                               cbe_write_ctr(cpu, i,
+                                             per_cpu(pmc_values,
+                                                     cpu +
+                                                     next_hdw_thread)[i]);
+               }
+
+               /*
+                * Switch to the other thread. Change the interrupt
+                * and control regs to be scheduled on the CPU
+                * corresponding to the thread to execute.
+                */
+               for (i = 0; i < num_counters; i++) {
+                       if (pmc_cntrl[next_hdw_thread][i].enabled) {
+                               /*
+                                * There are some per thread events.
+                                * Must do the set event, enable_cntr
+                                * for each cpu.
+                                */
+                               enable_ctr(cpu, i,
+                                          pm_regs.pm07_cntrl);
+                       } else {
+                               cbe_write_pm07_control(cpu, i, 0);
+                       }
+               }
+
+               /* Enable interrupts on the CPU thread that is starting */
+               cbe_enable_pm_interrupts(cpu, next_hdw_thread,
+                                        virt_cntr_inter_mask);
+               cbe_enable_pm(cpu);
+       }
+
+       spin_unlock_irqrestore(&cntr_lock, flags);
+
+       mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
+}
+
+static void start_virt_cntrs(void)
+{
+       init_timer(&timer_virt_cntr);
+       timer_virt_cntr.function = cell_virtual_cntr;
+       timer_virt_cntr.data = 0UL;
+       timer_virt_cntr.expires = jiffies + HZ / 10;
+       add_timer(&timer_virt_cntr);
+}
+
+static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
+                       struct op_system_config *sys, int num_ctrs)
+{
+       spu_cycle_reset = ctr[0].count;
+
+       /*
+        * Each node will need to make the rtas call to start
+        * and stop SPU profiling.  Get the token once and store it.
+        */
+       spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
+
+       if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+               printk(KERN_ERR
+                      "%s: rtas token ibm,cbe-spu-perftools unknown\n",
+                      __func__);
+               return -EIO;
+       }
+       return 0;
+}
+
+/* Unfortunately, the hardware will only support event profiling
+ * on one SPU per node at a time.  Therefore, we must time slice
+ * the profiling across all SPUs in the node.  Note, we do this
+ * in parallel for each node.  The following routine is called
+ * periodically based on kernel timer to switch which SPU is
+ * being monitored in a round robbin fashion.
+ */
+static void spu_evnt_swap(unsigned long data)
+{
+       int node;
+       int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
+       unsigned long flags;
+       int cpu;
+       int ret;
+       u32 interrupt_mask;
+
+
+       /* enable interrupts on cntr 0 */
+       interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
+
+       hdw_thread = 0;
+
+       /* Make sure spu event interrupt handler and spu event swap
+        * don't access the counters simultaneously.
+        */
+       spin_lock_irqsave(&cntr_lock, flags);
+
+       cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
+
+       if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
+               spu_evnt_phys_spu_indx = 0;
+
+       pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
+       pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
+       pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
+
+       /* switch the SPU being profiled on each node */
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               node = cbe_cpu_to_node(cpu);
+               cur_phys_spu = (node * NUM_SPUS_PER_NODE)
+                       + cur_spu_evnt_phys_spu_indx;
+               nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
+                       + spu_evnt_phys_spu_indx;
+
+               /*
+                * stop counters, save counter values, restore counts
+                * for previous physical SPU
+                */
+               cbe_disable_pm(cpu);
+               cbe_disable_pm_interrupts(cpu);
+
+               spu_pm_cnt[cur_phys_spu]
+                       = cbe_read_ctr(cpu, 0);
+
+               /* restore previous count for the next spu to sample */
+               /* NOTE, hardware issue, counter will not start if the
+                * counter value is at max (0xFFFFFFFF).
+                */
+               if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
+                       cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
+                else
+                        cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
+
+               pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+               /* setup the debug bus measure the one event and
+                * the two events to route the next SPU's PC on
+                * the debug bus
+                */
+               ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
+               if (ret)
+                       printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
+                              "SPU event swap\n", __func__);
+
+               /* clear the trace buffer, don't want to take PC for
+                * previous SPU*/
+               cbe_write_pm(cpu, trace_address, 0);
+
+               enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
+
+               /* Enable interrupts on the CPU thread that is starting */
+               cbe_enable_pm_interrupts(cpu, hdw_thread,
+                                        interrupt_mask);
+               cbe_enable_pm(cpu);
+       }
+
+       spin_unlock_irqrestore(&cntr_lock, flags);
+
+       /* swap approximately every 0.1 seconds */
+       mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
+}
+
+static void start_spu_event_swap(void)
+{
+       init_timer(&timer_spu_event_swap);
+       timer_spu_event_swap.function = spu_evnt_swap;
+       timer_spu_event_swap.data = 0UL;
+       timer_spu_event_swap.expires = jiffies + HZ / 25;
+       add_timer(&timer_spu_event_swap);
+}
+
+static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
+                       struct op_system_config *sys, int num_ctrs)
+{
+       int i;
+
+       /* routine is called once for all nodes */
+
+       spu_evnt_phys_spu_indx = 0;
+       /*
+        * For all events except PPU CYCLEs, each node will need to make
+        * the rtas cbe-perftools call to setup and reset the debug bus.
+        * Make the token lookup call once and store it in the global
+        * variable pm_rtas_token.
+        */
+       pm_rtas_token = rtas_token("ibm,cbe-perftools");
+
+       if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+               printk(KERN_ERR
+                      "%s: rtas token ibm,cbe-perftools unknown\n",
+                      __func__);
+               return -EIO;
+       }
+
+       /* setup the pm_control register settings,
+        * settings will be written per node by the
+        * cell_cpu_setup() function.
+        */
+       pm_regs.pm_cntrl.trace_buf_ovflw = 1;
+
+       /* Use the occurrence trace mode to have SPU PC saved
+        * to the trace buffer.  Occurrence data in trace buffer
+        * is not used.  Bit 2 must be set to store SPU addresses.
+        */
+       pm_regs.pm_cntrl.trace_mode = 2;
+
+       pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
+                                                  event 2 & 3 */
+
+       /* setup the debug bus event array with the SPU PC routing events.
+       *  Note, pm_signal[0] will be filled in by set_pm_event() call below.
+       */
+       pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
+       pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
+       pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
+       pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
+
+       pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
+       pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
+       pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
+       pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
+
+       /* Set the user selected spu event to profile on,
+        * note, only one SPU profiling event is supported
+        */
+       num_counters = 1;  /* Only support one SPU event at a time */
+       set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
+
+       reset_value[0] = 0xFFFFFFFF - ctr[0].count;
+
+       /* global, used by cell_cpu_setup */
+       ctr_enabled |= 1;
+
+       /* Initialize the count for each SPU to the reset value */
+       for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
+               spu_pm_cnt[i] = reset_value[0];
+
+       return 0;
+}
+
+static int cell_reg_setup_ppu(struct op_counter_config *ctr,
+                       struct op_system_config *sys, int num_ctrs)
+{
+       /* routine is called once for all nodes */
+       int i, j, cpu;
+
+       num_counters = num_ctrs;
+
+       if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
+               printk(KERN_ERR
+                      "%s: Oprofile, number of specified events " \
+                      "exceeds number of physical counters\n",
+                      __func__);
+               return -EIO;
+       }
+
+       set_count_mode(sys->enable_kernel, sys->enable_user);
+
+       /* Setup the thread 0 events */
+       for (i = 0; i < num_ctrs; ++i) {
+
+               pmc_cntrl[0][i].evnts = ctr[i].event;
+               pmc_cntrl[0][i].masks = ctr[i].unit_mask;
+               pmc_cntrl[0][i].enabled = ctr[i].enabled;
+               pmc_cntrl[0][i].vcntr = i;
+
+               for_each_possible_cpu(j)
+                       per_cpu(pmc_values, j)[i] = 0;
+       }
+
+       /*
+        * Setup the thread 1 events, map the thread 0 event to the
+        * equivalent thread 1 event.
+        */
+       for (i = 0; i < num_ctrs; ++i) {
+               if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
+                       pmc_cntrl[1][i].evnts = ctr[i].event + 19;
+               else if (ctr[i].event == 2203)
+                       pmc_cntrl[1][i].evnts = ctr[i].event;
+               else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
+                       pmc_cntrl[1][i].evnts = ctr[i].event + 16;
+               else
+                       pmc_cntrl[1][i].evnts = ctr[i].event;
+
+               pmc_cntrl[1][i].masks = ctr[i].unit_mask;
+               pmc_cntrl[1][i].enabled = ctr[i].enabled;
+               pmc_cntrl[1][i].vcntr = i;
+       }
+
+       for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
+               input_bus[i] = 0xff;
+
+       /*
+        * Our counters count up, and "count" refers to
+        * how much before the next interrupt, and we interrupt
+        * on overflow.  So we calculate the starting value
+        * which will give us "count" until overflow.
+        * Then we set the events on the enabled counters.
+        */
+       for (i = 0; i < num_counters; ++i) {
+               /* start with virtual counter set 0 */
+               if (pmc_cntrl[0][i].enabled) {
+                       /* Using 32bit counters, reset max - count */
+                       reset_value[i] = 0xFFFFFFFF - ctr[i].count;
+                       set_pm_event(i,
+                                    pmc_cntrl[0][i].evnts,
+                                    pmc_cntrl[0][i].masks);
+
+                       /* global, used by cell_cpu_setup */
+                       ctr_enabled |= (1 << i);
+               }
+       }
+
+       /* initialize the previous counts for the virtual cntrs */
+       for_each_online_cpu(cpu)
+               for (i = 0; i < num_counters; ++i) {
+                       per_cpu(pmc_values, cpu)[i] = reset_value[i];
+               }
+
+       return 0;
+}
+
+
+/* This function is called once for all cpus combined */
+static int cell_reg_setup(struct op_counter_config *ctr,
+                       struct op_system_config *sys, int num_ctrs)
+{
+       int ret=0;
+       spu_cycle_reset = 0;
+
+       /* initialize the spu_arr_trace value, will be reset if
+        * doing spu event profiling.
+        */
+       pm_regs.group_control = 0;
+       pm_regs.debug_bus_control = 0;
+       pm_regs.pm_cntrl.stop_at_max = 1;
+       pm_regs.pm_cntrl.trace_mode = 0;
+       pm_regs.pm_cntrl.freeze = 1;
+       pm_regs.pm_cntrl.trace_buf_ovflw = 0;
+       pm_regs.pm_cntrl.spu_addr_trace = 0;
+
+       /*
+        * For all events except PPU CYCLEs, each node will need to make
+        * the rtas cbe-perftools call to setup and reset the debug bus.
+        * Make the token lookup call once and store it in the global
+        * variable pm_rtas_token.
+        */
+       pm_rtas_token = rtas_token("ibm,cbe-perftools");
+
+       if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+               printk(KERN_ERR
+                      "%s: rtas token ibm,cbe-perftools unknown\n",
+                      __func__);
+               return -EIO;
+       }
+
+       if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
+               profiling_mode = SPU_PROFILING_CYCLES;
+               ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
+       } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
+                  (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
+               profiling_mode = SPU_PROFILING_EVENTS;
+               spu_cycle_reset = ctr[0].count;
+
+               /* for SPU event profiling, need to setup the
+                * pm_signal array with the events to route the
+                * SPU PC before making the FW call.  Note, only
+                * one SPU event for profiling can be specified
+                * at a time.
+                */
+               cell_reg_setup_spu_events(ctr, sys, num_ctrs);
+       } else {
+               profiling_mode = PPU_PROFILING;
+               ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
+       }
+
+       return ret;
+}
+
+
+
+/* This function is called once for each cpu */
+static int cell_cpu_setup(struct op_counter_config *cntr)
+{
+       u32 cpu = smp_processor_id();
+       u32 num_enabled = 0;
+       int i;
+       int ret;
+
+       /* Cycle based SPU profiling does not use the performance
+        * counters.  The trace array is configured to collect
+        * the data.
+        */
+       if (profiling_mode == SPU_PROFILING_CYCLES)
+               return 0;
+
+       /* There is one performance monitor per processor chip (i.e. node),
+        * so we only need to perform this function once per node.
+        */
+       if (cbe_get_hw_thread_id(cpu))
+               return 0;
+
+       /* Stop all counters */
+       cbe_disable_pm(cpu);
+       cbe_disable_pm_interrupts(cpu);
+
+       cbe_write_pm(cpu, pm_start_stop, 0);
+       cbe_write_pm(cpu, group_control, pm_regs.group_control);
+       cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
+       write_pm_cntrl(cpu);
+
+       for (i = 0; i < num_counters; ++i) {
+               if (ctr_enabled & (1 << i)) {
+                       pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
+                       num_enabled++;
+               }
+       }
+
+       /*
+        * The pm_rtas_activate_signals will return -EIO if the FW
+        * call failed.
+        */
+       if (profiling_mode == SPU_PROFILING_EVENTS) {
+               /* For SPU event profiling also need to setup the
+                * pm interval timer
+                */
+               ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
+                                              num_enabled+2);
+               /* store PC from debug bus to Trace buffer as often
+                * as possible (every 10 cycles)
+                */
+               cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+               return ret;
+       } else
+               return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
+                                               num_enabled);
+}
+
+#define ENTRIES         303
+#define MAXLFSR         0xFFFFFF
+
+/* precomputed table of 24 bit LFSR values */
+static int initial_lfsr[] = {
+ 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
+ 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
+ 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
+ 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
+ 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
+ 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
+ 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
+ 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
+ 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
+ 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
+ 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
+ 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
+ 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
+ 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
+ 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
+ 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
+ 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
+ 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
+ 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
+ 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
+ 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
+ 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
+ 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
+ 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
+ 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
+ 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
+ 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
+ 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
+ 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
+ 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
+ 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
+ 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
+ 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
+ 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
+ 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
+ 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
+ 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
+ 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
+};
+
+/*
+ * The hardware uses an LFSR counting sequence to determine when to capture
+ * the SPU PCs.         An LFSR sequence is like a puesdo random number sequence
+ * where each number occurs once in the sequence but the sequence is not in
+ * numerical order. The SPU PC capture is done when the LFSR sequence reaches
+ * the last value in the sequence.  Hence the user specified value N
+ * corresponds to the LFSR number that is N from the end of the sequence.
+ *
+ * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
+ * LFSR sequence is broken into four ranges.  The spacing of the precomputed
+ * values is adjusted in each range so the error between the user specifed
+ * number (N) of events between samples and the actual number of events based
+ * on the precomputed value will be les then about 6.2%.  Note, if the user
+ * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
+ * This is to prevent the loss of samples because the trace buffer is full.
+ *
+ *        User specified N                  Step between          Index in
+ *                                      precomputed values      precomputed
+ *                                                                 table
+ * 0               to  2^16-1                  ----                  0
+ * 2^16            to  2^16+2^19-1             2^12                1 to 128
+ * 2^16+2^19       to  2^16+2^19+2^22-1        2^15              129 to 256
+ * 2^16+2^19+2^22  to  2^24-1                  2^18              257 to 302
+ *
+ *
+ * For example, the LFSR values in the second range are computed for 2^16,
+ * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
+ * 1, 2,..., 127, 128.
+ *
+ * The 24 bit LFSR value for the nth number in the sequence can be
+ * calculated using the following code:
+ *
+ * #define size 24
+ * int calculate_lfsr(int n)
+ * {
+ *     int i;
+ *     unsigned int newlfsr0;
+ *     unsigned int lfsr = 0xFFFFFF;
+ *     unsigned int howmany = n;
+ *
+ *     for (i = 2; i < howmany + 2; i++) {
+ *             newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
+ *             ((lfsr >> (size - 1 - 1)) & 1) ^
+ *             (((lfsr >> (size - 1 - 6)) & 1) ^
+ *             ((lfsr >> (size - 1 - 23)) & 1)));
+ *
+ *             lfsr >>= 1;
+ *             lfsr = lfsr | (newlfsr0 << (size - 1));
+ *     }
+ *     return lfsr;
+ * }
+ */
+
+#define V2_16  (0x1 << 16)
+#define V2_19  (0x1 << 19)
+#define V2_22  (0x1 << 22)
+
+static int calculate_lfsr(int n)
+{
+       /*
+        * The ranges and steps are in powers of 2 so the calculations
+        * can be done using shifts rather then divide.
+        */
+       int index;
+
+       if ((n >> 16) == 0)
+               index = 0;
+       else if (((n - V2_16) >> 19) == 0)
+               index = ((n - V2_16) >> 12) + 1;
+       else if (((n - V2_16 - V2_19) >> 22) == 0)
+               index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
+       else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
+               index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
+       else
+               index = ENTRIES-1;
+
+       /* make sure index is valid */
+       if ((index >= ENTRIES) || (index < 0))
+               index = ENTRIES-1;
+
+       return initial_lfsr[index];
+}
+
+static int pm_rtas_activate_spu_profiling(u32 node)
+{
+       int ret, i;
+       struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
+
+       /*
+        * Set up the rtas call to configure the debug bus to
+        * route the SPU PCs.  Setup the pm_signal for each SPU
+        */
+       for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
+               pm_signal_local[i].cpu = node;
+               pm_signal_local[i].signal_group = 41;
+               /* spu i on word (i/2) */
+               pm_signal_local[i].bus_word = 1 << i / 2;
+               /* spu i */
+               pm_signal_local[i].sub_unit = i;
+               pm_signal_local[i].bit = 63;
+       }
+
+       ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
+                                    PASSTHRU_ENABLE, pm_signal_local,
+                                    (ARRAY_SIZE(pm_signal_local)
+                                     * sizeof(struct pm_signal)));
+
+       if (unlikely(ret)) {
+               printk(KERN_WARNING "%s: rtas returned: %d\n",
+                      __func__, ret);
+               return -EIO;
+       }
+
+       return 0;
+}
+
+#ifdef CONFIG_CPU_FREQ
+static int
+oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
+{
+       int ret = 0;
+       struct cpufreq_freqs *frq = data;
+       if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
+           (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
+               set_spu_profiling_frequency(frq->new, spu_cycle_reset);
+       return ret;
+}
+
+static struct notifier_block cpu_freq_notifier_block = {
+       .notifier_call  = oprof_cpufreq_notify
+};
+#endif
+
+/*
+ * Note the generic OProfile stop calls do not support returning
+ * an error on stop.  Hence, will not return an error if the FW
+ * calls fail on stop. Failure to reset the debug bus is not an issue.
+ * Failure to disable the SPU profiling is not an issue.  The FW calls
+ * to enable the performance counters and debug bus will work even if
+ * the hardware was not cleanly reset.
+ */
+static void cell_global_stop_spu_cycles(void)
+{
+       int subfunc, rtn_value;
+       unsigned int lfsr_value;
+       int cpu;
+
+       oprofile_running = 0;
+       smp_wmb();
+
+#ifdef CONFIG_CPU_FREQ
+       cpufreq_unregister_notifier(&cpu_freq_notifier_block,
+                                   CPUFREQ_TRANSITION_NOTIFIER);
+#endif
+
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               subfunc = 3;    /*
+                                * 2 - activate SPU tracing,
+                                * 3 - deactivate
+                                */
+               lfsr_value = 0x8f100000;
+
+               rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
+                                     subfunc, cbe_cpu_to_node(cpu),
+                                     lfsr_value);
+
+               if (unlikely(rtn_value != 0)) {
+                       printk(KERN_ERR
+                              "%s: rtas call ibm,cbe-spu-perftools " \
+                              "failed, return = %d\n",
+                              __func__, rtn_value);
+               }
+
+               /* Deactivate the signals */
+               pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+       }
+
+       stop_spu_profiling_cycles();
+}
+
+static void cell_global_stop_spu_events(void)
+{
+       int cpu;
+       oprofile_running = 0;
+
+       stop_spu_profiling_events();
+       smp_wmb();
+
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               cbe_sync_irq(cbe_cpu_to_node(cpu));
+               /* Stop the counters */
+               cbe_disable_pm(cpu);
+               cbe_write_pm07_control(cpu, 0, 0);
+
+               /* Deactivate the signals */
+               pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+               /* Deactivate interrupts */
+               cbe_disable_pm_interrupts(cpu);
+       }
+       del_timer_sync(&timer_spu_event_swap);
+}
+
+static void cell_global_stop_ppu(void)
+{
+       int cpu;
+
+       /*
+        * This routine will be called once for the system.
+        * There is one performance monitor per node, so we
+        * only need to perform this function once per node.
+        */
+       del_timer_sync(&timer_virt_cntr);
+       oprofile_running = 0;
+       smp_wmb();
+
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               cbe_sync_irq(cbe_cpu_to_node(cpu));
+               /* Stop the counters */
+               cbe_disable_pm(cpu);
+
+               /* Deactivate the signals */
+               pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+               /* Deactivate interrupts */
+               cbe_disable_pm_interrupts(cpu);
+       }
+}
+
+static void cell_global_stop(void)
+{
+       if (profiling_mode == PPU_PROFILING)
+               cell_global_stop_ppu();
+       else if (profiling_mode == SPU_PROFILING_EVENTS)
+               cell_global_stop_spu_events();
+       else
+               cell_global_stop_spu_cycles();
+}
+
+static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
+{
+       int subfunc;
+       unsigned int lfsr_value;
+       int cpu;
+       int ret;
+       int rtas_error;
+       unsigned int cpu_khzfreq = 0;
+
+       /* The SPU profiling uses time-based profiling based on
+        * cpu frequency, so if configured with the CPU_FREQ
+        * option, we should detect frequency changes and react
+        * accordingly.
+        */
+#ifdef CONFIG_CPU_FREQ
+       ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
+                                       CPUFREQ_TRANSITION_NOTIFIER);
+       if (ret < 0)
+               /* this is not a fatal error */
+               printk(KERN_ERR "CPU freq change registration failed: %d\n",
+                      ret);
+
+       else
+               cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
+#endif
+
+       set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
+
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               /*
+                * Setup SPU cycle-based profiling.
+                * Set perf_mon_control bit 0 to a zero before
+                * enabling spu collection hardware.
+                */
+               cbe_write_pm(cpu, pm_control, 0);
+
+               if (spu_cycle_reset > MAX_SPU_COUNT)
+                       /* use largest possible value */
+                       lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
+               else
+                       lfsr_value = calculate_lfsr(spu_cycle_reset);
+
+               /* must use a non zero value. Zero disables data collection. */
+               if (lfsr_value == 0)
+                       lfsr_value = calculate_lfsr(1);
+
+               lfsr_value = lfsr_value << 8; /* shift lfsr to correct
+                                               * register location
+                                               */
+
+               /* debug bus setup */
+               ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
+
+               if (unlikely(ret)) {
+                       rtas_error = ret;
+                       goto out;
+               }
+
+
+               subfunc = 2;    /* 2 - activate SPU tracing, 3 - deactivate */
+
+               /* start profiling */
+               ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
+                               cbe_cpu_to_node(cpu), lfsr_value);
+
+               if (unlikely(ret != 0)) {
+                       printk(KERN_ERR
+                              "%s: rtas call ibm,cbe-spu-perftools failed, " \
+                              "return = %d\n", __func__, ret);
+                       rtas_error = -EIO;
+                       goto out;
+               }
+       }
+
+       rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
+       if (rtas_error)
+               goto out_stop;
+
+       oprofile_running = 1;
+       return 0;
+
+out_stop:
+       cell_global_stop_spu_cycles();  /* clean up the PMU/debug bus */
+out:
+       return rtas_error;
+}
+
+static int cell_global_start_spu_events(struct op_counter_config *ctr)
+{
+       int cpu;
+       u32 interrupt_mask = 0;
+       int rtn = 0;
+
+       hdw_thread = 0;
+
+       /* spu event profiling, uses the performance counters to generate
+        * an interrupt.  The hardware is setup to store the SPU program
+        * counter into the trace array.  The occurrence mode is used to
+        * enable storing data to the trace buffer.  The bits are set
+        * to send/store the SPU address in the trace buffer.  The debug
+        * bus must be setup to route the SPU program counter onto the
+        * debug bus.  The occurrence data in the trace buffer is not used.
+        */
+
+       /* This routine gets called once for the system.
+        * There is one performance monitor per node, so we
+        * only need to perform this function once per node.
+        */
+
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               /*
+                * Setup SPU event-based profiling.
+                * Set perf_mon_control bit 0 to a zero before
+                * enabling spu collection hardware.
+                *
+                * Only support one SPU event on one SPU per node.
+                */
+               if (ctr_enabled & 1) {
+                       cbe_write_ctr(cpu, 0, reset_value[0]);
+                       enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
+                       interrupt_mask |=
+                               CBE_PM_CTR_OVERFLOW_INTR(0);
+               } else {
+                       /* Disable counter */
+                       cbe_write_pm07_control(cpu, 0, 0);
+               }
+
+               cbe_get_and_clear_pm_interrupts(cpu);
+               cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
+               cbe_enable_pm(cpu);
+
+               /* clear the trace buffer */
+               cbe_write_pm(cpu, trace_address, 0);
+       }
+
+       /* Start the timer to time slice collecting the event profile
+        * on each of the SPUs.  Note, can collect profile on one SPU
+        * per node at a time.
+        */
+       start_spu_event_swap();
+       start_spu_profiling_events();
+       oprofile_running = 1;
+       smp_wmb();
+
+       return rtn;
+}
+
+static int cell_global_start_ppu(struct op_counter_config *ctr)
+{
+       u32 cpu, i;
+       u32 interrupt_mask = 0;
+
+       /* This routine gets called once for the system.
+        * There is one performance monitor per node, so we
+        * only need to perform this function once per node.
+        */
+       for_each_online_cpu(cpu) {
+               if (cbe_get_hw_thread_id(cpu))
+                       continue;
+
+               interrupt_mask = 0;
+
+               for (i = 0; i < num_counters; ++i) {
+                       if (ctr_enabled & (1 << i)) {
+                               cbe_write_ctr(cpu, i, reset_value[i]);
+                               enable_ctr(cpu, i, pm_regs.pm07_cntrl);
+                               interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
+                       } else {
+                               /* Disable counter */
+                               cbe_write_pm07_control(cpu, i, 0);
+                       }
+               }
+
+               cbe_get_and_clear_pm_interrupts(cpu);
+               cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
+               cbe_enable_pm(cpu);
+       }
+
+       virt_cntr_inter_mask = interrupt_mask;
+       oprofile_running = 1;
+       smp_wmb();
+
+       /*
+        * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
+        * executed which manipulates the PMU.  We start the "virtual counter"
+        * here so that we do not need to synchronize access to the PMU in
+        * the above for-loop.
+        */
+       start_virt_cntrs();
+
+       return 0;
+}
+
+static int cell_global_start(struct op_counter_config *ctr)
+{
+       if (profiling_mode == SPU_PROFILING_CYCLES)
+               return cell_global_start_spu_cycles(ctr);
+       else if (profiling_mode == SPU_PROFILING_EVENTS)
+               return cell_global_start_spu_events(ctr);
+       else
+               return cell_global_start_ppu(ctr);
+}
+
+
+/* The SPU interrupt handler
+ *
+ * SPU event profiling works as follows:
+ * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
+ * the debug bus using word 0 or 1.  The value of pm_signal[1] and
+ * pm_signal[2] contain the necessary events to route the SPU program
+ * counter for the selected SPU onto the debug bus using words 2 and 3.
+ * The pm_interval register is setup to write the SPU PC value into the
+ * trace buffer at the maximum rate possible.  The trace buffer is configured
+ * to store the PCs, wrapping when it is full.  The performance counter is
+ * initialized to the max hardware count minus the number of events, N, between
+ * samples.  Once the N events have occurred, a HW counter overflow occurs
+ * causing the generation of a HW counter interrupt which also stops the
+ * writing of the SPU PC values to the trace buffer.  Hence the last PC
+ * written to the trace buffer is the SPU PC that we want.  Unfortunately,
+ * we have to read from the beginning of the trace buffer to get to the
+ * last value written.  We just hope the PPU has nothing better to do then
+ * service this interrupt. The PC for the specific SPU being profiled is
+ * extracted from the trace buffer processed and stored.  The trace buffer
+ * is cleared, interrupts are cleared, the counter is reset to max - N.
+ * A kernel timer is used to periodically call the routine spu_evnt_swap()
+ * to switch to the next physical SPU in the node to profile in round robbin
+ * order.  This way data is collected for all SPUs on the node. It does mean
+ * that we need to use a relatively small value of N to ensure enough samples
+ * on each SPU are collected each SPU is being profiled 1/8 of the time.
+ * It may also be necessary to use a longer sample collection period.
+ */
+static void cell_handle_interrupt_spu(struct pt_regs *regs,
+                                     struct op_counter_config *ctr)
+{
+       u32 cpu, cpu_tmp;
+       u64 trace_entry;
+       u32 interrupt_mask;
+       u64 trace_buffer[2];
+       u64 last_trace_buffer;
+       u32 sample;
+       u32 trace_addr;
+       unsigned long sample_array_lock_flags;
+       int spu_num;
+       unsigned long flags;
+
+       /* Make sure spu event interrupt handler and spu event swap
+        * don't access the counters simultaneously.
+        */
+       cpu = smp_processor_id();
+       spin_lock_irqsave(&cntr_lock, flags);
+
+       cpu_tmp = cpu;
+       cbe_disable_pm(cpu);
+
+       interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
+
+       sample = 0xABCDEF;
+       trace_entry = 0xfedcba;
+       last_trace_buffer = 0xdeadbeaf;
+
+       if ((oprofile_running == 1) && (interrupt_mask != 0)) {
+               /* disable writes to trace buff */
+               cbe_write_pm(cpu, pm_interval, 0);
+
+               /* only have one perf cntr being used, cntr 0 */
+               if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
+                   && ctr[0].enabled)
+                       /* The SPU PC values will be read
+                        * from the trace buffer, reset counter
+                        */
+
+                       cbe_write_ctr(cpu, 0, reset_value[0]);
+
+               trace_addr = cbe_read_pm(cpu, trace_address);
+
+               while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
+                       /* There is data in the trace buffer to process
+                        * Read the buffer until you get to the last
+                        * entry.  This is the value we want.
+                        */
+
+                       cbe_read_trace_buffer(cpu, trace_buffer);
+                       trace_addr = cbe_read_pm(cpu, trace_address);
+               }
+
+               /* SPU Address 16 bit count format for 128 bit
+                * HW trace buffer is used for the SPU PC storage
+                *    HDR bits          0:15
+                *    SPU Addr 0 bits   16:31
+                *    SPU Addr 1 bits   32:47
+                *    unused bits       48:127
+                *
+                * HDR: bit4 = 1 SPU Address 0 valid
+                * HDR: bit5 = 1 SPU Address 1 valid
+                *  - unfortunately, the valid bits don't seem to work
+                *
+                * Note trace_buffer[0] holds bits 0:63 of the HW
+                * trace buffer, trace_buffer[1] holds bits 64:127
+                */
+
+               trace_entry = trace_buffer[0]
+                       & 0x00000000FFFF0000;
+
+               /* only top 16 of the 18 bit SPU PC address
+                * is stored in trace buffer, hence shift right
+                * by 16 -2 bits */
+               sample = trace_entry >> 14;
+               last_trace_buffer = trace_buffer[0];
+
+               spu_num = spu_evnt_phys_spu_indx
+                       + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
+
+               /* make sure only one process at a time is calling
+                * spu_sync_buffer()
+                */
+               spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
+                                 sample_array_lock_flags);
+               spu_sync_buffer(spu_num, &sample, 1);
+               spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
+                                      sample_array_lock_flags);
+
+               smp_wmb();    /* insure spu event buffer updates are written
+                              * don't want events intermingled... */
+
+               /* The counters were frozen by the interrupt.
+                * Reenable the interrupt and restart the counters.
+                */
+               cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+               cbe_enable_pm_interrupts(cpu, hdw_thread,
+                                        virt_cntr_inter_mask);
+
+               /* clear the trace buffer, re-enable writes to trace buff */
+               cbe_write_pm(cpu, trace_address, 0);
+               cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+
+               /* The writes to the various performance counters only writes
+                * to a latch.  The new values (interrupt setting bits, reset
+                * counter value etc.) are not copied to the actual registers
+                * until the performance monitor is enabled.  In order to get
+                * this to work as desired, the performance monitor needs to
+                * be disabled while writing to the latches.  This is a
+                * HW design issue.
+                */
+               write_pm_cntrl(cpu);
+               cbe_enable_pm(cpu);
+       }
+       spin_unlock_irqrestore(&cntr_lock, flags);
+}
+
+static void cell_handle_interrupt_ppu(struct pt_regs *regs,
+                                     struct op_counter_config *ctr)
+{
+       u32 cpu;
+       u64 pc;
+       int is_kernel;
+       unsigned long flags = 0;
+       u32 interrupt_mask;
+       int i;
+
+       cpu = smp_processor_id();
+
+       /*
+        * Need to make sure the interrupt handler and the virt counter
+        * routine are not running at the same time. See the
+        * cell_virtual_cntr() routine for additional comments.
+        */
+       spin_lock_irqsave(&cntr_lock, flags);
+
+       /*
+        * Need to disable and reenable the performance counters
+        * to get the desired behavior from the hardware.  This
+        * is hardware specific.
+        */
+
+       cbe_disable_pm(cpu);
+
+       interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
+
+       /*
+        * If the interrupt mask has been cleared, then the virt cntr
+        * has cleared the interrupt.  When the thread that generated
+        * the interrupt is restored, the data count will be restored to
+        * 0xffffff0 to cause the interrupt to be regenerated.
+        */
+
+       if ((oprofile_running == 1) && (interrupt_mask != 0)) {
+               pc = regs->nip;
+               is_kernel = is_kernel_addr(pc);
+
+               for (i = 0; i < num_counters; ++i) {
+                       if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
+                           && ctr[i].enabled) {
+                               oprofile_add_ext_sample(pc, regs, i, is_kernel);
+                               cbe_write_ctr(cpu, i, reset_value[i]);
+                       }
+               }
+
+               /*
+                * The counters were frozen by the interrupt.
+                * Reenable the interrupt and restart the counters.
+                * If there was a race between the interrupt handler and
+                * the virtual counter routine.  The virtual counter
+                * routine may have cleared the interrupts.  Hence must
+                * use the virt_cntr_inter_mask to re-enable the interrupts.
+                */
+               cbe_enable_pm_interrupts(cpu, hdw_thread,
+                                        virt_cntr_inter_mask);
+
+               /*
+                * The writes to the various performance counters only writes
+                * to a latch.  The new values (interrupt setting bits, reset
+                * counter value etc.) are not copied to the actual registers
+                * until the performance monitor is enabled.  In order to get
+                * this to work as desired, the performance monitor needs to
+                * be disabled while writing to the latches.  This is a
+                * HW design issue.
+                */
+               cbe_enable_pm(cpu);
+       }
+       spin_unlock_irqrestore(&cntr_lock, flags);
+}
+
+static void cell_handle_interrupt(struct pt_regs *regs,
+                                 struct op_counter_config *ctr)
+{
+       if (profiling_mode == PPU_PROFILING)
+               cell_handle_interrupt_ppu(regs, ctr);
+       else
+               cell_handle_interrupt_spu(regs, ctr);
+}
+
+/*
+ * This function is called from the generic OProfile
+ * driver.  When profiling PPUs, we need to do the
+ * generic sync start; otherwise, do spu_sync_start.
+ */
+static int cell_sync_start(void)
+{
+       if ((profiling_mode == SPU_PROFILING_CYCLES) ||
+           (profiling_mode == SPU_PROFILING_EVENTS))
+               return spu_sync_start();
+       else
+               return DO_GENERIC_SYNC;
+}
+
+static int cell_sync_stop(void)
+{
+       if ((profiling_mode == SPU_PROFILING_CYCLES) ||
+           (profiling_mode == SPU_PROFILING_EVENTS))
+               return spu_sync_stop();
+       else
+               return 1;
+}
+
+struct op_powerpc_model op_model_cell = {
+       .reg_setup = cell_reg_setup,
+       .cpu_setup = cell_cpu_setup,
+       .global_start = cell_global_start,
+       .global_stop = cell_global_stop,
+       .sync_start = cell_sync_start,
+       .sync_stop = cell_sync_stop,
+       .handle_interrupt = cell_handle_interrupt,
+};