These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / Documentation / thermal / power_allocator.txt
diff --git a/kernel/Documentation/thermal/power_allocator.txt b/kernel/Documentation/thermal/power_allocator.txt
new file mode 100644 (file)
index 0000000..a1ce223
--- /dev/null
@@ -0,0 +1,247 @@
+Power allocator governor tunables
+=================================
+
+Trip points
+-----------
+
+The governor works optimally with the following two passive trip points:
+
+1.  "switch on" trip point: temperature above which the governor
+    control loop starts operating.  This is the first passive trip
+    point of the thermal zone.
+
+2.  "desired temperature" trip point: it should be higher than the
+    "switch on" trip point.  This the target temperature the governor
+    is controlling for.  This is the last passive trip point of the
+    thermal zone.
+
+PID Controller
+--------------
+
+The power allocator governor implements a
+Proportional-Integral-Derivative controller (PID controller) with
+temperature as the control input and power as the controlled output:
+
+    P_max = k_p * e + k_i * err_integral + k_d * diff_err + sustainable_power
+
+where
+    e = desired_temperature - current_temperature
+    err_integral is the sum of previous errors
+    diff_err = e - previous_error
+
+It is similar to the one depicted below:
+
+                                      k_d
+                                       |
+current_temp                           |
+     |                                 v
+     |                +----------+   +---+
+     |         +----->| diff_err |-->| X |------+
+     |         |      +----------+   +---+      |
+     |         |                                |      tdp        actor
+     |         |                      k_i       |       |  get_requested_power()
+     |         |                       |        |       |        |     |
+     |         |                       |        |       |        |     | ...
+     v         |                       v        v       v        v     v
+   +---+       |      +-------+      +---+    +---+   +---+   +----------+
+   | S |-------+----->| sum e |----->| X |--->| S |-->| S |-->|power     |
+   +---+       |      +-------+      +---+    +---+   +---+   |allocation|
+     ^         |                                ^             +----------+
+     |         |                                |                |     |
+     |         |        +---+                   |                |     |
+     |         +------->| X |-------------------+                v     v
+     |                  +---+                               granted performance
+desired_temperature       ^
+                          |
+                          |
+                      k_po/k_pu
+
+Sustainable power
+-----------------
+
+An estimate of the sustainable dissipatable power (in mW) should be
+provided while registering the thermal zone.  This estimates the
+sustained power that can be dissipated at the desired control
+temperature.  This is the maximum sustained power for allocation at
+the desired maximum temperature.  The actual sustained power can vary
+for a number of reasons.  The closed loop controller will take care of
+variations such as environmental conditions, and some factors related
+to the speed-grade of the silicon.  `sustainable_power` is therefore
+simply an estimate, and may be tuned to affect the aggressiveness of
+the thermal ramp. For reference, the sustainable power of a 4" phone
+is typically 2000mW, while on a 10" tablet is around 4500mW (may vary
+depending on screen size).
+
+If you are using device tree, do add it as a property of the
+thermal-zone.  For example:
+
+       thermal-zones {
+               soc_thermal {
+                       polling-delay = <1000>;
+                       polling-delay-passive = <100>;
+                       sustainable-power = <2500>;
+                       ...
+
+Instead, if the thermal zone is registered from the platform code, pass a
+`thermal_zone_params` that has a `sustainable_power`.  If no
+`thermal_zone_params` were being passed, then something like below
+will suffice:
+
+       static const struct thermal_zone_params tz_params = {
+               .sustainable_power = 3500,
+       };
+
+and then pass `tz_params` as the 5th parameter to
+`thermal_zone_device_register()`
+
+k_po and k_pu
+-------------
+
+The implementation of the PID controller in the power allocator
+thermal governor allows the configuration of two proportional term
+constants: `k_po` and `k_pu`.  `k_po` is the proportional term
+constant during temperature overshoot periods (current temperature is
+above "desired temperature" trip point).  Conversely, `k_pu` is the
+proportional term constant during temperature undershoot periods
+(current temperature below "desired temperature" trip point).
+
+These controls are intended as the primary mechanism for configuring
+the permitted thermal "ramp" of the system.  For instance, a lower
+`k_pu` value will provide a slower ramp, at the cost of capping
+available capacity at a low temperature.  On the other hand, a high
+value of `k_pu` will result in the governor granting very high power
+whilst temperature is low, and may lead to temperature overshooting.
+
+The default value for `k_pu` is:
+
+    2 * sustainable_power / (desired_temperature - switch_on_temp)
+
+This means that at `switch_on_temp` the output of the controller's
+proportional term will be 2 * `sustainable_power`.  The default value
+for `k_po` is:
+
+    sustainable_power / (desired_temperature - switch_on_temp)
+
+Focusing on the proportional and feed forward values of the PID
+controller equation we have:
+
+    P_max = k_p * e + sustainable_power
+
+The proportional term is proportional to the difference between the
+desired temperature and the current one.  When the current temperature
+is the desired one, then the proportional component is zero and
+`P_max` = `sustainable_power`.  That is, the system should operate in
+thermal equilibrium under constant load.  `sustainable_power` is only
+an estimate, which is the reason for closed-loop control such as this.
+
+Expanding `k_pu` we get:
+    P_max = 2 * sustainable_power * (T_set - T) / (T_set - T_on) +
+        sustainable_power
+
+where
+    T_set is the desired temperature
+    T is the current temperature
+    T_on is the switch on temperature
+
+When the current temperature is the switch_on temperature, the above
+formula becomes:
+
+    P_max = 2 * sustainable_power * (T_set - T_on) / (T_set - T_on) +
+        sustainable_power = 2 * sustainable_power + sustainable_power =
+        3 * sustainable_power
+
+Therefore, the proportional term alone linearly decreases power from
+3 * `sustainable_power` to `sustainable_power` as the temperature
+rises from the switch on temperature to the desired temperature.
+
+k_i and integral_cutoff
+-----------------------
+
+`k_i` configures the PID loop's integral term constant.  This term
+allows the PID controller to compensate for long term drift and for
+the quantized nature of the output control: cooling devices can't set
+the exact power that the governor requests.  When the temperature
+error is below `integral_cutoff`, errors are accumulated in the
+integral term.  This term is then multiplied by `k_i` and the result
+added to the output of the controller.  Typically `k_i` is set low (1
+or 2) and `integral_cutoff` is 0.
+
+k_d
+---
+
+`k_d` configures the PID loop's derivative term constant.  It's
+recommended to leave it as the default: 0.
+
+Cooling device power API
+========================
+
+Cooling devices controlled by this governor must supply the additional
+"power" API in their `cooling_device_ops`.  It consists on three ops:
+
+1. int get_requested_power(struct thermal_cooling_device *cdev,
+       struct thermal_zone_device *tz, u32 *power);
+@cdev: The `struct thermal_cooling_device` pointer
+@tz: thermal zone in which we are currently operating
+@power: pointer in which to store the calculated power
+
+`get_requested_power()` calculates the power requested by the device
+in milliwatts and stores it in @power .  It should return 0 on
+success, -E* on failure.  This is currently used by the power
+allocator governor to calculate how much power to give to each cooling
+device.
+
+2. int state2power(struct thermal_cooling_device *cdev, struct
+        thermal_zone_device *tz, unsigned long state, u32 *power);
+@cdev: The `struct thermal_cooling_device` pointer
+@tz: thermal zone in which we are currently operating
+@state: A cooling device state
+@power: pointer in which to store the equivalent power
+
+Convert cooling device state @state into power consumption in
+milliwatts and store it in @power.  It should return 0 on success, -E*
+on failure.  This is currently used by thermal core to calculate the
+maximum power that an actor can consume.
+
+3. int power2state(struct thermal_cooling_device *cdev, u32 power,
+       unsigned long *state);
+@cdev: The `struct thermal_cooling_device` pointer
+@power: power in milliwatts
+@state: pointer in which to store the resulting state
+
+Calculate a cooling device state that would make the device consume at
+most @power mW and store it in @state.  It should return 0 on success,
+-E* on failure.  This is currently used by the thermal core to convert
+a given power set by the power allocator governor to a state that the
+cooling device can set.  It is a function because this conversion may
+depend on external factors that may change so this function should the
+best conversion given "current circumstances".
+
+Cooling device weights
+----------------------
+
+Weights are a mechanism to bias the allocation among cooling
+devices.  They express the relative power efficiency of different
+cooling devices.  Higher weight can be used to express higher power
+efficiency.  Weighting is relative such that if each cooling device
+has a weight of one they are considered equal.  This is particularly
+useful in heterogeneous systems where two cooling devices may perform
+the same kind of compute, but with different efficiency.  For example,
+a system with two different types of processors.
+
+If the thermal zone is registered using
+`thermal_zone_device_register()` (i.e., platform code), then weights
+are passed as part of the thermal zone's `thermal_bind_parameters`.
+If the platform is registered using device tree, then they are passed
+as the `contribution` property of each map in the `cooling-maps` node.
+
+Limitations of the power allocator governor
+===========================================
+
+The power allocator governor's PID controller works best if there is a
+periodic tick.  If you have a driver that calls
+`thermal_zone_device_update()` (or anything that ends up calling the
+governor's `throttle()` function) repetitively, the governor response
+won't be very good.  Note that this is not particular to this
+governor, step-wise will also misbehave if you call its throttle()
+faster than the normal thermal framework tick (due to interrupts for
+example) as it will overreact.