Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / metag / mm / hugetlbpage.c
diff --git a/kernel/arch/metag/mm/hugetlbpage.c b/kernel/arch/metag/mm/hugetlbpage.c
new file mode 100644 (file)
index 0000000..7ca80ac
--- /dev/null
@@ -0,0 +1,253 @@
+/*
+ * arch/metag/mm/hugetlbpage.c
+ *
+ * METAG HugeTLB page support.
+ *
+ * Cloned from SuperH
+ *
+ * Cloned from sparc64 by Paul Mundt.
+ *
+ * Copyright (C) 2002, 2003 David S. Miller (davem@redhat.com)
+ */
+
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/pagemap.h>
+#include <linux/sysctl.h>
+
+#include <asm/mman.h>
+#include <asm/pgalloc.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+
+/*
+ * If the arch doesn't supply something else, assume that hugepage
+ * size aligned regions are ok without further preparation.
+ */
+int prepare_hugepage_range(struct file *file, unsigned long addr,
+                                               unsigned long len)
+{
+       struct mm_struct *mm = current->mm;
+       struct hstate *h = hstate_file(file);
+       struct vm_area_struct *vma;
+
+       if (len & ~huge_page_mask(h))
+               return -EINVAL;
+       if (addr & ~huge_page_mask(h))
+               return -EINVAL;
+       if (TASK_SIZE - len < addr)
+               return -EINVAL;
+
+       vma = find_vma(mm, ALIGN_HUGEPT(addr));
+       if (vma && !(vma->vm_flags & MAP_HUGETLB))
+               return -EINVAL;
+
+       vma = find_vma(mm, addr);
+       if (vma) {
+               if (addr + len > vma->vm_start)
+                       return -EINVAL;
+               if (!(vma->vm_flags & MAP_HUGETLB) &&
+                   (ALIGN_HUGEPT(addr + len) > vma->vm_start))
+                       return -EINVAL;
+       }
+       return 0;
+}
+
+pte_t *huge_pte_alloc(struct mm_struct *mm,
+                       unsigned long addr, unsigned long sz)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+       pte_t *pte;
+
+       pgd = pgd_offset(mm, addr);
+       pud = pud_offset(pgd, addr);
+       pmd = pmd_offset(pud, addr);
+       pte = pte_alloc_map(mm, NULL, pmd, addr);
+       pgd->pgd &= ~_PAGE_SZ_MASK;
+       pgd->pgd |= _PAGE_SZHUGE;
+
+       return pte;
+}
+
+pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
+{
+       pgd_t *pgd;
+       pud_t *pud;
+       pmd_t *pmd;
+       pte_t *pte = NULL;
+
+       pgd = pgd_offset(mm, addr);
+       pud = pud_offset(pgd, addr);
+       pmd = pmd_offset(pud, addr);
+       pte = pte_offset_kernel(pmd, addr);
+
+       return pte;
+}
+
+int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
+{
+       return 0;
+}
+
+int pmd_huge(pmd_t pmd)
+{
+       return pmd_page_shift(pmd) > PAGE_SHIFT;
+}
+
+int pud_huge(pud_t pud)
+{
+       return 0;
+}
+
+struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
+                            pmd_t *pmd, int write)
+{
+       return NULL;
+}
+
+#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
+
+/*
+ * Look for an unmapped area starting after another hugetlb vma.
+ * There are guaranteed to be no huge pte's spare if all the huge pages are
+ * full size (4MB), so in that case compile out this search.
+ */
+#if HPAGE_SHIFT == HUGEPT_SHIFT
+static inline unsigned long
+hugetlb_get_unmapped_area_existing(unsigned long len)
+{
+       return 0;
+}
+#else
+static unsigned long
+hugetlb_get_unmapped_area_existing(unsigned long len)
+{
+       struct mm_struct *mm = current->mm;
+       struct vm_area_struct *vma;
+       unsigned long start_addr, addr;
+       int after_huge;
+
+       if (mm->context.part_huge) {
+               start_addr = mm->context.part_huge;
+               after_huge = 1;
+       } else {
+               start_addr = TASK_UNMAPPED_BASE;
+               after_huge = 0;
+       }
+new_search:
+       addr = start_addr;
+
+       for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
+               if ((!vma && !after_huge) || TASK_SIZE - len < addr) {
+                       /*
+                        * Start a new search - just in case we missed
+                        * some holes.
+                        */
+                       if (start_addr != TASK_UNMAPPED_BASE) {
+                               start_addr = TASK_UNMAPPED_BASE;
+                               goto new_search;
+                       }
+                       return 0;
+               }
+               /* skip ahead if we've aligned right over some vmas */
+               if (vma && vma->vm_end <= addr)
+                       continue;
+               /* space before the next vma? */
+               if (after_huge && (!vma || ALIGN_HUGEPT(addr + len)
+                           <= vma->vm_start)) {
+                       unsigned long end = addr + len;
+                       if (end & HUGEPT_MASK)
+                               mm->context.part_huge = end;
+                       else if (addr == mm->context.part_huge)
+                               mm->context.part_huge = 0;
+                       return addr;
+               }
+               if (vma->vm_flags & MAP_HUGETLB) {
+                       /* space after a huge vma in 2nd level page table? */
+                       if (vma->vm_end & HUGEPT_MASK) {
+                               after_huge = 1;
+                               /* no need to align to the next PT block */
+                               addr = vma->vm_end;
+                               continue;
+                       }
+               }
+               after_huge = 0;
+               addr = ALIGN_HUGEPT(vma->vm_end);
+       }
+}
+#endif
+
+/* Do a full search to find an area without any nearby normal pages. */
+static unsigned long
+hugetlb_get_unmapped_area_new_pmd(unsigned long len)
+{
+       struct vm_unmapped_area_info info;
+
+       info.flags = 0;
+       info.length = len;
+       info.low_limit = TASK_UNMAPPED_BASE;
+       info.high_limit = TASK_SIZE;
+       info.align_mask = PAGE_MASK & HUGEPT_MASK;
+       info.align_offset = 0;
+       return vm_unmapped_area(&info);
+}
+
+unsigned long
+hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
+               unsigned long len, unsigned long pgoff, unsigned long flags)
+{
+       struct hstate *h = hstate_file(file);
+
+       if (len & ~huge_page_mask(h))
+               return -EINVAL;
+       if (len > TASK_SIZE)
+               return -ENOMEM;
+
+       if (flags & MAP_FIXED) {
+               if (prepare_hugepage_range(file, addr, len))
+                       return -EINVAL;
+               return addr;
+       }
+
+       if (addr) {
+               addr = ALIGN(addr, huge_page_size(h));
+               if (!prepare_hugepage_range(file, addr, len))
+                       return addr;
+       }
+
+       /*
+        * Look for an existing hugetlb vma with space after it (this is to to
+        * minimise fragmentation caused by huge pages.
+        */
+       addr = hugetlb_get_unmapped_area_existing(len);
+       if (addr)
+               return addr;
+
+       /*
+        * Find an unmapped naturally aligned set of 4MB blocks that we can use
+        * for huge pages.
+        */
+       return hugetlb_get_unmapped_area_new_pmd(len);
+}
+
+#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
+
+/* necessary for boot time 4MB huge page allocation */
+static __init int setup_hugepagesz(char *opt)
+{
+       unsigned long ps = memparse(opt, &opt);
+       if (ps == (1 << HPAGE_SHIFT)) {
+               hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
+       } else {
+               pr_err("hugepagesz: Unsupported page size %lu M\n",
+                      ps >> 20);
+               return 0;
+       }
+       return 1;
+}
+__setup("hugepagesz=", setup_hugepagesz);