// Code for handling EHCI USB controllers. // // Copyright (C) 2010-2013 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // GET_LOWFLAT #include "config.h" // CONFIG_* #include "output.h" // dprintf #include "malloc.h" // free #include "memmap.h" // PAGE_SIZE #include "pci.h" // pci_bdf_to_bus #include "pci_ids.h" // PCI_CLASS_SERIAL_USB_UHCI #include "pci_regs.h" // PCI_BASE_ADDRESS_0 #include "string.h" // memset #include "usb.h" // struct usb_s #include "usb-ehci.h" // struct ehci_qh #include "util.h" // msleep #include "x86.h" // readl struct usb_ehci_s { struct usb_s usb; struct ehci_caps *caps; struct ehci_regs *regs; struct ehci_qh *async_qh; int checkports; }; struct ehci_pipe { struct ehci_qh qh; struct ehci_qtd *next_td, *tds; void *data; struct usb_pipe pipe; }; static int PendingEHCI; /**************************************************************** * Root hub ****************************************************************/ #define EHCI_TIME_POSTPOWER 20 #define EHCI_TIME_POSTRESET 2 // Check if device attached to port static int ehci_hub_detect(struct usbhub_s *hub, u32 port) { struct usb_ehci_s *cntl = container_of(hub->cntl, struct usb_ehci_s, usb); u32 *portreg = &cntl->regs->portsc[port]; u32 portsc = readl(portreg); if (!(portsc & PORT_CONNECT)) // No device present return 0; if ((portsc & PORT_LINESTATUS_MASK) == PORT_LINESTATUS_KSTATE) { // low speed device writel(portreg, portsc | PORT_OWNER); return -1; } // XXX - if just powered up, need to wait for USB_TIME_ATTDB? // Begin reset on port portsc = (portsc & ~PORT_PE) | PORT_RESET; writel(portreg, portsc); msleep(USB_TIME_DRSTR); return 1; } // Reset device on port static int ehci_hub_reset(struct usbhub_s *hub, u32 port) { struct usb_ehci_s *cntl = container_of(hub->cntl, struct usb_ehci_s, usb); u32 *portreg = &cntl->regs->portsc[port]; u32 portsc = readl(portreg); // Finish reset on port portsc &= ~PORT_RESET; writel(portreg, portsc); msleep(EHCI_TIME_POSTRESET); portsc = readl(portreg); if (!(portsc & PORT_CONNECT)) // No longer connected return -1; if (!(portsc & PORT_PE)) { // full speed device writel(portreg, portsc | PORT_OWNER); return -1; } return USB_HIGHSPEED; } // Disable port static void ehci_hub_disconnect(struct usbhub_s *hub, u32 port) { struct usb_ehci_s *cntl = container_of(hub->cntl, struct usb_ehci_s, usb); u32 *portreg = &cntl->regs->portsc[port]; u32 portsc = readl(portreg); writel(portreg, portsc & ~PORT_PE); } static struct usbhub_op_s ehci_HubOp = { .detect = ehci_hub_detect, .reset = ehci_hub_reset, .disconnect = ehci_hub_disconnect, }; // Find any devices connected to the root hub. static int check_ehci_ports(struct usb_ehci_s *cntl) { // Power up ports. int i; for (i=0; icheckports; i++) { u32 *portreg = &cntl->regs->portsc[i]; u32 portsc = readl(portreg); if (!(portsc & PORT_POWER)) { portsc |= PORT_POWER; writel(portreg, portsc); } } msleep(EHCI_TIME_POSTPOWER); struct usbhub_s hub; memset(&hub, 0, sizeof(hub)); hub.cntl = &cntl->usb; hub.portcount = cntl->checkports; hub.op = &ehci_HubOp; usb_enumerate(&hub); return hub.devcount; } /**************************************************************** * Setup ****************************************************************/ // Wait for next USB async frame to start - for ensuring safe memory release. static void ehci_waittick(struct usb_ehci_s *cntl) { if (MODE16) { msleep(10); return; } // Wait for access to "doorbell" barrier(); u32 cmd, sts; u32 end = timer_calc(100); for (;;) { sts = readl(&cntl->regs->usbsts); if (!(sts & STS_IAA)) { cmd = readl(&cntl->regs->usbcmd); if (!(cmd & CMD_IAAD)) break; } if (timer_check(end)) { warn_timeout(); return; } yield(); } // Ring "doorbell" writel(&cntl->regs->usbcmd, cmd | CMD_IAAD); // Wait for completion for (;;) { sts = readl(&cntl->regs->usbsts); if (sts & STS_IAA) break; if (timer_check(end)) { warn_timeout(); return; } yield(); } // Ack completion writel(&cntl->regs->usbsts, STS_IAA); } static void ehci_free_pipes(struct usb_ehci_s *cntl) { dprintf(7, "ehci_free_pipes %p\n", cntl); struct ehci_qh *start = cntl->async_qh; struct ehci_qh *pos = start; for (;;) { struct ehci_qh *next = (void*)(pos->next & ~EHCI_PTR_BITS); if (next == start) break; struct ehci_pipe *pipe = container_of(next, struct ehci_pipe, qh); if (usb_is_freelist(&cntl->usb, &pipe->pipe)) pos->next = next->next; else pos = next; } ehci_waittick(cntl); for (;;) { struct usb_pipe *usbpipe = cntl->usb.freelist; if (!usbpipe) break; cntl->usb.freelist = usbpipe->freenext; struct ehci_pipe *pipe = container_of(usbpipe, struct ehci_pipe, pipe); free(pipe); } } static void configure_ehci(void *data) { struct usb_ehci_s *cntl = data; // Allocate ram for schedule storage struct ehci_framelist *fl = memalign_high(sizeof(*fl), sizeof(*fl)); struct ehci_qh *intr_qh = memalign_high(EHCI_QH_ALIGN, sizeof(*intr_qh)); struct ehci_qh *async_qh = memalign_high(EHCI_QH_ALIGN, sizeof(*async_qh)); if (!fl || !intr_qh || !async_qh) { warn_noalloc(); PendingEHCI--; goto fail; } // XXX - check for halted? // Reset the HC u32 cmd = readl(&cntl->regs->usbcmd); writel(&cntl->regs->usbcmd, (cmd & ~(CMD_ASE | CMD_PSE)) | CMD_HCRESET); u32 end = timer_calc(250); for (;;) { cmd = readl(&cntl->regs->usbcmd); if (!(cmd & CMD_HCRESET)) break; if (timer_check(end)) { warn_timeout(); PendingEHCI--; goto fail; } yield(); } // Disable interrupts (just to be safe). writel(&cntl->regs->usbintr, 0); // Set schedule to point to primary intr queue head memset(intr_qh, 0, sizeof(*intr_qh)); intr_qh->next = EHCI_PTR_TERM; intr_qh->info2 = (0x01 << QH_SMASK_SHIFT); intr_qh->token = QTD_STS_HALT; intr_qh->qtd_next = intr_qh->alt_next = EHCI_PTR_TERM; int i; for (i=0; ilinks); i++) fl->links[i] = (u32)intr_qh | EHCI_PTR_QH; writel(&cntl->regs->periodiclistbase, (u32)fl); // Set async list to point to primary async queue head memset(async_qh, 0, sizeof(*async_qh)); async_qh->next = (u32)async_qh | EHCI_PTR_QH; async_qh->info1 = QH_HEAD; async_qh->token = QTD_STS_HALT; async_qh->qtd_next = async_qh->alt_next = EHCI_PTR_TERM; cntl->async_qh = async_qh; writel(&cntl->regs->asynclistbase, (u32)async_qh); // Enable queues writel(&cntl->regs->usbcmd, cmd | CMD_ASE | CMD_PSE | CMD_RUN); // Set default of high speed for root hub. writel(&cntl->regs->configflag, 1); PendingEHCI--; // Find devices int count = check_ehci_ports(cntl); ehci_free_pipes(cntl); if (count) // Success return; // No devices found - shutdown and free controller. writel(&cntl->regs->usbcmd, cmd & ~CMD_RUN); msleep(4); // 2ms to stop reading memory - XXX fail: free(fl); free(intr_qh); free(async_qh); free(cntl); } static void ehci_controller_setup(struct pci_device *pci) { wait_preempt(); // Avoid pci_config_readl when preempting u16 bdf = pci->bdf; u32 baseaddr = pci_config_readl(bdf, PCI_BASE_ADDRESS_0); struct ehci_caps *caps = (void*)(baseaddr & PCI_BASE_ADDRESS_MEM_MASK); u32 hcc_params = readl(&caps->hccparams); struct usb_ehci_s *cntl = malloc_tmphigh(sizeof(*cntl)); if (!cntl) { warn_noalloc(); return; } memset(cntl, 0, sizeof(*cntl)); cntl->usb.pci = pci; cntl->usb.type = USB_TYPE_EHCI; cntl->caps = caps; cntl->checkports = readl(&cntl->caps->hcsparams) & HCS_N_PORTS_MASK; cntl->regs = (void*)caps + readb(&caps->caplength); if (hcc_params & HCC_64BIT_ADDR) cntl->regs->ctrldssegment = 0; PendingEHCI++; dprintf(1, "EHCI init on dev %02x:%02x.%x (regs=%p)\n" , pci_bdf_to_bus(bdf), pci_bdf_to_dev(bdf) , pci_bdf_to_fn(bdf), cntl->regs); pci_config_maskw(bdf, PCI_COMMAND, 0, PCI_COMMAND_MASTER); // XXX - check for and disable SMM control? run_thread(configure_ehci, cntl); } void ehci_setup(void) { if (! CONFIG_USB_EHCI) return; struct pci_device *pci; foreachpci(pci) { if (pci_classprog(pci) == PCI_CLASS_SERIAL_USB_EHCI) ehci_controller_setup(pci); } // Wait for all EHCI controllers to initialize. This forces OHCI/UHCI // setup to always be after any EHCI ports are routed to EHCI. while (PendingEHCI) yield(); } /**************************************************************** * End point communication ****************************************************************/ // Setup fields in qh static void ehci_desc2pipe(struct ehci_pipe *pipe, struct usbdevice_s *usbdev , struct usb_endpoint_descriptor *epdesc) { usb_desc2pipe(&pipe->pipe, usbdev, epdesc); pipe->qh.info1 = ((pipe->pipe.maxpacket << QH_MAXPACKET_SHIFT) | (pipe->pipe.speed << QH_SPEED_SHIFT) | (pipe->pipe.ep << QH_EP_SHIFT) | (pipe->pipe.devaddr << QH_DEVADDR_SHIFT)); pipe->qh.info2 = (1 << QH_MULT_SHIFT); struct usbdevice_s *hubdev = usbdev->hub->usbdev; if (hubdev) { struct ehci_pipe *hpipe = container_of( hubdev->defpipe, struct ehci_pipe, pipe); if (hpipe->pipe.speed == USB_HIGHSPEED) pipe->qh.info2 |= (((usbdev->port+1) << QH_HUBPORT_SHIFT) | (hpipe->pipe.devaddr << QH_HUBADDR_SHIFT)); else pipe->qh.info2 = hpipe->qh.info2; } u8 eptype = epdesc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; if (eptype == USB_ENDPOINT_XFER_CONTROL) pipe->qh.info1 |= ((pipe->pipe.speed != USB_HIGHSPEED ? QH_CONTROL : 0) | QH_TOGGLECONTROL); else if (eptype == USB_ENDPOINT_XFER_INT) pipe->qh.info2 |= (0x01 << QH_SMASK_SHIFT) | (0x1c << QH_CMASK_SHIFT); } static struct usb_pipe * ehci_alloc_intr_pipe(struct usbdevice_s *usbdev , struct usb_endpoint_descriptor *epdesc) { struct usb_ehci_s *cntl = container_of( usbdev->hub->cntl, struct usb_ehci_s, usb); int frameexp = usb_get_period(usbdev, epdesc); dprintf(7, "ehci_alloc_intr_pipe %p %d\n", &cntl->usb, frameexp); if (frameexp > 10) frameexp = 10; int maxpacket = epdesc->wMaxPacketSize; // Determine number of entries needed for 2 timer ticks. int ms = 1<next_td = pipe->tds = tds; pipe->data = data; pipe->qh.qtd_next = (u32)tds; int i; for (i=0; iqtd_next = (i==count-1 ? (u32)tds : (u32)&td[1]); td->alt_next = EHCI_PTR_TERM; td->token = (ehci_explen(maxpacket) | QTD_STS_ACTIVE | QTD_PID_IN | ehci_maxerr(3)); td->buf[0] = (u32)data + maxpacket * i; } // Add to interrupt schedule. struct ehci_framelist *fl = (void*)readl(&cntl->regs->periodiclistbase); if (frameexp == 0) { // Add to existing interrupt entry. struct ehci_qh *intr_qh = (void*)(fl->links[0] & ~EHCI_PTR_BITS); pipe->qh.next = intr_qh->next; barrier(); intr_qh->next = (u32)&pipe->qh | EHCI_PTR_QH; } else { int startpos = 1<<(frameexp-1); pipe->qh.next = fl->links[startpos]; barrier(); for (i=startpos; ilinks); i+=ms) fl->links[i] = (u32)&pipe->qh | EHCI_PTR_QH; } return &pipe->pipe; fail: free(pipe); free(tds); free(data); return NULL; } struct usb_pipe * ehci_realloc_pipe(struct usbdevice_s *usbdev, struct usb_pipe *upipe , struct usb_endpoint_descriptor *epdesc) { if (! CONFIG_USB_EHCI) return NULL; usb_add_freelist(upipe); if (!epdesc) return NULL; u8 eptype = epdesc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; if (eptype == USB_ENDPOINT_XFER_INT) return ehci_alloc_intr_pipe(usbdev, epdesc); struct usb_ehci_s *cntl = container_of( usbdev->hub->cntl, struct usb_ehci_s, usb); dprintf(7, "ehci_alloc_async_pipe %p %d\n", &cntl->usb, eptype); struct usb_pipe *usbpipe = usb_get_freelist(&cntl->usb, eptype); if (usbpipe) { // Use previously allocated pipe. struct ehci_pipe *pipe = container_of(usbpipe, struct ehci_pipe, pipe); ehci_desc2pipe(pipe, usbdev, epdesc); return usbpipe; } // Allocate a new queue head. struct ehci_pipe *pipe; if (eptype == USB_ENDPOINT_XFER_CONTROL) pipe = memalign_tmphigh(EHCI_QH_ALIGN, sizeof(*pipe)); else pipe = memalign_low(EHCI_QH_ALIGN, sizeof(*pipe)); if (!pipe) { warn_noalloc(); return NULL; } memset(pipe, 0, sizeof(*pipe)); ehci_desc2pipe(pipe, usbdev, epdesc); pipe->qh.qtd_next = pipe->qh.alt_next = EHCI_PTR_TERM; // Add queue head to controller list. struct ehci_qh *async_qh = cntl->async_qh; pipe->qh.next = async_qh->next; barrier(); async_qh->next = (u32)&pipe->qh | EHCI_PTR_QH; return &pipe->pipe; } static void ehci_reset_pipe(struct ehci_pipe *pipe) { SET_LOWFLAT(pipe->qh.qtd_next, EHCI_PTR_TERM); SET_LOWFLAT(pipe->qh.alt_next, EHCI_PTR_TERM); barrier(); SET_LOWFLAT(pipe->qh.token, GET_LOWFLAT(pipe->qh.token) & QTD_TOGGLE); } static int ehci_wait_td(struct ehci_pipe *pipe, struct ehci_qtd *td, u32 end) { u32 status; for (;;) { status = td->token; if (!(status & QTD_STS_ACTIVE)) break; if (timer_check(end)) { u32 cur = GET_LOWFLAT(pipe->qh.current); u32 tok = GET_LOWFLAT(pipe->qh.token); u32 next = GET_LOWFLAT(pipe->qh.qtd_next); warn_timeout(); dprintf(1, "ehci pipe=%p cur=%08x tok=%08x next=%x td=%p status=%x\n" , pipe, cur, tok, next, td, status); ehci_reset_pipe(pipe); struct usb_ehci_s *cntl = container_of( GET_LOWFLAT(pipe->pipe.cntl), struct usb_ehci_s, usb); ehci_waittick(cntl); return -1; } yield(); } if (status & QTD_STS_HALT) { dprintf(1, "ehci_wait_td error - status=%x\n", status); ehci_reset_pipe(pipe); return -2; } return 0; } static void ehci_fill_tdbuf(struct ehci_qtd *td, u32 dest, int transfer) { u32 *pos = td->buf, end = dest + transfer; for (; dest < end; dest = ALIGN_DOWN(dest + PAGE_SIZE, PAGE_SIZE)) *pos++ = dest; } #define STACKQTDS 6 int ehci_send_pipe(struct usb_pipe *p, int dir, const void *cmd , void *data, int datasize) { if (! CONFIG_USB_EHCI) return -1; struct ehci_pipe *pipe = container_of(p, struct ehci_pipe, pipe); dprintf(7, "ehci_send_pipe qh=%p dir=%d data=%p size=%d\n" , &pipe->qh, dir, data, datasize); // Allocate tds on stack (with required alignment) u8 tdsbuf[sizeof(struct ehci_qtd) * STACKQTDS + EHCI_QTD_ALIGN - 1]; struct ehci_qtd *tds = (void*)ALIGN((u32)tdsbuf, EHCI_QTD_ALIGN), *td = tds; memset(tds, 0, sizeof(*tds) * STACKQTDS); // Setup transfer descriptors u16 maxpacket = GET_LOWFLAT(pipe->pipe.maxpacket); u32 toggle = 0; if (cmd) { // Send setup pid on control transfers td->qtd_next = (u32)MAKE_FLATPTR(GET_SEG(SS), td+1); td->alt_next = EHCI_PTR_TERM; td->token = (ehci_explen(USB_CONTROL_SETUP_SIZE) | QTD_STS_ACTIVE | QTD_PID_SETUP | ehci_maxerr(3)); ehci_fill_tdbuf(td, (u32)cmd, USB_CONTROL_SETUP_SIZE); td++; toggle = QTD_TOGGLE; } u32 dest = (u32)data, dataend = dest + datasize; while (dest < dataend) { // Send data pids if (td >= &tds[STACKQTDS]) { warn_noalloc(); return -1; } int maxtransfer = 5*PAGE_SIZE - (dest & (PAGE_SIZE-1)); int transfer = dataend - dest; if (transfer > maxtransfer) transfer = ALIGN_DOWN(maxtransfer, maxpacket); td->qtd_next = (u32)MAKE_FLATPTR(GET_SEG(SS), td+1); td->alt_next = EHCI_PTR_TERM; td->token = (ehci_explen(transfer) | toggle | QTD_STS_ACTIVE | (dir ? QTD_PID_IN : QTD_PID_OUT) | ehci_maxerr(3)); ehci_fill_tdbuf(td, dest, transfer); td++; dest += transfer; } if (cmd) { // Send status pid on control transfers if (td >= &tds[STACKQTDS]) { warn_noalloc(); return -1; } td->qtd_next = EHCI_PTR_TERM; td->alt_next = EHCI_PTR_TERM; td->token = (QTD_TOGGLE | QTD_STS_ACTIVE | (dir ? QTD_PID_OUT : QTD_PID_IN) | ehci_maxerr(3)); td++; } // Transfer data (td-1)->qtd_next = EHCI_PTR_TERM; barrier(); SET_LOWFLAT(pipe->qh.qtd_next, (u32)MAKE_FLATPTR(GET_SEG(SS), tds)); u32 end = timer_calc(usb_xfer_time(p, datasize)); int i; for (i=0, td=tds; inext_td); u32 token = GET_LOWFLAT(td->token); if (token & QTD_STS_ACTIVE) // No intrs found. return -1; // XXX - check for errors. // Copy data. int maxpacket = GET_LOWFLAT(pipe->pipe.maxpacket); int pos = td - GET_LOWFLAT(pipe->tds); void *tddata = GET_LOWFLAT(pipe->data) + maxpacket * pos; memcpy_far(GET_SEG(SS), data, SEG_LOW, LOWFLAT2LOW(tddata), maxpacket); // Reenable this td. struct ehci_qtd *next = (void*)(GET_LOWFLAT(td->qtd_next) & ~EHCI_PTR_BITS); SET_LOWFLAT(pipe->next_td, next); SET_LOWFLAT(td->buf[0], (u32)tddata); barrier(); SET_LOWFLAT(td->token, (ehci_explen(maxpacket) | QTD_STS_ACTIVE | QTD_PID_IN | ehci_maxerr(3))); return 0; }