/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fdqueue.h" struct fd_queue_info_t { int idlers; apr_thread_mutex_t *idlers_mutex; apr_thread_cond_t *wait_for_idler; int terminated; int max_idlers; apr_pool_t **recycled_pools; int num_recycled; }; static apr_status_t queue_info_cleanup(void *data_) { fd_queue_info_t *qi = data_; int i; apr_thread_cond_destroy(qi->wait_for_idler); apr_thread_mutex_destroy(qi->idlers_mutex); for (i = 0; i < qi->num_recycled; i++) { apr_pool_destroy(qi->recycled_pools[i]); } return APR_SUCCESS; } apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info, apr_pool_t *pool, int max_idlers) { apr_status_t rv; fd_queue_info_t *qi; qi = apr_palloc(pool, sizeof(*qi)); memset(qi, 0, sizeof(*qi)); rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT, pool); if (rv != APR_SUCCESS) { return rv; } rv = apr_thread_cond_create(&qi->wait_for_idler, pool); if (rv != APR_SUCCESS) { return rv; } qi->recycled_pools = (apr_pool_t **)apr_palloc(pool, max_idlers * sizeof(apr_pool_t *)); qi->num_recycled = 0; qi->max_idlers = max_idlers; apr_pool_cleanup_register(pool, qi, queue_info_cleanup, apr_pool_cleanup_null); *queue_info = qi; return APR_SUCCESS; } apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info, apr_pool_t *pool_to_recycle) { apr_status_t rv; rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } AP_DEBUG_ASSERT(queue_info->idlers >= 0); AP_DEBUG_ASSERT(queue_info->num_recycled < queue_info->max_idlers); if (pool_to_recycle) { queue_info->recycled_pools[queue_info->num_recycled++] = pool_to_recycle; } if (queue_info->idlers++ == 0) { /* Only signal if we had no idlers before. */ apr_thread_cond_signal(queue_info->wait_for_idler); } rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } return APR_SUCCESS; } apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info, apr_pool_t **recycled_pool) { apr_status_t rv; *recycled_pool = NULL; rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } AP_DEBUG_ASSERT(queue_info->idlers >= 0); while ((queue_info->idlers == 0) && (!queue_info->terminated)) { rv = apr_thread_cond_wait(queue_info->wait_for_idler, queue_info->idlers_mutex); if (rv != APR_SUCCESS) { apr_status_t rv2; rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv2 != APR_SUCCESS) { return rv2; } return rv; } } queue_info->idlers--; /* Oh, and idler? Let's take 'em! */ if (queue_info->num_recycled) { *recycled_pool = queue_info->recycled_pools[--queue_info->num_recycled]; } rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } else if (queue_info->terminated) { return APR_EOF; } else { return APR_SUCCESS; } } apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info) { apr_status_t rv; rv = apr_thread_mutex_lock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } queue_info->terminated = 1; apr_thread_cond_broadcast(queue_info->wait_for_idler); rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); if (rv != APR_SUCCESS) { return rv; } return APR_SUCCESS; } /** * Detects when the fd_queue_t is full. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds) /** * Detects when the fd_queue_t is empty. This utility function is expected * to be called from within critical sections, and is not threadsafe. */ #define ap_queue_empty(queue) ((queue)->nelts == 0) /** * Callback routine that is called to destroy this * fd_queue_t when its pool is destroyed. */ static apr_status_t ap_queue_destroy(void *data) { fd_queue_t *queue = data; /* Ignore errors here, we can't do anything about them anyway. * XXX: We should at least try to signal an error here, it is * indicative of a programmer error. -aaron */ apr_thread_cond_destroy(queue->not_empty); apr_thread_mutex_destroy(queue->one_big_mutex); return APR_SUCCESS; } /** * Initialize the fd_queue_t. */ apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity, apr_pool_t *a) { int i; apr_status_t rv; if ((rv = apr_thread_mutex_create(&queue->one_big_mutex, APR_THREAD_MUTEX_DEFAULT, a)) != APR_SUCCESS) { return rv; } if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) { return rv; } queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t)); queue->bounds = queue_capacity; queue->nelts = 0; /* Set all the sockets in the queue to NULL */ for (i = 0; i < queue_capacity; ++i) queue->data[i].sd = NULL; apr_pool_cleanup_register(a, queue, ap_queue_destroy, apr_pool_cleanup_null); return APR_SUCCESS; } /** * Push a new socket onto the queue. Blocks if the queue is full. Once * the push operation has completed, it signals other threads waiting * in ap_queue_pop() that they may continue consuming sockets. */ apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd, apr_pool_t *p) { fd_queue_elem_t *elem; apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } AP_DEBUG_ASSERT(!queue->terminated); AP_DEBUG_ASSERT(!ap_queue_full(queue)); elem = &queue->data[queue->nelts]; elem->sd = sd; elem->p = p; queue->nelts++; apr_thread_cond_signal(queue->not_empty); if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return APR_SUCCESS; } /** * Retrieves the next available socket from the queue. If there are no * sockets available, it will block until one becomes available. * Once retrieved, the socket is placed into the address specified by * 'sd'. */ apr_status_t ap_queue_pop(fd_queue_t *queue, apr_socket_t **sd, apr_pool_t **p) { fd_queue_elem_t *elem; apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } /* Keep waiting until we wake up and find that the queue is not empty. */ if (ap_queue_empty(queue)) { if (!queue->terminated) { apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex); } /* If we wake up and it's still empty, then we were interrupted */ if (ap_queue_empty(queue)) { rv = apr_thread_mutex_unlock(queue->one_big_mutex); if (rv != APR_SUCCESS) { return rv; } if (queue->terminated) { return APR_EOF; /* no more elements ever again */ } else { return APR_EINTR; } } } elem = &queue->data[--queue->nelts]; *sd = elem->sd; *p = elem->p; #ifdef AP_DEBUG elem->sd = NULL; elem->p = NULL; #endif /* AP_DEBUG */ rv = apr_thread_mutex_unlock(queue->one_big_mutex); return rv; } apr_status_t ap_queue_interrupt_all(fd_queue_t *queue) { apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } apr_thread_cond_broadcast(queue->not_empty); if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return APR_SUCCESS; } apr_status_t ap_queue_term(fd_queue_t *queue) { apr_status_t rv; if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } /* we must hold one_big_mutex when setting this... otherwise, * we could end up setting it and waking everybody up just after a * would-be popper checks it but right before they block */ queue->terminated = 1; if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { return rv; } return ap_queue_interrupt_all(queue); }