// Code for handling OHCI USB controllers. // // Copyright (C) 2009 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // GET_LOWFLAT #include "config.h" // CONFIG_* #include "malloc.h" // free #include "memmap.h" // PAGE_SIZE #include "output.h" // dprintf #include "pci.h" // pci_bdf_to_bus #include "pci_ids.h" // PCI_CLASS_SERIAL_USB_OHCI #include "pci_regs.h" // PCI_BASE_ADDRESS_0 #include "string.h" // memset #include "usb.h" // struct usb_s #include "usb-ohci.h" // struct ohci_hcca #include "util.h" // msleep #include "x86.h" // readl #define FIT (1 << 31) struct usb_ohci_s { struct usb_s usb; struct ohci_regs *regs; }; struct ohci_pipe { struct ohci_ed ed; struct usb_pipe pipe; struct ohci_regs *regs; void *data; int count; struct ohci_td *tds; }; /**************************************************************** * Root hub ****************************************************************/ // Check if device attached to port static int ohci_hub_detect(struct usbhub_s *hub, u32 port) { struct usb_ohci_s *cntl = container_of(hub->cntl, struct usb_ohci_s, usb); u32 sts = readl(&cntl->regs->roothub_portstatus[port]); return (sts & RH_PS_CCS) ? 1 : 0; } // Disable port static void ohci_hub_disconnect(struct usbhub_s *hub, u32 port) { struct usb_ohci_s *cntl = container_of(hub->cntl, struct usb_ohci_s, usb); writel(&cntl->regs->roothub_portstatus[port], RH_PS_CCS|RH_PS_LSDA); } // Reset device on port static int ohci_hub_reset(struct usbhub_s *hub, u32 port) { struct usb_ohci_s *cntl = container_of(hub->cntl, struct usb_ohci_s, usb); writel(&cntl->regs->roothub_portstatus[port], RH_PS_PRS); u32 sts; u32 end = timer_calc(USB_TIME_DRSTR * 2); for (;;) { sts = readl(&cntl->regs->roothub_portstatus[port]); if (!(sts & RH_PS_PRS)) // XXX - need to ensure USB_TIME_DRSTR time in reset? break; if (timer_check(end)) { // Timeout. warn_timeout(); ohci_hub_disconnect(hub, port); return -1; } yield(); } if ((sts & (RH_PS_CCS|RH_PS_PES)) != (RH_PS_CCS|RH_PS_PES)) // Device no longer present return -1; return !!(sts & RH_PS_LSDA); } static struct usbhub_op_s ohci_HubOp = { .detect = ohci_hub_detect, .reset = ohci_hub_reset, .disconnect = ohci_hub_disconnect, }; // Find any devices connected to the root hub. static int check_ohci_ports(struct usb_ohci_s *cntl) { ASSERT32FLAT(); // Turn on power for all devices on roothub. u32 rha = readl(&cntl->regs->roothub_a); rha &= ~(RH_A_PSM | RH_A_OCPM); writel(&cntl->regs->roothub_status, RH_HS_LPSC); writel(&cntl->regs->roothub_b, RH_B_PPCM); msleep((rha >> 24) * 2); // XXX - need to sleep for USB_TIME_SIGATT if just powered up? struct usbhub_s hub; memset(&hub, 0, sizeof(hub)); hub.cntl = &cntl->usb; hub.portcount = rha & RH_A_NDP; hub.op = &ohci_HubOp; usb_enumerate(&hub); return hub.devcount; } /**************************************************************** * Setup ****************************************************************/ // Wait for next USB frame to start - for ensuring safe memory release. static void ohci_waittick(struct ohci_regs *regs) { barrier(); struct ohci_hcca *hcca = (void*)regs->hcca; u32 startframe = hcca->frame_no; u32 end = timer_calc(1000 * 5); for (;;) { if (hcca->frame_no != startframe) break; if (timer_check(end)) { warn_timeout(); return; } yield(); } } static void ohci_free_pipes(struct usb_ohci_s *cntl) { dprintf(7, "ohci_free_pipes %p\n", cntl); u32 creg = readl(&cntl->regs->control); if (creg & (OHCI_CTRL_CLE|OHCI_CTRL_BLE)) { writel(&cntl->regs->control, creg & ~(OHCI_CTRL_CLE|OHCI_CTRL_BLE)); ohci_waittick(cntl->regs); } u32 *pos = &cntl->regs->ed_controlhead; for (;;) { struct ohci_ed *next = (void*)*pos; if (!next) break; struct ohci_pipe *pipe = container_of(next, struct ohci_pipe, ed); if (usb_is_freelist(&cntl->usb, &pipe->pipe)) { *pos = next->hwNextED; free(pipe); } else { pos = &next->hwNextED; } } writel(&cntl->regs->ed_controlcurrent, 0); writel(&cntl->regs->ed_bulkcurrent, 0); writel(&cntl->regs->control, creg); cntl->usb.freelist = NULL; } static int start_ohci(struct usb_ohci_s *cntl, struct ohci_hcca *hcca) { u32 oldfminterval = readl(&cntl->regs->fminterval); u32 oldrwc = readl(&cntl->regs->control) & OHCI_CTRL_RWC; // XXX - check if already running? // Do reset writel(&cntl->regs->control, OHCI_USB_RESET | oldrwc); readl(&cntl->regs->control); // flush writes msleep(USB_TIME_DRSTR); // Do software init (min 10us, max 2ms) u32 end = timer_calc_usec(10); writel(&cntl->regs->cmdstatus, OHCI_HCR); for (;;) { u32 status = readl(&cntl->regs->cmdstatus); if (! status & OHCI_HCR) break; if (timer_check(end)) { warn_timeout(); return -1; } } // Init memory writel(&cntl->regs->ed_controlhead, 0); writel(&cntl->regs->ed_bulkhead, 0); writel(&cntl->regs->hcca, (u32)hcca); // Init fminterval u32 fi = oldfminterval & 0x3fff; writel(&cntl->regs->fminterval , (((oldfminterval & FIT) ^ FIT) | fi | (((6 * (fi - 210)) / 7) << 16))); writel(&cntl->regs->periodicstart, ((9 * fi) / 10) & 0x3fff); readl(&cntl->regs->control); // flush writes // XXX - verify that fminterval was setup correctly. // Go into operational state writel(&cntl->regs->control , (OHCI_CTRL_CBSR | OHCI_CTRL_CLE | OHCI_CTRL_BLE | OHCI_CTRL_PLE | OHCI_USB_OPER | oldrwc)); readl(&cntl->regs->control); // flush writes return 0; } static void stop_ohci(struct usb_ohci_s *cntl) { u32 oldrwc = readl(&cntl->regs->control) & OHCI_CTRL_RWC; writel(&cntl->regs->control, oldrwc); readl(&cntl->regs->control); // flush writes } static void configure_ohci(void *data) { struct usb_ohci_s *cntl = data; // Allocate memory struct ohci_hcca *hcca = memalign_high(256, sizeof(*hcca)); struct ohci_ed *intr_ed = malloc_high(sizeof(*intr_ed)); if (!hcca || !intr_ed) { warn_noalloc(); goto free; } memset(hcca, 0, sizeof(*hcca)); memset(intr_ed, 0, sizeof(*intr_ed)); intr_ed->hwINFO = ED_SKIP; int i; for (i=0; iint_table); i++) hcca->int_table[i] = (u32)intr_ed; int ret = start_ohci(cntl, hcca); if (ret) goto err; int count = check_ohci_ports(cntl); ohci_free_pipes(cntl); if (! count) goto err; return; err: stop_ohci(cntl); free: free(hcca); free(intr_ed); } static void ohci_controller_setup(struct pci_device *pci) { struct usb_ohci_s *cntl = malloc_tmphigh(sizeof(*cntl)); if (!cntl) { warn_noalloc(); return; } memset(cntl, 0, sizeof(*cntl)); cntl->usb.pci = pci; cntl->usb.type = USB_TYPE_OHCI; wait_preempt(); // Avoid pci_config_readl when preempting u16 bdf = pci->bdf; u32 baseaddr = pci_config_readl(bdf, PCI_BASE_ADDRESS_0); cntl->regs = (void*)(baseaddr & PCI_BASE_ADDRESS_MEM_MASK); dprintf(1, "OHCI init on dev %02x:%02x.%x (regs=%p)\n" , pci_bdf_to_bus(bdf), pci_bdf_to_dev(bdf) , pci_bdf_to_fn(bdf), cntl->regs); // Enable bus mastering and memory access. pci_config_maskw(bdf, PCI_COMMAND , 0, PCI_COMMAND_MASTER|PCI_COMMAND_MEMORY); // XXX - check for and disable SMM control? // Disable interrupts writel(&cntl->regs->intrdisable, ~0); writel(&cntl->regs->intrstatus, ~0); run_thread(configure_ohci, cntl); } void ohci_setup(void) { if (! CONFIG_USB_OHCI) return; struct pci_device *pci; foreachpci(pci) { if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_OHCI) ohci_controller_setup(pci); } } /**************************************************************** * End point communication ****************************************************************/ // Setup fields in ed static void ohci_desc2pipe(struct ohci_pipe *pipe, struct usbdevice_s *usbdev , struct usb_endpoint_descriptor *epdesc) { usb_desc2pipe(&pipe->pipe, usbdev, epdesc); pipe->ed.hwINFO = (ED_SKIP | usbdev->devaddr | (pipe->pipe.ep << 7) | (epdesc->wMaxPacketSize << 16) | (usbdev->speed ? ED_LOWSPEED : 0)); struct usb_ohci_s *cntl = container_of( usbdev->hub->cntl, struct usb_ohci_s, usb); pipe->regs = cntl->regs; } static struct usb_pipe * ohci_alloc_intr_pipe(struct usbdevice_s *usbdev , struct usb_endpoint_descriptor *epdesc) { struct usb_ohci_s *cntl = container_of( usbdev->hub->cntl, struct usb_ohci_s, usb); int frameexp = usb_get_period(usbdev, epdesc); dprintf(7, "ohci_alloc_intr_pipe %p %d\n", &cntl->usb, frameexp); if (frameexp > 5) frameexp = 5; int maxpacket = epdesc->wMaxPacketSize; // Determine number of entries needed for 2 timer ticks. int ms = 1<ed.hwINFO &= ~ED_SKIP; pipe->data = data; pipe->count = count; pipe->tds = tds; struct ohci_ed *ed = &pipe->ed; ed->hwHeadP = (u32)&tds[0]; ed->hwTailP = (u32)&tds[count-1]; int i; for (i=0; iregs->hcca; if (frameexp == 0) { // Add to existing interrupt entry. struct ohci_ed *intr_ed = (void*)hcca->int_table[0]; ed->hwNextED = intr_ed->hwNextED; barrier(); intr_ed->hwNextED = (u32)ed; } else { int startpos = 1<<(frameexp-1); ed->hwNextED = hcca->int_table[startpos]; barrier(); for (i=startpos; iint_table); i+=ms) hcca->int_table[i] = (u32)ed; } return &pipe->pipe; err: free(pipe); free(tds); free(data); return NULL; } struct usb_pipe * ohci_realloc_pipe(struct usbdevice_s *usbdev, struct usb_pipe *upipe , struct usb_endpoint_descriptor *epdesc) { if (! CONFIG_USB_OHCI) return NULL; usb_add_freelist(upipe); if (!epdesc) return NULL; u8 eptype = epdesc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; if (eptype == USB_ENDPOINT_XFER_INT) return ohci_alloc_intr_pipe(usbdev, epdesc); struct usb_ohci_s *cntl = container_of( usbdev->hub->cntl, struct usb_ohci_s, usb); dprintf(7, "ohci_alloc_async_pipe %p\n", &cntl->usb); struct usb_pipe *usbpipe = usb_get_freelist(&cntl->usb, eptype); if (usbpipe) { // Use previously allocated pipe. struct ohci_pipe *pipe = container_of(usbpipe, struct ohci_pipe, pipe); ohci_desc2pipe(pipe, usbdev, epdesc); return usbpipe; } // Allocate a new queue head. struct ohci_pipe *pipe; if (eptype == USB_ENDPOINT_XFER_CONTROL) pipe = malloc_tmphigh(sizeof(*pipe)); else pipe = malloc_low(sizeof(*pipe)); if (!pipe) { warn_noalloc(); return NULL; } memset(pipe, 0, sizeof(*pipe)); ohci_desc2pipe(pipe, usbdev, epdesc); // Add queue head to controller list. u32 *head = &cntl->regs->ed_controlhead; if (eptype != USB_ENDPOINT_XFER_CONTROL) head = &cntl->regs->ed_bulkhead; pipe->ed.hwNextED = *head; barrier(); *head = (u32)&pipe->ed; return &pipe->pipe; } static int wait_ed(struct ohci_ed *ed, int timeout) { u32 end = timer_calc(timeout); for (;;) { if ((ed->hwHeadP & ~(ED_C|ED_H)) == ed->hwTailP) return 0; if (timer_check(end)) { warn_timeout(); dprintf(1, "ohci ed info=%x tail=%x head=%x next=%x\n" , ed->hwINFO, ed->hwTailP, ed->hwHeadP, ed->hwNextED); return -1; } yield(); } } #define STACKOTDS 18 #define OHCI_TD_ALIGN 16 int ohci_send_pipe(struct usb_pipe *p, int dir, const void *cmd , void *data, int datasize) { ASSERT32FLAT(); if (! CONFIG_USB_OHCI) return -1; dprintf(7, "ohci_send_pipe %p\n", p); struct ohci_pipe *pipe = container_of(p, struct ohci_pipe, pipe); // Allocate tds on stack (with required alignment) u8 tdsbuf[sizeof(struct ohci_td) * STACKOTDS + OHCI_TD_ALIGN - 1]; struct ohci_td *tds = (void*)ALIGN((u32)tdsbuf, OHCI_TD_ALIGN), *td = tds; memset(tds, 0, sizeof(*tds) * STACKOTDS); // Setup transfer descriptors u16 maxpacket = pipe->pipe.maxpacket; u32 toggle = 0, statuscmd = OHCI_BLF; if (cmd) { // Send setup pid on control transfers td->hwINFO = TD_DP_SETUP | TD_T_DATA0 | TD_CC; td->hwCBP = (u32)cmd; td->hwNextTD = (u32)&td[1]; td->hwBE = (u32)cmd + USB_CONTROL_SETUP_SIZE - 1; td++; toggle = TD_T_DATA1; statuscmd = OHCI_CLF; } u32 dest = (u32)data, dataend = dest + datasize; while (dest < dataend) { // Send data pids if (td >= &tds[STACKOTDS]) { warn_noalloc(); return -1; } int maxtransfer = 2*PAGE_SIZE - (dest & (PAGE_SIZE-1)); int transfer = dataend - dest; if (transfer > maxtransfer) transfer = ALIGN_DOWN(maxtransfer, maxpacket); td->hwINFO = (dir ? TD_DP_IN : TD_DP_OUT) | toggle | TD_CC; td->hwCBP = dest; td->hwNextTD = (u32)&td[1]; td->hwBE = dest + transfer - 1; td++; dest += transfer; } if (cmd) { // Send status pid on control transfers if (td >= &tds[STACKOTDS]) { warn_noalloc(); return -1; } td->hwINFO = (dir ? TD_DP_OUT : TD_DP_IN) | TD_T_DATA1 | TD_CC; td->hwCBP = 0; td->hwNextTD = (u32)&td[1]; td->hwBE = 0; td++; } // Transfer data pipe->ed.hwHeadP = (u32)tds | (pipe->ed.hwHeadP & ED_C); pipe->ed.hwTailP = (u32)td; barrier(); pipe->ed.hwINFO &= ~ED_SKIP; writel(&pipe->regs->cmdstatus, statuscmd); int ret = wait_ed(&pipe->ed, usb_xfer_time(p, datasize)); pipe->ed.hwINFO |= ED_SKIP; if (ret) ohci_waittick(pipe->regs); return ret; } int ohci_poll_intr(struct usb_pipe *p, void *data) { ASSERT16(); if (! CONFIG_USB_OHCI) return -1; struct ohci_pipe *pipe = container_of(p, struct ohci_pipe, pipe); struct ohci_td *tds = GET_LOWFLAT(pipe->tds); struct ohci_td *head = (void*)(GET_LOWFLAT(pipe->ed.hwHeadP) & ~(ED_C|ED_H)); struct ohci_td *tail = (void*)GET_LOWFLAT(pipe->ed.hwTailP); int count = GET_LOWFLAT(pipe->count); int pos = (tail - tds + 1) % count; struct ohci_td *next = &tds[pos]; if (head == next) // No intrs found. return -1; // XXX - check for errors. // Copy data. int maxpacket = GET_LOWFLAT(pipe->pipe.maxpacket); void *pipedata = GET_LOWFLAT((pipe->data)); void *intrdata = pipedata + maxpacket * pos; memcpy_far(GET_SEG(SS), data, SEG_LOW, LOWFLAT2LOW(intrdata), maxpacket); // Reenable this td. SET_LOWFLAT(tail->hwINFO, TD_DP_IN | TD_T_TOGGLE | TD_CC); intrdata = pipedata + maxpacket * (tail-tds); SET_LOWFLAT(tail->hwCBP, (u32)intrdata); SET_LOWFLAT(tail->hwNextTD, (u32)next); SET_LOWFLAT(tail->hwBE, (u32)intrdata + maxpacket - 1); barrier(); SET_LOWFLAT(pipe->ed.hwTailP, (u32)next); return 0; }