Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / Documentation / cpu-freq / governors.txt
diff --git a/kernel/Documentation/cpu-freq/governors.txt b/kernel/Documentation/cpu-freq/governors.txt
new file mode 100644 (file)
index 0000000..77ec215
--- /dev/null
@@ -0,0 +1,269 @@
+     CPU frequency and voltage scaling code in the Linux(TM) kernel
+
+
+                        L i n u x    C P U F r e q
+
+                     C P U F r e q   G o v e r n o r s
+
+                  - information for users and developers -
+
+
+                   Dominik Brodowski  <linux@brodo.de>
+            some additions and corrections by Nico Golde <nico@ngolde.de>
+
+
+
+   Clock scaling allows you to change the clock speed of the CPUs on the
+    fly. This is a nice method to save battery power, because the lower
+            the clock speed, the less power the CPU consumes.
+
+
+Contents:
+---------
+1.   What is a CPUFreq Governor?
+
+2.   Governors In the Linux Kernel
+2.1  Performance
+2.2  Powersave
+2.3  Userspace
+2.4  Ondemand
+2.5  Conservative
+
+3.   The Governor Interface in the CPUfreq Core
+
+
+
+1. What Is A CPUFreq Governor?
+==============================
+
+Most cpufreq drivers (in fact, all except one, longrun) or even most
+cpu frequency scaling algorithms only offer the CPU to be set to one
+frequency. In order to offer dynamic frequency scaling, the cpufreq
+core must be able to tell these drivers of a "target frequency". So
+these specific drivers will be transformed to offer a "->target/target_index"
+call instead of the existing "->setpolicy" call. For "longrun", all
+stays the same, though.
+
+How to decide what frequency within the CPUfreq policy should be used?
+That's done using "cpufreq governors". Two are already in this patch
+-- they're the already existing "powersave" and "performance" which
+set the frequency statically to the lowest or highest frequency,
+respectively. At least two more such governors will be ready for
+addition in the near future, but likely many more as there are various
+different theories and models about dynamic frequency scaling
+around. Using such a generic interface as cpufreq offers to scaling
+governors, these can be tested extensively, and the best one can be
+selected for each specific use.
+
+Basically, it's the following flow graph:
+
+CPU can be set to switch independently  |         CPU can only be set
+      within specific "limits"          |       to specific frequencies
+
+                                 "CPUfreq policy"
+               consists of frequency limits (policy->{min,max})
+                    and CPUfreq governor to be used
+                        /                    \
+                       /                      \
+                      /                       the cpufreq governor decides
+                     /                        (dynamically or statically)
+                    /                         what target_freq to set within
+                   /                          the limits of policy->{min,max}
+                  /                                \
+                 /                                  \
+       Using the ->setpolicy call,              Using the ->target/target_index call,
+           the limits and the                    the frequency closest
+            "policy" is set.                     to target_freq is set.
+                                                 It is assured that it
+                                                 is within policy->{min,max}
+
+
+2. Governors In the Linux Kernel
+================================
+
+2.1 Performance
+---------------
+
+The CPUfreq governor "performance" sets the CPU statically to the
+highest frequency within the borders of scaling_min_freq and
+scaling_max_freq.
+
+
+2.2 Powersave
+-------------
+
+The CPUfreq governor "powersave" sets the CPU statically to the
+lowest frequency within the borders of scaling_min_freq and
+scaling_max_freq.
+
+
+2.3 Userspace
+-------------
+
+The CPUfreq governor "userspace" allows the user, or any userspace
+program running with UID "root", to set the CPU to a specific frequency
+by making a sysfs file "scaling_setspeed" available in the CPU-device
+directory.
+
+
+2.4 Ondemand
+------------
+
+The CPUfreq governor "ondemand" sets the CPU depending on the
+current usage. To do this the CPU must have the capability to
+switch the frequency very quickly.  There are a number of sysfs file
+accessible parameters:
+
+sampling_rate: measured in uS (10^-6 seconds), this is how often you
+want the kernel to look at the CPU usage and to make decisions on
+what to do about the frequency.  Typically this is set to values of
+around '10000' or more. It's default value is (cmp. with users-guide.txt):
+transition_latency * 1000
+Be aware that transition latency is in ns and sampling_rate is in us, so you
+get the same sysfs value by default.
+Sampling rate should always get adjusted considering the transition latency
+To set the sampling rate 750 times as high as the transition latency
+in the bash (as said, 1000 is default), do:
+echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) \
+    >ondemand/sampling_rate
+
+sampling_rate_min:
+The sampling rate is limited by the HW transition latency:
+transition_latency * 100
+Or by kernel restrictions:
+If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed.
+If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is used, the
+limits depend on the CONFIG_HZ option:
+HZ=1000: min=20000us  (20ms)
+HZ=250:  min=80000us  (80ms)
+HZ=100:  min=200000us (200ms)
+The highest value of kernel and HW latency restrictions is shown and
+used as the minimum sampling rate.
+
+up_threshold: defines what the average CPU usage between the samplings
+of 'sampling_rate' needs to be for the kernel to make a decision on
+whether it should increase the frequency.  For example when it is set
+to its default value of '95' it means that between the checking
+intervals the CPU needs to be on average more than 95% in use to then
+decide that the CPU frequency needs to be increased.  
+
+ignore_nice_load: this parameter takes a value of '0' or '1'. When
+set to '0' (its default), all processes are counted towards the
+'cpu utilisation' value.  When set to '1', the processes that are
+run with a 'nice' value will not count (and thus be ignored) in the
+overall usage calculation.  This is useful if you are running a CPU
+intensive calculation on your laptop that you do not care how long it
+takes to complete as you can 'nice' it and prevent it from taking part
+in the deciding process of whether to increase your CPU frequency.
+
+sampling_down_factor: this parameter controls the rate at which the
+kernel makes a decision on when to decrease the frequency while running
+at top speed. When set to 1 (the default) decisions to reevaluate load
+are made at the same interval regardless of current clock speed. But
+when set to greater than 1 (e.g. 100) it acts as a multiplier for the
+scheduling interval for reevaluating load when the CPU is at its top
+speed due to high load. This improves performance by reducing the overhead
+of load evaluation and helping the CPU stay at its top speed when truly
+busy, rather than shifting back and forth in speed. This tunable has no
+effect on behavior at lower speeds/lower CPU loads.
+
+powersave_bias: this parameter takes a value between 0 to 1000. It
+defines the percentage (times 10) value of the target frequency that
+will be shaved off of the target. For example, when set to 100 -- 10%,
+when ondemand governor would have targeted 1000 MHz, it will target
+1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0
+(disabled) by default.
+When AMD frequency sensitivity powersave bias driver --
+drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter
+defines the workload frequency sensitivity threshold in which a lower
+frequency is chosen instead of ondemand governor's original target.
+The frequency sensitivity is a hardware reported (on AMD Family 16h
+Processors and above) value between 0 to 100% that tells software how
+the performance of the workload running on a CPU will change when
+frequency changes. A workload with sensitivity of 0% (memory/IO-bound)
+will not perform any better on higher core frequency, whereas a
+workload with sensitivity of 100% (CPU-bound) will perform better
+higher the frequency. When the driver is loaded, this is set to 400
+by default -- for CPUs running workloads with sensitivity value below
+40%, a lower frequency is chosen. Unloading the driver or writing 0
+will disable this feature.
+
+
+2.5 Conservative
+----------------
+
+The CPUfreq governor "conservative", much like the "ondemand"
+governor, sets the CPU depending on the current usage.  It differs in
+behaviour in that it gracefully increases and decreases the CPU speed
+rather than jumping to max speed the moment there is any load on the
+CPU.  This behaviour more suitable in a battery powered environment.
+The governor is tweaked in the same manner as the "ondemand" governor
+through sysfs with the addition of:
+
+freq_step: this describes what percentage steps the cpu freq should be
+increased and decreased smoothly by.  By default the cpu frequency will
+increase in 5% chunks of your maximum cpu frequency.  You can change this
+value to anywhere between 0 and 100 where '0' will effectively lock your
+CPU at a speed regardless of its load whilst '100' will, in theory, make
+it behave identically to the "ondemand" governor.
+
+down_threshold: same as the 'up_threshold' found for the "ondemand"
+governor but for the opposite direction.  For example when set to its
+default value of '20' it means that if the CPU usage needs to be below
+20% between samples to have the frequency decreased.
+
+sampling_down_factor: similar functionality as in "ondemand" governor.
+But in "conservative", it controls the rate at which the kernel makes
+a decision on when to decrease the frequency while running in any
+speed. Load for frequency increase is still evaluated every
+sampling rate.
+
+3. The Governor Interface in the CPUfreq Core
+=============================================
+
+A new governor must register itself with the CPUfreq core using
+"cpufreq_register_governor". The struct cpufreq_governor, which has to
+be passed to that function, must contain the following values:
+
+governor->name -           A unique name for this governor
+governor->governor -       The governor callback function
+governor->owner        -           .THIS_MODULE for the governor module (if 
+                           appropriate)
+
+The governor->governor callback is called with the current (or to-be-set)
+cpufreq_policy struct for that CPU, and an unsigned int event. The
+following events are currently defined:
+
+CPUFREQ_GOV_START:   This governor shall start its duty for the CPU
+                    policy->cpu
+CPUFREQ_GOV_STOP:    This governor shall end its duty for the CPU
+                    policy->cpu
+CPUFREQ_GOV_LIMITS:  The limits for CPU policy->cpu have changed to
+                    policy->min and policy->max.
+
+If you need other "events" externally of your driver, _only_ use the
+cpufreq_governor_l(unsigned int cpu, unsigned int event) call to the
+CPUfreq core to ensure proper locking.
+
+
+The CPUfreq governor may call the CPU processor driver using one of
+these two functions:
+
+int cpufreq_driver_target(struct cpufreq_policy *policy,
+                                 unsigned int target_freq,
+                                 unsigned int relation);
+
+int __cpufreq_driver_target(struct cpufreq_policy *policy,
+                                   unsigned int target_freq,
+                                   unsigned int relation);
+
+target_freq must be within policy->min and policy->max, of course.
+What's the difference between these two functions? When your governor
+still is in a direct code path of a call to governor->governor, the
+per-CPU cpufreq lock is still held in the cpufreq core, and there's
+no need to lock it again (in fact, this would cause a deadlock). So
+use __cpufreq_driver_target only in these cases. In all other cases 
+(for example, when there's a "daemonized" function that wakes up 
+every second), use cpufreq_driver_target to lock the cpufreq per-CPU
+lock before the command is passed to the cpufreq processor driver.
+