/* * (C) Copyright 2010 * Reinhard Meyer, EMK Elektronik, reinhard.meyer@emk-elektronik.de * * SPDX-License-Identifier: GPL-2.0+ */ /* * Note: RAMTRON SPI FRAMs are ferroelectric, nonvolatile RAMs * with an interface identical to SPI flash devices. * However since they behave like RAM there are no delays or * busy polls required. They can sustain read or write at the * allowed SPI bus speed, which can be 40 MHz for some devices. * * Unfortunately some RAMTRON devices do not have a means of * identifying them. They will leave the SO line undriven when * the READ-ID command is issued. It is therefore mandatory * that the MISO line has a proper pull-up, so that READ-ID * will return a row of 0xff. This 0xff pseudo-id will cause * probes by all vendor specific functions that are designed * to handle it. If the MISO line is not pulled up, READ-ID * could return any random noise, even mimicking another * device. * * We use CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC * to define which device will be assumed after a simple status * register verify. This method is prone to false positive * detection and should therefore be the last to be tried. * Enter it in the last position in the table in spi_flash.c! * * The define CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC both activates * compilation of the special handler and defines the device * to assume. */ #include #include #include #include "sf_internal.h" /* * Properties of supported FRAMs * Note: speed is currently not used because we have no method to deliver that * value to the upper layers */ struct ramtron_spi_fram_params { u32 size; /* size in bytes */ u8 addr_len; /* number of address bytes */ u8 merge_cmd; /* some address bits are in the command byte */ u8 id1; /* device ID 1 (family, density) */ u8 id2; /* device ID 2 (sub, rev, rsvd) */ u32 speed; /* max. SPI clock in Hz */ const char *name; /* name for display and/or matching */ }; struct ramtron_spi_fram { struct spi_flash flash; const struct ramtron_spi_fram_params *params; }; static inline struct ramtron_spi_fram *to_ramtron_spi_fram(struct spi_flash *flash) { return container_of(flash, struct ramtron_spi_fram, flash); } /* * table describing supported FRAM chips: * chips without RDID command must have the values 0xff for id1 and id2 */ static const struct ramtron_spi_fram_params ramtron_spi_fram_table[] = { { .size = 32*1024, .addr_len = 2, .merge_cmd = 0, .id1 = 0x22, .id2 = 0x00, .speed = 40000000, .name = "FM25V02", }, { .size = 32*1024, .addr_len = 2, .merge_cmd = 0, .id1 = 0x22, .id2 = 0x01, .speed = 40000000, .name = "FM25VN02", }, { .size = 64*1024, .addr_len = 2, .merge_cmd = 0, .id1 = 0x23, .id2 = 0x00, .speed = 40000000, .name = "FM25V05", }, { .size = 64*1024, .addr_len = 2, .merge_cmd = 0, .id1 = 0x23, .id2 = 0x01, .speed = 40000000, .name = "FM25VN05", }, { .size = 128*1024, .addr_len = 3, .merge_cmd = 0, .id1 = 0x24, .id2 = 0x00, .speed = 40000000, .name = "FM25V10", }, { .size = 128*1024, .addr_len = 3, .merge_cmd = 0, .id1 = 0x24, .id2 = 0x01, .speed = 40000000, .name = "FM25VN10", }, #ifdef CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC { .size = 256*1024, .addr_len = 3, .merge_cmd = 0, .id1 = 0xff, .id2 = 0xff, .speed = 40000000, .name = "FM25H20", }, #endif }; static int ramtron_common(struct spi_flash *flash, u32 offset, size_t len, void *buf, u8 command) { struct ramtron_spi_fram *sn = to_ramtron_spi_fram(flash); u8 cmd[4]; int cmd_len; int ret; if (sn->params->addr_len == 3 && sn->params->merge_cmd == 0) { cmd[0] = command; cmd[1] = offset >> 16; cmd[2] = offset >> 8; cmd[3] = offset; cmd_len = 4; } else if (sn->params->addr_len == 2 && sn->params->merge_cmd == 0) { cmd[0] = command; cmd[1] = offset >> 8; cmd[2] = offset; cmd_len = 3; } else { printf("SF: unsupported addr_len or merge_cmd\n"); return -1; } /* claim the bus */ ret = spi_claim_bus(flash->spi); if (ret) { debug("SF: Unable to claim SPI bus\n"); return ret; } if (command == CMD_PAGE_PROGRAM) { /* send WREN */ ret = spi_flash_cmd_write_enable(flash); if (ret < 0) { debug("SF: Enabling Write failed\n"); goto releasebus; } } /* do the transaction */ if (command == CMD_PAGE_PROGRAM) ret = spi_flash_cmd_write(flash->spi, cmd, cmd_len, buf, len); else ret = spi_flash_cmd_read(flash->spi, cmd, cmd_len, buf, len); if (ret < 0) debug("SF: Transaction failed\n"); releasebus: /* release the bus */ spi_release_bus(flash->spi); return ret; } static int ramtron_read(struct spi_flash *flash, u32 offset, size_t len, void *buf) { return ramtron_common(flash, offset, len, buf, CMD_READ_ARRAY_SLOW); } static int ramtron_write(struct spi_flash *flash, u32 offset, size_t len, const void *buf) { return ramtron_common(flash, offset, len, (void *)buf, CMD_PAGE_PROGRAM); } static int ramtron_erase(struct spi_flash *flash, u32 offset, size_t len) { debug("SF: Erase of RAMTRON FRAMs is pointless\n"); return -1; } /* * nore: we are called here with idcode pointing to the first non-0x7f byte * already! */ static struct spi_flash *spi_fram_probe_ramtron(struct spi_slave *spi, u8 *idcode) { const struct ramtron_spi_fram_params *params; struct ramtron_spi_fram *sn; unsigned int i; #ifdef CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC int ret; u8 sr; #endif /* NOTE: the bus has been claimed before this function is called! */ switch (idcode[0]) { case 0xc2: /* JEDEC conformant RAMTRON id */ for (i = 0; i < ARRAY_SIZE(ramtron_spi_fram_table); i++) { params = &ramtron_spi_fram_table[i]; if (idcode[1] == params->id1 && idcode[2] == params->id2) goto found; } break; #ifdef CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC case 0xff: /* * probably open MISO line, pulled up. * We COULD have a non JEDEC conformant FRAM here, * read the status register to verify */ ret = spi_flash_cmd(spi, CMD_READ_STATUS, &sr, 1); if (ret) return NULL; /* Bits 5,4,0 are fixed 0 for all devices */ if ((sr & 0x31) != 0x00) return NULL; /* now find the device */ for (i = 0; i < ARRAY_SIZE(ramtron_spi_fram_table); i++) { params = &ramtron_spi_fram_table[i]; if (!strcmp(params->name, CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC)) goto found; } debug("SF: Unsupported non-JEDEC RAMTRON device " CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC "\n"); break; #endif default: break; } /* arriving here means no method has found a device we can handle */ debug("SF/ramtron: unsupported device id0=%02x id1=%02x id2=%02x\n", idcode[0], idcode[1], idcode[2]); return NULL; found: sn = malloc(sizeof(*sn)); if (!sn) { debug("SF: Failed to allocate memory\n"); return NULL; } sn->params = params; sn->flash.write = ramtron_write; sn->flash.read = ramtron_read; sn->flash.erase = ramtron_erase; sn->flash.size = params->size; return &sn->flash; } /* * The following table holds all device probe functions * (All flashes are removed and implemented a common probe at * spi_flash_probe.c) * * shift: number of continuation bytes before the ID * idcode: the expected IDCODE or 0xff for non JEDEC devices * probe: the function to call * * Non JEDEC devices should be ordered in the table such that * the probe functions with best detection algorithms come first. * * Several matching entries are permitted, they will be tried * in sequence until a probe function returns non NULL. * * IDCODE_CONT_LEN may be redefined if a device needs to declare a * larger "shift" value. IDCODE_PART_LEN generally shouldn't be * changed. This is the max number of bytes probe functions may * examine when looking up part-specific identification info. * * Probe functions will be given the idcode buffer starting at their * manu id byte (the "idcode" in the table below). In other words, * all of the continuation bytes will be skipped (the "shift" below). */ #define IDCODE_CONT_LEN 0 #define IDCODE_PART_LEN 5 static const struct { const u8 shift; const u8 idcode; struct spi_flash *(*probe) (struct spi_slave *spi, u8 *idcode); } flashes[] = { /* Keep it sorted by define name */ #ifdef CONFIG_SPI_FRAM_RAMTRON { 6, 0xc2, spi_fram_probe_ramtron, }, # undef IDCODE_CONT_LEN # define IDCODE_CONT_LEN 6 #endif #ifdef CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC { 0, 0xff, spi_fram_probe_ramtron, }, #endif }; #define IDCODE_LEN (IDCODE_CONT_LEN + IDCODE_PART_LEN) struct spi_flash *spi_flash_probe(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int spi_mode) { struct spi_slave *spi; struct spi_flash *flash = NULL; int ret, i, shift; u8 idcode[IDCODE_LEN], *idp; spi = spi_setup_slave(bus, cs, max_hz, spi_mode); if (!spi) { printf("SF: Failed to set up slave\n"); return NULL; } ret = spi_claim_bus(spi); if (ret) { debug("SF: Failed to claim SPI bus: %d\n", ret); goto err_claim_bus; } /* Read the ID codes */ ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode)); if (ret) goto err_read_id; #ifdef DEBUG printf("SF: Got idcodes\n"); print_buffer(0, idcode, 1, sizeof(idcode), 0); #endif /* count the number of continuation bytes */ for (shift = 0, idp = idcode; shift < IDCODE_CONT_LEN && *idp == 0x7f; ++shift, ++idp) continue; /* search the table for matches in shift and id */ for (i = 0; i < ARRAY_SIZE(flashes); ++i) if (flashes[i].shift == shift && flashes[i].idcode == *idp) { /* we have a match, call probe */ flash = flashes[i].probe(spi, idp); if (flash) break; } if (!flash) { printf("SF: Unsupported manufacturer %02x\n", *idp); goto err_manufacturer_probe; } printf("SF: Detected %s with total size ", flash->name); print_size(flash->size, ""); puts("\n"); spi_release_bus(spi); return flash; err_manufacturer_probe: err_read_id: spi_release_bus(spi); err_claim_bus: spi_free_slave(spi); return NULL; } void spi_flash_free(struct spi_flash *flash) { spi_free_slave(flash->spi); free(flash); }