Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / powerpc / kernel / process.c
diff --git a/kernel/arch/powerpc/kernel/process.c b/kernel/arch/powerpc/kernel/process.c
new file mode 100644 (file)
index 0000000..febb50d
--- /dev/null
@@ -0,0 +1,1661 @@
+/*
+ *  Derived from "arch/i386/kernel/process.c"
+ *    Copyright (C) 1995  Linus Torvalds
+ *
+ *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
+ *  Paul Mackerras (paulus@cs.anu.edu.au)
+ *
+ *  PowerPC version
+ *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
+ *
+ *  This program is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU General Public License
+ *  as published by the Free Software Foundation; either version
+ *  2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/stddef.h>
+#include <linux/unistd.h>
+#include <linux/ptrace.h>
+#include <linux/slab.h>
+#include <linux/user.h>
+#include <linux/elf.h>
+#include <linux/prctl.h>
+#include <linux/init_task.h>
+#include <linux/export.h>
+#include <linux/kallsyms.h>
+#include <linux/mqueue.h>
+#include <linux/hardirq.h>
+#include <linux/utsname.h>
+#include <linux/ftrace.h>
+#include <linux/kernel_stat.h>
+#include <linux/personality.h>
+#include <linux/random.h>
+#include <linux/hw_breakpoint.h>
+#include <linux/uaccess.h>
+
+#include <asm/pgtable.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/mmu.h>
+#include <asm/prom.h>
+#include <asm/machdep.h>
+#include <asm/time.h>
+#include <asm/runlatch.h>
+#include <asm/syscalls.h>
+#include <asm/switch_to.h>
+#include <asm/tm.h>
+#include <asm/debug.h>
+#ifdef CONFIG_PPC64
+#include <asm/firmware.h>
+#endif
+#include <asm/code-patching.h>
+#include <linux/kprobes.h>
+#include <linux/kdebug.h>
+
+/* Transactional Memory debug */
+#ifdef TM_DEBUG_SW
+#define TM_DEBUG(x...) printk(KERN_INFO x)
+#else
+#define TM_DEBUG(x...) do { } while(0)
+#endif
+
+extern unsigned long _get_SP(void);
+
+#ifndef CONFIG_SMP
+struct task_struct *last_task_used_math = NULL;
+struct task_struct *last_task_used_altivec = NULL;
+struct task_struct *last_task_used_vsx = NULL;
+struct task_struct *last_task_used_spe = NULL;
+#endif
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+void giveup_fpu_maybe_transactional(struct task_struct *tsk)
+{
+       /*
+        * If we are saving the current thread's registers, and the
+        * thread is in a transactional state, set the TIF_RESTORE_TM
+        * bit so that we know to restore the registers before
+        * returning to userspace.
+        */
+       if (tsk == current && tsk->thread.regs &&
+           MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
+           !test_thread_flag(TIF_RESTORE_TM)) {
+               tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
+               set_thread_flag(TIF_RESTORE_TM);
+       }
+
+       giveup_fpu(tsk);
+}
+
+void giveup_altivec_maybe_transactional(struct task_struct *tsk)
+{
+       /*
+        * If we are saving the current thread's registers, and the
+        * thread is in a transactional state, set the TIF_RESTORE_TM
+        * bit so that we know to restore the registers before
+        * returning to userspace.
+        */
+       if (tsk == current && tsk->thread.regs &&
+           MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
+           !test_thread_flag(TIF_RESTORE_TM)) {
+               tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
+               set_thread_flag(TIF_RESTORE_TM);
+       }
+
+       giveup_altivec(tsk);
+}
+
+#else
+#define giveup_fpu_maybe_transactional(tsk)    giveup_fpu(tsk)
+#define giveup_altivec_maybe_transactional(tsk)        giveup_altivec(tsk)
+#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
+
+#ifdef CONFIG_PPC_FPU
+/*
+ * Make sure the floating-point register state in the
+ * the thread_struct is up to date for task tsk.
+ */
+void flush_fp_to_thread(struct task_struct *tsk)
+{
+       if (tsk->thread.regs) {
+               /*
+                * We need to disable preemption here because if we didn't,
+                * another process could get scheduled after the regs->msr
+                * test but before we have finished saving the FP registers
+                * to the thread_struct.  That process could take over the
+                * FPU, and then when we get scheduled again we would store
+                * bogus values for the remaining FP registers.
+                */
+               preempt_disable();
+               if (tsk->thread.regs->msr & MSR_FP) {
+#ifdef CONFIG_SMP
+                       /*
+                        * This should only ever be called for current or
+                        * for a stopped child process.  Since we save away
+                        * the FP register state on context switch on SMP,
+                        * there is something wrong if a stopped child appears
+                        * to still have its FP state in the CPU registers.
+                        */
+                       BUG_ON(tsk != current);
+#endif
+                       giveup_fpu_maybe_transactional(tsk);
+               }
+               preempt_enable();
+       }
+}
+EXPORT_SYMBOL_GPL(flush_fp_to_thread);
+#endif /* CONFIG_PPC_FPU */
+
+void enable_kernel_fp(void)
+{
+       WARN_ON(preemptible());
+
+#ifdef CONFIG_SMP
+       if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
+               giveup_fpu_maybe_transactional(current);
+       else
+               giveup_fpu(NULL);       /* just enables FP for kernel */
+#else
+       giveup_fpu_maybe_transactional(last_task_used_math);
+#endif /* CONFIG_SMP */
+}
+EXPORT_SYMBOL(enable_kernel_fp);
+
+#ifdef CONFIG_ALTIVEC
+void enable_kernel_altivec(void)
+{
+       WARN_ON(preemptible());
+
+#ifdef CONFIG_SMP
+       if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
+               giveup_altivec_maybe_transactional(current);
+       else
+               giveup_altivec_notask();
+#else
+       giveup_altivec_maybe_transactional(last_task_used_altivec);
+#endif /* CONFIG_SMP */
+}
+EXPORT_SYMBOL(enable_kernel_altivec);
+
+/*
+ * Make sure the VMX/Altivec register state in the
+ * the thread_struct is up to date for task tsk.
+ */
+void flush_altivec_to_thread(struct task_struct *tsk)
+{
+       if (tsk->thread.regs) {
+               preempt_disable();
+               if (tsk->thread.regs->msr & MSR_VEC) {
+#ifdef CONFIG_SMP
+                       BUG_ON(tsk != current);
+#endif
+                       giveup_altivec_maybe_transactional(tsk);
+               }
+               preempt_enable();
+       }
+}
+EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
+#endif /* CONFIG_ALTIVEC */
+
+#ifdef CONFIG_VSX
+#if 0
+/* not currently used, but some crazy RAID module might want to later */
+void enable_kernel_vsx(void)
+{
+       WARN_ON(preemptible());
+
+#ifdef CONFIG_SMP
+       if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
+               giveup_vsx(current);
+       else
+               giveup_vsx(NULL);       /* just enable vsx for kernel - force */
+#else
+       giveup_vsx(last_task_used_vsx);
+#endif /* CONFIG_SMP */
+}
+EXPORT_SYMBOL(enable_kernel_vsx);
+#endif
+
+void giveup_vsx(struct task_struct *tsk)
+{
+       giveup_fpu_maybe_transactional(tsk);
+       giveup_altivec_maybe_transactional(tsk);
+       __giveup_vsx(tsk);
+}
+EXPORT_SYMBOL(giveup_vsx);
+
+void flush_vsx_to_thread(struct task_struct *tsk)
+{
+       if (tsk->thread.regs) {
+               preempt_disable();
+               if (tsk->thread.regs->msr & MSR_VSX) {
+#ifdef CONFIG_SMP
+                       BUG_ON(tsk != current);
+#endif
+                       giveup_vsx(tsk);
+               }
+               preempt_enable();
+       }
+}
+EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
+#endif /* CONFIG_VSX */
+
+#ifdef CONFIG_SPE
+
+void enable_kernel_spe(void)
+{
+       WARN_ON(preemptible());
+
+#ifdef CONFIG_SMP
+       if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
+               giveup_spe(current);
+       else
+               giveup_spe(NULL);       /* just enable SPE for kernel - force */
+#else
+       giveup_spe(last_task_used_spe);
+#endif /* __SMP __ */
+}
+EXPORT_SYMBOL(enable_kernel_spe);
+
+void flush_spe_to_thread(struct task_struct *tsk)
+{
+       if (tsk->thread.regs) {
+               preempt_disable();
+               if (tsk->thread.regs->msr & MSR_SPE) {
+#ifdef CONFIG_SMP
+                       BUG_ON(tsk != current);
+#endif
+                       tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
+                       giveup_spe(tsk);
+               }
+               preempt_enable();
+       }
+}
+#endif /* CONFIG_SPE */
+
+#ifndef CONFIG_SMP
+/*
+ * If we are doing lazy switching of CPU state (FP, altivec or SPE),
+ * and the current task has some state, discard it.
+ */
+void discard_lazy_cpu_state(void)
+{
+       preempt_disable();
+       if (last_task_used_math == current)
+               last_task_used_math = NULL;
+#ifdef CONFIG_ALTIVEC
+       if (last_task_used_altivec == current)
+               last_task_used_altivec = NULL;
+#endif /* CONFIG_ALTIVEC */
+#ifdef CONFIG_VSX
+       if (last_task_used_vsx == current)
+               last_task_used_vsx = NULL;
+#endif /* CONFIG_VSX */
+#ifdef CONFIG_SPE
+       if (last_task_used_spe == current)
+               last_task_used_spe = NULL;
+#endif
+       preempt_enable();
+}
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_PPC_ADV_DEBUG_REGS
+void do_send_trap(struct pt_regs *regs, unsigned long address,
+                 unsigned long error_code, int signal_code, int breakpt)
+{
+       siginfo_t info;
+
+       current->thread.trap_nr = signal_code;
+       if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
+                       11, SIGSEGV) == NOTIFY_STOP)
+               return;
+
+       /* Deliver the signal to userspace */
+       info.si_signo = SIGTRAP;
+       info.si_errno = breakpt;        /* breakpoint or watchpoint id */
+       info.si_code = signal_code;
+       info.si_addr = (void __user *)address;
+       force_sig_info(SIGTRAP, &info, current);
+}
+#else  /* !CONFIG_PPC_ADV_DEBUG_REGS */
+void do_break (struct pt_regs *regs, unsigned long address,
+                   unsigned long error_code)
+{
+       siginfo_t info;
+
+       current->thread.trap_nr = TRAP_HWBKPT;
+       if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
+                       11, SIGSEGV) == NOTIFY_STOP)
+               return;
+
+       if (debugger_break_match(regs))
+               return;
+
+       /* Clear the breakpoint */
+       hw_breakpoint_disable();
+
+       /* Deliver the signal to userspace */
+       info.si_signo = SIGTRAP;
+       info.si_errno = 0;
+       info.si_code = TRAP_HWBKPT;
+       info.si_addr = (void __user *)address;
+       force_sig_info(SIGTRAP, &info, current);
+}
+#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
+
+static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
+
+#ifdef CONFIG_PPC_ADV_DEBUG_REGS
+/*
+ * Set the debug registers back to their default "safe" values.
+ */
+static void set_debug_reg_defaults(struct thread_struct *thread)
+{
+       thread->debug.iac1 = thread->debug.iac2 = 0;
+#if CONFIG_PPC_ADV_DEBUG_IACS > 2
+       thread->debug.iac3 = thread->debug.iac4 = 0;
+#endif
+       thread->debug.dac1 = thread->debug.dac2 = 0;
+#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
+       thread->debug.dvc1 = thread->debug.dvc2 = 0;
+#endif
+       thread->debug.dbcr0 = 0;
+#ifdef CONFIG_BOOKE
+       /*
+        * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
+        */
+       thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
+                       DBCR1_IAC3US | DBCR1_IAC4US;
+       /*
+        * Force Data Address Compare User/Supervisor bits to be User-only
+        * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
+        */
+       thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
+#else
+       thread->debug.dbcr1 = 0;
+#endif
+}
+
+static void prime_debug_regs(struct debug_reg *debug)
+{
+       /*
+        * We could have inherited MSR_DE from userspace, since
+        * it doesn't get cleared on exception entry.  Make sure
+        * MSR_DE is clear before we enable any debug events.
+        */
+       mtmsr(mfmsr() & ~MSR_DE);
+
+       mtspr(SPRN_IAC1, debug->iac1);
+       mtspr(SPRN_IAC2, debug->iac2);
+#if CONFIG_PPC_ADV_DEBUG_IACS > 2
+       mtspr(SPRN_IAC3, debug->iac3);
+       mtspr(SPRN_IAC4, debug->iac4);
+#endif
+       mtspr(SPRN_DAC1, debug->dac1);
+       mtspr(SPRN_DAC2, debug->dac2);
+#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
+       mtspr(SPRN_DVC1, debug->dvc1);
+       mtspr(SPRN_DVC2, debug->dvc2);
+#endif
+       mtspr(SPRN_DBCR0, debug->dbcr0);
+       mtspr(SPRN_DBCR1, debug->dbcr1);
+#ifdef CONFIG_BOOKE
+       mtspr(SPRN_DBCR2, debug->dbcr2);
+#endif
+}
+/*
+ * Unless neither the old or new thread are making use of the
+ * debug registers, set the debug registers from the values
+ * stored in the new thread.
+ */
+void switch_booke_debug_regs(struct debug_reg *new_debug)
+{
+       if ((current->thread.debug.dbcr0 & DBCR0_IDM)
+               || (new_debug->dbcr0 & DBCR0_IDM))
+                       prime_debug_regs(new_debug);
+}
+EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
+#else  /* !CONFIG_PPC_ADV_DEBUG_REGS */
+#ifndef CONFIG_HAVE_HW_BREAKPOINT
+static void set_debug_reg_defaults(struct thread_struct *thread)
+{
+       thread->hw_brk.address = 0;
+       thread->hw_brk.type = 0;
+       set_breakpoint(&thread->hw_brk);
+}
+#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
+#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
+
+#ifdef CONFIG_PPC_ADV_DEBUG_REGS
+static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
+{
+       mtspr(SPRN_DAC1, dabr);
+#ifdef CONFIG_PPC_47x
+       isync();
+#endif
+       return 0;
+}
+#elif defined(CONFIG_PPC_BOOK3S)
+static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
+{
+       mtspr(SPRN_DABR, dabr);
+       if (cpu_has_feature(CPU_FTR_DABRX))
+               mtspr(SPRN_DABRX, dabrx);
+       return 0;
+}
+#else
+static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
+{
+       return -EINVAL;
+}
+#endif
+
+static inline int set_dabr(struct arch_hw_breakpoint *brk)
+{
+       unsigned long dabr, dabrx;
+
+       dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
+       dabrx = ((brk->type >> 3) & 0x7);
+
+       if (ppc_md.set_dabr)
+               return ppc_md.set_dabr(dabr, dabrx);
+
+       return __set_dabr(dabr, dabrx);
+}
+
+static inline int set_dawr(struct arch_hw_breakpoint *brk)
+{
+       unsigned long dawr, dawrx, mrd;
+
+       dawr = brk->address;
+
+       dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
+                                  << (63 - 58); //* read/write bits */
+       dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
+                                  << (63 - 59); //* translate */
+       dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
+                                  >> 3; //* PRIM bits */
+       /* dawr length is stored in field MDR bits 48:53.  Matches range in
+          doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
+          0b111111=64DW.
+          brk->len is in bytes.
+          This aligns up to double word size, shifts and does the bias.
+       */
+       mrd = ((brk->len + 7) >> 3) - 1;
+       dawrx |= (mrd & 0x3f) << (63 - 53);
+
+       if (ppc_md.set_dawr)
+               return ppc_md.set_dawr(dawr, dawrx);
+       mtspr(SPRN_DAWR, dawr);
+       mtspr(SPRN_DAWRX, dawrx);
+       return 0;
+}
+
+void __set_breakpoint(struct arch_hw_breakpoint *brk)
+{
+       memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
+
+       if (cpu_has_feature(CPU_FTR_DAWR))
+               set_dawr(brk);
+       else
+               set_dabr(brk);
+}
+
+void set_breakpoint(struct arch_hw_breakpoint *brk)
+{
+       preempt_disable();
+       __set_breakpoint(brk);
+       preempt_enable();
+}
+
+#ifdef CONFIG_PPC64
+DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
+#endif
+
+static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
+                             struct arch_hw_breakpoint *b)
+{
+       if (a->address != b->address)
+               return false;
+       if (a->type != b->type)
+               return false;
+       if (a->len != b->len)
+               return false;
+       return true;
+}
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+static void tm_reclaim_thread(struct thread_struct *thr,
+                             struct thread_info *ti, uint8_t cause)
+{
+       unsigned long msr_diff = 0;
+
+       /*
+        * If FP/VSX registers have been already saved to the
+        * thread_struct, move them to the transact_fp array.
+        * We clear the TIF_RESTORE_TM bit since after the reclaim
+        * the thread will no longer be transactional.
+        */
+       if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
+               msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
+               if (msr_diff & MSR_FP)
+                       memcpy(&thr->transact_fp, &thr->fp_state,
+                              sizeof(struct thread_fp_state));
+               if (msr_diff & MSR_VEC)
+                       memcpy(&thr->transact_vr, &thr->vr_state,
+                              sizeof(struct thread_vr_state));
+               clear_ti_thread_flag(ti, TIF_RESTORE_TM);
+               msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
+       }
+
+       tm_reclaim(thr, thr->regs->msr, cause);
+
+       /* Having done the reclaim, we now have the checkpointed
+        * FP/VSX values in the registers.  These might be valid
+        * even if we have previously called enable_kernel_fp() or
+        * flush_fp_to_thread(), so update thr->regs->msr to
+        * indicate their current validity.
+        */
+       thr->regs->msr |= msr_diff;
+}
+
+void tm_reclaim_current(uint8_t cause)
+{
+       tm_enable();
+       tm_reclaim_thread(&current->thread, current_thread_info(), cause);
+}
+
+static inline void tm_reclaim_task(struct task_struct *tsk)
+{
+       /* We have to work out if we're switching from/to a task that's in the
+        * middle of a transaction.
+        *
+        * In switching we need to maintain a 2nd register state as
+        * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
+        * checkpointed (tbegin) state in ckpt_regs and saves the transactional
+        * (current) FPRs into oldtask->thread.transact_fpr[].
+        *
+        * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
+        */
+       struct thread_struct *thr = &tsk->thread;
+
+       if (!thr->regs)
+               return;
+
+       if (!MSR_TM_ACTIVE(thr->regs->msr))
+               goto out_and_saveregs;
+
+       /* Stash the original thread MSR, as giveup_fpu et al will
+        * modify it.  We hold onto it to see whether the task used
+        * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
+        * tm_orig_msr is already set.
+        */
+       if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
+               thr->tm_orig_msr = thr->regs->msr;
+
+       TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
+                "ccr=%lx, msr=%lx, trap=%lx)\n",
+                tsk->pid, thr->regs->nip,
+                thr->regs->ccr, thr->regs->msr,
+                thr->regs->trap);
+
+       tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
+
+       TM_DEBUG("--- tm_reclaim on pid %d complete\n",
+                tsk->pid);
+
+out_and_saveregs:
+       /* Always save the regs here, even if a transaction's not active.
+        * This context-switches a thread's TM info SPRs.  We do it here to
+        * be consistent with the restore path (in recheckpoint) which
+        * cannot happen later in _switch().
+        */
+       tm_save_sprs(thr);
+}
+
+extern void __tm_recheckpoint(struct thread_struct *thread,
+                             unsigned long orig_msr);
+
+void tm_recheckpoint(struct thread_struct *thread,
+                    unsigned long orig_msr)
+{
+       unsigned long flags;
+
+       /* We really can't be interrupted here as the TEXASR registers can't
+        * change and later in the trecheckpoint code, we have a userspace R1.
+        * So let's hard disable over this region.
+        */
+       local_irq_save(flags);
+       hard_irq_disable();
+
+       /* The TM SPRs are restored here, so that TEXASR.FS can be set
+        * before the trecheckpoint and no explosion occurs.
+        */
+       tm_restore_sprs(thread);
+
+       __tm_recheckpoint(thread, orig_msr);
+
+       local_irq_restore(flags);
+}
+
+static inline void tm_recheckpoint_new_task(struct task_struct *new)
+{
+       unsigned long msr;
+
+       if (!cpu_has_feature(CPU_FTR_TM))
+               return;
+
+       /* Recheckpoint the registers of the thread we're about to switch to.
+        *
+        * If the task was using FP, we non-lazily reload both the original and
+        * the speculative FP register states.  This is because the kernel
+        * doesn't see if/when a TM rollback occurs, so if we take an FP
+        * unavoidable later, we are unable to determine which set of FP regs
+        * need to be restored.
+        */
+       if (!new->thread.regs)
+               return;
+
+       if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
+               tm_restore_sprs(&new->thread);
+               return;
+       }
+       msr = new->thread.tm_orig_msr;
+       /* Recheckpoint to restore original checkpointed register state. */
+       TM_DEBUG("*** tm_recheckpoint of pid %d "
+                "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
+                new->pid, new->thread.regs->msr, msr);
+
+       /* This loads the checkpointed FP/VEC state, if used */
+       tm_recheckpoint(&new->thread, msr);
+
+       /* This loads the speculative FP/VEC state, if used */
+       if (msr & MSR_FP) {
+               do_load_up_transact_fpu(&new->thread);
+               new->thread.regs->msr |=
+                       (MSR_FP | new->thread.fpexc_mode);
+       }
+#ifdef CONFIG_ALTIVEC
+       if (msr & MSR_VEC) {
+               do_load_up_transact_altivec(&new->thread);
+               new->thread.regs->msr |= MSR_VEC;
+       }
+#endif
+       /* We may as well turn on VSX too since all the state is restored now */
+       if (msr & MSR_VSX)
+               new->thread.regs->msr |= MSR_VSX;
+
+       TM_DEBUG("*** tm_recheckpoint of pid %d complete "
+                "(kernel msr 0x%lx)\n",
+                new->pid, mfmsr());
+}
+
+static inline void __switch_to_tm(struct task_struct *prev)
+{
+       if (cpu_has_feature(CPU_FTR_TM)) {
+               tm_enable();
+               tm_reclaim_task(prev);
+       }
+}
+
+/*
+ * This is called if we are on the way out to userspace and the
+ * TIF_RESTORE_TM flag is set.  It checks if we need to reload
+ * FP and/or vector state and does so if necessary.
+ * If userspace is inside a transaction (whether active or
+ * suspended) and FP/VMX/VSX instructions have ever been enabled
+ * inside that transaction, then we have to keep them enabled
+ * and keep the FP/VMX/VSX state loaded while ever the transaction
+ * continues.  The reason is that if we didn't, and subsequently
+ * got a FP/VMX/VSX unavailable interrupt inside a transaction,
+ * we don't know whether it's the same transaction, and thus we
+ * don't know which of the checkpointed state and the transactional
+ * state to use.
+ */
+void restore_tm_state(struct pt_regs *regs)
+{
+       unsigned long msr_diff;
+
+       clear_thread_flag(TIF_RESTORE_TM);
+       if (!MSR_TM_ACTIVE(regs->msr))
+               return;
+
+       msr_diff = current->thread.tm_orig_msr & ~regs->msr;
+       msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
+       if (msr_diff & MSR_FP) {
+               fp_enable();
+               load_fp_state(&current->thread.fp_state);
+               regs->msr |= current->thread.fpexc_mode;
+       }
+       if (msr_diff & MSR_VEC) {
+               vec_enable();
+               load_vr_state(&current->thread.vr_state);
+       }
+       regs->msr |= msr_diff;
+}
+
+#else
+#define tm_recheckpoint_new_task(new)
+#define __switch_to_tm(prev)
+#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
+
+struct task_struct *__switch_to(struct task_struct *prev,
+       struct task_struct *new)
+{
+       struct thread_struct *new_thread, *old_thread;
+       struct task_struct *last;
+#ifdef CONFIG_PPC_BOOK3S_64
+       struct ppc64_tlb_batch *batch;
+#endif
+
+       WARN_ON(!irqs_disabled());
+
+       /* Back up the TAR and DSCR across context switches.
+        * Note that the TAR is not available for use in the kernel.  (To
+        * provide this, the TAR should be backed up/restored on exception
+        * entry/exit instead, and be in pt_regs.  FIXME, this should be in
+        * pt_regs anyway (for debug).)
+        * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
+        * these will change them.
+        */
+       save_early_sprs(&prev->thread);
+
+       __switch_to_tm(prev);
+
+#ifdef CONFIG_SMP
+       /* avoid complexity of lazy save/restore of fpu
+        * by just saving it every time we switch out if
+        * this task used the fpu during the last quantum.
+        *
+        * If it tries to use the fpu again, it'll trap and
+        * reload its fp regs.  So we don't have to do a restore
+        * every switch, just a save.
+        *  -- Cort
+        */
+       if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
+               giveup_fpu(prev);
+#ifdef CONFIG_ALTIVEC
+       /*
+        * If the previous thread used altivec in the last quantum
+        * (thus changing altivec regs) then save them.
+        * We used to check the VRSAVE register but not all apps
+        * set it, so we don't rely on it now (and in fact we need
+        * to save & restore VSCR even if VRSAVE == 0).  -- paulus
+        *
+        * On SMP we always save/restore altivec regs just to avoid the
+        * complexity of changing processors.
+        *  -- Cort
+        */
+       if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
+               giveup_altivec(prev);
+#endif /* CONFIG_ALTIVEC */
+#ifdef CONFIG_VSX
+       if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
+               /* VMX and FPU registers are already save here */
+               __giveup_vsx(prev);
+#endif /* CONFIG_VSX */
+#ifdef CONFIG_SPE
+       /*
+        * If the previous thread used spe in the last quantum
+        * (thus changing spe regs) then save them.
+        *
+        * On SMP we always save/restore spe regs just to avoid the
+        * complexity of changing processors.
+        */
+       if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
+               giveup_spe(prev);
+#endif /* CONFIG_SPE */
+
+#else  /* CONFIG_SMP */
+#ifdef CONFIG_ALTIVEC
+       /* Avoid the trap.  On smp this this never happens since
+        * we don't set last_task_used_altivec -- Cort
+        */
+       if (new->thread.regs && last_task_used_altivec == new)
+               new->thread.regs->msr |= MSR_VEC;
+#endif /* CONFIG_ALTIVEC */
+#ifdef CONFIG_VSX
+       if (new->thread.regs && last_task_used_vsx == new)
+               new->thread.regs->msr |= MSR_VSX;
+#endif /* CONFIG_VSX */
+#ifdef CONFIG_SPE
+       /* Avoid the trap.  On smp this this never happens since
+        * we don't set last_task_used_spe
+        */
+       if (new->thread.regs && last_task_used_spe == new)
+               new->thread.regs->msr |= MSR_SPE;
+#endif /* CONFIG_SPE */
+
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_PPC_ADV_DEBUG_REGS
+       switch_booke_debug_regs(&new->thread.debug);
+#else
+/*
+ * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
+ * schedule DABR
+ */
+#ifndef CONFIG_HAVE_HW_BREAKPOINT
+       if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
+               __set_breakpoint(&new->thread.hw_brk);
+#endif /* CONFIG_HAVE_HW_BREAKPOINT */
+#endif
+
+
+       new_thread = &new->thread;
+       old_thread = &current->thread;
+
+#ifdef CONFIG_PPC64
+       /*
+        * Collect processor utilization data per process
+        */
+       if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
+               struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
+               long unsigned start_tb, current_tb;
+               start_tb = old_thread->start_tb;
+               cu->current_tb = current_tb = mfspr(SPRN_PURR);
+               old_thread->accum_tb += (current_tb - start_tb);
+               new_thread->start_tb = current_tb;
+       }
+#endif /* CONFIG_PPC64 */
+
+#ifdef CONFIG_PPC_BOOK3S_64
+       batch = this_cpu_ptr(&ppc64_tlb_batch);
+       if (batch->active) {
+               current_thread_info()->local_flags |= _TLF_LAZY_MMU;
+               if (batch->index)
+                       __flush_tlb_pending(batch);
+               batch->active = 0;
+       }
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+       /*
+        * We can't take a PMU exception inside _switch() since there is a
+        * window where the kernel stack SLB and the kernel stack are out
+        * of sync. Hard disable here.
+        */
+       hard_irq_disable();
+
+       tm_recheckpoint_new_task(new);
+
+       last = _switch(old_thread, new_thread);
+
+#ifdef CONFIG_PPC_BOOK3S_64
+       if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
+               current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
+               batch = this_cpu_ptr(&ppc64_tlb_batch);
+               batch->active = 1;
+       }
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+       return last;
+}
+
+static int instructions_to_print = 16;
+
+static void show_instructions(struct pt_regs *regs)
+{
+       int i;
+       unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
+                       sizeof(int));
+
+       printk("Instruction dump:");
+
+       for (i = 0; i < instructions_to_print; i++) {
+               int instr;
+
+               if (!(i % 8))
+                       printk("\n");
+
+#if !defined(CONFIG_BOOKE)
+               /* If executing with the IMMU off, adjust pc rather
+                * than print XXXXXXXX.
+                */
+               if (!(regs->msr & MSR_IR))
+                       pc = (unsigned long)phys_to_virt(pc);
+#endif
+
+               if (!__kernel_text_address(pc) ||
+                    probe_kernel_address((unsigned int __user *)pc, instr)) {
+                       printk(KERN_CONT "XXXXXXXX ");
+               } else {
+                       if (regs->nip == pc)
+                               printk(KERN_CONT "<%08x> ", instr);
+                       else
+                               printk(KERN_CONT "%08x ", instr);
+               }
+
+               pc += sizeof(int);
+       }
+
+       printk("\n");
+}
+
+static struct regbit {
+       unsigned long bit;
+       const char *name;
+} msr_bits[] = {
+#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
+       {MSR_SF,        "SF"},
+       {MSR_HV,        "HV"},
+#endif
+       {MSR_VEC,       "VEC"},
+       {MSR_VSX,       "VSX"},
+#ifdef CONFIG_BOOKE
+       {MSR_CE,        "CE"},
+#endif
+       {MSR_EE,        "EE"},
+       {MSR_PR,        "PR"},
+       {MSR_FP,        "FP"},
+       {MSR_ME,        "ME"},
+#ifdef CONFIG_BOOKE
+       {MSR_DE,        "DE"},
+#else
+       {MSR_SE,        "SE"},
+       {MSR_BE,        "BE"},
+#endif
+       {MSR_IR,        "IR"},
+       {MSR_DR,        "DR"},
+       {MSR_PMM,       "PMM"},
+#ifndef CONFIG_BOOKE
+       {MSR_RI,        "RI"},
+       {MSR_LE,        "LE"},
+#endif
+       {0,             NULL}
+};
+
+static void printbits(unsigned long val, struct regbit *bits)
+{
+       const char *sep = "";
+
+       printk("<");
+       for (; bits->bit; ++bits)
+               if (val & bits->bit) {
+                       printk("%s%s", sep, bits->name);
+                       sep = ",";
+               }
+       printk(">");
+}
+
+#ifdef CONFIG_PPC64
+#define REG            "%016lx"
+#define REGS_PER_LINE  4
+#define LAST_VOLATILE  13
+#else
+#define REG            "%08lx"
+#define REGS_PER_LINE  8
+#define LAST_VOLATILE  12
+#endif
+
+void show_regs(struct pt_regs * regs)
+{
+       int i, trap;
+
+       show_regs_print_info(KERN_DEFAULT);
+
+       printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
+              regs->nip, regs->link, regs->ctr);
+       printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
+              regs, regs->trap, print_tainted(), init_utsname()->release);
+       printk("MSR: "REG" ", regs->msr);
+       printbits(regs->msr, msr_bits);
+       printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
+       trap = TRAP(regs);
+       if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
+               printk("CFAR: "REG" ", regs->orig_gpr3);
+       if (trap == 0x200 || trap == 0x300 || trap == 0x600)
+#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
+               printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
+#else
+               printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
+#endif
+#ifdef CONFIG_PPC64
+       printk("SOFTE: %ld ", regs->softe);
+#endif
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+       if (MSR_TM_ACTIVE(regs->msr))
+               printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
+#endif
+
+       for (i = 0;  i < 32;  i++) {
+               if ((i % REGS_PER_LINE) == 0)
+                       printk("\nGPR%02d: ", i);
+               printk(REG " ", regs->gpr[i]);
+               if (i == LAST_VOLATILE && !FULL_REGS(regs))
+                       break;
+       }
+       printk("\n");
+#ifdef CONFIG_KALLSYMS
+       /*
+        * Lookup NIP late so we have the best change of getting the
+        * above info out without failing
+        */
+       printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
+       printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
+#endif
+       show_stack(current, (unsigned long *) regs->gpr[1]);
+       if (!user_mode(regs))
+               show_instructions(regs);
+}
+
+void exit_thread(void)
+{
+       discard_lazy_cpu_state();
+}
+
+void flush_thread(void)
+{
+       discard_lazy_cpu_state();
+
+#ifdef CONFIG_HAVE_HW_BREAKPOINT
+       flush_ptrace_hw_breakpoint(current);
+#else /* CONFIG_HAVE_HW_BREAKPOINT */
+       set_debug_reg_defaults(&current->thread);
+#endif /* CONFIG_HAVE_HW_BREAKPOINT */
+}
+
+void
+release_thread(struct task_struct *t)
+{
+}
+
+/*
+ * this gets called so that we can store coprocessor state into memory and
+ * copy the current task into the new thread.
+ */
+int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
+{
+       flush_fp_to_thread(src);
+       flush_altivec_to_thread(src);
+       flush_vsx_to_thread(src);
+       flush_spe_to_thread(src);
+       /*
+        * Flush TM state out so we can copy it.  __switch_to_tm() does this
+        * flush but it removes the checkpointed state from the current CPU and
+        * transitions the CPU out of TM mode.  Hence we need to call
+        * tm_recheckpoint_new_task() (on the same task) to restore the
+        * checkpointed state back and the TM mode.
+        */
+       __switch_to_tm(src);
+       tm_recheckpoint_new_task(src);
+
+       *dst = *src;
+
+       clear_task_ebb(dst);
+
+       return 0;
+}
+
+static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
+{
+#ifdef CONFIG_PPC_STD_MMU_64
+       unsigned long sp_vsid;
+       unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
+
+       if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
+               sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
+                       << SLB_VSID_SHIFT_1T;
+       else
+               sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
+                       << SLB_VSID_SHIFT;
+       sp_vsid |= SLB_VSID_KERNEL | llp;
+       p->thread.ksp_vsid = sp_vsid;
+#endif
+}
+
+/*
+ * Copy a thread..
+ */
+extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
+
+/*
+ * Copy architecture-specific thread state
+ */
+int copy_thread(unsigned long clone_flags, unsigned long usp,
+               unsigned long kthread_arg, struct task_struct *p)
+{
+       struct pt_regs *childregs, *kregs;
+       extern void ret_from_fork(void);
+       extern void ret_from_kernel_thread(void);
+       void (*f)(void);
+       unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
+
+       /* Copy registers */
+       sp -= sizeof(struct pt_regs);
+       childregs = (struct pt_regs *) sp;
+       if (unlikely(p->flags & PF_KTHREAD)) {
+               /* kernel thread */
+               struct thread_info *ti = (void *)task_stack_page(p);
+               memset(childregs, 0, sizeof(struct pt_regs));
+               childregs->gpr[1] = sp + sizeof(struct pt_regs);
+               /* function */
+               if (usp)
+                       childregs->gpr[14] = ppc_function_entry((void *)usp);
+#ifdef CONFIG_PPC64
+               clear_tsk_thread_flag(p, TIF_32BIT);
+               childregs->softe = 1;
+#endif
+               childregs->gpr[15] = kthread_arg;
+               p->thread.regs = NULL;  /* no user register state */
+               ti->flags |= _TIF_RESTOREALL;
+               f = ret_from_kernel_thread;
+       } else {
+               /* user thread */
+               struct pt_regs *regs = current_pt_regs();
+               CHECK_FULL_REGS(regs);
+               *childregs = *regs;
+               if (usp)
+                       childregs->gpr[1] = usp;
+               p->thread.regs = childregs;
+               childregs->gpr[3] = 0;  /* Result from fork() */
+               if (clone_flags & CLONE_SETTLS) {
+#ifdef CONFIG_PPC64
+                       if (!is_32bit_task())
+                               childregs->gpr[13] = childregs->gpr[6];
+                       else
+#endif
+                               childregs->gpr[2] = childregs->gpr[6];
+               }
+
+               f = ret_from_fork;
+       }
+       sp -= STACK_FRAME_OVERHEAD;
+
+       /*
+        * The way this works is that at some point in the future
+        * some task will call _switch to switch to the new task.
+        * That will pop off the stack frame created below and start
+        * the new task running at ret_from_fork.  The new task will
+        * do some house keeping and then return from the fork or clone
+        * system call, using the stack frame created above.
+        */
+       ((unsigned long *)sp)[0] = 0;
+       sp -= sizeof(struct pt_regs);
+       kregs = (struct pt_regs *) sp;
+       sp -= STACK_FRAME_OVERHEAD;
+       p->thread.ksp = sp;
+#ifdef CONFIG_PPC32
+       p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
+                               _ALIGN_UP(sizeof(struct thread_info), 16);
+#endif
+#ifdef CONFIG_HAVE_HW_BREAKPOINT
+       p->thread.ptrace_bps[0] = NULL;
+#endif
+
+       p->thread.fp_save_area = NULL;
+#ifdef CONFIG_ALTIVEC
+       p->thread.vr_save_area = NULL;
+#endif
+
+       setup_ksp_vsid(p, sp);
+
+#ifdef CONFIG_PPC64 
+       if (cpu_has_feature(CPU_FTR_DSCR)) {
+               p->thread.dscr_inherit = current->thread.dscr_inherit;
+               p->thread.dscr = current->thread.dscr;
+       }
+       if (cpu_has_feature(CPU_FTR_HAS_PPR))
+               p->thread.ppr = INIT_PPR;
+#endif
+       kregs->nip = ppc_function_entry(f);
+       return 0;
+}
+
+/*
+ * Set up a thread for executing a new program
+ */
+void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
+{
+#ifdef CONFIG_PPC64
+       unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
+#endif
+
+       /*
+        * If we exec out of a kernel thread then thread.regs will not be
+        * set.  Do it now.
+        */
+       if (!current->thread.regs) {
+               struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
+               current->thread.regs = regs - 1;
+       }
+
+       memset(regs->gpr, 0, sizeof(regs->gpr));
+       regs->ctr = 0;
+       regs->link = 0;
+       regs->xer = 0;
+       regs->ccr = 0;
+       regs->gpr[1] = sp;
+
+       /*
+        * We have just cleared all the nonvolatile GPRs, so make
+        * FULL_REGS(regs) return true.  This is necessary to allow
+        * ptrace to examine the thread immediately after exec.
+        */
+       regs->trap &= ~1UL;
+
+#ifdef CONFIG_PPC32
+       regs->mq = 0;
+       regs->nip = start;
+       regs->msr = MSR_USER;
+#else
+       if (!is_32bit_task()) {
+               unsigned long entry;
+
+               if (is_elf2_task()) {
+                       /* Look ma, no function descriptors! */
+                       entry = start;
+
+                       /*
+                        * Ulrich says:
+                        *   The latest iteration of the ABI requires that when
+                        *   calling a function (at its global entry point),
+                        *   the caller must ensure r12 holds the entry point
+                        *   address (so that the function can quickly
+                        *   establish addressability).
+                        */
+                       regs->gpr[12] = start;
+                       /* Make sure that's restored on entry to userspace. */
+                       set_thread_flag(TIF_RESTOREALL);
+               } else {
+                       unsigned long toc;
+
+                       /* start is a relocated pointer to the function
+                        * descriptor for the elf _start routine.  The first
+                        * entry in the function descriptor is the entry
+                        * address of _start and the second entry is the TOC
+                        * value we need to use.
+                        */
+                       __get_user(entry, (unsigned long __user *)start);
+                       __get_user(toc, (unsigned long __user *)start+1);
+
+                       /* Check whether the e_entry function descriptor entries
+                        * need to be relocated before we can use them.
+                        */
+                       if (load_addr != 0) {
+                               entry += load_addr;
+                               toc   += load_addr;
+                       }
+                       regs->gpr[2] = toc;
+               }
+               regs->nip = entry;
+               regs->msr = MSR_USER64;
+       } else {
+               regs->nip = start;
+               regs->gpr[2] = 0;
+               regs->msr = MSR_USER32;
+       }
+#endif
+       discard_lazy_cpu_state();
+#ifdef CONFIG_VSX
+       current->thread.used_vsr = 0;
+#endif
+       memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
+       current->thread.fp_save_area = NULL;
+#ifdef CONFIG_ALTIVEC
+       memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
+       current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
+       current->thread.vr_save_area = NULL;
+       current->thread.vrsave = 0;
+       current->thread.used_vr = 0;
+#endif /* CONFIG_ALTIVEC */
+#ifdef CONFIG_SPE
+       memset(current->thread.evr, 0, sizeof(current->thread.evr));
+       current->thread.acc = 0;
+       current->thread.spefscr = 0;
+       current->thread.used_spe = 0;
+#endif /* CONFIG_SPE */
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+       if (cpu_has_feature(CPU_FTR_TM))
+               regs->msr |= MSR_TM;
+       current->thread.tm_tfhar = 0;
+       current->thread.tm_texasr = 0;
+       current->thread.tm_tfiar = 0;
+#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
+}
+EXPORT_SYMBOL(start_thread);
+
+#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
+               | PR_FP_EXC_RES | PR_FP_EXC_INV)
+
+int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
+{
+       struct pt_regs *regs = tsk->thread.regs;
+
+       /* This is a bit hairy.  If we are an SPE enabled  processor
+        * (have embedded fp) we store the IEEE exception enable flags in
+        * fpexc_mode.  fpexc_mode is also used for setting FP exception
+        * mode (asyn, precise, disabled) for 'Classic' FP. */
+       if (val & PR_FP_EXC_SW_ENABLE) {
+#ifdef CONFIG_SPE
+               if (cpu_has_feature(CPU_FTR_SPE)) {
+                       /*
+                        * When the sticky exception bits are set
+                        * directly by userspace, it must call prctl
+                        * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
+                        * in the existing prctl settings) or
+                        * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
+                        * the bits being set).  <fenv.h> functions
+                        * saving and restoring the whole
+                        * floating-point environment need to do so
+                        * anyway to restore the prctl settings from
+                        * the saved environment.
+                        */
+                       tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
+                       tsk->thread.fpexc_mode = val &
+                               (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
+                       return 0;
+               } else {
+                       return -EINVAL;
+               }
+#else
+               return -EINVAL;
+#endif
+       }
+
+       /* on a CONFIG_SPE this does not hurt us.  The bits that
+        * __pack_fe01 use do not overlap with bits used for
+        * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
+        * on CONFIG_SPE implementations are reserved so writing to
+        * them does not change anything */
+       if (val > PR_FP_EXC_PRECISE)
+               return -EINVAL;
+       tsk->thread.fpexc_mode = __pack_fe01(val);
+       if (regs != NULL && (regs->msr & MSR_FP) != 0)
+               regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
+                       | tsk->thread.fpexc_mode;
+       return 0;
+}
+
+int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
+{
+       unsigned int val;
+
+       if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
+#ifdef CONFIG_SPE
+               if (cpu_has_feature(CPU_FTR_SPE)) {
+                       /*
+                        * When the sticky exception bits are set
+                        * directly by userspace, it must call prctl
+                        * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
+                        * in the existing prctl settings) or
+                        * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
+                        * the bits being set).  <fenv.h> functions
+                        * saving and restoring the whole
+                        * floating-point environment need to do so
+                        * anyway to restore the prctl settings from
+                        * the saved environment.
+                        */
+                       tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
+                       val = tsk->thread.fpexc_mode;
+               } else
+                       return -EINVAL;
+#else
+               return -EINVAL;
+#endif
+       else
+               val = __unpack_fe01(tsk->thread.fpexc_mode);
+       return put_user(val, (unsigned int __user *) adr);
+}
+
+int set_endian(struct task_struct *tsk, unsigned int val)
+{
+       struct pt_regs *regs = tsk->thread.regs;
+
+       if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
+           (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
+               return -EINVAL;
+
+       if (regs == NULL)
+               return -EINVAL;
+
+       if (val == PR_ENDIAN_BIG)
+               regs->msr &= ~MSR_LE;
+       else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
+               regs->msr |= MSR_LE;
+       else
+               return -EINVAL;
+
+       return 0;
+}
+
+int get_endian(struct task_struct *tsk, unsigned long adr)
+{
+       struct pt_regs *regs = tsk->thread.regs;
+       unsigned int val;
+
+       if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
+           !cpu_has_feature(CPU_FTR_REAL_LE))
+               return -EINVAL;
+
+       if (regs == NULL)
+               return -EINVAL;
+
+       if (regs->msr & MSR_LE) {
+               if (cpu_has_feature(CPU_FTR_REAL_LE))
+                       val = PR_ENDIAN_LITTLE;
+               else
+                       val = PR_ENDIAN_PPC_LITTLE;
+       } else
+               val = PR_ENDIAN_BIG;
+
+       return put_user(val, (unsigned int __user *)adr);
+}
+
+int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
+{
+       tsk->thread.align_ctl = val;
+       return 0;
+}
+
+int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
+{
+       return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
+}
+
+static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
+                                 unsigned long nbytes)
+{
+       unsigned long stack_page;
+       unsigned long cpu = task_cpu(p);
+
+       /*
+        * Avoid crashing if the stack has overflowed and corrupted
+        * task_cpu(p), which is in the thread_info struct.
+        */
+       if (cpu < NR_CPUS && cpu_possible(cpu)) {
+               stack_page = (unsigned long) hardirq_ctx[cpu];
+               if (sp >= stack_page + sizeof(struct thread_struct)
+                   && sp <= stack_page + THREAD_SIZE - nbytes)
+                       return 1;
+
+               stack_page = (unsigned long) softirq_ctx[cpu];
+               if (sp >= stack_page + sizeof(struct thread_struct)
+                   && sp <= stack_page + THREAD_SIZE - nbytes)
+                       return 1;
+       }
+       return 0;
+}
+
+int validate_sp(unsigned long sp, struct task_struct *p,
+                      unsigned long nbytes)
+{
+       unsigned long stack_page = (unsigned long)task_stack_page(p);
+
+       if (sp >= stack_page + sizeof(struct thread_struct)
+           && sp <= stack_page + THREAD_SIZE - nbytes)
+               return 1;
+
+       return valid_irq_stack(sp, p, nbytes);
+}
+
+EXPORT_SYMBOL(validate_sp);
+
+unsigned long get_wchan(struct task_struct *p)
+{
+       unsigned long ip, sp;
+       int count = 0;
+
+       if (!p || p == current || p->state == TASK_RUNNING)
+               return 0;
+
+       sp = p->thread.ksp;
+       if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
+               return 0;
+
+       do {
+               sp = *(unsigned long *)sp;
+               if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
+                       return 0;
+               if (count > 0) {
+                       ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
+                       if (!in_sched_functions(ip))
+                               return ip;
+               }
+       } while (count++ < 16);
+       return 0;
+}
+
+static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
+
+void show_stack(struct task_struct *tsk, unsigned long *stack)
+{
+       unsigned long sp, ip, lr, newsp;
+       int count = 0;
+       int firstframe = 1;
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+       int curr_frame = current->curr_ret_stack;
+       extern void return_to_handler(void);
+       unsigned long rth = (unsigned long)return_to_handler;
+#endif
+
+       sp = (unsigned long) stack;
+       if (tsk == NULL)
+               tsk = current;
+       if (sp == 0) {
+               if (tsk == current)
+                       sp = current_stack_pointer();
+               else
+                       sp = tsk->thread.ksp;
+       }
+
+       lr = 0;
+       printk("Call Trace:\n");
+       do {
+               if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
+                       return;
+
+               stack = (unsigned long *) sp;
+               newsp = stack[0];
+               ip = stack[STACK_FRAME_LR_SAVE];
+               if (!firstframe || ip != lr) {
+                       printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+                       if ((ip == rth) && curr_frame >= 0) {
+                               printk(" (%pS)",
+                                      (void *)current->ret_stack[curr_frame].ret);
+                               curr_frame--;
+                       }
+#endif
+                       if (firstframe)
+                               printk(" (unreliable)");
+                       printk("\n");
+               }
+               firstframe = 0;
+
+               /*
+                * See if this is an exception frame.
+                * We look for the "regshere" marker in the current frame.
+                */
+               if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
+                   && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
+                       struct pt_regs *regs = (struct pt_regs *)
+                               (sp + STACK_FRAME_OVERHEAD);
+                       lr = regs->link;
+                       printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
+                              regs->trap, (void *)regs->nip, (void *)lr);
+                       firstframe = 1;
+               }
+
+               sp = newsp;
+       } while (count++ < kstack_depth_to_print);
+}
+
+#ifdef CONFIG_PPC64
+/* Called with hard IRQs off */
+void notrace __ppc64_runlatch_on(void)
+{
+       struct thread_info *ti = current_thread_info();
+       unsigned long ctrl;
+
+       ctrl = mfspr(SPRN_CTRLF);
+       ctrl |= CTRL_RUNLATCH;
+       mtspr(SPRN_CTRLT, ctrl);
+
+       ti->local_flags |= _TLF_RUNLATCH;
+}
+
+/* Called with hard IRQs off */
+void notrace __ppc64_runlatch_off(void)
+{
+       struct thread_info *ti = current_thread_info();
+       unsigned long ctrl;
+
+       ti->local_flags &= ~_TLF_RUNLATCH;
+
+       ctrl = mfspr(SPRN_CTRLF);
+       ctrl &= ~CTRL_RUNLATCH;
+       mtspr(SPRN_CTRLT, ctrl);
+}
+#endif /* CONFIG_PPC64 */
+
+unsigned long arch_align_stack(unsigned long sp)
+{
+       if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
+               sp -= get_random_int() & ~PAGE_MASK;
+       return sp & ~0xf;
+}
+
+static inline unsigned long brk_rnd(void)
+{
+        unsigned long rnd = 0;
+
+       /* 8MB for 32bit, 1GB for 64bit */
+       if (is_32bit_task())
+               rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
+       else
+               rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
+
+       return rnd << PAGE_SHIFT;
+}
+
+unsigned long arch_randomize_brk(struct mm_struct *mm)
+{
+       unsigned long base = mm->brk;
+       unsigned long ret;
+
+#ifdef CONFIG_PPC_STD_MMU_64
+       /*
+        * If we are using 1TB segments and we are allowed to randomise
+        * the heap, we can put it above 1TB so it is backed by a 1TB
+        * segment. Otherwise the heap will be in the bottom 1TB
+        * which always uses 256MB segments and this may result in a
+        * performance penalty.
+        */
+       if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
+               base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
+#endif
+
+       ret = PAGE_ALIGN(base + brk_rnd());
+
+       if (ret < mm->brk)
+               return mm->brk;
+
+       return ret;
+}
+