/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* _ _ * _ __ ___ ___ __| | ___ ___| | mod_ssl * | '_ ` _ \ / _ \ / _` | / __/ __| | Apache Interface to OpenSSL * | | | | | | (_) | (_| | \__ \__ \ | * |_| |_| |_|\___/ \__,_|___|___/___/_| * |_____| * ssl_util_table.c * High Performance Hash Table Functions */ /* * Generic hash table handler * Table 4.1.0 July-28-1998 * * This library is a generic open hash table with buckets and * linked lists. It is pretty high performance. Each element * has a key and a data. The user indexes on the key to find the * data. * * Copyright 1998 by Gray Watson * * Permission to use, copy, modify, and distribute this software for any * purpose and without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies, * and that the name of Gray Watson not be used in advertising or * publicity pertaining to distribution of the document or software * without specific, written prior permission. * * Gray Watson makes no representations about the suitability of the * software described herein for any purpose. It is provided "as is" * without express or implied warranty. * * Modified in March 1999 by Ralf S. Engelschall * for use in the mod_ssl project: * o merged table_loc.h header into table.c * o removed fillproto-comments from table.h * o removed mmap() support because it's too unportable * o added support for MM library via ta_{malloc,calloc,realloc,free} */ #include #include /* forward definitions for table.h */ typedef struct table_st table_t; typedef struct table_entry_st table_entry_t; #define TABLE_PRIVATE #include "ssl_util_table.h" #include "mod_ssl.h" /****************************** local defines ******************************/ #ifndef BITSPERBYTE #define BITSPERBYTE 8 #endif #ifndef BITS #define BITS(type) (BITSPERBYTE * (int)sizeof(type)) #endif #define TABLE_MAGIC 0xBADF00D /* very magic magicness */ #define LINEAR_MAGIC 0xAD00D00 /* magic value for linear struct */ #define DEFAULT_SIZE 1024 /* default table size */ #define MAX_ALIGNMENT 128 /* max alignment value */ #define MAX_SORT_SPLITS 128 /* qsort can handle 2^128 entries */ /* returns 1 when we should grow or shrink the table */ #define SHOULD_TABLE_GROW(tab) ((tab)->ta_entry_n > (tab)->ta_bucket_n * 2) #define SHOULD_TABLE_SHRINK(tab) ((tab)->ta_entry_n < (tab)->ta_bucket_n / 2) /* * void HASH_MIX * * DESCRIPTION: * * Mix 3 32-bit values reversibly. For every delta with one or two bits * set, and the deltas of all three high bits or all three low bits, * whether the original value of a,b,c is almost all zero or is * uniformly distributed. * * If HASH_MIX() is run forward or backward, at least 32 bits in a,b,c * have at least 1/4 probability of changing. If mix() is run * forward, every bit of c will change between 1/3 and 2/3 of the * time. (Well, 22/100 and 78/100 for some 2-bit deltas.) * * HASH_MIX() takes 36 machine instructions, but only 18 cycles on a * superscalar machine (like a Pentium or a Sparc). No faster mixer * seems to work, that's the result of my brute-force search. There * were about 2^68 hashes to choose from. I only tested about a * billion of those. */ #define HASH_MIX(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while(0) #define TABLE_POINTER(table, type, pnt) (pnt) /* * Macros to get at the key and the data pointers */ #define ENTRY_KEY_BUF(entry_p) ((entry_p)->te_key_buf) #define ENTRY_DATA_BUF(tab_p, entry_p) \ (ENTRY_KEY_BUF(entry_p) + (entry_p)->te_key_size) /* * Table structures... */ /* * HACK: this should be equiv as the table_entry_t without the key_buf * char. We use this with the ENTRY_SIZE() macro above which solves * the problem with the lack of the [0] GNU hack. We use the * table_entry_t structure to better map the memory and make things * faster. */ typedef struct table_shell_st { unsigned int te_key_size; /* size of data */ unsigned int te_data_size; /* size of data */ struct table_shell_st *te_next_p; /* pointer to next in the list */ /* NOTE: this does not have the te_key_buf field here */ } table_shell_t; /* * Elements in the bucket linked-lists. The key[1] is the start of * the key with the rest of the key and all of the data information * packed in memory directly after the end of this structure. * * NOTE: if this structure is changed, the table_shell_t must be changed * to match. */ struct table_entry_st { unsigned int te_key_size; /* size of data */ unsigned int te_data_size; /* size of data */ struct table_entry_st *te_next_p; /* pointer to next in the list */ unsigned char te_key_buf[1]; /* 1st byte of key buf */ }; /* external structure for debuggers be able to see void */ typedef table_entry_t table_entry_ext_t; /* main table structure */ struct table_st { unsigned int ta_magic; /* magic number */ unsigned int ta_flags; /* table's flags defined in table.h */ unsigned int ta_bucket_n; /* num of buckets, should be 2^X */ unsigned int ta_entry_n; /* num of entries in all buckets */ unsigned int ta_data_align; /* data alignment value */ table_entry_t **ta_buckets; /* array of linked lists */ table_linear_t ta_linear; /* linear tracking */ unsigned long ta_file_size; /* size of on-disk space */ void *(*ta_malloc)(void *opt_param, size_t size); void *(*ta_calloc)(void *opt_param, size_t number, size_t size); void *(*ta_realloc)(void *opt_param, void *ptr, size_t size); void (*ta_free)(void *opt_param, void *ptr); void *opt_param; }; /* external table structure for debuggers */ typedef table_t table_ext_t; /* local comparison functions */ typedef int (*compare_t) (const void *element1_p, const void *element2_p, table_compare_t user_compare, const table_t * table_p); /* * to map error to string */ typedef struct { int es_error; /* error number */ char *es_string; /* assocaited string */ } error_str_t; static error_str_t errors[] = { {TABLE_ERROR_NONE, "no error"}, {TABLE_ERROR_PNT, "invalid table pointer"}, {TABLE_ERROR_ARG_NULL, "buffer argument is null"}, {TABLE_ERROR_SIZE, "incorrect size argument"}, {TABLE_ERROR_OVERWRITE, "key exists and no overwrite"}, {TABLE_ERROR_NOT_FOUND, "key does not exist"}, {TABLE_ERROR_ALLOC, "error allocating memory"}, {TABLE_ERROR_LINEAR, "linear access not in progress"}, {TABLE_ERROR_OPEN, "could not open file"}, {TABLE_ERROR_SEEK, "could not seek to position in file"}, {TABLE_ERROR_READ, "could not read from file"}, {TABLE_ERROR_WRITE, "could not write to file"}, {TABLE_ERROR_EMPTY, "table is empty"}, {TABLE_ERROR_NOT_EMPTY, "table contains data"}, {TABLE_ERROR_ALIGNMENT, "invalid alignment value"}, {0} }; #define INVALID_ERROR "invalid error code" /********************** wrappers for system functions ************************/ static void *sys_malloc(void *param, size_t size) { return malloc(size); } static void *sys_calloc(void *param, size_t size1, size_t size2) { return calloc(size1, size2); } static void *sys_realloc(void *param, void *ptr, size_t size) { return realloc(ptr, size); } static void sys_free(void *param, void *ptr) { free(ptr); } /****************************** local functions ******************************/ /* * static table_entry_t *first_entry * * DESCRIPTION: * * Return the first entry in the table. It will set the linear * structure counter to the position of the first entry. * * RETURNS: * * Success: A pointer to the first entry in the table. * * Failure: NULL if there is no first entry. * * ARGUMENTS: * * table_p - Table whose next entry we are finding. * * linear_p - Pointer to a linear structure which we will advance and * then find the corresponding entry. */ static table_entry_t *first_entry(table_t * table_p, table_linear_t * linear_p) { table_entry_t *entry_p; unsigned int bucket_c = 0; /* look for the first non-empty bucket */ for (bucket_c = 0; bucket_c < table_p->ta_bucket_n; bucket_c++) { entry_p = table_p->ta_buckets[bucket_c]; if (entry_p != NULL) { if (linear_p != NULL) { linear_p->tl_bucket_c = bucket_c; linear_p->tl_entry_c = 0; } return TABLE_POINTER(table_p, table_entry_t *, entry_p); } } return NULL; } /* * static table_entry_t *next_entry * * DESCRIPTION: * * Return the next entry in the table which is past the position in * our linear pointer. It will advance the linear structure counters. * * RETURNS: * * Success: A pointer to the next entry in the table. * * Failure: NULL. * * ARGUMENTS: * * table_p - Table whose next entry we are finding. * * linear_p - Pointer to a linear structure which we will advance and * then find the corresponding entry. * * error_p - Pointer to an integer which when the routine returns will * contain a table error code. */ static table_entry_t *next_entry(table_t * table_p, table_linear_t * linear_p, int *error_p) { table_entry_t *entry_p; int entry_c; /* can't next if we haven't first-ed */ if (linear_p == NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_LINEAR; return NULL; } if (linear_p->tl_bucket_c >= table_p->ta_bucket_n) { /* * NOTE: this might happen if we delete an item which shortens the * table bucket numbers. */ if (error_p != NULL) *error_p = TABLE_ERROR_NOT_FOUND; return NULL; } linear_p->tl_entry_c++; /* find the entry which is the nth in the list */ entry_p = table_p->ta_buckets[linear_p->tl_bucket_c]; /* NOTE: we swap the order here to be more efficient */ for (entry_c = linear_p->tl_entry_c; entry_c > 0; entry_c--) { /* did we reach the end of the list? */ if (entry_p == NULL) break; entry_p = TABLE_POINTER(table_p, table_entry_t *, entry_p)->te_next_p; } /* did we find an entry in the current bucket? */ if (entry_p != NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_NONE; return TABLE_POINTER(table_p, table_entry_t *, entry_p); } /* find the first entry in the next non-empty bucket */ linear_p->tl_entry_c = 0; for (linear_p->tl_bucket_c++; linear_p->tl_bucket_c < table_p->ta_bucket_n; linear_p->tl_bucket_c++) { entry_p = table_p->ta_buckets[linear_p->tl_bucket_c]; if (entry_p != NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_NONE; return TABLE_POINTER(table_p, table_entry_t *, entry_p); } } if (error_p != NULL) *error_p = TABLE_ERROR_NOT_FOUND; return NULL; } /* * static unsigned int hash * * DESCRIPTION: * * Hash a variable-length key into a 32-bit value. Every bit of the * key affects every bit of the return value. Every 1-bit and 2-bit * delta achieves avalanche. About (6 * len + 35) instructions. The * best hash table sizes are powers of 2. There is no need to use mod * (sooo slow!). If you need less than 32 bits, use a bitmask. For * example, if you need only 10 bits, do h = (h & hashmask(10)); In * which case, the hash table should have hashsize(10) elements. * * By Bob Jenkins, 1996. bob_jenkins@compuserve.com. You may use * this code any way you wish, private, educational, or commercial. * It's free. See * http://ourworld.compuserve.com/homepages/bob_jenkins/evahash.htm * Use for hash table lookup, or anything where one collision in 2^^32 * is acceptable. Do NOT use for cryptographic purposes. * * RETURNS: * * Returns a 32-bit hash value. * * ARGUMENTS: * * key - Key (the unaligned variable-length array of bytes) that we * are hashing. * * length - Length of the key in bytes. * * init_val - Initialization value of the hash if you need to hash a * number of strings together. For instance, if you are hashing N * strings (unsigned char **)keys, do it like this: * * for (i=0, h=0; i= 12; len -= 12) { a += (key_p[0] + ((unsigned long) key_p[1] << 8) + ((unsigned long) key_p[2] << 16) + ((unsigned long) key_p[3] << 24)); b += (key_p[4] + ((unsigned long) key_p[5] << 8) + ((unsigned long) key_p[6] << 16) + ((unsigned long) key_p[7] << 24)); c += (key_p[8] + ((unsigned long) key_p[9] << 8) + ((unsigned long) key_p[10] << 16) + ((unsigned long) key_p[11] << 24)); HASH_MIX(a, b, c); key_p += 12; } c += length; /* all the case statements fall through to the next */ switch (len) { case 11: c += ((unsigned long) key_p[10] << 24); case 10: c += ((unsigned long) key_p[9] << 16); case 9: c += ((unsigned long) key_p[8] << 8); /* the first byte of c is reserved for the length */ case 8: b += ((unsigned long) key_p[7] << 24); case 7: b += ((unsigned long) key_p[6] << 16); case 6: b += ((unsigned long) key_p[5] << 8); case 5: b += key_p[4]; case 4: a += ((unsigned long) key_p[3] << 24); case 3: a += ((unsigned long) key_p[2] << 16); case 2: a += ((unsigned long) key_p[1] << 8); case 1: a += key_p[0]; /* case 0: nothing left to add */ } HASH_MIX(a, b, c); return c; } /* * static int entry_size * * DESCRIPTION: * * Calculates the appropriate size of an entry to include the key and * data sizes as well as any associated alignment to the data. * * RETURNS: * * The associated size of the entry. * * ARGUMENTS: * * table_p - Table associated with the entries whose size we are * determining. * * key_size - Size of the entry key. * * data - Size of the entry data. */ static int entry_size(const table_t * table_p, const unsigned int key_size, const unsigned int data_size) { int size, left; /* initial size -- key is already aligned if right after struct */ size = sizeof(struct table_shell_st) + key_size; /* if there is no alignment then it is easy */ if (table_p->ta_data_align == 0) return size + data_size; /* add in our alignement */ left = size & (table_p->ta_data_align - 1); if (left > 0) size += table_p->ta_data_align - left; /* we add the data size here after the alignment */ size += data_size; return size; } /* * static unsigned char *entry_data_buf * * DESCRIPTION: * * Companion to the ENTRY_DATA_BUF macro but this handles any * associated alignment to the data in the entry. * * RETURNS: * * Pointer to the data segment of the entry. * * ARGUMENTS: * * table_p - Table associated with the entry. * * entry_p - Entry whose data pointer we are determining. */ static unsigned char *entry_data_buf(const table_t * table_p, const table_entry_t * entry_p) { const unsigned char *buf_p; int size, pad; buf_p = entry_p->te_key_buf + entry_p->te_key_size; /* if there is no alignment then it is easy */ if (table_p->ta_data_align == 0) return (unsigned char *) buf_p; /* we need the size of the space before the data */ size = sizeof(struct table_shell_st) + entry_p->te_key_size; /* add in our alignment */ pad = size & (table_p->ta_data_align - 1); if (pad > 0) pad = table_p->ta_data_align - pad; return (unsigned char *) buf_p + pad; } /******************************* sort routines *******************************/ /* * static int our_compare * * DESCRIPTION: * * Compare two entries by calling user's compare program or by using * memcmp. * * RETURNS: * * < 0, == 0, or > 0 depending on whether p1 is > p2, == p2, < p2. * * ARGUMENTS: * * p1 - First entry pointer to compare. * * p2 - Second entry pointer to compare. * * compare - User comparison function. Ignored. * * table_p - Associated table being ordered. Ignored. */ static int local_compare(const void *p1, const void *p2, table_compare_t compare, const table_t * table_p) { const table_entry_t *const *ent1_p = p1, *const *ent2_p = p2; int cmp; unsigned int size; /* compare as many bytes as we can */ size = (*ent1_p)->te_key_size; if ((*ent2_p)->te_key_size < size) size = (*ent2_p)->te_key_size; cmp = memcmp(ENTRY_KEY_BUF(*ent1_p), ENTRY_KEY_BUF(*ent2_p), size); /* if common-size equal, then if next more bytes, it is larger */ if (cmp == 0) cmp = (*ent1_p)->te_key_size - (*ent2_p)->te_key_size; return cmp; } /* * static int external_compare * * DESCRIPTION: * * Compare two entries by calling user's compare program or by using * memcmp. * * RETURNS: * * < 0, == 0, or > 0 depending on whether p1 is > p2, == p2, < p2. * * ARGUMENTS: * * p1 - First entry pointer to compare. * * p2 - Second entry pointer to compare. * * user_compare - User comparison function. * * table_p - Associated table being ordered. */ static int external_compare(const void *p1, const void *p2, table_compare_t user_compare, const table_t * table_p) { const table_entry_t *const *ent1_p = p1, *const *ent2_p = p2; /* since we know we are not aligned we can use the EXTRY_DATA_BUF macro */ return user_compare(ENTRY_KEY_BUF(*ent1_p), (*ent1_p)->te_key_size, ENTRY_DATA_BUF(table_p, *ent1_p), (*ent1_p)->te_data_size, ENTRY_KEY_BUF(*ent2_p), (*ent2_p)->te_key_size, ENTRY_DATA_BUF(table_p, *ent2_p), (*ent2_p)->te_data_size); } /* * static int external_compare_align * * DESCRIPTION: * * Compare two entries by calling user's compare program or by using * memcmp. Alignment information is necessary. * * RETURNS: * * < 0, == 0, or > 0 depending on whether p1 is > p2, == p2, < p2. * * ARGUMENTS: * * p1 - First entry pointer to compare. * * p2 - Second entry pointer to compare. * * user_compare - User comparison function. * * table_p - Associated table being ordered. */ static int external_compare_align(const void *p1, const void *p2, table_compare_t user_compare, const table_t * table_p) { const table_entry_t *const *ent1_p = p1, *const *ent2_p = p2; /* since we are aligned we have to use the entry_data_buf function */ return user_compare(ENTRY_KEY_BUF(*ent1_p), (*ent1_p)->te_key_size, entry_data_buf(table_p, *ent1_p), (*ent1_p)->te_data_size, ENTRY_KEY_BUF(*ent2_p), (*ent2_p)->te_key_size, entry_data_buf(table_p, *ent2_p), (*ent2_p)->te_data_size); } /* * static void split * * DESCRIPTION: * * This sorts an array of longs via the quick sort algorithm (it's * pretty quick) * * RETURNS: * * None. * * ARGUMENTS: * * first_p - Start of the list that we are splitting. * * last_p - Last entry in the list that we are splitting. * * compare - Comparison function which is handling the actual * elements. This is either a local function or a function to setup * the problem element key and data pointers which then hands off to * the user function. * * user_compare - User comparison function. Could be NULL if we are * just using a local comparison function. * * table_p - Associated table being sorted. */ static void split(void *first_p, void *last_p, compare_t compare, table_compare_t user_compare, table_t * table_p) { void *pivot_p, *left_p, *right_p, *left_last_p, *right_first_p; void *firsts[MAX_SORT_SPLITS], *lasts[MAX_SORT_SPLITS]; int split_c = 0; for (;;) { /* no need to split the list if it is < 2 elements */ while (first_p >= last_p) { if (split_c == 0) { /* we are done */ return; } split_c--; first_p = firsts[split_c]; last_p = lasts[split_c]; } left_p = first_p; right_p = last_p; pivot_p = first_p; do { /* scan from right hand side */ while (right_p > left_p && compare(right_p, pivot_p, user_compare, table_p) > 0) right_p = (char *) right_p - sizeof(table_entry_t *); /* scan from left hand side */ while (right_p > left_p && compare(pivot_p, left_p, user_compare, table_p) >= 0) left_p = (char *) left_p + sizeof(table_entry_t *); /* if the pointers haven't met then swap values */ if (right_p > left_p) { /* swap_bytes(left_p, right_p) */ table_entry_t *temp; temp = *(table_entry_t **) left_p; *(table_entry_t **) left_p = *(table_entry_t **) right_p; *(table_entry_t **) right_p = temp; } } while (right_p > left_p); /* now we swap the pivot with the right-hand side */ { /* swap_bytes(pivot_p, right_p); */ table_entry_t *temp; temp = *(table_entry_t **) pivot_p; *(table_entry_t **) pivot_p = *(table_entry_t **) right_p; *(table_entry_t **) right_p = temp; } pivot_p = right_p; /* save the section to the right of the pivot in our stack */ right_first_p = (char *) pivot_p + sizeof(table_entry_t *); left_last_p = (char *) pivot_p - sizeof(table_entry_t *); /* do we need to save the righthand side? */ if (right_first_p < last_p) { if (split_c >= MAX_SORT_SPLITS) { /* sanity check here -- we should never get here */ abort(); } firsts[split_c] = right_first_p; lasts[split_c] = last_p; split_c++; } /* do the left hand side of the pivot */ /* first_p = first_p */ last_p = left_last_p; } } /*************************** exported routines *******************************/ /* * table_t *table_alloc * * DESCRIPTION: * * Allocate a new table structure. * * RETURNS: * * A pointer to the new table structure which must be passed to * table_free to be deallocated. On error a NULL is returned. * * ARGUMENTS: * * bucket_n - Number of buckets for the hash table. Our current hash * value works best with base two numbers. Set to 0 to take the * library default of 1024. * * error_p - Pointer to an integer which, if not NULL, will contain a * table error code. * * malloc_f, realloc_f, free_f - Pointers to malloc(3)-, realloc(3)- * and free(3)-style functions. */ table_t *table_alloc(const unsigned int bucket_n, int *error_p, void *(*malloc_f)(void *opt_param, size_t size), void *(*calloc_f)(void *opt_param, size_t number, size_t size), void *(*realloc_f)(void *opt_param, void *ptr, size_t size), void (*free_f)(void *opt_param, void *ptr), void *opt_param) { table_t *table_p = NULL; unsigned int buck_n; /* allocate a table structure */ if (malloc_f != NULL) table_p = malloc_f(opt_param, sizeof(table_t)); else table_p = malloc(sizeof(table_t)); if (table_p == NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_ALLOC; return NULL; } if (bucket_n > 0) buck_n = bucket_n; else buck_n = DEFAULT_SIZE; /* allocate the buckets which are NULLed */ if (calloc_f != NULL) table_p->ta_buckets = (table_entry_t **)calloc_f(opt_param, buck_n, sizeof(table_entry_t *)); else table_p->ta_buckets = (table_entry_t **)calloc(buck_n, sizeof(table_entry_t *)); if (table_p->ta_buckets == NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_ALLOC; if (free_f != NULL) free_f(opt_param, table_p); else free(table_p); return NULL; } /* initialize structure */ table_p->ta_magic = TABLE_MAGIC; table_p->ta_flags = 0; table_p->ta_bucket_n = buck_n; table_p->ta_entry_n = 0; table_p->ta_data_align = 0; table_p->ta_linear.tl_magic = 0; table_p->ta_linear.tl_bucket_c = 0; table_p->ta_linear.tl_entry_c = 0; table_p->ta_file_size = 0; table_p->ta_malloc = malloc_f != NULL ? malloc_f : sys_malloc; table_p->ta_calloc = calloc_f != NULL ? calloc_f : sys_calloc; table_p->ta_realloc = realloc_f != NULL ? realloc_f : sys_realloc; table_p->ta_free = free_f != NULL ? free_f : sys_free; table_p->opt_param = opt_param; if (error_p != NULL) *error_p = TABLE_ERROR_NONE; return table_p; } /* * int table_attr * * DESCRIPTION: * * Set the attributes for the table. The available attributes are * specified at the top of table.h. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Pointer to a table structure which we will be altering. * * attr - Attribute(s) that we will be applying to the table. */ int table_attr(table_t * table_p, const int attr) { if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; table_p->ta_flags = attr; return TABLE_ERROR_NONE; } /* * int table_set_data_alignment * * DESCRIPTION: * * Set the alignment for the data in the table. For data elements * sizeof(long) is recommended unless you use smaller data types * exclusively. * * WARNING: This must be done before any data gets put into the table. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Pointer to a table structure which we will be altering. * * alignment - Alignment requested for the data. Must be a power of * 2. Set to 0 for none. */ int table_set_data_alignment(table_t * table_p, const int alignment) { int val; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (table_p->ta_entry_n > 0) return TABLE_ERROR_NOT_EMPTY; /* defaults */ if (alignment < 2) table_p->ta_data_align = 0; else { /* verify we have a base 2 number */ for (val = 2; val < MAX_ALIGNMENT; val *= 2) { if (val == alignment) break; } if (val >= MAX_ALIGNMENT) return TABLE_ERROR_ALIGNMENT; table_p->ta_data_align = alignment; } return TABLE_ERROR_NONE; } /* * int table_clear * * DESCRIPTION: * * Clear out and free all elements in a table structure. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer that we will be clearing. */ int table_clear(table_t * table_p) { table_entry_t *entry_p, *next_p; table_entry_t **bucket_p, **bounds_p; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; /* free the table allocation and table structure */ bounds_p = table_p->ta_buckets + table_p->ta_bucket_n; for (bucket_p = table_p->ta_buckets; bucket_p < bounds_p; bucket_p++) { for (entry_p = *bucket_p; entry_p != NULL; entry_p = next_p) { /* record the next pointer before we free */ next_p = entry_p->te_next_p; table_p->ta_free(table_p->opt_param, entry_p); } /* clear the bucket entry after we free its entries */ *bucket_p = NULL; } /* reset table state info */ table_p->ta_entry_n = 0; table_p->ta_linear.tl_magic = 0; table_p->ta_linear.tl_bucket_c = 0; table_p->ta_linear.tl_entry_c = 0; return TABLE_ERROR_NONE; } /* * int table_free * * DESCRIPTION: * * Deallocates a table structure. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer that we will be freeing. */ int table_free(table_t * table_p) { int ret; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; ret = table_clear(table_p); if (table_p->ta_buckets != NULL) table_p->ta_free(table_p->opt_param, table_p->ta_buckets); table_p->ta_magic = 0; table_p->ta_free(table_p->opt_param, table_p); return ret; } /* * int table_insert_kd * * DESCRIPTION: * * Like table_insert except it passes back a pointer to the key and * the data buffers after they have been inserted into the table * structure. * * This routine adds a key/data pair both of which are made up of a * buffer of bytes and an associated size. Both the key and the data * will be copied into buffers allocated inside the table. If the key * exists already, the associated data will be replaced if the * overwrite flag is set, otherwise an error is returned. * * NOTE: be very careful changing the values since the table library * provides the pointers to its memory. The key can _never_ be * changed otherwise you will not find it again. The data can be * changed but its length can never be altered unless you delete and * re-insert it into the table. * * WARNING: The pointers to the key and data are not in any specific * alignment. Accessing the key and/or data as an short, integer, or * long pointer directly can cause problems. * * WARNING: Replacing a data cell (not inserting) will cause the table * linked list to be temporarily invalid. Care must be taken with * multiple threaded programs which are relying on the first/next * linked list to be always valid. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer into which we will be inserting a * new key/data pair. * * key_buf - Buffer of bytes of the key that we are inserting. If you * are storing an (int) as the key (for example) then key_buf should * be a (int *). * * key_size - Size of the key_buf buffer. If set to < 0 then the * library will do a strlen of key_buf and add 1 for the '\0'. If you * are storing an (int) as the key (for example) then key_size should * be sizeof(int). * * data_buf - Buffer of bytes of the data that we are inserting. If * it is NULL then the library will allocate space for the data in the * table without copying in any information. If data_buf is NULL and * data_size is 0 then the library will associate a NULL data pointer * with the key. If you are storing a (long) as the data (for * example) then data_buf should be a (long *). * * data_size - Size of the data_buf buffer. If set to < 0 then the * library will do a strlen of data_buf and add 1 for the '\0'. If * you are storing an (long) as the key (for example) then key_size * should be sizeof(long). * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the key storage that was allocated in the table. If you are * storing an (int) as the key (for example) then key_buf_p should be * (int **) i.e. the address of a (int *). * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that was allocated in the table. If you are * storing an (long) as the data (for example) then data_buf_p should * be (long **) i.e. the address of a (long *). * * overwrite - Flag which, if set to 1, will allow the overwriting of * the data in the table with the new data if the key already exists * in the table. */ int table_insert_kd(table_t * table_p, const void *key_buf, const int key_size, const void *data_buf, const int data_size, void **key_buf_p, void **data_buf_p, const char overwrite_b) { int bucket; unsigned int ksize, dsize; table_entry_t *entry_p, *last_p; void *key_copy_p, *data_copy_p; /* check the arguments */ if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (key_buf == NULL) return TABLE_ERROR_ARG_NULL; /* data_buf can be null but size must be >= 0, if it isn't null size != 0 */ if ((data_buf == NULL && data_size < 0) || (data_buf != NULL && data_size == 0)) return TABLE_ERROR_SIZE; /* determine sizes of key and data */ if (key_size < 0) ksize = strlen((char *) key_buf) + sizeof(char); else ksize = key_size; if (data_size < 0) dsize = strlen((char *) data_buf) + sizeof(char); else dsize = data_size; /* get the bucket number via a hash function */ bucket = hash(key_buf, ksize, 0) % table_p->ta_bucket_n; /* look for the entry in this bucket, only check keys of the same size */ last_p = NULL; for (entry_p = table_p->ta_buckets[bucket]; (entry_p != NULL) && (entry_p->te_next_p != last_p); last_p = entry_p, entry_p = entry_p->te_next_p) { if (entry_p->te_key_size == ksize && memcmp(ENTRY_KEY_BUF(entry_p), key_buf, ksize) == 0) break; } /* did we find it? then we are in replace mode. */ if (entry_p != NULL) { /* can we not overwrite existing data? */ if (!overwrite_b) { if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } return TABLE_ERROR_OVERWRITE; } /* re-alloc entry's data if the new size != the old */ if (dsize != entry_p->te_data_size) { /* * First we delete it from the list to keep the list whole. * This properly preserves the linked list in case we have a * thread marching through the linked list while we are * inserting. Maybe this is an unnecessary protection but it * should not harm that much. */ if (last_p == NULL) table_p->ta_buckets[bucket] = entry_p->te_next_p; else last_p->te_next_p = entry_p->te_next_p; /* * Realloc the structure which may change its pointer. NOTE: * this may change any previous data_key_p and data_copy_p * pointers. */ entry_p = (table_entry_t *) table_p->ta_realloc(table_p->opt_param, entry_p, entry_size(table_p, entry_p->te_key_size, dsize)); if (entry_p == NULL) return TABLE_ERROR_ALLOC; /* add it back to the front of the list */ entry_p->te_data_size = dsize; entry_p->te_next_p = table_p->ta_buckets[bucket]; table_p->ta_buckets[bucket] = entry_p; } /* copy or replace data in storage */ if (dsize > 0) { if (table_p->ta_data_align == 0) data_copy_p = ENTRY_DATA_BUF(table_p, entry_p); else data_copy_p = entry_data_buf(table_p, entry_p); if (data_buf != NULL) memcpy(data_copy_p, data_buf, dsize); } else data_copy_p = NULL; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (data_buf_p != NULL) *data_buf_p = data_copy_p; /* returning from the section where we were overwriting table data */ return TABLE_ERROR_NONE; } /* * It is a new entry. */ /* allocate a new entry */ entry_p = (table_entry_t *) table_p->ta_malloc(table_p->opt_param, entry_size(table_p, ksize, dsize)); if (entry_p == NULL) return TABLE_ERROR_ALLOC; /* copy key into storage */ entry_p->te_key_size = ksize; key_copy_p = ENTRY_KEY_BUF(entry_p); memcpy(key_copy_p, key_buf, ksize); /* copy data in */ entry_p->te_data_size = dsize; if (dsize > 0) { if (table_p->ta_data_align == 0) data_copy_p = ENTRY_DATA_BUF(table_p, entry_p); else data_copy_p = entry_data_buf(table_p, entry_p); if (data_buf != NULL) memcpy(data_copy_p, data_buf, dsize); } else data_copy_p = NULL; if (key_buf_p != NULL) *key_buf_p = key_copy_p; if (data_buf_p != NULL) *data_buf_p = data_copy_p; /* insert into list, no need to append */ entry_p->te_next_p = table_p->ta_buckets[bucket]; table_p->ta_buckets[bucket] = entry_p; table_p->ta_entry_n++; /* do we need auto-adjust? */ if (table_p->ta_flags & TABLE_FLAG_AUTO_ADJUST && SHOULD_TABLE_GROW(table_p)) return table_adjust(table_p, table_p->ta_entry_n); return TABLE_ERROR_NONE; } /* * int table_insert * * DESCRIPTION: * * Exactly the same as table_insert_kd except it does not pass back a * pointer to the key after they have been inserted into the table * structure. This is still here for backwards compatibility. * * See table_insert_kd for more information. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer into which we will be inserting a * new key/data pair. * * key_buf - Buffer of bytes of the key that we are inserting. If you * are storing an (int) as the key (for example) then key_buf should * be a (int *). * * key_size - Size of the key_buf buffer. If set to < 0 then the * library will do a strlen of key_buf and add 1 for the '\0'. If you * are storing an (int) as the key (for example) then key_size should * be sizeof(int). * * data_buf - Buffer of bytes of the data that we are inserting. If * it is NULL then the library will allocate space for the data in the * table without copying in any information. If data_buf is NULL and * data_size is 0 then the library will associate a NULL data pointer * with the key. If you are storing a (long) as the data (for * example) then data_buf should be a (long *). * * data_size - Size of the data_buf buffer. If set to < 0 then the * library will do a strlen of data_buf and add 1 for the '\0'. If * you are storing an (long) as the key (for example) then key_size * should be sizeof(long). * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that was allocated in the table. If you are * storing an (long) as the data (for example) then data_buf_p should * be (long **) i.e. the address of a (long *). * * overwrite - Flag which, if set to 1, will allow the overwriting of * the data in the table with the new data if the key already exists * in the table. */ int table_insert(table_t * table_p, const void *key_buf, const int key_size, const void *data_buf, const int data_size, void **data_buf_p, const char overwrite_b) { return table_insert_kd(table_p, key_buf, key_size, data_buf, data_size, NULL, data_buf_p, overwrite_b); } /* * int table_retrieve * * DESCRIPTION: * * This routine looks up a key made up of a buffer of bytes and an * associated size in the table. If found then it returns the * associated data information. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer into which we will be searching * for the key. * * key_buf - Buffer of bytes of the key that we are searching for. If * you are looking for an (int) as the key (for example) then key_buf * should be a (int *). * * key_size - Size of the key_buf buffer. If set to < 0 then the * library will do a strlen of key_buf and add 1 for the '\0'. If you * are looking for an (int) as the key (for example) then key_size * should be sizeof(int). * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that was allocated in the table and that is * associated with the key. If a (long) was stored as the data (for * example) then data_buf_p should be (long **) i.e. the address of a * (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data stored in the table that is associated with * the key. */ int table_retrieve(table_t * table_p, const void *key_buf, const int key_size, void **data_buf_p, int *data_size_p) { int bucket; unsigned int ksize; table_entry_t *entry_p, **buckets; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (key_buf == NULL) return TABLE_ERROR_ARG_NULL; /* find key size */ if (key_size < 0) ksize = strlen((char *) key_buf) + sizeof(char); else ksize = key_size; /* get the bucket number via a has function */ bucket = hash(key_buf, ksize, 0) % table_p->ta_bucket_n; /* look for the entry in this bucket, only check keys of the same size */ buckets = table_p->ta_buckets; for (entry_p = buckets[bucket]; entry_p != NULL; entry_p = entry_p->te_next_p) { entry_p = TABLE_POINTER(table_p, table_entry_t *, entry_p); if (entry_p->te_key_size == ksize && memcmp(ENTRY_KEY_BUF(entry_p), key_buf, ksize) == 0) break; } /* not found? */ if (entry_p == NULL) return TABLE_ERROR_NOT_FOUND; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; } /* * int table_delete * * DESCRIPTION: * * This routine looks up a key made up of a buffer of bytes and an * associated size in the table. If found then it will be removed * from the table. The associated data can be passed back to the user * if requested. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * NOTE: this could be an allocation error if the library is to return * the data to the user. * * ARGUMENTS: * * table_p - Table structure pointer from which we will be deleteing * the key. * * key_buf - Buffer of bytes of the key that we are searching for to * delete. If you are deleting an (int) key (for example) then * key_buf should be a (int *). * * key_size - Size of the key_buf buffer. If set to < 0 then the * library will do a strlen of key_buf and add 1 for the '\0'. If you * are deleting an (int) key (for example) then key_size should be * sizeof(int). * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that was allocated in the table and that was * associated with the key. If a (long) was stored as the data (for * example) then data_buf_p should be (long **) i.e. the address of a * (long *). If a pointer is passed in, the caller is responsible for * freeing it after use. If data_buf_p is NULL then the library will * free up the data allocation itself. * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that was stored in the table and that was * associated with the key. */ int table_delete(table_t * table_p, const void *key_buf, const int key_size, void **data_buf_p, int *data_size_p) { int bucket; unsigned int ksize; unsigned char *data_copy_p; table_entry_t *entry_p, *last_p; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (key_buf == NULL) return TABLE_ERROR_ARG_NULL; /* get the key size */ if (key_size < 0) ksize = strlen((char *) key_buf) + sizeof(char); else ksize = key_size; /* find our bucket */ bucket = hash(key_buf, ksize, 0) % table_p->ta_bucket_n; /* look for the entry in this bucket, only check keys of the same size */ for (last_p = NULL, entry_p = table_p->ta_buckets[bucket]; entry_p != NULL; last_p = entry_p, entry_p = entry_p->te_next_p) { if (entry_p->te_key_size == ksize && memcmp(ENTRY_KEY_BUF(entry_p), key_buf, ksize) == 0) break; } /* did we find it? */ if (entry_p == NULL) return TABLE_ERROR_NOT_FOUND; /* * NOTE: we may want to adjust the linear counters here if the entry * we are deleting is the one we are pointing on or is ahead of the * one in the bucket list */ /* remove entry from the linked list */ if (last_p == NULL) table_p->ta_buckets[bucket] = entry_p->te_next_p; else last_p->te_next_p = entry_p->te_next_p; /* free entry */ if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { /* * if we were storing it compacted, we now need to malloc some * space if the user wants the value after the delete. */ *data_buf_p = table_p->ta_malloc(table_p->opt_param, entry_p->te_data_size); if (*data_buf_p == NULL) return TABLE_ERROR_ALLOC; if (table_p->ta_data_align == 0) data_copy_p = ENTRY_DATA_BUF(table_p, entry_p); else data_copy_p = entry_data_buf(table_p, entry_p); memcpy(*data_buf_p, data_copy_p, entry_p->te_data_size); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; table_p->ta_free(table_p->opt_param, entry_p); entry_p = NULL; table_p->ta_entry_n--; /* do we need auto-adjust down? */ if ((table_p->ta_flags & TABLE_FLAG_AUTO_ADJUST) && (table_p->ta_flags & TABLE_FLAG_ADJUST_DOWN) && SHOULD_TABLE_SHRINK(table_p)) return table_adjust(table_p, table_p->ta_entry_n); return TABLE_ERROR_NONE; } /* * int table_delete_first * * DESCRIPTION: * * This is like the table_delete routines except it deletes the first * key/data pair in the table instead of an entry corresponding to a * particular key. The associated key and data information can be * passed back to the user if requested. This routines is handy to * clear out a table. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * NOTE: this could be an allocation error if the library is to return * the data to the user. * * ARGUMENTS: * * table_p - Table structure pointer from which we will be deleteing * the first key. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of the first key that was allocated in the table. * If an (int) was stored as the first key (for example) then * key_buf_p should be (int **) i.e. the address of a (int *). If a * pointer is passed in, the caller is responsible for freeing it * after use. If key_buf_p is NULL then the library will free up the * key allocation itself. * * key_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the key that was stored in the table and that was * associated with the key. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that was allocated in the table and that was * associated with the key. If a (long) was stored as the data (for * example) then data_buf_p should be (long **) i.e. the address of a * (long *). If a pointer is passed in, the caller is responsible for * freeing it after use. If data_buf_p is NULL then the library will * free up the data allocation itself. * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that was stored in the table and that was * associated with the key. */ int table_delete_first(table_t * table_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { unsigned char *data_copy_p; table_entry_t *entry_p; table_linear_t linear; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; /* take the first entry */ entry_p = first_entry(table_p, &linear); if (entry_p == NULL) return TABLE_ERROR_NOT_FOUND; /* * NOTE: we may want to adjust the linear counters here if the entry * we are deleting is the one we are pointing on or is ahead of the * one in the bucket list */ /* remove entry from the linked list */ table_p->ta_buckets[linear.tl_bucket_c] = entry_p->te_next_p; /* free entry */ if (key_buf_p != NULL) { if (entry_p->te_key_size == 0) *key_buf_p = NULL; else { /* * if we were storing it compacted, we now need to malloc some * space if the user wants the value after the delete. */ *key_buf_p = table_p->ta_malloc(table_p->opt_param, entry_p->te_key_size); if (*key_buf_p == NULL) return TABLE_ERROR_ALLOC; memcpy(*key_buf_p, ENTRY_KEY_BUF(entry_p), entry_p->te_key_size); } } if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { /* * if we were storing it compacted, we now need to malloc some * space if the user wants the value after the delete. */ *data_buf_p = table_p->ta_malloc(table_p->opt_param, entry_p->te_data_size); if (*data_buf_p == NULL) return TABLE_ERROR_ALLOC; if (table_p->ta_data_align == 0) data_copy_p = ENTRY_DATA_BUF(table_p, entry_p); else data_copy_p = entry_data_buf(table_p, entry_p); memcpy(*data_buf_p, data_copy_p, entry_p->te_data_size); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; table_p->ta_free(table_p->opt_param, entry_p); table_p->ta_entry_n--; /* do we need auto-adjust down? */ if ((table_p->ta_flags & TABLE_FLAG_AUTO_ADJUST) && (table_p->ta_flags & TABLE_FLAG_ADJUST_DOWN) && SHOULD_TABLE_SHRINK(table_p)) return table_adjust(table_p, table_p->ta_entry_n); return TABLE_ERROR_NONE; } /* * int table_info * * DESCRIPTION: * * Get some information about a table_p structure. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting * information. * * num_buckets_p - Pointer to an integer which, if not NULL, will * contain the number of buckets in the table. * * num_entries_p - Pointer to an integer which, if not NULL, will * contain the number of entries stored in the table. */ int table_info(table_t * table_p, int *num_buckets_p, int *num_entries_p) { if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (num_buckets_p != NULL) *num_buckets_p = table_p->ta_bucket_n; if (num_entries_p != NULL) *num_entries_p = table_p->ta_entry_n; return TABLE_ERROR_NONE; } /* * int table_adjust * * DESCRIPTION: * * Set the number of buckets in a table to a certain value. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer of which we are adjusting. * * bucket_n - Number buckets to adjust the table to. Set to 0 to * adjust the table to its number of entries. */ int table_adjust(table_t * table_p, const int bucket_n) { table_entry_t *entry_p, *next_p; table_entry_t **buckets, **bucket_p, **bounds_p; int bucket; unsigned int buck_n; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; /* * NOTE: we walk through the entries and rehash them. If we stored * the hash value as a full int in the table-entry, all we would * have to do is remod it. */ /* normalize to the number of entries */ if (bucket_n == 0) buck_n = table_p->ta_entry_n; else buck_n = bucket_n; /* we must have at least 1 bucket */ if (buck_n == 0) buck_n = 1; /* make sure we have somethign to do */ if (buck_n <= table_p->ta_bucket_n) return TABLE_ERROR_NONE; /* allocate a new bucket list */ buckets = (table_entry_t **) table_p->ta_calloc(table_p->opt_param, buck_n, sizeof(table_entry_t *)); if (table_p->ta_buckets == NULL) return TABLE_ERROR_ALLOC; /* * run through each of the items in the current table and rehash * them into the newest bucket sizes */ bounds_p = table_p->ta_buckets + table_p->ta_bucket_n; for (bucket_p = table_p->ta_buckets; bucket_p < bounds_p; bucket_p++) { for (entry_p = *bucket_p; entry_p != NULL; entry_p = next_p) { /* hash the old data into the new table size */ bucket = hash(ENTRY_KEY_BUF(entry_p), entry_p->te_key_size, 0) % buck_n; /* record the next one now since we overwrite next below */ next_p = entry_p->te_next_p; /* insert into new list, no need to append */ entry_p->te_next_p = buckets[bucket]; buckets[bucket] = entry_p; /* * NOTE: we may want to adjust the bucket_c linear entry here to * keep it current */ } /* remove the old table pointers as we go by */ *bucket_p = NULL; } /* replace the table buckets with the new ones */ table_p->ta_free(table_p->opt_param, table_p->ta_buckets); table_p->ta_buckets = buckets; table_p->ta_bucket_n = buck_n; return TABLE_ERROR_NONE; } /* * const char *table_strerror * * DESCRIPTION: * * Return the corresponding string for the error number. * * RETURNS: * * Success - String equivalient of the error. * * Failure - String "invalid error code" * * ARGUMENTS: * * error - Error number that we are converting. */ const char *table_strerror(const int error) { error_str_t *err_p; for (err_p = errors; err_p->es_error != 0; err_p++) { if (err_p->es_error == error) return err_p->es_string; } return INVALID_ERROR; } /* * int table_type_size * * DESCRIPTION: * * Return the size of the internal table type. * * RETURNS: * * The size of the table_t type. * * ARGUMENTS: * * None. */ int table_type_size(void) { return sizeof(table_t); } /************************* linear access routines ****************************/ /* * int table_first * * DESCRIPTION: * * Find first element in a table and pass back information about the * key/data pair. If any of the key/data pointers are NULL then they * are ignored. * * NOTE: This function is not reentrant. More than one thread cannot * be doing a first and next on the same table at the same time. Use * the table_first_r version below for this. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting the * first element. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of the first key that is allocated in the table. If * an (int) is stored as the first key (for example) then key_buf_p * should be (int **) i.e. the address of a (int *). * * key_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the key that is stored in the table and that is * associated with the first key. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that is allocated in the table and that is * associated with the first key. If a (long) is stored as the data * (for example) then data_buf_p should be (long **) i.e. the address * of a (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that is stored in the table and that is * associated with the first key. */ int table_first(table_t * table_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { table_entry_t *entry_p; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; /* initialize our linear magic number */ table_p->ta_linear.tl_magic = LINEAR_MAGIC; entry_p = first_entry(table_p, &table_p->ta_linear); if (entry_p == NULL) return TABLE_ERROR_NOT_FOUND; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; } /* * int table_next * * DESCRIPTION: * * Find the next element in a table and pass back information about * the key/data pair. If any of the key/data pointers are NULL then * they are ignored. * * NOTE: This function is not reentrant. More than one thread cannot * be doing a first and next on the same table at the same time. Use * the table_next_r version below for this. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting the * next element. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of the next key that is allocated in the table. If * an (int) is stored as the next key (for example) then key_buf_p * should be (int **) i.e. the address of a (int *). * * key_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the key that is stored in the table and that is * associated with the next key. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that is allocated in the table and that is * associated with the next key. If a (long) is stored as the data * (for example) then data_buf_p should be (long **) i.e. the address * of a (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that is stored in the table and that is * associated with the next key. */ int table_next(table_t * table_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { table_entry_t *entry_p; int error; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (table_p->ta_linear.tl_magic != LINEAR_MAGIC) return TABLE_ERROR_LINEAR; /* move to the next entry */ entry_p = next_entry(table_p, &table_p->ta_linear, &error); if (entry_p == NULL) return error; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; } /* * int table_this * * DESCRIPTION: * * Find the current element in a table and pass back information about * the key/data pair. If any of the key/data pointers are NULL then * they are ignored. * * NOTE: This function is not reentrant. Use the table_current_r * version below. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting the * current element. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of the current key that is allocated in the table. * If an (int) is stored as the current key (for example) then * key_buf_p should be (int **) i.e. the address of a (int *). * * key_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the key that is stored in the table and that is * associated with the current key. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that is allocated in the table and that is * associated with the current key. If a (long) is stored as the data * (for example) then data_buf_p should be (long **) i.e. the address * of a (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that is stored in the table and that is * associated with the current key. */ int table_this(table_t * table_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { table_entry_t *entry_p = NULL; int entry_c; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (table_p->ta_linear.tl_magic != LINEAR_MAGIC) return TABLE_ERROR_LINEAR; /* if we removed an item that shorted the bucket list, we may get this */ if (table_p->ta_linear.tl_bucket_c >= table_p->ta_bucket_n) { /* * NOTE: this might happen if we delete an item which shortens the * table bucket numbers. */ return TABLE_ERROR_NOT_FOUND; } /* find the entry which is the nth in the list */ entry_p = table_p->ta_buckets[table_p->ta_linear.tl_bucket_c]; /* NOTE: we swap the order here to be more efficient */ for (entry_c = table_p->ta_linear.tl_entry_c; entry_c > 0; entry_c--) { /* did we reach the end of the list? */ if (entry_p == NULL) break; entry_p = TABLE_POINTER(table_p, table_entry_t *, entry_p)->te_next_p; } /* is this a NOT_FOUND or a LINEAR error */ if (entry_p == NULL) return TABLE_ERROR_NOT_FOUND; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; } /* * int table_first_r * * DESCRIPTION: * * Reetrant version of the table_first routine above. Find first * element in a table and pass back information about the key/data * pair. If any of the key/data pointers are NULL then they are * ignored. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting the * first element. * * linear_p - Pointer to a table linear structure which is initialized * here. The same pointer should then be passed to table_next_r * below. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of the first key that is allocated in the table. If * an (int) is stored as the first key (for example) then key_buf_p * should be (int **) i.e. the address of a (int *). * * key_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the key that is stored in the table and that is * associated with the first key. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that is allocated in the table and that is * associated with the first key. If a (long) is stored as the data * (for example) then data_buf_p should be (long **) i.e. the address * of a (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that is stored in the table and that is * associated with the first key. */ int table_first_r(table_t * table_p, table_linear_t * linear_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { table_entry_t *entry_p; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (linear_p == NULL) return TABLE_ERROR_ARG_NULL; /* initialize our linear magic number */ linear_p->tl_magic = LINEAR_MAGIC; entry_p = first_entry(table_p, linear_p); if (entry_p == NULL) return TABLE_ERROR_NOT_FOUND; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; } /* * int table_next_r * * DESCRIPTION: * * Reetrant version of the table_next routine above. Find next * element in a table and pass back information about the key/data * pair. If any of the key/data pointers are NULL then they are * ignored. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting the * next element. * * linear_p - Pointer to a table linear structure which is incremented * here. The same pointer must have been passed to table_first_r * first so that it can be initialized. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of the next key that is allocated in the table. If * an (int) is stored as the next key (for example) then key_buf_p * should be (int **) i.e. the address of a (int *). * * key_size_p - Pointer to an integer which, if not NULL will be set * to the size of the key that is stored in the table and that is * associated with the next key. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that is allocated in the table and that is * associated with the next key. If a (long) is stored as the data * (for example) then data_buf_p should be (long **) i.e. the address * of a (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that is stored in the table and that is * associated with the next key. */ int table_next_r(table_t * table_p, table_linear_t * linear_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { table_entry_t *entry_p; int error; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (linear_p == NULL) return TABLE_ERROR_ARG_NULL; if (linear_p->tl_magic != LINEAR_MAGIC) return TABLE_ERROR_LINEAR; /* move to the next entry */ entry_p = next_entry(table_p, linear_p, &error); if (entry_p == NULL) return error; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; } /* * int table_this_r * * DESCRIPTION: * * Reetrant version of the table_this routine above. Find current * element in a table and pass back information about the key/data * pair. If any of the key/data pointers are NULL then they are * ignored. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting the * current element. * * linear_p - Pointer to a table linear structure which is accessed * here. The same pointer must have been passed to table_first_r * first so that it can be initialized. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of the current key that is allocated in the table. * If an (int) is stored as the current key (for example) then * key_buf_p should be (int **) i.e. the address of a (int *). * * key_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the key that is stored in the table and that is * associated with the current key. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage that is allocated in the table and that is * associated with the current key. If a (long) is stored as the data * (for example) then data_buf_p should be (long **) i.e. the address * of a (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that is stored in the table and that is * associated with the current key. */ int table_this_r(table_t * table_p, table_linear_t * linear_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { table_entry_t *entry_p; int entry_c; if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (linear_p->tl_magic != LINEAR_MAGIC) return TABLE_ERROR_LINEAR; /* if we removed an item that shorted the bucket list, we may get this */ if (linear_p->tl_bucket_c >= table_p->ta_bucket_n) { /* * NOTE: this might happen if we delete an item which shortens the * table bucket numbers. */ return TABLE_ERROR_NOT_FOUND; } /* find the entry which is the nth in the list */ for (entry_c = linear_p->tl_entry_c, entry_p = table_p->ta_buckets[linear_p->tl_bucket_c]; entry_p != NULL && entry_c > 0; entry_c--, entry_p = TABLE_POINTER(table_p, table_entry_t *, entry_p)->te_next_p) { } if (entry_p == NULL) return TABLE_ERROR_NOT_FOUND; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; } /******************************** table order ********************************/ /* * table_entry_t *table_order * * DESCRIPTION: * * Order a table by building an array of table entry pointers and then * sorting this array using the qsort function. To retrieve the * sorted entries, you can then use the table_entry routine to access * each entry in order. * * NOTE: This routine is now thread safe in that two table_order calls * can now happen at the same time, even on the same table. * * RETURNS: * * An allocated list of entry pointers which must be freed later. * Returns null on error. * * ARGUMENTS: * * table_p - Pointer to the table that we are ordering. * * compare - Comparison function defined by the user. Its definition * is at the top of the table.h file. If this is NULL then it will * order the table my memcmp-ing the keys. * * num_entries_p - Pointer to an integer which, if not NULL, will * contain the number of entries in the returned entry pointer array. * * error_p - Pointer to an integer which, if not NULL, will contain a * table error code. */ table_entry_t **table_order(table_t * table_p, table_compare_t compare, int *num_entries_p, int *error_p) { table_entry_t *entry_p, **entries, **entries_p; table_linear_t linear; compare_t comp_func; int error; if (table_p == NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_ARG_NULL; return NULL; } if (table_p->ta_magic != TABLE_MAGIC) { if (error_p != NULL) *error_p = TABLE_ERROR_PNT; return NULL; } /* there must be at least 1 element in the table for this to work */ if (table_p->ta_entry_n == 0) { if (error_p != NULL) *error_p = TABLE_ERROR_EMPTY; return NULL; } entries = (table_entry_t **) table_p->ta_malloc(table_p->opt_param, table_p->ta_entry_n *sizeof(table_entry_t *)); if (entries == NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_ALLOC; return NULL; } /* get a pointer to all entries */ entry_p = first_entry(table_p, &linear); if (entry_p == NULL) { if (error_p != NULL) *error_p = TABLE_ERROR_NOT_FOUND; return NULL; } /* add all of the entries to the array */ for (entries_p = entries; entry_p != NULL; entry_p = next_entry(table_p, &linear, &error)) *entries_p++ = entry_p; if (error != TABLE_ERROR_NOT_FOUND) { if (error_p != NULL) *error_p = error; return NULL; } if (compare == NULL) { /* this is regardless of the alignment */ comp_func = local_compare; } else if (table_p->ta_data_align == 0) comp_func = external_compare; else comp_func = external_compare_align; /* now qsort the entire entries array from first to last element */ split(entries, entries + table_p->ta_entry_n - 1, comp_func, compare, table_p); if (num_entries_p != NULL) *num_entries_p = table_p->ta_entry_n; if (error_p != NULL) *error_p = TABLE_ERROR_NONE; return entries; } /* * int table_entry * * DESCRIPTION: * * Get information about an element. The element is one from the * array returned by the table_order function. If any of the key/data * pointers are NULL then they are ignored. * * RETURNS: * * Success - TABLE_ERROR_NONE * * Failure - Table error code. * * ARGUMENTS: * * table_p - Table structure pointer from which we are getting the * element. * * entry_p - Pointer to a table entry from the array returned by the * table_order function. * * key_buf_p - Pointer which, if not NULL, will be set to the address * of the storage of this entry that is allocated in the table. If an * (int) is stored as this entry (for example) then key_buf_p should * be (int **) i.e. the address of a (int *). * * key_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the key that is stored in the table. * * data_buf_p - Pointer which, if not NULL, will be set to the address * of the data storage of this entry that is allocated in the table. * If a (long) is stored as this entry data (for example) then * data_buf_p should be (long **) i.e. the address of a (long *). * * data_size_p - Pointer to an integer which, if not NULL, will be set * to the size of the data that is stored in the table. */ int table_entry_info(table_t * table_p, table_entry_t * entry_p, void **key_buf_p, int *key_size_p, void **data_buf_p, int *data_size_p) { if (table_p == NULL) return TABLE_ERROR_ARG_NULL; if (table_p->ta_magic != TABLE_MAGIC) return TABLE_ERROR_PNT; if (entry_p == NULL) return TABLE_ERROR_ARG_NULL; if (key_buf_p != NULL) *key_buf_p = ENTRY_KEY_BUF(entry_p); if (key_size_p != NULL) *key_size_p = entry_p->te_key_size; if (data_buf_p != NULL) { if (entry_p->te_data_size == 0) *data_buf_p = NULL; else { if (table_p->ta_data_align == 0) *data_buf_p = ENTRY_DATA_BUF(table_p, entry_p); else *data_buf_p = entry_data_buf(table_p, entry_p); } } if (data_size_p != NULL) *data_size_p = entry_p->te_data_size; return TABLE_ERROR_NONE; }