// 16bit code to access floppy drives. // // Copyright (C) 2008,2009 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // SET_BDA #include "block.h" // struct drive_s #include "bregs.h" // struct bregs #include "config.h" // CONFIG_FLOPPY #include "malloc.h" // malloc_fseg #include "output.h" // dprintf #include "pci.h" // pci_to_bdf #include "pci_ids.h" // PCI_CLASS_BRIDGE_ISA #include "pic.h" // pic_eoi1 #include "romfile.h" // romfile_loadint #include "rtc.h" // rtc_read #include "stacks.h" // yield #include "std/disk.h" // DISK_RET_SUCCESS #include "string.h" // memset #include "util.h" // timer_calc #define PORT_FD_BASE 0x03f0 #define PORT_FD_DOR 0x03f2 #define PORT_FD_STATUS 0x03f4 #define PORT_FD_DATA 0x03f5 #define PORT_FD_DIR 0x03f7 #define FLOPPY_SIZE_CODE 0x02 // 512 byte sectors #define FLOPPY_DATALEN 0xff // Not used - because size code is 0x02 #define FLOPPY_MOTOR_TICKS 37 // ~2 seconds #define FLOPPY_FILLBYTE 0xf6 #define FLOPPY_GAPLEN 0x1B #define FLOPPY_FORMAT_GAPLEN 0x6c #define FLOPPY_PIO_TIMEOUT 1000 // New diskette parameter table adding 3 parameters from IBM // Since no provisions are made for multiple drive types, most // values in this table are ignored. I set parameters for 1.44M // floppy here struct floppy_ext_dbt_s diskette_param_table2 VARFSEG = { .dbt = { .specify1 = 0xAF, // step rate 12ms, head unload 240ms .specify2 = 0x02, // head load time 4ms, DMA used .shutoff_ticks = FLOPPY_MOTOR_TICKS, // ~2 seconds .bps_code = FLOPPY_SIZE_CODE, .sectors = 18, .interblock_len = FLOPPY_GAPLEN, .data_len = FLOPPY_DATALEN, .gap_len = FLOPPY_FORMAT_GAPLEN, .fill_byte = FLOPPY_FILLBYTE, .settle_time = 0x0F, // 15ms .startup_time = 0x08, // 1 second }, .max_track = 79, // maximum track .data_rate = 0, // data transfer rate .drive_type = 4, // drive type in cmos }; struct floppyinfo_s { struct chs_s chs; u8 floppy_size; u8 data_rate; }; #define FLOPPY_SIZE_525 0x01 #define FLOPPY_SIZE_350 0x02 #define FLOPPY_RATE_500K 0x00 #define FLOPPY_RATE_300K 0x01 #define FLOPPY_RATE_250K 0x02 #define FLOPPY_RATE_1M 0x03 struct floppyinfo_s FloppyInfo[] VARFSEG = { // Unknown { {0, 0, 0}, 0x00, 0x00}, // 1 - 360KB, 5.25" - 2 heads, 40 tracks, 9 sectors { {2, 40, 9}, FLOPPY_SIZE_525, FLOPPY_RATE_300K}, // 2 - 1.2MB, 5.25" - 2 heads, 80 tracks, 15 sectors { {2, 80, 15}, FLOPPY_SIZE_525, FLOPPY_RATE_500K}, // 3 - 720KB, 3.5" - 2 heads, 80 tracks, 9 sectors { {2, 80, 9}, FLOPPY_SIZE_350, FLOPPY_RATE_250K}, // 4 - 1.44MB, 3.5" - 2 heads, 80 tracks, 18 sectors { {2, 80, 18}, FLOPPY_SIZE_350, FLOPPY_RATE_500K}, // 5 - 2.88MB, 3.5" - 2 heads, 80 tracks, 36 sectors { {2, 80, 36}, FLOPPY_SIZE_350, FLOPPY_RATE_1M}, // 6 - 160k, 5.25" - 1 heads, 40 tracks, 8 sectors { {1, 40, 8}, FLOPPY_SIZE_525, FLOPPY_RATE_250K}, // 7 - 180k, 5.25" - 1 heads, 40 tracks, 9 sectors { {1, 40, 9}, FLOPPY_SIZE_525, FLOPPY_RATE_300K}, // 8 - 320k, 5.25" - 2 heads, 40 tracks, 8 sectors { {2, 40, 8}, FLOPPY_SIZE_525, FLOPPY_RATE_250K}, }; struct drive_s * init_floppy(int floppyid, int ftype) { if (ftype <= 0 || ftype >= ARRAY_SIZE(FloppyInfo)) { dprintf(1, "Bad floppy type %d\n", ftype); return NULL; } struct drive_s *drive = malloc_fseg(sizeof(*drive)); if (!drive) { warn_noalloc(); return NULL; } memset(drive, 0, sizeof(*drive)); drive->cntl_id = floppyid; drive->type = DTYPE_FLOPPY; drive->blksize = DISK_SECTOR_SIZE; drive->floppy_type = ftype; drive->sectors = (u64)-1; memcpy(&drive->lchs, &FloppyInfo[ftype].chs , sizeof(FloppyInfo[ftype].chs)); return drive; } static void addFloppy(int floppyid, int ftype) { struct drive_s *drive = init_floppy(floppyid, ftype); if (!drive) return; char *desc = znprintf(MAXDESCSIZE, "Floppy [drive %c]", 'A' + floppyid); struct pci_device *pci = pci_find_class(PCI_CLASS_BRIDGE_ISA); /* isa-to-pci bridge */ int prio = bootprio_find_fdc_device(pci, PORT_FD_BASE, floppyid); boot_add_floppy(drive, desc, prio); } void floppy_setup(void) { memcpy(&diskette_param_table, &diskette_param_table2 , sizeof(diskette_param_table)); SET_IVT(0x1E, SEGOFF(SEG_BIOS , (u32)&diskette_param_table2 - BUILD_BIOS_ADDR)); if (! CONFIG_FLOPPY) return; dprintf(3, "init floppy drives\n"); if (CONFIG_QEMU) { u8 type = rtc_read(CMOS_FLOPPY_DRIVE_TYPE); if (type & 0xf0) addFloppy(0, type >> 4); if (type & 0x0f) addFloppy(1, type & 0x0f); } else { u8 type = romfile_loadint("etc/floppy0", 0); if (type) addFloppy(0, type); type = romfile_loadint("etc/floppy1", 0); if (type) addFloppy(1, type); } enable_hwirq(6, FUNC16(entry_0e)); } // Find a floppy type that matches a given image size. int find_floppy_type(u32 size) { int i; for (i=1; icylinder * c->head * c->sector * DISK_SECTOR_SIZE == size) return i; } return -1; } /**************************************************************** * Low-level floppy IO ****************************************************************/ u8 FloppyDOR VARLOW; static inline void floppy_dor_write(u8 val) { outb(val, PORT_FD_DOR); SET_LOW(FloppyDOR, val); } static void floppy_disable_controller(void) { dprintf(2, "Floppy_disable_controller\n"); floppy_dor_write(0x00); } static int floppy_wait_irq(void) { u8 frs = GET_BDA(floppy_recalibration_status); SET_BDA(floppy_recalibration_status, frs & ~FRS_IRQ); for (;;) { if (!GET_BDA(floppy_motor_counter)) { warn_timeout(); floppy_disable_controller(); return DISK_RET_ETIMEOUT; } frs = GET_BDA(floppy_recalibration_status); if (frs & FRS_IRQ) break; // Could use yield_toirq() here, but that causes issues on // bochs, so use yield() instead. yield(); } SET_BDA(floppy_recalibration_status, frs & ~FRS_IRQ); return DISK_RET_SUCCESS; } // Floppy commands #define FCF_WAITIRQ 0x10000 #define FC_CHECKIRQ (0x08 | (0<<8) | (2<<12)) #define FC_SEEK (0x0f | (2<<8) | (0<<12) | FCF_WAITIRQ) #define FC_RECALIBRATE (0x07 | (1<<8) | (0<<12) | FCF_WAITIRQ) #define FC_READID (0x4a | (1<<8) | (7<<12) | FCF_WAITIRQ) #define FC_READ (0xe6 | (8<<8) | (7<<12) | FCF_WAITIRQ) #define FC_WRITE (0xc5 | (8<<8) | (7<<12) | FCF_WAITIRQ) #define FC_FORMAT (0x4d | (5<<8) | (7<<12) | FCF_WAITIRQ) // Send the specified command and it's parameters to the floppy controller. static int floppy_pio(int command, u8 *param) { dprintf(9, "Floppy pio command %x\n", command); // Send command and parameters to controller. u32 end = timer_calc(FLOPPY_PIO_TIMEOUT); int send = (command >> 8) & 0xf; int i = 0; for (;;) { u8 sts = inb(PORT_FD_STATUS); if (!(sts & 0x80)) { if (timer_check(end)) { warn_timeout(); floppy_disable_controller(); return DISK_RET_ETIMEOUT; } yield(); continue; } if (sts & 0x40) { floppy_disable_controller(); return DISK_RET_ECONTROLLER; } if (i == 0) outb(command & 0xff, PORT_FD_DATA); else outb(param[i-1], PORT_FD_DATA); if (i++ >= send) break; } // Wait for command to complete. if (command & FCF_WAITIRQ) { int ret = floppy_wait_irq(); if (ret) return ret; } // Read response from controller. end = timer_calc(FLOPPY_PIO_TIMEOUT); int receive = (command >> 12) & 0xf; i = 0; for (;;) { u8 sts = inb(PORT_FD_STATUS); if (!(sts & 0x80)) { if (timer_check(end)) { warn_timeout(); floppy_disable_controller(); return DISK_RET_ETIMEOUT; } yield(); continue; } if (i >= receive) { if (sts & 0x40) { floppy_disable_controller(); return DISK_RET_ECONTROLLER; } break; } if (!(sts & 0x40)) { floppy_disable_controller(); return DISK_RET_ECONTROLLER; } param[i++] = inb(PORT_FD_DATA); } return DISK_RET_SUCCESS; } static int floppy_enable_controller(void) { dprintf(2, "Floppy_enable_controller\n"); SET_BDA(floppy_motor_counter, FLOPPY_MOTOR_TICKS); floppy_dor_write(0x00); floppy_dor_write(0x0c); int ret = floppy_wait_irq(); if (ret) return ret; u8 param[2]; return floppy_pio(FC_CHECKIRQ, param); } // Activate a drive and send a command to it. static int floppy_drive_pio(u8 floppyid, int command, u8 *param) { // Enable controller if it isn't running. if (!(GET_LOW(FloppyDOR) & 0x04)) { int ret = floppy_enable_controller(); if (ret) return ret; } // reset the disk motor timeout value of INT 08 SET_BDA(floppy_motor_counter, FLOPPY_MOTOR_TICKS); // Turn on motor of selected drive, DMA & int enabled, normal operation floppy_dor_write((floppyid ? 0x20 : 0x10) | 0x0c | floppyid); // Send command. int ret = floppy_pio(command, param); if (ret) return ret; // Check IRQ command is needed after irq commands with no results if ((command & FCF_WAITIRQ) && ((command >> 12) & 0xf) == 0) return floppy_pio(FC_CHECKIRQ, param); return DISK_RET_SUCCESS; } /**************************************************************** * Floppy media sense and seeking ****************************************************************/ static int floppy_drive_recal(u8 floppyid) { dprintf(2, "Floppy_drive_recal %d\n", floppyid); // send Recalibrate command to controller u8 param[2]; param[0] = floppyid; int ret = floppy_drive_pio(floppyid, FC_RECALIBRATE, param); if (ret) return ret; u8 frs = GET_BDA(floppy_recalibration_status); SET_BDA(floppy_recalibration_status, frs | (1<floppy_type), stype = ftype; u8 floppyid = GET_GLOBALFLAT(drive_gf->cntl_id); u8 data_rate = GET_GLOBAL(FloppyInfo[stype].data_rate); int ret = floppy_drive_readid(floppyid, data_rate, 0); if (ret) { // Attempt media sense. for (stype=1; ; stype++) { if (stype >= ARRAY_SIZE(FloppyInfo)) return DISK_RET_EMEDIA; if (stype==ftype || (GET_GLOBAL(FloppyInfo[stype].floppy_size) != GET_GLOBAL(FloppyInfo[ftype].floppy_size)) || (GET_GLOBAL(FloppyInfo[stype].chs.head) > GET_GLOBAL(FloppyInfo[ftype].chs.head)) || (GET_GLOBAL(FloppyInfo[stype].chs.cylinder) > GET_GLOBAL(FloppyInfo[ftype].chs.cylinder)) || (GET_GLOBAL(FloppyInfo[stype].chs.sector) > GET_GLOBAL(FloppyInfo[ftype].chs.sector))) continue; data_rate = GET_GLOBAL(FloppyInfo[stype].data_rate); ret = floppy_drive_readid(floppyid, data_rate, 0); if (!ret) break; } } dprintf(2, "Floppy_media_sense on drive %d found rate %d\n" , floppyid, data_rate); u8 old_data_rate = GET_BDA(floppy_media_state[floppyid]) >> 6; SET_BDA(floppy_last_data_rate, (old_data_rate<<2) | (data_rate<<6)); u8 media = (stype == 1 ? 0x04 : (stype == 2 ? 0x05 : 0x07)); u8 fms = (data_rate<<6) | FMS_MEDIA_DRIVE_ESTABLISHED | media; if (GET_GLOBAL(FloppyInfo[stype].chs.cylinder) < GET_GLOBAL(FloppyInfo[ftype].chs.cylinder)) fms |= FMS_DOUBLE_STEPPING; SET_BDA(floppy_media_state[floppyid], fms); return DISK_RET_SUCCESS; } // Prepare a floppy for a data transfer. static int floppy_prep(struct drive_s *drive_gf, u8 cylinder) { u8 floppyid = GET_GLOBALFLAT(drive_gf->cntl_id); if (!(GET_BDA(floppy_recalibration_status) & (1<buf_fl, count, isWrite); if (ret) return DISK_RET_EBOUNDARY; // Invoke floppy controller u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id); ret = floppy_drive_pio(floppyid, command, param); if (ret) return ret; // Populate floppy_return_status in BDA int i; for (i=0; i<7; i++) SET_BDA(floppy_return_status[i], param[i]); if (param[0] & 0xc0) { if (param[1] & 0x02) return DISK_RET_EWRITEPROTECT; dprintf(1, "floppy error: %02x %02x %02x %02x %02x %02x %02x\n" , param[0], param[1], param[2], param[3] , param[4], param[5], param[6]); return DISK_RET_ECONTROLLER; } return DISK_RET_SUCCESS; } /**************************************************************** * Floppy handlers ****************************************************************/ static struct chs_s lba2chs(struct disk_op_s *op) { struct chs_s res = { }; u32 tmp = op->lba; u16 nls = GET_GLOBALFLAT(op->drive_gf->lchs.sector); res.sector = (tmp % nls) + 1; tmp /= nls; u16 nlh = GET_GLOBALFLAT(op->drive_gf->lchs.head); res.head = tmp % nlh; tmp /= nlh; res.cylinder = tmp; return res; } // diskette controller reset static int floppy_reset(struct disk_op_s *op) { SET_BDA(floppy_recalibration_status, 0); SET_BDA(floppy_media_state[0], 0); SET_BDA(floppy_media_state[1], 0); SET_BDA(floppy_track[0], 0); SET_BDA(floppy_track[1], 0); SET_BDA(floppy_last_data_rate, 0); floppy_disable_controller(); return floppy_enable_controller(); } // Read Diskette Sectors static int floppy_read(struct disk_op_s *op) { struct chs_s chs = lba2chs(op); int ret = floppy_prep(op->drive_gf, chs.cylinder); if (ret) return ret; // send read-normal-data command to controller u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id); u8 param[8]; param[0] = (chs.head << 2) | floppyid; // HD DR1 DR2 param[1] = chs.cylinder; param[2] = chs.head; param[3] = chs.sector; param[4] = FLOPPY_SIZE_CODE; param[5] = chs.sector + op->count - 1; // last sector to read on track param[6] = FLOPPY_GAPLEN; param[7] = FLOPPY_DATALEN; return floppy_dma_cmd(op, op->count * DISK_SECTOR_SIZE, FC_READ, param); } // Write Diskette Sectors static int floppy_write(struct disk_op_s *op) { struct chs_s chs = lba2chs(op); int ret = floppy_prep(op->drive_gf, chs.cylinder); if (ret) return ret; // send write-normal-data command to controller u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id); u8 param[8]; param[0] = (chs.head << 2) | floppyid; // HD DR1 DR2 param[1] = chs.cylinder; param[2] = chs.head; param[3] = chs.sector; param[4] = FLOPPY_SIZE_CODE; param[5] = chs.sector + op->count - 1; // last sector to write on track param[6] = FLOPPY_GAPLEN; param[7] = FLOPPY_DATALEN; return floppy_dma_cmd(op, op->count * DISK_SECTOR_SIZE, FC_WRITE, param); } // Verify Diskette Sectors static int floppy_verify(struct disk_op_s *op) { struct chs_s chs = lba2chs(op); int ret = floppy_prep(op->drive_gf, chs.cylinder); if (ret) return ret; // This command isn't implemented - just return success. return DISK_RET_SUCCESS; } // format diskette track static int floppy_format(struct disk_op_s *op) { struct chs_s chs = lba2chs(op); int ret = floppy_prep(op->drive_gf, chs.cylinder); if (ret) return ret; // send format-track command to controller u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id); u8 param[7]; param[0] = (chs.head << 2) | floppyid; // HD DR1 DR2 param[1] = FLOPPY_SIZE_CODE; param[2] = op->count; // number of sectors per track param[3] = FLOPPY_FORMAT_GAPLEN; param[4] = FLOPPY_FILLBYTE; return floppy_dma_cmd(op, op->count * 4, FC_FORMAT, param); } int floppy_process_op(struct disk_op_s *op) { if (!CONFIG_FLOPPY) return 0; switch (op->command) { case CMD_RESET: return floppy_reset(op); case CMD_READ: return floppy_read(op); case CMD_WRITE: return floppy_write(op); case CMD_VERIFY: return floppy_verify(op); case CMD_FORMAT: return floppy_format(op); default: return DISK_RET_EPARAM; } } /**************************************************************** * HW irqs ****************************************************************/ // INT 0Eh Diskette Hardware ISR Entry Point void VISIBLE16 handle_0e(void) { if (! CONFIG_FLOPPY) return; debug_isr(DEBUG_ISR_0e); // diskette interrupt has occurred u8 frs = GET_BDA(floppy_recalibration_status); SET_BDA(floppy_recalibration_status, frs | FRS_IRQ); pic_eoi1(); } // Called from int08 handler. void floppy_tick(void) { if (! CONFIG_FLOPPY) return; // time to turn off drive(s)? u8 fcount = GET_BDA(floppy_motor_counter); if (fcount) { fcount--; SET_BDA(floppy_motor_counter, fcount); if (fcount == 0) // turn motor(s) off floppy_dor_write(GET_LOW(FloppyDOR) & ~0xf0); } }