Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / Documentation / spi / spi-summary
diff --git a/kernel/Documentation/spi/spi-summary b/kernel/Documentation/spi/spi-summary
new file mode 100644 (file)
index 0000000..d1824b3
--- /dev/null
@@ -0,0 +1,612 @@
+Overview of Linux kernel SPI support
+====================================
+
+02-Feb-2012
+
+What is SPI?
+------------
+The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial
+link used to connect microcontrollers to sensors, memory, and peripherals.
+It's a simple "de facto" standard, not complicated enough to acquire a
+standardization body.  SPI uses a master/slave configuration.
+
+The three signal wires hold a clock (SCK, often on the order of 10 MHz),
+and parallel data lines with "Master Out, Slave In" (MOSI) or "Master In,
+Slave Out" (MISO) signals.  (Other names are also used.)  There are four
+clocking modes through which data is exchanged; mode-0 and mode-3 are most
+commonly used.  Each clock cycle shifts data out and data in; the clock
+doesn't cycle except when there is a data bit to shift.  Not all data bits
+are used though; not every protocol uses those full duplex capabilities.
+
+SPI masters use a fourth "chip select" line to activate a given SPI slave
+device, so those three signal wires may be connected to several chips
+in parallel.  All SPI slaves support chipselects; they are usually active
+low signals, labeled nCSx for slave 'x' (e.g. nCS0).  Some devices have
+other signals, often including an interrupt to the master.
+
+Unlike serial busses like USB or SMBus, even low level protocols for
+SPI slave functions are usually not interoperable between vendors
+(except for commodities like SPI memory chips).
+
+  - SPI may be used for request/response style device protocols, as with
+    touchscreen sensors and memory chips.
+
+  - It may also be used to stream data in either direction (half duplex),
+    or both of them at the same time (full duplex).
+
+  - Some devices may use eight bit words.  Others may use different word
+    lengths, such as streams of 12-bit or 20-bit digital samples.
+
+  - Words are usually sent with their most significant bit (MSB) first,
+    but sometimes the least significant bit (LSB) goes first instead.
+
+  - Sometimes SPI is used to daisy-chain devices, like shift registers.
+
+In the same way, SPI slaves will only rarely support any kind of automatic
+discovery/enumeration protocol.  The tree of slave devices accessible from
+a given SPI master will normally be set up manually, with configuration
+tables.
+
+SPI is only one of the names used by such four-wire protocols, and
+most controllers have no problem handling "MicroWire" (think of it as
+half-duplex SPI, for request/response protocols), SSP ("Synchronous
+Serial Protocol"), PSP ("Programmable Serial Protocol"), and other
+related protocols.
+
+Some chips eliminate a signal line by combining MOSI and MISO, and
+limiting themselves to half-duplex at the hardware level.  In fact
+some SPI chips have this signal mode as a strapping option.  These
+can be accessed using the same programming interface as SPI, but of
+course they won't handle full duplex transfers.  You may find such
+chips described as using "three wire" signaling: SCK, data, nCSx.
+(That data line is sometimes called MOMI or SISO.)
+
+Microcontrollers often support both master and slave sides of the SPI
+protocol.  This document (and Linux) currently only supports the master
+side of SPI interactions.
+
+
+Who uses it?  On what kinds of systems?
+---------------------------------------
+Linux developers using SPI are probably writing device drivers for embedded
+systems boards.  SPI is used to control external chips, and it is also a
+protocol supported by every MMC or SD memory card.  (The older "DataFlash"
+cards, predating MMC cards but using the same connectors and card shape,
+support only SPI.)  Some PC hardware uses SPI flash for BIOS code.
+
+SPI slave chips range from digital/analog converters used for analog
+sensors and codecs, to memory, to peripherals like USB controllers
+or Ethernet adapters; and more.
+
+Most systems using SPI will integrate a few devices on a mainboard.
+Some provide SPI links on expansion connectors; in cases where no
+dedicated SPI controller exists, GPIO pins can be used to create a
+low speed "bitbanging" adapter.  Very few systems will "hotplug" an SPI
+controller; the reasons to use SPI focus on low cost and simple operation,
+and if dynamic reconfiguration is important, USB will often be a more
+appropriate low-pincount peripheral bus.
+
+Many microcontrollers that can run Linux integrate one or more I/O
+interfaces with SPI modes.  Given SPI support, they could use MMC or SD
+cards without needing a special purpose MMC/SD/SDIO controller.
+
+
+I'm confused.  What are these four SPI "clock modes"?
+-----------------------------------------------------
+It's easy to be confused here, and the vendor documentation you'll
+find isn't necessarily helpful.  The four modes combine two mode bits:
+
+ - CPOL indicates the initial clock polarity.  CPOL=0 means the
+   clock starts low, so the first (leading) edge is rising, and
+   the second (trailing) edge is falling.  CPOL=1 means the clock
+   starts high, so the first (leading) edge is falling.
+
+ - CPHA indicates the clock phase used to sample data; CPHA=0 says
+   sample on the leading edge, CPHA=1 means the trailing edge.
+
+   Since the signal needs to stablize before it's sampled, CPHA=0
+   implies that its data is written half a clock before the first
+   clock edge.  The chipselect may have made it become available.
+
+Chip specs won't always say "uses SPI mode X" in as many words,
+but their timing diagrams will make the CPOL and CPHA modes clear.
+
+In the SPI mode number, CPOL is the high order bit and CPHA is the
+low order bit.  So when a chip's timing diagram shows the clock
+starting low (CPOL=0) and data stabilized for sampling during the
+trailing clock edge (CPHA=1), that's SPI mode 1.
+
+Note that the clock mode is relevant as soon as the chipselect goes
+active.  So the master must set the clock to inactive before selecting
+a slave, and the slave can tell the chosen polarity by sampling the
+clock level when its select line goes active.  That's why many devices
+support for example both modes 0 and 3:  they don't care about polarity,
+and always clock data in/out on rising clock edges.
+
+
+How do these driver programming interfaces work?
+------------------------------------------------
+The <linux/spi/spi.h> header file includes kerneldoc, as does the
+main source code, and you should certainly read that chapter of the
+kernel API document.  This is just an overview, so you get the big
+picture before those details.
+
+SPI requests always go into I/O queues.  Requests for a given SPI device
+are always executed in FIFO order, and complete asynchronously through
+completion callbacks.  There are also some simple synchronous wrappers
+for those calls, including ones for common transaction types like writing
+a command and then reading its response.
+
+There are two types of SPI driver, here called:
+
+  Controller drivers ... controllers may be built into System-On-Chip
+       processors, and often support both Master and Slave roles.
+       These drivers touch hardware registers and may use DMA.
+       Or they can be PIO bitbangers, needing just GPIO pins.
+
+  Protocol drivers ... these pass messages through the controller
+       driver to communicate with a Slave or Master device on the
+       other side of an SPI link.
+
+So for example one protocol driver might talk to the MTD layer to export
+data to filesystems stored on SPI flash like DataFlash; and others might
+control audio interfaces, present touchscreen sensors as input interfaces,
+or monitor temperature and voltage levels during industrial processing.
+And those might all be sharing the same controller driver.
+
+A "struct spi_device" encapsulates the master-side interface between
+those two types of driver.  At this writing, Linux has no slave side
+programming interface.
+
+There is a minimal core of SPI programming interfaces, focussing on
+using the driver model to connect controller and protocol drivers using
+device tables provided by board specific initialization code.  SPI
+shows up in sysfs in several locations:
+
+   /sys/devices/.../CTLR ... physical node for a given SPI controller
+
+   /sys/devices/.../CTLR/spiB.C ... spi_device on bus "B",
+       chipselect C, accessed through CTLR.
+
+   /sys/bus/spi/devices/spiB.C ... symlink to that physical
+       .../CTLR/spiB.C device
+
+   /sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
+       that should be used with this device (for hotplug/coldplug)
+
+   /sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
+
+   /sys/class/spi_master/spiB ... symlink (or actual device node) to
+       a logical node which could hold class related state for the
+       controller managing bus "B".  All spiB.* devices share one
+       physical SPI bus segment, with SCLK, MOSI, and MISO.
+
+Note that the actual location of the controller's class state depends
+on whether you enabled CONFIG_SYSFS_DEPRECATED or not.  At this time,
+the only class-specific state is the bus number ("B" in "spiB"), so
+those /sys/class entries are only useful to quickly identify busses.
+
+
+How does board-specific init code declare SPI devices?
+------------------------------------------------------
+Linux needs several kinds of information to properly configure SPI devices.
+That information is normally provided by board-specific code, even for
+chips that do support some of automated discovery/enumeration.
+
+DECLARE CONTROLLERS
+
+The first kind of information is a list of what SPI controllers exist.
+For System-on-Chip (SOC) based boards, these will usually be platform
+devices, and the controller may need some platform_data in order to
+operate properly.  The "struct platform_device" will include resources
+like the physical address of the controller's first register and its IRQ.
+
+Platforms will often abstract the "register SPI controller" operation,
+maybe coupling it with code to initialize pin configurations, so that
+the arch/.../mach-*/board-*.c files for several boards can all share the
+same basic controller setup code.  This is because most SOCs have several
+SPI-capable controllers, and only the ones actually usable on a given
+board should normally be set up and registered.
+
+So for example arch/.../mach-*/board-*.c files might have code like:
+
+       #include <mach/spi.h>   /* for mysoc_spi_data */
+
+       /* if your mach-* infrastructure doesn't support kernels that can
+        * run on multiple boards, pdata wouldn't benefit from "__init".
+        */
+       static struct mysoc_spi_data pdata __initdata = { ... };
+
+       static __init board_init(void)
+       {
+               ...
+               /* this board only uses SPI controller #2 */
+               mysoc_register_spi(2, &pdata);
+               ...
+       }
+
+And SOC-specific utility code might look something like:
+
+       #include <mach/spi.h>
+
+       static struct platform_device spi2 = { ... };
+
+       void mysoc_register_spi(unsigned n, struct mysoc_spi_data *pdata)
+       {
+               struct mysoc_spi_data *pdata2;
+
+               pdata2 = kmalloc(sizeof *pdata2, GFP_KERNEL);
+               *pdata2 = pdata;
+               ...
+               if (n == 2) {
+                       spi2->dev.platform_data = pdata2;
+                       register_platform_device(&spi2);
+
+                       /* also: set up pin modes so the spi2 signals are
+                        * visible on the relevant pins ... bootloaders on
+                        * production boards may already have done this, but
+                        * developer boards will often need Linux to do it.
+                        */
+               }
+               ...
+       }
+
+Notice how the platform_data for boards may be different, even if the
+same SOC controller is used.  For example, on one board SPI might use
+an external clock, where another derives the SPI clock from current
+settings of some master clock.
+
+
+DECLARE SLAVE DEVICES
+
+The second kind of information is a list of what SPI slave devices exist
+on the target board, often with some board-specific data needed for the
+driver to work correctly.
+
+Normally your arch/.../mach-*/board-*.c files would provide a small table
+listing the SPI devices on each board.  (This would typically be only a
+small handful.)  That might look like:
+
+       static struct ads7846_platform_data ads_info = {
+               .vref_delay_usecs       = 100,
+               .x_plate_ohms           = 580,
+               .y_plate_ohms           = 410,
+       };
+
+       static struct spi_board_info spi_board_info[] __initdata = {
+       {
+               .modalias       = "ads7846",
+               .platform_data  = &ads_info,
+               .mode           = SPI_MODE_0,
+               .irq            = GPIO_IRQ(31),
+               .max_speed_hz   = 120000 /* max sample rate at 3V */ * 16,
+               .bus_num        = 1,
+               .chip_select    = 0,
+       },
+       };
+
+Again, notice how board-specific information is provided; each chip may need
+several types.  This example shows generic constraints like the fastest SPI
+clock to allow (a function of board voltage in this case) or how an IRQ pin
+is wired, plus chip-specific constraints like an important delay that's
+changed by the capacitance at one pin.
+
+(There's also "controller_data", information that may be useful to the
+controller driver.  An example would be peripheral-specific DMA tuning
+data or chipselect callbacks.  This is stored in spi_device later.)
+
+The board_info should provide enough information to let the system work
+without the chip's driver being loaded.  The most troublesome aspect of
+that is likely the SPI_CS_HIGH bit in the spi_device.mode field, since
+sharing a bus with a device that interprets chipselect "backwards" is
+not possible until the infrastructure knows how to deselect it.
+
+Then your board initialization code would register that table with the SPI
+infrastructure, so that it's available later when the SPI master controller
+driver is registered:
+
+       spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info));
+
+Like with other static board-specific setup, you won't unregister those.
+
+The widely used "card" style computers bundle memory, cpu, and little else
+onto a card that's maybe just thirty square centimeters.  On such systems,
+your arch/.../mach-.../board-*.c file would primarily provide information
+about the devices on the mainboard into which such a card is plugged.  That
+certainly includes SPI devices hooked up through the card connectors!
+
+
+NON-STATIC CONFIGURATIONS
+
+Developer boards often play by different rules than product boards, and one
+example is the potential need to hotplug SPI devices and/or controllers.
+
+For those cases you might need to use spi_busnum_to_master() to look
+up the spi bus master, and will likely need spi_new_device() to provide the
+board info based on the board that was hotplugged.  Of course, you'd later
+call at least spi_unregister_device() when that board is removed.
+
+When Linux includes support for MMC/SD/SDIO/DataFlash cards through SPI, those
+configurations will also be dynamic.  Fortunately, such devices all support
+basic device identification probes, so they should hotplug normally.
+
+
+How do I write an "SPI Protocol Driver"?
+----------------------------------------
+Most SPI drivers are currently kernel drivers, but there's also support
+for userspace drivers.  Here we talk only about kernel drivers.
+
+SPI protocol drivers somewhat resemble platform device drivers:
+
+       static struct spi_driver CHIP_driver = {
+               .driver = {
+                       .name           = "CHIP",
+                       .owner          = THIS_MODULE,
+                       .pm             = &CHIP_pm_ops,
+               },
+
+               .probe          = CHIP_probe,
+               .remove         = CHIP_remove,
+       };
+
+The driver core will automatically attempt to bind this driver to any SPI
+device whose board_info gave a modalias of "CHIP".  Your probe() code
+might look like this unless you're creating a device which is managing
+a bus (appearing under /sys/class/spi_master).
+
+       static int CHIP_probe(struct spi_device *spi)
+       {
+               struct CHIP                     *chip;
+               struct CHIP_platform_data       *pdata;
+
+               /* assuming the driver requires board-specific data: */
+               pdata = &spi->dev.platform_data;
+               if (!pdata)
+                       return -ENODEV;
+
+               /* get memory for driver's per-chip state */
+               chip = kzalloc(sizeof *chip, GFP_KERNEL);
+               if (!chip)
+                       return -ENOMEM;
+               spi_set_drvdata(spi, chip);
+
+               ... etc
+               return 0;
+       }
+
+As soon as it enters probe(), the driver may issue I/O requests to
+the SPI device using "struct spi_message".  When remove() returns,
+or after probe() fails, the driver guarantees that it won't submit
+any more such messages.
+
+  - An spi_message is a sequence of protocol operations, executed
+    as one atomic sequence.  SPI driver controls include:
+
+      + when bidirectional reads and writes start ... by how its
+        sequence of spi_transfer requests is arranged;
+
+      + which I/O buffers are used ... each spi_transfer wraps a
+        buffer for each transfer direction, supporting full duplex
+        (two pointers, maybe the same one in both cases) and half
+        duplex (one pointer is NULL) transfers;
+
+      + optionally defining short delays after transfers ... using
+        the spi_transfer.delay_usecs setting (this delay can be the
+        only protocol effect, if the buffer length is zero);
+
+      + whether the chipselect becomes inactive after a transfer and
+        any delay ... by using the spi_transfer.cs_change flag;
+
+      + hinting whether the next message is likely to go to this same
+        device ... using the spi_transfer.cs_change flag on the last
+       transfer in that atomic group, and potentially saving costs
+       for chip deselect and select operations.
+
+  - Follow standard kernel rules, and provide DMA-safe buffers in
+    your messages.  That way controller drivers using DMA aren't forced
+    to make extra copies unless the hardware requires it (e.g. working
+    around hardware errata that force the use of bounce buffering).
+
+    If standard dma_map_single() handling of these buffers is inappropriate,
+    you can use spi_message.is_dma_mapped to tell the controller driver
+    that you've already provided the relevant DMA addresses.
+
+  - The basic I/O primitive is spi_async().  Async requests may be
+    issued in any context (irq handler, task, etc) and completion
+    is reported using a callback provided with the message.
+    After any detected error, the chip is deselected and processing
+    of that spi_message is aborted.
+
+  - There are also synchronous wrappers like spi_sync(), and wrappers
+    like spi_read(), spi_write(), and spi_write_then_read().  These
+    may be issued only in contexts that may sleep, and they're all
+    clean (and small, and "optional") layers over spi_async().
+
+  - The spi_write_then_read() call, and convenience wrappers around
+    it, should only be used with small amounts of data where the
+    cost of an extra copy may be ignored.  It's designed to support
+    common RPC-style requests, such as writing an eight bit command
+    and reading a sixteen bit response -- spi_w8r16() being one its
+    wrappers, doing exactly that.
+
+Some drivers may need to modify spi_device characteristics like the
+transfer mode, wordsize, or clock rate.  This is done with spi_setup(),
+which would normally be called from probe() before the first I/O is
+done to the device.  However, that can also be called at any time
+that no message is pending for that device.
+
+While "spi_device" would be the bottom boundary of the driver, the
+upper boundaries might include sysfs (especially for sensor readings),
+the input layer, ALSA, networking, MTD, the character device framework,
+or other Linux subsystems.
+
+Note that there are two types of memory your driver must manage as part
+of interacting with SPI devices.
+
+  - I/O buffers use the usual Linux rules, and must be DMA-safe.
+    You'd normally allocate them from the heap or free page pool.
+    Don't use the stack, or anything that's declared "static".
+
+  - The spi_message and spi_transfer metadata used to glue those
+    I/O buffers into a group of protocol transactions.  These can
+    be allocated anywhere it's convenient, including as part of
+    other allocate-once driver data structures.  Zero-init these.
+
+If you like, spi_message_alloc() and spi_message_free() convenience
+routines are available to allocate and zero-initialize an spi_message
+with several transfers.
+
+
+How do I write an "SPI Master Controller Driver"?
+-------------------------------------------------
+An SPI controller will probably be registered on the platform_bus; write
+a driver to bind to the device, whichever bus is involved.
+
+The main task of this type of driver is to provide an "spi_master".
+Use spi_alloc_master() to allocate the master, and spi_master_get_devdata()
+to get the driver-private data allocated for that device.
+
+       struct spi_master       *master;
+       struct CONTROLLER       *c;
+
+       master = spi_alloc_master(dev, sizeof *c);
+       if (!master)
+               return -ENODEV;
+
+       c = spi_master_get_devdata(master);
+
+The driver will initialize the fields of that spi_master, including the
+bus number (maybe the same as the platform device ID) and three methods
+used to interact with the SPI core and SPI protocol drivers.  It will
+also initialize its own internal state.  (See below about bus numbering
+and those methods.)
+
+After you initialize the spi_master, then use spi_register_master() to
+publish it to the rest of the system. At that time, device nodes for the
+controller and any predeclared spi devices will be made available, and
+the driver model core will take care of binding them to drivers.
+
+If you need to remove your SPI controller driver, spi_unregister_master()
+will reverse the effect of spi_register_master().
+
+
+BUS NUMBERING
+
+Bus numbering is important, since that's how Linux identifies a given
+SPI bus (shared SCK, MOSI, MISO).  Valid bus numbers start at zero.  On
+SOC systems, the bus numbers should match the numbers defined by the chip
+manufacturer.  For example, hardware controller SPI2 would be bus number 2,
+and spi_board_info for devices connected to it would use that number.
+
+If you don't have such hardware-assigned bus number, and for some reason
+you can't just assign them, then provide a negative bus number.  That will
+then be replaced by a dynamically assigned number. You'd then need to treat
+this as a non-static configuration (see above).
+
+
+SPI MASTER METHODS
+
+    master->setup(struct spi_device *spi)
+       This sets up the device clock rate, SPI mode, and word sizes.
+       Drivers may change the defaults provided by board_info, and then
+       call spi_setup(spi) to invoke this routine.  It may sleep.
+
+       Unless each SPI slave has its own configuration registers, don't
+       change them right away ... otherwise drivers could corrupt I/O
+       that's in progress for other SPI devices.
+
+               ** BUG ALERT:  for some reason the first version of
+               ** many spi_master drivers seems to get this wrong.
+               ** When you code setup(), ASSUME that the controller
+               ** is actively processing transfers for another device.
+
+    master->cleanup(struct spi_device *spi)
+       Your controller driver may use spi_device.controller_state to hold
+       state it dynamically associates with that device.  If you do that,
+       be sure to provide the cleanup() method to free that state.
+
+    master->prepare_transfer_hardware(struct spi_master *master)
+       This will be called by the queue mechanism to signal to the driver
+       that a message is coming in soon, so the subsystem requests the
+       driver to prepare the transfer hardware by issuing this call.
+       This may sleep.
+
+    master->unprepare_transfer_hardware(struct spi_master *master)
+       This will be called by the queue mechanism to signal to the driver
+       that there are no more messages pending in the queue and it may
+       relax the hardware (e.g. by power management calls). This may sleep.
+
+    master->transfer_one_message(struct spi_master *master,
+                                struct spi_message *mesg)
+       The subsystem calls the driver to transfer a single message while
+       queuing transfers that arrive in the meantime. When the driver is
+       finished with this message, it must call
+       spi_finalize_current_message() so the subsystem can issue the next
+       message. This may sleep.
+
+    master->transfer_one(struct spi_master *master, struct spi_device *spi,
+                        struct spi_transfer *transfer)
+       The subsystem calls the driver to transfer a single transfer while
+       queuing transfers that arrive in the meantime. When the driver is
+       finished with this transfer, it must call
+       spi_finalize_current_transfer() so the subsystem can issue the next
+       transfer. This may sleep. Note: transfer_one and transfer_one_message
+       are mutually exclusive; when both are set, the generic subsystem does
+       not call your transfer_one callback.
+
+       Return values:
+       negative errno: error
+       0: transfer is finished
+       1: transfer is still in progress
+
+    DEPRECATED METHODS
+
+    master->transfer(struct spi_device *spi, struct spi_message *message)
+       This must not sleep. Its responsibility is to arrange that the
+       transfer happens and its complete() callback is issued. The two
+       will normally happen later, after other transfers complete, and
+       if the controller is idle it will need to be kickstarted. This
+       method is not used on queued controllers and must be NULL if
+       transfer_one_message() and (un)prepare_transfer_hardware() are
+       implemented.
+
+
+SPI MESSAGE QUEUE
+
+If you are happy with the standard queueing mechanism provided by the
+SPI subsystem, just implement the queued methods specified above. Using
+the message queue has the upside of centralizing a lot of code and
+providing pure process-context execution of methods. The message queue
+can also be elevated to realtime priority on high-priority SPI traffic.
+
+Unless the queueing mechanism in the SPI subsystem is selected, the bulk
+of the driver will be managing the I/O queue fed by the now deprecated
+function transfer().
+
+That queue could be purely conceptual.  For example, a driver used only
+for low-frequency sensor access might be fine using synchronous PIO.
+
+But the queue will probably be very real, using message->queue, PIO,
+often DMA (especially if the root filesystem is in SPI flash), and
+execution contexts like IRQ handlers, tasklets, or workqueues (such
+as keventd).  Your driver can be as fancy, or as simple, as you need.
+Such a transfer() method would normally just add the message to a
+queue, and then start some asynchronous transfer engine (unless it's
+already running).
+
+
+THANKS TO
+---------
+Contributors to Linux-SPI discussions include (in alphabetical order,
+by last name):
+
+Mark Brown
+David Brownell
+Russell King
+Grant Likely
+Dmitry Pervushin
+Stephen Street
+Mark Underwood
+Andrew Victor
+Linus Walleij
+Vitaly Wool