Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / arch / arm / probes / kprobes / test-core.c
diff --git a/kernel/arch/arm/probes/kprobes/test-core.c b/kernel/arch/arm/probes/kprobes/test-core.c
new file mode 100644 (file)
index 0000000..9775de2
--- /dev/null
@@ -0,0 +1,1727 @@
+/*
+ * arch/arm/kernel/kprobes-test.c
+ *
+ * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+/*
+ * This file contains test code for ARM kprobes.
+ *
+ * The top level function run_all_tests() executes tests for all of the
+ * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
+ * fall into two categories; run_api_tests() checks basic functionality of the
+ * kprobes API, and run_test_cases() is a comprehensive test for kprobes
+ * instruction decoding and simulation.
+ *
+ * run_test_cases() first checks the kprobes decoding table for self consistency
+ * (using table_test()) then executes a series of test cases for each of the CPU
+ * instruction forms. coverage_start() and coverage_end() are used to verify
+ * that these test cases cover all of the possible combinations of instructions
+ * described by the kprobes decoding tables.
+ *
+ * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
+ * which use the macros defined in kprobes-test.h. The rest of this
+ * documentation will describe the operation of the framework used by these
+ * test cases.
+ */
+
+/*
+ * TESTING METHODOLOGY
+ * -------------------
+ *
+ * The methodology used to test an ARM instruction 'test_insn' is to use
+ * inline assembler like:
+ *
+ * test_before: nop
+ * test_case:  test_insn
+ * test_after: nop
+ *
+ * When the test case is run a kprobe is placed of each nop. The
+ * post-handler of the test_before probe is used to modify the saved CPU
+ * register context to that which we require for the test case. The
+ * pre-handler of the of the test_after probe saves a copy of the CPU
+ * register context. In this way we can execute test_insn with a specific
+ * register context and see the results afterwards.
+ *
+ * To actually test the kprobes instruction emulation we perform the above
+ * step a second time but with an additional kprobe on the test_case
+ * instruction itself. If the emulation is accurate then the results seen
+ * by the test_after probe will be identical to the first run which didn't
+ * have a probe on test_case.
+ *
+ * Each test case is run several times with a variety of variations in the
+ * flags value of stored in CPSR, and for Thumb code, different ITState.
+ *
+ * For instructions which can modify PC, a second test_after probe is used
+ * like this:
+ *
+ * test_before: nop
+ * test_case:  test_insn
+ * test_after: nop
+ *             b test_done
+ * test_after2: nop
+ * test_done:
+ *
+ * The test case is constructed such that test_insn branches to
+ * test_after2, or, if testing a conditional instruction, it may just
+ * continue to test_after. The probes inserted at both locations let us
+ * determine which happened. A similar approach is used for testing
+ * backwards branches...
+ *
+ *             b test_before
+ *             b test_done  @ helps to cope with off by 1 branches
+ * test_after2: nop
+ *             b test_done
+ * test_before: nop
+ * test_case:  test_insn
+ * test_after: nop
+ * test_done:
+ *
+ * The macros used to generate the assembler instructions describe above
+ * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
+ * (branch backwards). In these, the local variables numbered 1, 50, 2 and
+ * 99 represent: test_before, test_case, test_after2 and test_done.
+ *
+ * FRAMEWORK
+ * ---------
+ *
+ * Each test case is wrapped between the pair of macros TESTCASE_START and
+ * TESTCASE_END. As well as performing the inline assembler boilerplate,
+ * these call out to the kprobes_test_case_start() and
+ * kprobes_test_case_end() functions which drive the execution of the test
+ * case. The specific arguments to use for each test case are stored as
+ * inline data constructed using the various TEST_ARG_* macros. Putting
+ * this all together, a simple test case may look like:
+ *
+ *     TESTCASE_START("Testing mov r0, r7")
+ *     TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
+ *     TEST_ARG_END("")
+ *     TEST_INSTRUCTION("mov r0, r7")
+ *     TESTCASE_END
+ *
+ * Note, in practice the single convenience macro TEST_R would be used for this
+ * instead.
+ *
+ * The above would expand to assembler looking something like:
+ *
+ *     @ TESTCASE_START
+ *     bl      __kprobes_test_case_start
+ *     .pushsection .rodata
+ *     "10:
+ *     .ascii "mov r0, r7"     @ text title for test case
+ *     .byte   0
+ *     .popsection
+ *     @ start of inline data...
+ *     .word   10b             @ pointer to title in .rodata section
+ *
+ *     @ TEST_ARG_REG
+ *     .byte   ARG_TYPE_REG
+ *     .byte   7
+ *     .short  0
+ *     .word   0x1234567
+ *
+ *     @ TEST_ARG_END
+ *     .byte   ARG_TYPE_END
+ *     .byte   TEST_ISA        @ flags, including ISA being tested
+ *     .short  50f-0f          @ offset of 'test_before'
+ *     .short  2f-0f           @ offset of 'test_after2' (if relevent)
+ *     .short  99f-0f          @ offset of 'test_done'
+ *     @ start of test case code...
+ *     0:
+ *     .code   TEST_ISA        @ switch to ISA being tested
+ *
+ *     @ TEST_INSTRUCTION
+ *     50:     nop             @ location for 'test_before' probe
+ *     1:      mov r0, r7      @ the test case instruction 'test_insn'
+ *             nop             @ location for 'test_after' probe
+ *
+ *     // TESTCASE_END
+ *     2:
+ *     99:     bl __kprobes_test_case_end_##TEST_ISA
+ *     .code   NONMAL_ISA
+ *
+ * When the above is execute the following happens...
+ *
+ * __kprobes_test_case_start() is an assembler wrapper which sets up space
+ * for a stack buffer and calls the C function kprobes_test_case_start().
+ * This C function will do some initial processing of the inline data and
+ * setup some global state. It then inserts the test_before and test_after
+ * kprobes and returns a value which causes the assembler wrapper to jump
+ * to the start of the test case code, (local label '0').
+ *
+ * When the test case code executes, the test_before probe will be hit and
+ * test_before_post_handler will call setup_test_context(). This fills the
+ * stack buffer and CPU registers with a test pattern and then processes
+ * the test case arguments. In our example there is one TEST_ARG_REG which
+ * indicates that R7 should be loaded with the value 0x12345678.
+ *
+ * When the test_before probe ends, the test case continues and executes
+ * the "mov r0, r7" instruction. It then hits the test_after probe and the
+ * pre-handler for this (test_after_pre_handler) will save a copy of the
+ * CPU register context. This should now have R0 holding the same value as
+ * R7.
+ *
+ * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
+ * an assembler wrapper which switches back to the ISA used by the test
+ * code and calls the C function kprobes_test_case_end().
+ *
+ * For each run through the test case, test_case_run_count is incremented
+ * by one. For even runs, kprobes_test_case_end() saves a copy of the
+ * register and stack buffer contents from the test case just run. It then
+ * inserts a kprobe on the test case instruction 'test_insn' and returns a
+ * value to cause the test case code to be re-run.
+ *
+ * For odd numbered runs, kprobes_test_case_end() compares the register and
+ * stack buffer contents to those that were saved on the previous even
+ * numbered run (the one without the kprobe on test_insn). These should be
+ * the same if the kprobe instruction simulation routine is correct.
+ *
+ * The pair of test case runs is repeated with different combinations of
+ * flag values in CPSR and, for Thumb, different ITState. This is
+ * controlled by test_context_cpsr().
+ *
+ * BUILDING TEST CASES
+ * -------------------
+ *
+ *
+ * As an aid to building test cases, the stack buffer is initialised with
+ * some special values:
+ *
+ *   [SP+13*4] Contains SP+120. This can be used to test instructions
+ *             which load a value into SP.
+ *
+ *   [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
+ *             this holds the target address of the branch, 'test_after2'.
+ *             This can be used to test instructions which load a PC value
+ *             from memory.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/kprobes.h>
+#include <linux/errno.h>
+#include <linux/stddef.h>
+#include <linux/bug.h>
+#include <asm/opcodes.h>
+
+#include "core.h"
+#include "test-core.h"
+#include "../decode-arm.h"
+#include "../decode-thumb.h"
+
+
+#define BENCHMARKING   1
+
+
+/*
+ * Test basic API
+ */
+
+static bool test_regs_ok;
+static int test_func_instance;
+static int pre_handler_called;
+static int post_handler_called;
+static int jprobe_func_called;
+static int kretprobe_handler_called;
+static int tests_failed;
+
+#define FUNC_ARG1 0x12345678
+#define FUNC_ARG2 0xabcdef
+
+
+#ifndef CONFIG_THUMB2_KERNEL
+
+#define RET(reg)       "mov    pc, "#reg
+
+long arm_func(long r0, long r1);
+
+static void __used __naked __arm_kprobes_test_func(void)
+{
+       __asm__ __volatile__ (
+               ".arm                                   \n\t"
+               ".type arm_func, %%function             \n\t"
+               "arm_func:                              \n\t"
+               "adds   r0, r0, r1                      \n\t"
+               "mov    pc, lr                          \n\t"
+               ".code "NORMAL_ISA       /* Back to Thumb if necessary */
+               : : : "r0", "r1", "cc"
+       );
+}
+
+#else /* CONFIG_THUMB2_KERNEL */
+
+#define RET(reg)       "bx     "#reg
+
+long thumb16_func(long r0, long r1);
+long thumb32even_func(long r0, long r1);
+long thumb32odd_func(long r0, long r1);
+
+static void __used __naked __thumb_kprobes_test_funcs(void)
+{
+       __asm__ __volatile__ (
+               ".type thumb16_func, %%function         \n\t"
+               "thumb16_func:                          \n\t"
+               "adds.n r0, r0, r1                      \n\t"
+               "bx     lr                              \n\t"
+
+               ".align                                 \n\t"
+               ".type thumb32even_func, %%function     \n\t"
+               "thumb32even_func:                      \n\t"
+               "adds.w r0, r0, r1                      \n\t"
+               "bx     lr                              \n\t"
+
+               ".align                                 \n\t"
+               "nop.n                                  \n\t"
+               ".type thumb32odd_func, %%function      \n\t"
+               "thumb32odd_func:                       \n\t"
+               "adds.w r0, r0, r1                      \n\t"
+               "bx     lr                              \n\t"
+
+               : : : "r0", "r1", "cc"
+       );
+}
+
+#endif /* CONFIG_THUMB2_KERNEL */
+
+
+static int call_test_func(long (*func)(long, long), bool check_test_regs)
+{
+       long ret;
+
+       ++test_func_instance;
+       test_regs_ok = false;
+
+       ret = (*func)(FUNC_ARG1, FUNC_ARG2);
+       if (ret != FUNC_ARG1 + FUNC_ARG2) {
+               pr_err("FAIL: call_test_func: func returned %lx\n", ret);
+               return false;
+       }
+
+       if (check_test_regs && !test_regs_ok) {
+               pr_err("FAIL: test regs not OK\n");
+               return false;
+       }
+
+       return true;
+}
+
+static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+       pre_handler_called = test_func_instance;
+       if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
+               test_regs_ok = true;
+       return 0;
+}
+
+static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
+                               unsigned long flags)
+{
+       post_handler_called = test_func_instance;
+       if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
+               test_regs_ok = false;
+}
+
+static struct kprobe the_kprobe = {
+       .addr           = 0,
+       .pre_handler    = pre_handler,
+       .post_handler   = post_handler
+};
+
+static int test_kprobe(long (*func)(long, long))
+{
+       int ret;
+
+       the_kprobe.addr = (kprobe_opcode_t *)func;
+       ret = register_kprobe(&the_kprobe);
+       if (ret < 0) {
+               pr_err("FAIL: register_kprobe failed with %d\n", ret);
+               return ret;
+       }
+
+       ret = call_test_func(func, true);
+
+       unregister_kprobe(&the_kprobe);
+       the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
+
+       if (!ret)
+               return -EINVAL;
+       if (pre_handler_called != test_func_instance) {
+               pr_err("FAIL: kprobe pre_handler not called\n");
+               return -EINVAL;
+       }
+       if (post_handler_called != test_func_instance) {
+               pr_err("FAIL: kprobe post_handler not called\n");
+               return -EINVAL;
+       }
+       if (!call_test_func(func, false))
+               return -EINVAL;
+       if (pre_handler_called == test_func_instance ||
+                               post_handler_called == test_func_instance) {
+               pr_err("FAIL: probe called after unregistering\n");
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+static void __kprobes jprobe_func(long r0, long r1)
+{
+       jprobe_func_called = test_func_instance;
+       if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
+               test_regs_ok = true;
+       jprobe_return();
+}
+
+static struct jprobe the_jprobe = {
+       .entry          = jprobe_func,
+};
+
+static int test_jprobe(long (*func)(long, long))
+{
+       int ret;
+
+       the_jprobe.kp.addr = (kprobe_opcode_t *)func;
+       ret = register_jprobe(&the_jprobe);
+       if (ret < 0) {
+               pr_err("FAIL: register_jprobe failed with %d\n", ret);
+               return ret;
+       }
+
+       ret = call_test_func(func, true);
+
+       unregister_jprobe(&the_jprobe);
+       the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
+
+       if (!ret)
+               return -EINVAL;
+       if (jprobe_func_called != test_func_instance) {
+               pr_err("FAIL: jprobe handler function not called\n");
+               return -EINVAL;
+       }
+       if (!call_test_func(func, false))
+               return -EINVAL;
+       if (jprobe_func_called == test_func_instance) {
+               pr_err("FAIL: probe called after unregistering\n");
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+static int __kprobes
+kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+       kretprobe_handler_called = test_func_instance;
+       if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
+               test_regs_ok = true;
+       return 0;
+}
+
+static struct kretprobe the_kretprobe = {
+       .handler        = kretprobe_handler,
+};
+
+static int test_kretprobe(long (*func)(long, long))
+{
+       int ret;
+
+       the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
+       ret = register_kretprobe(&the_kretprobe);
+       if (ret < 0) {
+               pr_err("FAIL: register_kretprobe failed with %d\n", ret);
+               return ret;
+       }
+
+       ret = call_test_func(func, true);
+
+       unregister_kretprobe(&the_kretprobe);
+       the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
+
+       if (!ret)
+               return -EINVAL;
+       if (kretprobe_handler_called != test_func_instance) {
+               pr_err("FAIL: kretprobe handler not called\n");
+               return -EINVAL;
+       }
+       if (!call_test_func(func, false))
+               return -EINVAL;
+       if (jprobe_func_called == test_func_instance) {
+               pr_err("FAIL: kretprobe called after unregistering\n");
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+static int run_api_tests(long (*func)(long, long))
+{
+       int ret;
+
+       pr_info("    kprobe\n");
+       ret = test_kprobe(func);
+       if (ret < 0)
+               return ret;
+
+       pr_info("    jprobe\n");
+       ret = test_jprobe(func);
+#if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
+       if (ret == -EINVAL) {
+               pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
+               tests_failed = ret;
+               ret = 0;
+       }
+#endif
+       if (ret < 0)
+               return ret;
+
+       pr_info("    kretprobe\n");
+       ret = test_kretprobe(func);
+       if (ret < 0)
+               return ret;
+
+       return 0;
+}
+
+
+/*
+ * Benchmarking
+ */
+
+#if BENCHMARKING
+
+static void __naked benchmark_nop(void)
+{
+       __asm__ __volatile__ (
+               "nop            \n\t"
+               RET(lr)"        \n\t"
+       );
+}
+
+#ifdef CONFIG_THUMB2_KERNEL
+#define wide ".w"
+#else
+#define wide
+#endif
+
+static void __naked benchmark_pushpop1(void)
+{
+       __asm__ __volatile__ (
+               "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
+               "ldmia"wide"    sp!, {r3-r11,pc}"
+       );
+}
+
+static void __naked benchmark_pushpop2(void)
+{
+       __asm__ __volatile__ (
+               "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
+               "ldmia"wide"    sp!, {r0-r8,pc}"
+       );
+}
+
+static void __naked benchmark_pushpop3(void)
+{
+       __asm__ __volatile__ (
+               "stmdb"wide"    sp!, {r4,lr}  \n\t"
+               "ldmia"wide"    sp!, {r4,pc}"
+       );
+}
+
+static void __naked benchmark_pushpop4(void)
+{
+       __asm__ __volatile__ (
+               "stmdb"wide"    sp!, {r0,lr}  \n\t"
+               "ldmia"wide"    sp!, {r0,pc}"
+       );
+}
+
+
+#ifdef CONFIG_THUMB2_KERNEL
+
+static void __naked benchmark_pushpop_thumb(void)
+{
+       __asm__ __volatile__ (
+               "push.n {r0-r7,lr}  \n\t"
+               "pop.n  {r0-r7,pc}"
+       );
+}
+
+#endif
+
+static int __kprobes
+benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+       return 0;
+}
+
+static int benchmark(void(*fn)(void))
+{
+       unsigned n, i, t, t0;
+
+       for (n = 1000; ; n *= 2) {
+               t0 = sched_clock();
+               for (i = n; i > 0; --i)
+                       fn();
+               t = sched_clock() - t0;
+               if (t >= 250000000)
+                       break; /* Stop once we took more than 0.25 seconds */
+       }
+       return t / n; /* Time for one iteration in nanoseconds */
+};
+
+static int kprobe_benchmark(void(*fn)(void), unsigned offset)
+{
+       struct kprobe k = {
+               .addr           = (kprobe_opcode_t *)((uintptr_t)fn + offset),
+               .pre_handler    = benchmark_pre_handler,
+       };
+
+       int ret = register_kprobe(&k);
+       if (ret < 0) {
+               pr_err("FAIL: register_kprobe failed with %d\n", ret);
+               return ret;
+       }
+
+       ret = benchmark(fn);
+
+       unregister_kprobe(&k);
+       return ret;
+};
+
+struct benchmarks {
+       void            (*fn)(void);
+       unsigned        offset;
+       const char      *title;
+};
+
+static int run_benchmarks(void)
+{
+       int ret;
+       struct benchmarks list[] = {
+               {&benchmark_nop, 0, "nop"},
+               /*
+                * benchmark_pushpop{1,3} will have the optimised
+                * instruction emulation, whilst benchmark_pushpop{2,4} will
+                * be the equivalent unoptimised instructions.
+                */
+               {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
+               {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
+               {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
+               {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
+               {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
+               {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
+               {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
+               {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
+#ifdef CONFIG_THUMB2_KERNEL
+               {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
+               {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
+#endif
+               {0}
+       };
+
+       struct benchmarks *b;
+       for (b = list; b->fn; ++b) {
+               ret = kprobe_benchmark(b->fn, b->offset);
+               if (ret < 0)
+                       return ret;
+               pr_info("    %dns for kprobe %s\n", ret, b->title);
+       }
+
+       pr_info("\n");
+       return 0;
+}
+
+#endif /* BENCHMARKING */
+
+
+/*
+ * Decoding table self-consistency tests
+ */
+
+static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
+       [DECODE_TYPE_TABLE]     = sizeof(struct decode_table),
+       [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
+       [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
+       [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
+       [DECODE_TYPE_OR]        = sizeof(struct decode_or),
+       [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
+};
+
+static int table_iter(const union decode_item *table,
+                       int (*fn)(const struct decode_header *, void *),
+                       void *args)
+{
+       const struct decode_header *h = (struct decode_header *)table;
+       int result;
+
+       for (;;) {
+               enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
+
+               if (type == DECODE_TYPE_END)
+                       return 0;
+
+               result = fn(h, args);
+               if (result)
+                       return result;
+
+               h = (struct decode_header *)
+                       ((uintptr_t)h + decode_struct_sizes[type]);
+
+       }
+}
+
+static int table_test_fail(const struct decode_header *h, const char* message)
+{
+
+       pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
+                                       message, h->mask.bits, h->value.bits);
+       return -EINVAL;
+}
+
+struct table_test_args {
+       const union decode_item *root_table;
+       u32                     parent_mask;
+       u32                     parent_value;
+};
+
+static int table_test_fn(const struct decode_header *h, void *args)
+{
+       struct table_test_args *a = (struct table_test_args *)args;
+       enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
+
+       if (h->value.bits & ~h->mask.bits)
+               return table_test_fail(h, "Match value has bits not in mask");
+
+       if ((h->mask.bits & a->parent_mask) != a->parent_mask)
+               return table_test_fail(h, "Mask has bits not in parent mask");
+
+       if ((h->value.bits ^ a->parent_value) & a->parent_mask)
+               return table_test_fail(h, "Value is inconsistent with parent");
+
+       if (type == DECODE_TYPE_TABLE) {
+               struct decode_table *d = (struct decode_table *)h;
+               struct table_test_args args2 = *a;
+               args2.parent_mask = h->mask.bits;
+               args2.parent_value = h->value.bits;
+               return table_iter(d->table.table, table_test_fn, &args2);
+       }
+
+       return 0;
+}
+
+static int table_test(const union decode_item *table)
+{
+       struct table_test_args args = {
+               .root_table     = table,
+               .parent_mask    = 0,
+               .parent_value   = 0
+       };
+       return table_iter(args.root_table, table_test_fn, &args);
+}
+
+
+/*
+ * Decoding table test coverage analysis
+ *
+ * coverage_start() builds a coverage_table which contains a list of
+ * coverage_entry's to match each entry in the specified kprobes instruction
+ * decoding table.
+ *
+ * When test cases are run, coverage_add() is called to process each case.
+ * This looks up the corresponding entry in the coverage_table and sets it as
+ * being matched, as well as clearing the regs flag appropriate for the test.
+ *
+ * After all test cases have been run, coverage_end() is called to check that
+ * all entries in coverage_table have been matched and that all regs flags are
+ * cleared. I.e. that all possible combinations of instructions described by
+ * the kprobes decoding tables have had a test case executed for them.
+ */
+
+bool coverage_fail;
+
+#define MAX_COVERAGE_ENTRIES 256
+
+struct coverage_entry {
+       const struct decode_header      *header;
+       unsigned                        regs;
+       unsigned                        nesting;
+       char                            matched;
+};
+
+struct coverage_table {
+       struct coverage_entry   *base;
+       unsigned                num_entries;
+       unsigned                nesting;
+};
+
+struct coverage_table coverage;
+
+#define COVERAGE_ANY_REG       (1<<0)
+#define COVERAGE_SP            (1<<1)
+#define COVERAGE_PC            (1<<2)
+#define COVERAGE_PCWB          (1<<3)
+
+static const char coverage_register_lookup[16] = {
+       [REG_TYPE_ANY]          = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
+       [REG_TYPE_SAMEAS16]     = COVERAGE_ANY_REG,
+       [REG_TYPE_SP]           = COVERAGE_SP,
+       [REG_TYPE_PC]           = COVERAGE_PC,
+       [REG_TYPE_NOSP]         = COVERAGE_ANY_REG | COVERAGE_SP,
+       [REG_TYPE_NOSPPC]       = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
+       [REG_TYPE_NOPC]         = COVERAGE_ANY_REG | COVERAGE_PC,
+       [REG_TYPE_NOPCWB]       = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
+       [REG_TYPE_NOPCX]        = COVERAGE_ANY_REG,
+       [REG_TYPE_NOSPPCX]      = COVERAGE_ANY_REG | COVERAGE_SP,
+};
+
+unsigned coverage_start_registers(const struct decode_header *h)
+{
+       unsigned regs = 0;
+       int i;
+       for (i = 0; i < 20; i += 4) {
+               int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
+               regs |= coverage_register_lookup[r] << i;
+       }
+       return regs;
+}
+
+static int coverage_start_fn(const struct decode_header *h, void *args)
+{
+       struct coverage_table *coverage = (struct coverage_table *)args;
+       enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
+       struct coverage_entry *entry = coverage->base + coverage->num_entries;
+
+       if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
+               pr_err("FAIL: Out of space for test coverage data");
+               return -ENOMEM;
+       }
+
+       ++coverage->num_entries;
+
+       entry->header = h;
+       entry->regs = coverage_start_registers(h);
+       entry->nesting = coverage->nesting;
+       entry->matched = false;
+
+       if (type == DECODE_TYPE_TABLE) {
+               struct decode_table *d = (struct decode_table *)h;
+               int ret;
+               ++coverage->nesting;
+               ret = table_iter(d->table.table, coverage_start_fn, coverage);
+               --coverage->nesting;
+               return ret;
+       }
+
+       return 0;
+}
+
+static int coverage_start(const union decode_item *table)
+{
+       coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
+                               sizeof(struct coverage_entry), GFP_KERNEL);
+       coverage.num_entries = 0;
+       coverage.nesting = 0;
+       return table_iter(table, coverage_start_fn, &coverage);
+}
+
+static void
+coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
+{
+       int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
+       int i;
+       for (i = 0; i < 20; i += 4) {
+               enum decode_reg_type reg_type = (regs >> i) & 0xf;
+               int reg = (insn >> i) & 0xf;
+               int flag;
+
+               if (!reg_type)
+                       continue;
+
+               if (reg == 13)
+                       flag = COVERAGE_SP;
+               else if (reg == 15)
+                       flag = COVERAGE_PC;
+               else
+                       flag = COVERAGE_ANY_REG;
+               entry->regs &= ~(flag << i);
+
+               switch (reg_type) {
+
+               case REG_TYPE_NONE:
+               case REG_TYPE_ANY:
+               case REG_TYPE_SAMEAS16:
+                       break;
+
+               case REG_TYPE_SP:
+                       if (reg != 13)
+                               return;
+                       break;
+
+               case REG_TYPE_PC:
+                       if (reg != 15)
+                               return;
+                       break;
+
+               case REG_TYPE_NOSP:
+                       if (reg == 13)
+                               return;
+                       break;
+
+               case REG_TYPE_NOSPPC:
+               case REG_TYPE_NOSPPCX:
+                       if (reg == 13 || reg == 15)
+                               return;
+                       break;
+
+               case REG_TYPE_NOPCWB:
+                       if (!is_writeback(insn))
+                               break;
+                       if (reg == 15) {
+                               entry->regs &= ~(COVERAGE_PCWB << i);
+                               return;
+                       }
+                       break;
+
+               case REG_TYPE_NOPC:
+               case REG_TYPE_NOPCX:
+                       if (reg == 15)
+                               return;
+                       break;
+               }
+
+       }
+}
+
+static void coverage_add(kprobe_opcode_t insn)
+{
+       struct coverage_entry *entry = coverage.base;
+       struct coverage_entry *end = coverage.base + coverage.num_entries;
+       bool matched = false;
+       unsigned nesting = 0;
+
+       for (; entry < end; ++entry) {
+               const struct decode_header *h = entry->header;
+               enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
+
+               if (entry->nesting > nesting)
+                       continue; /* Skip sub-table we didn't match */
+
+               if (entry->nesting < nesting)
+                       break; /* End of sub-table we were scanning */
+
+               if (!matched) {
+                       if ((insn & h->mask.bits) != h->value.bits)
+                               continue;
+                       entry->matched = true;
+               }
+
+               switch (type) {
+
+               case DECODE_TYPE_TABLE:
+                       ++nesting;
+                       break;
+
+               case DECODE_TYPE_CUSTOM:
+               case DECODE_TYPE_SIMULATE:
+               case DECODE_TYPE_EMULATE:
+                       coverage_add_registers(entry, insn);
+                       return;
+
+               case DECODE_TYPE_OR:
+                       matched = true;
+                       break;
+
+               case DECODE_TYPE_REJECT:
+               default:
+                       return;
+               }
+
+       }
+}
+
+static void coverage_end(void)
+{
+       struct coverage_entry *entry = coverage.base;
+       struct coverage_entry *end = coverage.base + coverage.num_entries;
+
+       for (; entry < end; ++entry) {
+               u32 mask = entry->header->mask.bits;
+               u32 value = entry->header->value.bits;
+
+               if (entry->regs) {
+                       pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
+                               mask, value, entry->regs);
+                       coverage_fail = true;
+               }
+               if (!entry->matched) {
+                       pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
+                               mask, value);
+                       coverage_fail = true;
+               }
+       }
+
+       kfree(coverage.base);
+}
+
+
+/*
+ * Framework for instruction set test cases
+ */
+
+void __naked __kprobes_test_case_start(void)
+{
+       __asm__ __volatile__ (
+               "stmdb  sp!, {r4-r11}                           \n\t"
+               "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
+               "bic    r0, lr, #1  @ r0 = inline data          \n\t"
+               "mov    r1, sp                                  \n\t"
+               "bl     kprobes_test_case_start                 \n\t"
+               RET(r0)"                                        \n\t"
+       );
+}
+
+#ifndef CONFIG_THUMB2_KERNEL
+
+void __naked __kprobes_test_case_end_32(void)
+{
+       __asm__ __volatile__ (
+               "mov    r4, lr                                  \n\t"
+               "bl     kprobes_test_case_end                   \n\t"
+               "cmp    r0, #0                                  \n\t"
+               "movne  pc, r0                                  \n\t"
+               "mov    r0, r4                                  \n\t"
+               "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
+               "ldmia  sp!, {r4-r11}                           \n\t"
+               "mov    pc, r0                                  \n\t"
+       );
+}
+
+#else /* CONFIG_THUMB2_KERNEL */
+
+void __naked __kprobes_test_case_end_16(void)
+{
+       __asm__ __volatile__ (
+               "mov    r4, lr                                  \n\t"
+               "bl     kprobes_test_case_end                   \n\t"
+               "cmp    r0, #0                                  \n\t"
+               "bxne   r0                                      \n\t"
+               "mov    r0, r4                                  \n\t"
+               "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
+               "ldmia  sp!, {r4-r11}                           \n\t"
+               "bx     r0                                      \n\t"
+       );
+}
+
+void __naked __kprobes_test_case_end_32(void)
+{
+       __asm__ __volatile__ (
+               ".arm                                           \n\t"
+               "orr    lr, lr, #1  @ will return to Thumb code \n\t"
+               "ldr    pc, 1f                                  \n\t"
+               "1:                                             \n\t"
+               ".word  __kprobes_test_case_end_16              \n\t"
+       );
+}
+
+#endif
+
+
+int kprobe_test_flags;
+int kprobe_test_cc_position;
+
+static int test_try_count;
+static int test_pass_count;
+static int test_fail_count;
+
+static struct pt_regs initial_regs;
+static struct pt_regs expected_regs;
+static struct pt_regs result_regs;
+
+static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
+
+static const char *current_title;
+static struct test_arg *current_args;
+static u32 *current_stack;
+static uintptr_t current_branch_target;
+
+static uintptr_t current_code_start;
+static kprobe_opcode_t current_instruction;
+
+
+#define TEST_CASE_PASSED -1
+#define TEST_CASE_FAILED -2
+
+static int test_case_run_count;
+static bool test_case_is_thumb;
+static int test_instance;
+
+static unsigned long test_check_cc(int cc, unsigned long cpsr)
+{
+       int ret = arm_check_condition(cc << 28, cpsr);
+
+       return (ret != ARM_OPCODE_CONDTEST_FAIL);
+}
+
+static int is_last_scenario;
+static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
+static int memory_needs_checking;
+
+static unsigned long test_context_cpsr(int scenario)
+{
+       unsigned long cpsr;
+
+       probe_should_run = 1;
+
+       /* Default case is that we cycle through 16 combinations of flags */
+       cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
+       cpsr |= (scenario & 0xf) << 16; /* GE flags */
+       cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
+
+       if (!test_case_is_thumb) {
+               /* Testing ARM code */
+               int cc = current_instruction >> 28;
+
+               probe_should_run = test_check_cc(cc, cpsr) != 0;
+               if (scenario == 15)
+                       is_last_scenario = true;
+
+       } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
+               /* Testing Thumb code without setting ITSTATE */
+               if (kprobe_test_cc_position) {
+                       int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
+                       probe_should_run = test_check_cc(cc, cpsr) != 0;
+               }
+
+               if (scenario == 15)
+                       is_last_scenario = true;
+
+       } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
+               /* Testing Thumb code with all combinations of ITSTATE */
+               unsigned x = (scenario >> 4);
+               unsigned cond_base = x % 7; /* ITSTATE<7:5> */
+               unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
+
+               if (mask > 0x1f) {
+                       /* Finish by testing state from instruction 'itt al' */
+                       cond_base = 7;
+                       mask = 0x4;
+                       if ((scenario & 0xf) == 0xf)
+                               is_last_scenario = true;
+               }
+
+               cpsr |= cond_base << 13;        /* ITSTATE<7:5> */
+               cpsr |= (mask & 0x1) << 12;     /* ITSTATE<4> */
+               cpsr |= (mask & 0x2) << 10;     /* ITSTATE<3> */
+               cpsr |= (mask & 0x4) << 8;      /* ITSTATE<2> */
+               cpsr |= (mask & 0x8) << 23;     /* ITSTATE<1> */
+               cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
+
+               probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
+
+       } else {
+               /* Testing Thumb code with several combinations of ITSTATE */
+               switch (scenario) {
+               case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
+                       cpsr = 0x00000800;
+                       probe_should_run = 0;
+                       break;
+               case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
+                       cpsr = 0xf0007800;
+                       probe_should_run = 0;
+                       break;
+               case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
+                       cpsr = 0x00009800;
+                       break;
+               case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
+                       cpsr = 0xf0002800;
+                       is_last_scenario = true;
+                       break;
+               }
+       }
+
+       return cpsr;
+}
+
+static void setup_test_context(struct pt_regs *regs)
+{
+       int scenario = test_case_run_count>>1;
+       unsigned long val;
+       struct test_arg *args;
+       int i;
+
+       is_last_scenario = false;
+       memory_needs_checking = false;
+
+       /* Initialise test memory on stack */
+       val = (scenario & 1) ? VALM : ~VALM;
+       for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
+               current_stack[i] = val + (i << 8);
+       /* Put target of branch on stack for tests which load PC from memory */
+       if (current_branch_target)
+               current_stack[15] = current_branch_target;
+       /* Put a value for SP on stack for tests which load SP from memory */
+       current_stack[13] = (u32)current_stack + 120;
+
+       /* Initialise register values to their default state */
+       val = (scenario & 2) ? VALR : ~VALR;
+       for (i = 0; i < 13; ++i)
+               regs->uregs[i] = val ^ (i << 8);
+       regs->ARM_lr = val ^ (14 << 8);
+       regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
+       regs->ARM_cpsr |= test_context_cpsr(scenario);
+
+       /* Perform testcase specific register setup  */
+       args = current_args;
+       for (; args[0].type != ARG_TYPE_END; ++args)
+               switch (args[0].type) {
+               case ARG_TYPE_REG: {
+                       struct test_arg_regptr *arg =
+                               (struct test_arg_regptr *)args;
+                       regs->uregs[arg->reg] = arg->val;
+                       break;
+               }
+               case ARG_TYPE_PTR: {
+                       struct test_arg_regptr *arg =
+                               (struct test_arg_regptr *)args;
+                       regs->uregs[arg->reg] =
+                               (unsigned long)current_stack + arg->val;
+                       memory_needs_checking = true;
+                       /*
+                        * Test memory at an address below SP is in danger of
+                        * being altered by an interrupt occurring and pushing
+                        * data onto the stack. Disable interrupts to stop this.
+                        */
+                       if (arg->reg == 13)
+                               regs->ARM_cpsr |= PSR_I_BIT;
+                       break;
+               }
+               case ARG_TYPE_MEM: {
+                       struct test_arg_mem *arg = (struct test_arg_mem *)args;
+                       current_stack[arg->index] = arg->val;
+                       break;
+               }
+               default:
+                       break;
+               }
+}
+
+struct test_probe {
+       struct kprobe   kprobe;
+       bool            registered;
+       int             hit;
+};
+
+static void unregister_test_probe(struct test_probe *probe)
+{
+       if (probe->registered) {
+               unregister_kprobe(&probe->kprobe);
+               probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
+       }
+       probe->registered = false;
+}
+
+static int register_test_probe(struct test_probe *probe)
+{
+       int ret;
+
+       if (probe->registered)
+               BUG();
+
+       ret = register_kprobe(&probe->kprobe);
+       if (ret >= 0) {
+               probe->registered = true;
+               probe->hit = -1;
+       }
+       return ret;
+}
+
+static int __kprobes
+test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+       container_of(p, struct test_probe, kprobe)->hit = test_instance;
+       return 0;
+}
+
+static void __kprobes
+test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
+                                                       unsigned long flags)
+{
+       setup_test_context(regs);
+       initial_regs = *regs;
+       initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
+}
+
+static int __kprobes
+test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+       container_of(p, struct test_probe, kprobe)->hit = test_instance;
+       return 0;
+}
+
+static int __kprobes
+test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+       struct test_arg *args;
+
+       if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
+               return 0; /* Already run for this test instance */
+
+       result_regs = *regs;
+
+       /* Mask out results which are indeterminate */
+       result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
+       for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
+               if (args[0].type == ARG_TYPE_REG_MASKED) {
+                       struct test_arg_regptr *arg =
+                               (struct test_arg_regptr *)args;
+                       result_regs.uregs[arg->reg] &= arg->val;
+               }
+
+       /* Undo any changes done to SP by the test case */
+       regs->ARM_sp = (unsigned long)current_stack;
+       /* Enable interrupts in case setup_test_context disabled them */
+       regs->ARM_cpsr &= ~PSR_I_BIT;
+
+       container_of(p, struct test_probe, kprobe)->hit = test_instance;
+       return 0;
+}
+
+static struct test_probe test_before_probe = {
+       .kprobe.pre_handler     = test_before_pre_handler,
+       .kprobe.post_handler    = test_before_post_handler,
+};
+
+static struct test_probe test_case_probe = {
+       .kprobe.pre_handler     = test_case_pre_handler,
+};
+
+static struct test_probe test_after_probe = {
+       .kprobe.pre_handler     = test_after_pre_handler,
+};
+
+static struct test_probe test_after2_probe = {
+       .kprobe.pre_handler     = test_after_pre_handler,
+};
+
+static void test_case_cleanup(void)
+{
+       unregister_test_probe(&test_before_probe);
+       unregister_test_probe(&test_case_probe);
+       unregister_test_probe(&test_after_probe);
+       unregister_test_probe(&test_after2_probe);
+}
+
+static void print_registers(struct pt_regs *regs)
+{
+       pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
+               regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
+       pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
+               regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
+       pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
+               regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
+       pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
+               regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
+       pr_err("cpsr %08lx\n", regs->ARM_cpsr);
+}
+
+static void print_memory(u32 *mem, size_t size)
+{
+       int i;
+       for (i = 0; i < size / sizeof(u32); i += 4)
+               pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
+                                               mem[i+2], mem[i+3]);
+}
+
+static size_t expected_memory_size(u32 *sp)
+{
+       size_t size = sizeof(expected_memory);
+       int offset = (uintptr_t)sp - (uintptr_t)current_stack;
+       if (offset > 0)
+               size -= offset;
+       return size;
+}
+
+static void test_case_failed(const char *message)
+{
+       test_case_cleanup();
+
+       pr_err("FAIL: %s\n", message);
+       pr_err("FAIL: Test %s\n", current_title);
+       pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
+}
+
+static unsigned long next_instruction(unsigned long pc)
+{
+#ifdef CONFIG_THUMB2_KERNEL
+       if ((pc & 1) &&
+           !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
+               return pc + 2;
+       else
+#endif
+       return pc + 4;
+}
+
+static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
+{
+       struct test_arg *args;
+       struct test_arg_end *end_arg;
+       unsigned long test_code;
+
+       current_title = *title++;
+       args = (struct test_arg *)title;
+       current_args = args;
+       current_stack = stack;
+
+       ++test_try_count;
+
+       while (args->type != ARG_TYPE_END)
+               ++args;
+       end_arg = (struct test_arg_end *)args;
+
+       test_code = (unsigned long)(args + 1); /* Code starts after args */
+
+       test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
+       if (test_case_is_thumb)
+               test_code |= 1;
+
+       current_code_start = test_code;
+
+       current_branch_target = 0;
+       if (end_arg->branch_offset != end_arg->end_offset)
+               current_branch_target = test_code + end_arg->branch_offset;
+
+       test_code += end_arg->code_offset;
+       test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
+
+       test_code = next_instruction(test_code);
+       test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
+
+       if (test_case_is_thumb) {
+               u16 *p = (u16 *)(test_code & ~1);
+               current_instruction = __mem_to_opcode_thumb16(p[0]);
+               if (is_wide_instruction(current_instruction)) {
+                       u16 instr2 = __mem_to_opcode_thumb16(p[1]);
+                       current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
+               }
+       } else {
+               current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
+       }
+
+       if (current_title[0] == '.')
+               verbose("%s\n", current_title);
+       else
+               verbose("%s\t@ %0*x\n", current_title,
+                                       test_case_is_thumb ? 4 : 8,
+                                       current_instruction);
+
+       test_code = next_instruction(test_code);
+       test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
+
+       if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
+               if (!test_case_is_thumb ||
+                       is_wide_instruction(current_instruction)) {
+                               test_case_failed("expected 16-bit instruction");
+                               goto fail;
+               }
+       } else {
+               if (test_case_is_thumb &&
+                       !is_wide_instruction(current_instruction)) {
+                               test_case_failed("expected 32-bit instruction");
+                               goto fail;
+               }
+       }
+
+       coverage_add(current_instruction);
+
+       if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
+               if (register_test_probe(&test_case_probe) < 0)
+                       goto pass;
+               test_case_failed("registered probe for unsupported instruction");
+               goto fail;
+       }
+
+       if (end_arg->flags & ARG_FLAG_SUPPORTED) {
+               if (register_test_probe(&test_case_probe) >= 0)
+                       goto pass;
+               test_case_failed("couldn't register probe for supported instruction");
+               goto fail;
+       }
+
+       if (register_test_probe(&test_before_probe) < 0) {
+               test_case_failed("register test_before_probe failed");
+               goto fail;
+       }
+       if (register_test_probe(&test_after_probe) < 0) {
+               test_case_failed("register test_after_probe failed");
+               goto fail;
+       }
+       if (current_branch_target) {
+               test_after2_probe.kprobe.addr =
+                               (kprobe_opcode_t *)current_branch_target;
+               if (register_test_probe(&test_after2_probe) < 0) {
+                       test_case_failed("register test_after2_probe failed");
+                       goto fail;
+               }
+       }
+
+       /* Start first run of test case */
+       test_case_run_count = 0;
+       ++test_instance;
+       return current_code_start;
+pass:
+       test_case_run_count = TEST_CASE_PASSED;
+       return (uintptr_t)test_after_probe.kprobe.addr;
+fail:
+       test_case_run_count = TEST_CASE_FAILED;
+       return (uintptr_t)test_after_probe.kprobe.addr;
+}
+
+static bool check_test_results(void)
+{
+       size_t mem_size = 0;
+       u32 *mem = 0;
+
+       if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
+               test_case_failed("registers differ");
+               goto fail;
+       }
+
+       if (memory_needs_checking) {
+               mem = (u32 *)result_regs.ARM_sp;
+               mem_size = expected_memory_size(mem);
+               if (memcmp(expected_memory, mem, mem_size)) {
+                       test_case_failed("test memory differs");
+                       goto fail;
+               }
+       }
+
+       return true;
+
+fail:
+       pr_err("initial_regs:\n");
+       print_registers(&initial_regs);
+       pr_err("expected_regs:\n");
+       print_registers(&expected_regs);
+       pr_err("result_regs:\n");
+       print_registers(&result_regs);
+
+       if (mem) {
+               pr_err("current_stack=%p\n", current_stack);
+               pr_err("expected_memory:\n");
+               print_memory(expected_memory, mem_size);
+               pr_err("result_memory:\n");
+               print_memory(mem, mem_size);
+       }
+
+       return false;
+}
+
+static uintptr_t __used kprobes_test_case_end(void)
+{
+       if (test_case_run_count < 0) {
+               if (test_case_run_count == TEST_CASE_PASSED)
+                       /* kprobes_test_case_start did all the needed testing */
+                       goto pass;
+               else
+                       /* kprobes_test_case_start failed */
+                       goto fail;
+       }
+
+       if (test_before_probe.hit != test_instance) {
+               test_case_failed("test_before_handler not run");
+               goto fail;
+       }
+
+       if (test_after_probe.hit != test_instance &&
+                               test_after2_probe.hit != test_instance) {
+               test_case_failed("test_after_handler not run");
+               goto fail;
+       }
+
+       /*
+        * Even numbered test runs ran without a probe on the test case so
+        * we can gather reference results. The subsequent odd numbered run
+        * will have the probe inserted.
+       */
+       if ((test_case_run_count & 1) == 0) {
+               /* Save results from run without probe */
+               u32 *mem = (u32 *)result_regs.ARM_sp;
+               expected_regs = result_regs;
+               memcpy(expected_memory, mem, expected_memory_size(mem));
+
+               /* Insert probe onto test case instruction */
+               if (register_test_probe(&test_case_probe) < 0) {
+                       test_case_failed("register test_case_probe failed");
+                       goto fail;
+               }
+       } else {
+               /* Check probe ran as expected */
+               if (probe_should_run == 1) {
+                       if (test_case_probe.hit != test_instance) {
+                               test_case_failed("test_case_handler not run");
+                               goto fail;
+                       }
+               } else if (probe_should_run == 0) {
+                       if (test_case_probe.hit == test_instance) {
+                               test_case_failed("test_case_handler ran");
+                               goto fail;
+                       }
+               }
+
+               /* Remove probe for any subsequent reference run */
+               unregister_test_probe(&test_case_probe);
+
+               if (!check_test_results())
+                       goto fail;
+
+               if (is_last_scenario)
+                       goto pass;
+       }
+
+       /* Do next test run */
+       ++test_case_run_count;
+       ++test_instance;
+       return current_code_start;
+fail:
+       ++test_fail_count;
+       goto end;
+pass:
+       ++test_pass_count;
+end:
+       test_case_cleanup();
+       return 0;
+}
+
+
+/*
+ * Top level test functions
+ */
+
+static int run_test_cases(void (*tests)(void), const union decode_item *table)
+{
+       int ret;
+
+       pr_info("    Check decoding tables\n");
+       ret = table_test(table);
+       if (ret)
+               return ret;
+
+       pr_info("    Run test cases\n");
+       ret = coverage_start(table);
+       if (ret)
+               return ret;
+
+       tests();
+
+       coverage_end();
+       return 0;
+}
+
+
+static int __init run_all_tests(void)
+{
+       int ret = 0;
+
+       pr_info("Beginning kprobe tests...\n");
+
+#ifndef CONFIG_THUMB2_KERNEL
+
+       pr_info("Probe ARM code\n");
+       ret = run_api_tests(arm_func);
+       if (ret)
+               goto out;
+
+       pr_info("ARM instruction simulation\n");
+       ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
+       if (ret)
+               goto out;
+
+#else /* CONFIG_THUMB2_KERNEL */
+
+       pr_info("Probe 16-bit Thumb code\n");
+       ret = run_api_tests(thumb16_func);
+       if (ret)
+               goto out;
+
+       pr_info("Probe 32-bit Thumb code, even halfword\n");
+       ret = run_api_tests(thumb32even_func);
+       if (ret)
+               goto out;
+
+       pr_info("Probe 32-bit Thumb code, odd halfword\n");
+       ret = run_api_tests(thumb32odd_func);
+       if (ret)
+               goto out;
+
+       pr_info("16-bit Thumb instruction simulation\n");
+       ret = run_test_cases(kprobe_thumb16_test_cases,
+                               probes_decode_thumb16_table);
+       if (ret)
+               goto out;
+
+       pr_info("32-bit Thumb instruction simulation\n");
+       ret = run_test_cases(kprobe_thumb32_test_cases,
+                               probes_decode_thumb32_table);
+       if (ret)
+               goto out;
+#endif
+
+       pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
+               test_try_count, test_pass_count, test_fail_count);
+       if (test_fail_count) {
+               ret = -EINVAL;
+               goto out;
+       }
+
+#if BENCHMARKING
+       pr_info("Benchmarks\n");
+       ret = run_benchmarks();
+       if (ret)
+               goto out;
+#endif
+
+#if __LINUX_ARM_ARCH__ >= 7
+       /* We are able to run all test cases so coverage should be complete */
+       if (coverage_fail) {
+               pr_err("FAIL: Test coverage checks failed\n");
+               ret = -EINVAL;
+               goto out;
+       }
+#endif
+
+out:
+       if (ret == 0)
+               ret = tests_failed;
+       if (ret == 0)
+               pr_info("Finished kprobe tests OK\n");
+       else
+               pr_err("kprobe tests failed\n");
+
+       return ret;
+}
+
+
+/*
+ * Module setup
+ */
+
+#ifdef MODULE
+
+static void __exit kprobe_test_exit(void)
+{
+}
+
+module_init(run_all_tests)
+module_exit(kprobe_test_exit)
+MODULE_LICENSE("GPL");
+
+#else /* !MODULE */
+
+late_initcall(run_all_tests);
+
+#endif