Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / Documentation / edac.txt
diff --git a/kernel/Documentation/edac.txt b/kernel/Documentation/edac.txt
new file mode 100644 (file)
index 0000000..73fff13
--- /dev/null
@@ -0,0 +1,775 @@
+
+
+EDAC - Error Detection And Correction
+
+Written by Doug Thompson <dougthompson@xmission.com>
+7 Dec 2005
+17 Jul 2007    Updated
+
+(c) Mauro Carvalho Chehab
+05 Aug 2009    Nehalem interface
+
+EDAC is maintained and written by:
+
+       Doug Thompson, Dave Jiang, Dave Peterson et al,
+       original author: Thayne Harbaugh,
+
+Contact:
+       website:        bluesmoke.sourceforge.net
+       mailing list:   bluesmoke-devel@lists.sourceforge.net
+
+"bluesmoke" was the name for this device driver when it was "out-of-tree"
+and maintained at sourceforge.net.  When it was pushed into 2.6.16 for the
+first time, it was renamed to 'EDAC'.
+
+The bluesmoke project at sourceforge.net is now utilized as a 'staging area'
+for EDAC development, before it is sent upstream to kernel.org
+
+At the bluesmoke/EDAC project site is a series of quilt patches against
+recent kernels, stored in a SVN repository. For easier downloading, there
+is also a tarball snapshot available.
+
+============================================================================
+EDAC PURPOSE
+
+The 'edac' kernel module goal is to detect and report errors that occur
+within the computer system running under linux.
+
+MEMORY
+
+In the initial release, memory Correctable Errors (CE) and Uncorrectable
+Errors (UE) are the primary errors being harvested. These types of errors
+are harvested by the 'edac_mc' class of device.
+
+Detecting CE events, then harvesting those events and reporting them,
+CAN be a predictor of future UE events.  With CE events, the system can
+continue to operate, but with less safety. Preventive maintenance and
+proactive part replacement of memory DIMMs exhibiting CEs can reduce
+the likelihood of the dreaded UE events and system 'panics'.
+
+NON-MEMORY
+
+A new feature for EDAC, the edac_device class of device, was added in
+the 2.6.23 version of the kernel.
+
+This new device type allows for non-memory type of ECC hardware detectors
+to have their states harvested and presented to userspace via the sysfs
+interface.
+
+Some architectures have ECC detectors for L1, L2 and L3 caches, along with DMA
+engines, fabric switches, main data path switches, interconnections,
+and various other hardware data paths. If the hardware reports it, then
+a edac_device device probably can be constructed to harvest and present
+that to userspace.
+
+
+PCI BUS SCANNING
+
+In addition, PCI Bus Parity and SERR Errors are scanned for on PCI devices
+in order to determine if errors are occurring on data transfers.
+
+The presence of PCI Parity errors must be examined with a grain of salt.
+There are several add-in adapters that do NOT follow the PCI specification
+with regards to Parity generation and reporting. The specification says
+the vendor should tie the parity status bits to 0 if they do not intend
+to generate parity.  Some vendors do not do this, and thus the parity bit
+can "float" giving false positives.
+
+In the kernel there is a PCI device attribute located in sysfs that is
+checked by the EDAC PCI scanning code. If that attribute is set,
+PCI parity/error scanning is skipped for that device. The attribute
+is:
+
+       broken_parity_status
+
+as is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for
+PCI devices.
+
+FUTURE HARDWARE SCANNING
+
+EDAC will have future error detectors that will be integrated with
+EDAC or added to it, in the following list:
+
+       MCE     Machine Check Exception
+       MCA     Machine Check Architecture
+       NMI     NMI notification of ECC errors
+       MSRs    Machine Specific Register error cases
+       and other mechanisms.
+
+These errors are usually bus errors, ECC errors, thermal throttling
+and the like.
+
+
+============================================================================
+EDAC VERSIONING
+
+EDAC is composed of a "core" module (edac_core.ko) and several Memory
+Controller (MC) driver modules. On a given system, the CORE
+is loaded and one MC driver will be loaded. Both the CORE and
+the MC driver (or edac_device driver) have individual versions that reflect
+current release level of their respective modules.
+
+Thus, to "report" on what version a system is running, one must report both
+the CORE's and the MC driver's versions.
+
+
+LOADING
+
+If 'edac' was statically linked with the kernel then no loading is
+necessary.  If 'edac' was built as modules then simply modprobe the
+'edac' pieces that you need.  You should be able to modprobe
+hardware-specific modules and have the dependencies load the necessary core
+modules.
+
+Example:
+
+$> modprobe amd76x_edac
+
+loads both the amd76x_edac.ko memory controller module and the edac_mc.ko
+core module.
+
+
+============================================================================
+EDAC sysfs INTERFACE
+
+EDAC presents a 'sysfs' interface for control, reporting and attribute
+reporting purposes.
+
+EDAC lives in the /sys/devices/system/edac directory.
+
+Within this directory there currently reside 2 'edac' components:
+
+       mc      memory controller(s) system
+       pci     PCI control and status system
+
+
+============================================================================
+Memory Controller (mc) Model
+
+First a background on the memory controller's model abstracted in EDAC.
+Each 'mc' device controls a set of DIMM memory modules. These modules are
+laid out in a Chip-Select Row (csrowX) and Channel table (chX). There can
+be multiple csrows and multiple channels.
+
+Memory controllers allow for several csrows, with 8 csrows being a typical value.
+Yet, the actual number of csrows depends on the electrical "loading"
+of a given motherboard, memory controller and DIMM characteristics.
+
+Dual channels allows for 128 bit data transfers to the CPU from memory.
+Some newer chipsets allow for more than 2 channels, like Fully Buffered DIMMs
+(FB-DIMMs). The following example will assume 2 channels:
+
+
+               Channel 0       Channel 1
+       ===================================
+       csrow0  | DIMM_A0       | DIMM_B0 |
+       csrow1  | DIMM_A0       | DIMM_B0 |
+       ===================================
+
+       ===================================
+       csrow2  | DIMM_A1       | DIMM_B1 |
+       csrow3  | DIMM_A1       | DIMM_B1 |
+       ===================================
+
+In the above example table there are 4 physical slots on the motherboard
+for memory DIMMs:
+
+       DIMM_A0
+       DIMM_B0
+       DIMM_A1
+       DIMM_B1
+
+Labels for these slots are usually silk screened on the motherboard. Slots
+labeled 'A' are channel 0 in this example. Slots labeled 'B'
+are channel 1. Notice that there are two csrows possible on a
+physical DIMM. These csrows are allocated their csrow assignment
+based on the slot into which the memory DIMM is placed. Thus, when 1 DIMM
+is placed in each Channel, the csrows cross both DIMMs.
+
+Memory DIMMs come single or dual "ranked". A rank is a populated csrow.
+Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
+will have 1 csrow, csrow0. csrow1 will be empty. On the other hand,
+when 2 dual ranked DIMMs are similarly placed, then both csrow0 and
+csrow1 will be populated. The pattern repeats itself for csrow2 and
+csrow3.
+
+The representation of the above is reflected in the directory tree
+in EDAC's sysfs interface. Starting in directory
+/sys/devices/system/edac/mc each memory controller will be represented
+by its own 'mcX' directory, where 'X' is the index of the MC.
+
+
+       ..../edac/mc/
+                  |
+                  |->mc0
+                  |->mc1
+                  |->mc2
+                  ....
+
+Under each 'mcX' directory each 'csrowX' is again represented by a
+'csrowX', where 'X' is the csrow index:
+
+
+       .../mc/mc0/
+               |
+               |->csrow0
+               |->csrow2
+               |->csrow3
+               ....
+
+Notice that there is no csrow1, which indicates that csrow0 is
+composed of a single ranked DIMMs. This should also apply in both
+Channels, in order to have dual-channel mode be operational. Since
+both csrow2 and csrow3 are populated, this indicates a dual ranked
+set of DIMMs for channels 0 and 1.
+
+
+Within each of the 'mcX' and 'csrowX' directories are several
+EDAC control and attribute files.
+
+============================================================================
+'mcX' DIRECTORIES
+
+
+In 'mcX' directories are EDAC control and attribute files for
+this 'X' instance of the memory controllers.
+
+For a description of the sysfs API, please see:
+       Documentation/ABI/testing/sysfs/devices-edac
+
+
+============================================================================
+'csrowX' DIRECTORIES
+
+When CONFIG_EDAC_LEGACY_SYSFS is enabled, the sysfs will contain the
+csrowX directories. As this API doesn't work properly for Rambus, FB-DIMMs
+and modern Intel Memory Controllers, this is being deprecated in favor
+of dimmX directories.
+
+In the 'csrowX' directories are EDAC control and attribute files for
+this 'X' instance of csrow:
+
+
+Total Uncorrectable Errors count attribute file:
+
+       'ue_count'
+
+       This attribute file displays the total count of uncorrectable
+       errors that have occurred on this csrow. If panic_on_ue is set
+       this counter will not have a chance to increment, since EDAC
+       will panic the system.
+
+
+Total Correctable Errors count attribute file:
+
+       'ce_count'
+
+       This attribute file displays the total count of correctable
+       errors that have occurred on this csrow. This
+       count is very important to examine. CEs provide early
+       indications that a DIMM is beginning to fail. This count
+       field should be monitored for non-zero values and report
+       such information to the system administrator.
+
+
+Total memory managed by this csrow attribute file:
+
+       'size_mb'
+
+       This attribute file displays, in count of megabytes, of memory
+       that this csrow contains.
+
+
+Memory Type attribute file:
+
+       'mem_type'
+
+       This attribute file will display what type of memory is currently
+       on this csrow. Normally, either buffered or unbuffered memory.
+       Examples:
+               Registered-DDR
+               Unbuffered-DDR
+
+
+EDAC Mode of operation attribute file:
+
+       'edac_mode'
+
+       This attribute file will display what type of Error detection
+       and correction is being utilized.
+
+
+Device type attribute file:
+
+       'dev_type'
+
+       This attribute file will display what type of DRAM device is
+       being utilized on this DIMM.
+       Examples:
+               x1
+               x2
+               x4
+               x8
+
+
+Channel 0 CE Count attribute file:
+
+       'ch0_ce_count'
+
+       This attribute file will display the count of CEs on this
+       DIMM located in channel 0.
+
+
+Channel 0 UE Count attribute file:
+
+       'ch0_ue_count'
+
+       This attribute file will display the count of UEs on this
+       DIMM located in channel 0.
+
+
+Channel 0 DIMM Label control file:
+
+       'ch0_dimm_label'
+
+       This control file allows this DIMM to have a label assigned
+       to it. With this label in the module, when errors occur
+       the output can provide the DIMM label in the system log.
+       This becomes vital for panic events to isolate the
+       cause of the UE event.
+
+       DIMM Labels must be assigned after booting, with information
+       that correctly identifies the physical slot with its
+       silk screen label. This information is currently very
+       motherboard specific and determination of this information
+       must occur in userland at this time.
+
+
+Channel 1 CE Count attribute file:
+
+       'ch1_ce_count'
+
+       This attribute file will display the count of CEs on this
+       DIMM located in channel 1.
+
+
+Channel 1 UE Count attribute file:
+
+       'ch1_ue_count'
+
+       This attribute file will display the count of UEs on this
+       DIMM located in channel 0.
+
+
+Channel 1 DIMM Label control file:
+
+       'ch1_dimm_label'
+
+       This control file allows this DIMM to have a label assigned
+       to it. With this label in the module, when errors occur
+       the output can provide the DIMM label in the system log.
+       This becomes vital for panic events to isolate the
+       cause of the UE event.
+
+       DIMM Labels must be assigned after booting, with information
+       that correctly identifies the physical slot with its
+       silk screen label. This information is currently very
+       motherboard specific and determination of this information
+       must occur in userland at this time.
+
+============================================================================
+SYSTEM LOGGING
+
+If logging for UEs and CEs are enabled then system logs will have
+error notices indicating errors that have been detected:
+
+EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
+channel 1 "DIMM_B1": amd76x_edac
+
+EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0,
+channel 1 "DIMM_B1": amd76x_edac
+
+
+The structure of the message is:
+       the memory controller                   (MC0)
+       Error type                              (CE)
+       memory page                             (0x283)
+       offset in the page                      (0xce0)
+       the byte granularity                    (grain 8)
+               or resolution of the error
+       the error syndrome                      (0xb741)
+       memory row                              (row 0)
+       memory channel                          (channel 1)
+       DIMM label, if set prior                (DIMM B1
+       and then an optional, driver-specific message that may
+               have additional information.
+
+Both UEs and CEs with no info will lack all but memory controller,
+error type, a notice of "no info" and then an optional,
+driver-specific error message.
+
+
+============================================================================
+PCI Bus Parity Detection
+
+
+On Header Type 00 devices the primary status is looked at
+for any parity error regardless of whether Parity is enabled on the
+device.  (The spec indicates parity is generated in some cases).
+On Header Type 01 bridges, the secondary status register is also
+looked at to see if parity occurred on the bus on the other side of
+the bridge.
+
+
+SYSFS CONFIGURATION
+
+Under /sys/devices/system/edac/pci are control and attribute files as follows:
+
+
+Enable/Disable PCI Parity checking control file:
+
+       'check_pci_parity'
+
+
+       This control file enables or disables the PCI Bus Parity scanning
+       operation. Writing a 1 to this file enables the scanning. Writing
+       a 0 to this file disables the scanning.
+
+       Enable:
+       echo "1" >/sys/devices/system/edac/pci/check_pci_parity
+
+       Disable:
+       echo "0" >/sys/devices/system/edac/pci/check_pci_parity
+
+
+Parity Count:
+
+       'pci_parity_count'
+
+       This attribute file will display the number of parity errors that
+       have been detected.
+
+
+============================================================================
+MODULE PARAMETERS
+
+Panic on UE control file:
+
+       'edac_mc_panic_on_ue'
+
+       An uncorrectable error will cause a machine panic.  This is usually
+       desirable.  It is a bad idea to continue when an uncorrectable error
+       occurs - it is indeterminate what was uncorrected and the operating
+       system context might be so mangled that continuing will lead to further
+       corruption. If the kernel has MCE configured, then EDAC will never
+       notice the UE.
+
+       LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1]
+
+       RUN TIME:  echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
+
+
+Log UE control file:
+
+       'edac_mc_log_ue'
+
+       Generate kernel messages describing uncorrectable errors.  These errors
+       are reported through the system message log system.  UE statistics
+       will be accumulated even when UE logging is disabled.
+
+       LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1]
+
+       RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
+
+
+Log CE control file:
+
+       'edac_mc_log_ce'
+
+       Generate kernel messages describing correctable errors.  These
+       errors are reported through the system message log system.
+       CE statistics will be accumulated even when CE logging is disabled.
+
+       LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1]
+
+       RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
+
+
+Polling period control file:
+
+       'edac_mc_poll_msec'
+
+       The time period, in milliseconds, for polling for error information.
+       Too small a value wastes resources.  Too large a value might delay
+       necessary handling of errors and might loose valuable information for
+       locating the error.  1000 milliseconds (once each second) is the current
+       default. Systems which require all the bandwidth they can get, may
+       increase this.
+
+       LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1]
+
+       RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
+
+
+Panic on PCI PARITY Error:
+
+       'panic_on_pci_parity'
+
+
+       This control files enables or disables panicking when a parity
+       error has been detected.
+
+
+       module/kernel parameter: edac_panic_on_pci_pe=[0|1]
+
+       Enable:
+       echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
+
+       Disable:
+       echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
+
+
+
+=======================================================================
+
+
+EDAC_DEVICE type of device
+
+In the header file, edac_core.h, there is a series of edac_device structures
+and APIs for the EDAC_DEVICE.
+
+User space access to an edac_device is through the sysfs interface.
+
+At the location /sys/devices/system/edac (sysfs) new edac_device devices will
+appear.
+
+There is a three level tree beneath the above 'edac' directory. For example,
+the 'test_device_edac' device (found at the bluesmoke.sourceforget.net website)
+installs itself as:
+
+       /sys/devices/systm/edac/test-instance
+
+in this directory are various controls, a symlink and one or more 'instance'
+directories.
+
+The standard default controls are:
+
+       log_ce          boolean to log CE events
+       log_ue          boolean to log UE events
+       panic_on_ue     boolean to 'panic' the system if an UE is encountered
+                       (default off, can be set true via startup script)
+       poll_msec       time period between POLL cycles for events
+
+The test_device_edac device adds at least one of its own custom control:
+
+       test_bits       which in the current test driver does nothing but
+                       show how it is installed. A ported driver can
+                       add one or more such controls and/or attributes
+                       for specific uses.
+                       One out-of-tree driver uses controls here to allow
+                       for ERROR INJECTION operations to hardware
+                       injection registers
+
+The symlink points to the 'struct dev' that is registered for this edac_device.
+
+INSTANCES
+
+One or more instance directories are present. For the 'test_device_edac' case:
+
+       test-instance0
+
+
+In this directory there are two default counter attributes, which are totals of
+counter in deeper subdirectories.
+
+       ce_count        total of CE events of subdirectories
+       ue_count        total of UE events of subdirectories
+
+BLOCKS
+
+At the lowest directory level is the 'block' directory. There can be 0, 1
+or more blocks specified in each instance.
+
+       test-block0
+
+
+In this directory the default attributes are:
+
+       ce_count        which is counter of CE events for this 'block'
+                       of hardware being monitored
+       ue_count        which is counter of UE events for this 'block'
+                       of hardware being monitored
+
+
+The 'test_device_edac' device adds 4 attributes and 1 control:
+
+       test-block-bits-0       for every POLL cycle this counter
+                               is incremented
+       test-block-bits-1       every 10 cycles, this counter is bumped once,
+                               and test-block-bits-0 is set to 0
+       test-block-bits-2       every 100 cycles, this counter is bumped once,
+                               and test-block-bits-1 is set to 0
+       test-block-bits-3       every 1000 cycles, this counter is bumped once,
+                               and test-block-bits-2 is set to 0
+
+
+       reset-counters          writing ANY thing to this control will
+                               reset all the above counters.
+
+
+Use of the 'test_device_edac' driver should any others to create their own
+unique drivers for their hardware systems.
+
+The 'test_device_edac' sample driver is located at the
+bluesmoke.sourceforge.net project site for EDAC.
+
+=======================================================================
+NEHALEM USAGE OF EDAC APIs
+
+This chapter documents some EXPERIMENTAL mappings for EDAC API to handle
+Nehalem EDAC driver. They will likely be changed on future versions
+of the driver.
+
+Due to the way Nehalem exports Memory Controller data, some adjustments
+were done at i7core_edac driver. This chapter will cover those differences
+
+1) On Nehalem, there are one Memory Controller per Quick Patch Interconnect
+   (QPI). At the driver, the term "socket" means one QPI. This is
+   associated with a physical CPU socket.
+
+   Each MC have 3 physical read channels, 3 physical write channels and
+   3 logic channels. The driver currently sees it as just 3 channels.
+   Each channel can have up to 3 DIMMs.
+
+   The minimum known unity is DIMMs. There are no information about csrows.
+   As EDAC API maps the minimum unity is csrows, the driver sequencially
+   maps channel/dimm into different csrows.
+
+   For example, supposing the following layout:
+       Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs
+         dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
+         dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
+        Ch1 phy rd1, wr1 (0x063f4031): 2 ranks, UDIMMs
+         dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
+       Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs
+         dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
+   The driver will map it as:
+       csrow0: channel 0, dimm0
+       csrow1: channel 0, dimm1
+       csrow2: channel 1, dimm0
+       csrow3: channel 2, dimm0
+
+exports one
+   DIMM per csrow.
+
+   Each QPI is exported as a different memory controller.
+
+2) Nehalem MC has the hability to generate errors. The driver implements this
+   functionality via some error injection nodes:
+
+   For injecting a memory error, there are some sysfs nodes, under
+   /sys/devices/system/edac/mc/mc?/:
+
+   inject_addrmatch/*:
+      Controls the error injection mask register. It is possible to specify
+      several characteristics of the address to match an error code:
+         dimm = the affected dimm. Numbers are relative to a channel;
+         rank = the memory rank;
+         channel = the channel that will generate an error;
+         bank = the affected bank;
+         page = the page address;
+         column (or col) = the address column.
+      each of the above values can be set to "any" to match any valid value.
+
+      At driver init, all values are set to any.
+
+      For example, to generate an error at rank 1 of dimm 2, for any channel,
+      any bank, any page, any column:
+               echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
+               echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
+
+       To return to the default behaviour of matching any, you can do:
+               echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
+               echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
+
+   inject_eccmask:
+       specifies what bits will have troubles,
+
+   inject_section:
+       specifies what ECC cache section will get the error:
+               3 for both
+               2 for the highest
+               1 for the lowest
+
+   inject_type:
+       specifies the type of error, being a combination of the following bits:
+               bit 0 - repeat
+               bit 1 - ecc
+               bit 2 - parity
+
+       inject_enable starts the error generation when something different
+       than 0 is written.
+
+   All inject vars can be read. root permission is needed for write.
+
+   Datasheet states that the error will only be generated after a write on an
+   address that matches inject_addrmatch. It seems, however, that reading will
+   also produce an error.
+
+   For example, the following code will generate an error for any write access
+   at socket 0, on any DIMM/address on channel 2:
+
+   echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
+   echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
+   echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
+   echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
+   echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable
+   dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null
+
+   For socket 1, it is needed to replace "mc0" by "mc1" at the above
+   commands.
+
+   The generated error message will look like:
+
+   EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482 (read error: read ECC error))
+
+3) Nehalem specific Corrected Error memory counters
+
+   Nehalem have some registers to count memory errors. The driver uses those
+   registers to report Corrected Errors on devices with Registered Dimms.
+
+   However, those counters don't work with Unregistered Dimms. As the chipset
+   offers some counters that also work with UDIMMS (but with a worse level of
+   granularity than the default ones), the driver exposes those registers for
+   UDIMM memories.
+
+   They can be read by looking at the contents of all_channel_counts/
+
+   $ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
+       /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
+       0
+       /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
+       0
+       /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm2
+       0
+
+   What happens here is that errors on different csrows, but at the same
+   dimm number will increment the same counter.
+   So, in this memory mapping:
+       csrow0: channel 0, dimm0
+       csrow1: channel 0, dimm1
+       csrow2: channel 1, dimm0
+       csrow3: channel 2, dimm0
+   The hardware will increment udimm0 for an error at the first dimm at either
+       csrow0, csrow2  or csrow3;
+   The hardware will increment udimm1 for an error at the second dimm at either
+       csrow0, csrow2  or csrow3;
+   The hardware will increment udimm2 for an error at the third dimm at either
+       csrow0, csrow2  or csrow3;
+
+4) Standard error counters
+
+   The standard error counters are generated when an mcelog error is received
+   by the driver. Since, with udimm, this is counted by software, it is
+   possible that some errors could be lost. With rdimm's, they displays the
+   contents of the registers