// Disk setup and access // // Copyright (C) 2008,2009 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // GET_GLOBAL #include "block.h" // process_op #include "hw/ata.h" // process_ata_op #include "hw/ahci.h" // process_ahci_op #include "hw/blockcmd.h" // cdb_* #include "hw/esp-scsi.h" // esp_scsi_process_op #include "hw/lsi-scsi.h" // lsi_scsi_process_op #include "hw/megasas.h" // megasas_process_op #include "hw/pci.h" // pci_bdf_to_bus #include "hw/pvscsi.h" // pvscsi_process_op #include "hw/rtc.h" // rtc_read #include "hw/usb-msc.h" // usb_process_op #include "hw/usb-uas.h" // uas_process_op #include "hw/virtio-blk.h" // process_virtio_blk_op #include "hw/virtio-scsi.h" // virtio_scsi_process_op #include "malloc.h" // malloc_low #include "output.h" // dprintf #include "stacks.h" // stack_hop #include "std/disk.h" // struct dpte_s #include "string.h" // checksum #include "util.h" // process_floppy_op u8 FloppyCount VARFSEG; u8 CDCount; struct drive_s *IDMap[3][BUILD_MAX_EXTDRIVE] VARFSEG; u8 *bounce_buf_fl VARFSEG; struct drive_s * getDrive(u8 exttype, u8 extdriveoffset) { if (extdriveoffset >= ARRAY_SIZE(IDMap[0])) return NULL; return GET_GLOBAL(IDMap[exttype][extdriveoffset]); } int getDriveId(u8 exttype, struct drive_s *drive) { ASSERT32FLAT(); int i; for (i = 0; i < ARRAY_SIZE(IDMap[0]); i++) if (getDrive(exttype, i) == drive) return i; return -1; } int create_bounce_buf(void) { if (bounce_buf_fl) return 0; u8 *buf = malloc_low(CDROM_SECTOR_SIZE); if (!buf) { warn_noalloc(); return -1; } bounce_buf_fl = buf; return 0; } /**************************************************************** * Disk geometry translation ****************************************************************/ static u8 get_translation(struct drive_s *drive) { u8 type = drive->type; if (CONFIG_QEMU && type == DTYPE_ATA) { // Emulators pass in the translation info via nvram. u8 translation = rtc_read(CMOS_BIOS_DISKTRANSFLAG + drive->cntl_id/4); translation >>= 2 * (drive->cntl_id % 4); translation &= 0x03; return translation; } // Otherwise use a heuristic to determine translation type. u16 heads = drive->pchs.head; u16 cylinders = drive->pchs.cylinder; u16 spt = drive->pchs.sector; u64 sectors = drive->sectors; u64 psectors = (u64)heads * cylinders * spt; if (!heads || !cylinders || !spt || psectors > sectors) // pchs doesn't look valid - use LBA. return TRANSLATION_LBA; if (cylinders <= 1024 && heads <= 16 && spt <= 63) return TRANSLATION_NONE; if (cylinders * heads <= 131072) return TRANSLATION_LARGE; return TRANSLATION_LBA; } static void setup_translation(struct drive_s *drive) { u8 translation = get_translation(drive); drive->translation = translation; u16 heads = drive->pchs.head ; u16 cylinders = drive->pchs.cylinder; u16 spt = drive->pchs.sector; u64 sectors = drive->sectors; const char *desc = NULL; switch (translation) { default: case TRANSLATION_NONE: desc = "none"; break; case TRANSLATION_LBA: desc = "lba"; spt = 63; if (sectors > 63*255*1024) { heads = 255; cylinders = 1024; break; } u32 sect = (u32)sectors / 63; heads = sect / 1024; if (heads>128) heads = 255; else if (heads>64) heads = 128; else if (heads>32) heads = 64; else if (heads>16) heads = 32; else heads = 16; cylinders = sect / heads; break; case TRANSLATION_RECHS: desc = "r-echs"; // Take care not to overflow if (heads==16) { if (cylinders>61439) cylinders=61439; heads=15; cylinders = (u16)((u32)(cylinders)*16/15); } // then go through the large bitshift process case TRANSLATION_LARGE: if (translation == TRANSLATION_LARGE) desc = "large"; while (cylinders > 1024) { cylinders >>= 1; heads <<= 1; // If we max out the head count if (heads > 127) break; } break; } // clip to 1024 cylinders in lchs if (cylinders > 1024) cylinders = 1024; dprintf(1, "drive %p: PCHS=%u/%d/%d translation=%s LCHS=%d/%d/%d s=%d\n" , drive , drive->pchs.cylinder, drive->pchs.head, drive->pchs.sector , desc , cylinders, heads, spt , (u32)sectors); drive->lchs.head = heads; drive->lchs.cylinder = cylinders; drive->lchs.sector = spt; } /**************************************************************** * Drive mapping ****************************************************************/ // Fill in Fixed Disk Parameter Table (located in ebda). static void fill_fdpt(struct drive_s *drive, int hdid) { if (hdid > 1) return; u16 nlc = drive->lchs.cylinder; u16 nlh = drive->lchs.head; u16 nls = drive->lchs.sector; u16 npc = drive->pchs.cylinder; u16 nph = drive->pchs.head; u16 nps = drive->pchs.sector; struct fdpt_s *fdpt = &get_ebda_ptr()->fdpt[hdid]; fdpt->precompensation = 0xffff; fdpt->drive_control_byte = 0xc0 | ((nph > 8) << 3); fdpt->landing_zone = npc; fdpt->cylinders = nlc; fdpt->heads = nlh; fdpt->sectors = nls; if (nlc != npc || nlh != nph || nls != nps) { // Logical mapping present - use extended structure. // complies with Phoenix style Translated Fixed Disk Parameter // Table (FDPT) fdpt->phys_cylinders = npc; fdpt->phys_heads = nph; fdpt->phys_sectors = nps; fdpt->a0h_signature = 0xa0; // Checksum structure. fdpt->checksum -= checksum(fdpt, sizeof(*fdpt)); } if (hdid == 0) SET_IVT(0x41, SEGOFF(get_ebda_seg(), offsetof( struct extended_bios_data_area_s, fdpt[0]))); else SET_IVT(0x46, SEGOFF(get_ebda_seg(), offsetof( struct extended_bios_data_area_s, fdpt[1]))); } // Find spot to add a drive static void add_drive(struct drive_s **idmap, u8 *count, struct drive_s *drive) { if (*count >= ARRAY_SIZE(IDMap[0])) { warn_noalloc(); return; } idmap[*count] = drive; *count = *count + 1; } // Map a hard drive void map_hd_drive(struct drive_s *drive) { ASSERT32FLAT(); struct bios_data_area_s *bda = MAKE_FLATPTR(SEG_BDA, 0); int hdid = bda->hdcount; dprintf(3, "Mapping hd drive %p to %d\n", drive, hdid); add_drive(IDMap[EXTTYPE_HD], &bda->hdcount, drive); // Setup disk geometry translation. setup_translation(drive); // Fill "fdpt" structure. fill_fdpt(drive, hdid); } // Map a cd void map_cd_drive(struct drive_s *drive) { ASSERT32FLAT(); dprintf(3, "Mapping cd drive %p\n", drive); add_drive(IDMap[EXTTYPE_CD], &CDCount, drive); } // Map a floppy void map_floppy_drive(struct drive_s *drive) { ASSERT32FLAT(); dprintf(3, "Mapping floppy drive %p\n", drive); add_drive(IDMap[EXTTYPE_FLOPPY], &FloppyCount, drive); // Update equipment word bits for floppy if (FloppyCount == 1) { // 1 drive, ready for boot set_equipment_flags(0x41, 0x01); SET_BDA(floppy_harddisk_info, 0x07); } else if (FloppyCount >= 2) { // 2 drives, ready for boot set_equipment_flags(0x41, 0x41); SET_BDA(floppy_harddisk_info, 0x77); } } /**************************************************************** * Extended Disk Drive (EDD) get drive parameters ****************************************************************/ // flags for bus_iface field in fill_generic_edd() #define EDD_ISA 0x01 #define EDD_PCI 0x02 #define EDD_BUS_MASK 0x0f #define EDD_ATA 0x10 #define EDD_SCSI 0x20 #define EDD_IFACE_MASK 0xf0 // Fill in EDD info static int fill_generic_edd(struct segoff_s edd, struct drive_s *drive_gf , u32 dpte_so, u8 bus_iface, u32 iface_path, u32 device_path) { u16 seg = edd.seg; struct int13dpt_s *param_far = (void*)(edd.offset+0); u16 size = GET_FARVAR(seg, param_far->size); u16 t13 = size == 74; // Buffer is too small if (size < 26) return DISK_RET_EPARAM; // EDD 1.x u8 type = GET_GLOBALFLAT(drive_gf->type); u16 npc = GET_GLOBALFLAT(drive_gf->pchs.cylinder); u16 nph = GET_GLOBALFLAT(drive_gf->pchs.head); u16 nps = GET_GLOBALFLAT(drive_gf->pchs.sector); u64 lba = GET_GLOBALFLAT(drive_gf->sectors); u16 blksize = GET_GLOBALFLAT(drive_gf->blksize); dprintf(DEBUG_HDL_13, "disk_1348 size=%d t=%d chs=%d,%d,%d lba=%d bs=%d\n" , size, type, npc, nph, nps, (u32)lba, blksize); SET_FARVAR(seg, param_far->size, 26); if (lba == (u64)-1) { // 0x74 = removable, media change, lockable, max values SET_FARVAR(seg, param_far->infos, 0x74); SET_FARVAR(seg, param_far->cylinders, 0xffffffff); SET_FARVAR(seg, param_far->heads, 0xffffffff); SET_FARVAR(seg, param_far->spt, 0xffffffff); } else { if (lba > (u64)nps*nph*0x3fff) { SET_FARVAR(seg, param_far->infos, 0x00); // geometry is invalid SET_FARVAR(seg, param_far->cylinders, 0x3fff); } else { SET_FARVAR(seg, param_far->infos, 0x02); // geometry is valid SET_FARVAR(seg, param_far->cylinders, (u32)npc); } SET_FARVAR(seg, param_far->heads, (u32)nph); SET_FARVAR(seg, param_far->spt, (u32)nps); } SET_FARVAR(seg, param_far->sector_count, lba); SET_FARVAR(seg, param_far->blksize, blksize); if (size < 30 || !dpte_so) return DISK_RET_SUCCESS; // EDD 2.x SET_FARVAR(seg, param_far->size, 30); SET_FARVAR(seg, param_far->dpte.segoff, dpte_so); if (size < 66 || !bus_iface) return DISK_RET_SUCCESS; // EDD 3.x SET_FARVAR(seg, param_far->key, 0xbedd); SET_FARVAR(seg, param_far->dpi_length, t13 ? 44 : 36); SET_FARVAR(seg, param_far->reserved1, 0); SET_FARVAR(seg, param_far->reserved2, 0); const char *host_bus = "ISA "; if ((bus_iface & EDD_BUS_MASK) == EDD_PCI) { host_bus = "PCI "; if (!t13) // Phoenix v3 spec (pre t13) did not define the PCI channel field iface_path &= 0x00ffffff; } memcpy_far(seg, param_far->host_bus, SEG_BIOS, host_bus , sizeof(param_far->host_bus)); SET_FARVAR(seg, param_far->iface_path, iface_path); const char *iface_type = "ATA "; if ((bus_iface & EDD_IFACE_MASK) == EDD_SCSI) iface_type = "SCSI "; memcpy_far(seg, param_far->iface_type, SEG_BIOS, iface_type , sizeof(param_far->iface_type)); if (t13) { SET_FARVAR(seg, param_far->t13.device_path[0], device_path); SET_FARVAR(seg, param_far->t13.device_path[1], 0); SET_FARVAR(seg, param_far->t13.checksum , -checksum_far(seg, (void*)param_far+30, 43)); } else { SET_FARVAR(seg, param_far->phoenix.device_path, device_path); SET_FARVAR(seg, param_far->phoenix.checksum , -checksum_far(seg, (void*)param_far+30, 35)); } return DISK_RET_SUCCESS; } // Build an EDD "iface_path" field for a PCI device static u32 edd_pci_path(u16 bdf, u8 channel) { return (pci_bdf_to_bus(bdf) | (pci_bdf_to_dev(bdf) << 8) | (pci_bdf_to_fn(bdf) << 16) | ((u32)channel << 24)); } struct dpte_s DefaultDPTE VARLOW; // EDD info for ATA and ATAPI drives static int fill_ata_edd(struct segoff_s edd, struct drive_s *drive_gf) { if (!CONFIG_ATA) return DISK_RET_EPARAM; // Fill in dpte struct atadrive_s *adrive_gf = container_of( drive_gf, struct atadrive_s, drive); struct ata_channel_s *chan_gf = GET_GLOBALFLAT(adrive_gf->chan_gf); u8 slave = GET_GLOBALFLAT(adrive_gf->slave); u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2); u8 irq = GET_GLOBALFLAT(chan_gf->irq); u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1); int bdf = GET_GLOBALFLAT(chan_gf->pci_bdf); u8 channel = GET_GLOBALFLAT(chan_gf->chanid); u16 options = 0; if (GET_GLOBALFLAT(drive_gf->type) == DTYPE_ATA) { u8 translation = GET_GLOBALFLAT(drive_gf->translation); if (translation != TRANSLATION_NONE) { options |= 1<<3; // CHS translation if (translation == TRANSLATION_LBA) options |= 1<<9; if (translation == TRANSLATION_RECHS) options |= 3<<9; } } else { // ATAPI options |= 1<<5; // removable device options |= 1<<6; // atapi device } options |= 1<<4; // lba translation if (CONFIG_ATA_PIO32) options |= 1<<7; SET_LOW(DefaultDPTE.iobase1, iobase1); SET_LOW(DefaultDPTE.iobase2, iobase2 + ATA_CB_DC); SET_LOW(DefaultDPTE.prefix, ((slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0) | ATA_CB_DH_LBA)); SET_LOW(DefaultDPTE.unused, 0xcb); SET_LOW(DefaultDPTE.irq, irq); SET_LOW(DefaultDPTE.blkcount, 1); SET_LOW(DefaultDPTE.dma, 0); SET_LOW(DefaultDPTE.pio, 0); SET_LOW(DefaultDPTE.options, options); SET_LOW(DefaultDPTE.reserved, 0); SET_LOW(DefaultDPTE.revision, 0x11); u8 sum = checksum_far(SEG_LOW, &DefaultDPTE, 15); SET_LOW(DefaultDPTE.checksum, -sum); u32 bustype = EDD_ISA, ifpath = iobase1; if (bdf >= 0) { bustype = EDD_PCI; ifpath = edd_pci_path(bdf, channel); } return fill_generic_edd( edd, drive_gf, SEGOFF(SEG_LOW, (u32)&DefaultDPTE).segoff , bustype | EDD_ATA, ifpath, slave); } // Fill Extended Disk Drive (EDD) "Get drive parameters" info for a drive int noinline fill_edd(struct segoff_s edd, struct drive_s *drive_gf) { switch (GET_GLOBALFLAT(drive_gf->type)) { case DTYPE_ATA: case DTYPE_ATA_ATAPI: return fill_ata_edd(edd, drive_gf); case DTYPE_VIRTIO_BLK: case DTYPE_VIRTIO_SCSI: return fill_generic_edd( edd, drive_gf, 0xffffffff, EDD_PCI | EDD_SCSI , edd_pci_path(GET_GLOBALFLAT(drive_gf->cntl_id), 0), 0); default: return fill_generic_edd(edd, drive_gf, 0, 0, 0, 0); } } /**************************************************************** * Disk driver dispatch ****************************************************************/ // Fallback handler for command requests not implemented by drivers int default_process_op(struct disk_op_s *op) { switch (op->command) { case CMD_FORMAT: case CMD_RESET: case CMD_ISREADY: case CMD_VERIFY: case CMD_SEEK: // Return success if the driver doesn't implement these commands return DISK_RET_SUCCESS; default: return DISK_RET_EPARAM; } } // Command dispatch for disk drivers that run in both 16bit and 32bit mode static int process_op_both(struct disk_op_s *op) { switch (GET_GLOBALFLAT(op->drive_gf->type)) { case DTYPE_ATA_ATAPI: return ata_atapi_process_op(op); case DTYPE_USB: return usb_process_op(op); case DTYPE_UAS: return uas_process_op(op); case DTYPE_LSI_SCSI: return lsi_scsi_process_op(op); case DTYPE_ESP_SCSI: return esp_scsi_process_op(op); case DTYPE_MEGASAS: return megasas_process_op(op); default: if (!MODESEGMENT) return DISK_RET_EPARAM; // In 16bit mode and driver not found - try in 32bit mode return call32(process_op_32, MAKE_FLATPTR(GET_SEG(SS), op) , DISK_RET_EPARAM); } } // Command dispatch for disk drivers that only run in 32bit mode int VISIBLE32FLAT process_op_32(struct disk_op_s *op) { ASSERT32FLAT(); switch (op->drive_gf->type) { case DTYPE_VIRTIO_BLK: return virtio_blk_process_op(op); case DTYPE_AHCI: return ahci_process_op(op); case DTYPE_AHCI_ATAPI: return ahci_atapi_process_op(op); case DTYPE_SDCARD: return sdcard_process_op(op); case DTYPE_USB_32: return usb_process_op(op); case DTYPE_UAS_32: return uas_process_op(op); case DTYPE_VIRTIO_SCSI: return virtio_scsi_process_op(op); case DTYPE_PVSCSI: return pvscsi_process_op(op); default: return process_op_both(op); } } // Command dispatch for disk drivers that only run in 16bit mode static int process_op_16(struct disk_op_s *op) { ASSERT16(); switch (GET_GLOBALFLAT(op->drive_gf->type)) { case DTYPE_FLOPPY: return floppy_process_op(op); case DTYPE_ATA: return ata_process_op(op); case DTYPE_RAMDISK: return ramdisk_process_op(op); case DTYPE_CDEMU: return cdemu_process_op(op); default: return process_op_both(op); } } // Execute a disk_op_s request. int process_op(struct disk_op_s *op) { int ret, origcount = op->count; if (origcount * GET_GLOBALFLAT(op->drive_gf->blksize) > 64*1024) { op->count = 0; return DISK_RET_EBOUNDARY; } if (MODESEGMENT) ret = process_op_16(op); else ret = process_op_32(op); if (ret && op->count == origcount) // If the count hasn't changed on error, assume no data transferred. op->count = 0; return ret; } // Execute a "disk_op_s" request - this runs on the extra stack. static int __send_disk_op(struct disk_op_s *op_far, u16 op_seg) { struct disk_op_s dop; memcpy_far(GET_SEG(SS), &dop , op_seg, op_far , sizeof(dop)); dprintf(DEBUG_HDL_13, "disk_op d=%p lba=%d buf=%p count=%d cmd=%d\n" , dop.drive_gf, (u32)dop.lba, dop.buf_fl , dop.count, dop.command); int status = process_op(&dop); // Update count with total sectors transferred. SET_FARVAR(op_seg, op_far->count, dop.count); return status; } // Execute a "disk_op_s" request by jumping to the extra 16bit stack. int send_disk_op(struct disk_op_s *op) { ASSERT16(); if (! CONFIG_DRIVES) return -1; return stack_hop(__send_disk_op, op, GET_SEG(SS)); }