/* * vxge-config.c: iPXE driver for Neterion Inc's X3100 Series 10GbE PCIe I/O * Virtualized Server Adapter. * * Copyright(c) 2002-2010 Neterion Inc. * * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by * reference. Drivers based on or derived from this code fall under * the GPL and must retain the authorship, copyright and license * notice. * */ FILE_LICENCE(GPL2_ONLY); #include #include #include #include #include #include #include #include "vxge_traffic.h" #include "vxge_config.h" #include "vxge_main.h" void vxge_hw_vpath_set_zero_rx_frm_len(struct __vxge_hw_device *hldev) { u64 val64; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; vpath = &hldev->virtual_path; vp_reg = vpath->vp_reg; val64 = readq(&vp_reg->rxmac_vcfg0); val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff); writeq(val64, &vp_reg->rxmac_vcfg0); val64 = readq(&vp_reg->rxmac_vcfg0); return; } enum vxge_hw_status vxge_hw_set_fw_api(struct __vxge_hw_device *hldev, u64 vp_id, u32 action, u32 offset, u64 data0, u64 data1) { enum vxge_hw_status status = VXGE_HW_OK; u64 val64; u32 fw_memo = VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO; struct vxge_hw_vpath_reg __iomem *vp_reg; vp_reg = (struct vxge_hw_vpath_reg __iomem *)hldev->vpath_reg[vp_id]; writeq(data0, &vp_reg->rts_access_steer_data0); writeq(data1, &vp_reg->rts_access_steer_data1); wmb(); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE; writeq(val64, &vp_reg->rts_access_steer_ctrl); wmb(); status = __vxge_hw_device_register_poll( &vp_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, WAIT_FACTOR * VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) return VXGE_HW_FAIL; val64 = readq(&vp_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) status = VXGE_HW_OK; else status = VXGE_HW_FAIL; return status; } /* Get function mode */ enum vxge_hw_status vxge_hw_get_func_mode(struct __vxge_hw_device *hldev, u32 *func_mode) { enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_vpath_reg __iomem *vp_reg; u64 val64; int vp_id; /* get the first vpath number assigned to this function */ vp_id = hldev->first_vp_id; vp_reg = (struct vxge_hw_vpath_reg __iomem *)hldev->vpath_reg[vp_id]; status = vxge_hw_set_fw_api(hldev, vp_id, VXGE_HW_FW_API_GET_FUNC_MODE, 0, 0, 0); if (status == VXGE_HW_OK) { val64 = readq(&vp_reg->rts_access_steer_data0); *func_mode = VXGE_HW_GET_FUNC_MODE_VAL(val64); } return status; } /* * __vxge_hw_device_pci_e_init * Initialize certain PCI/PCI-X configuration registers * with recommended values. Save config space for future hw resets. */ void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev) { u16 cmd = 0; struct pci_device *pdev = hldev->pdev; vxge_trace(); /* Set the PErr Repconse bit and SERR in PCI command register. */ pci_read_config_word(pdev, PCI_COMMAND, &cmd); cmd |= 0x140; pci_write_config_word(pdev, PCI_COMMAND, cmd); return; } /* * __vxge_hw_device_register_poll * Will poll certain register for specified amount of time. * Will poll until masked bit is not cleared. */ enum vxge_hw_status __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis) { u64 val64; u32 i = 0; enum vxge_hw_status ret = VXGE_HW_FAIL; udelay(10); do { val64 = readq(reg); if (!(val64 & mask)) return VXGE_HW_OK; udelay(100); } while (++i <= 9); i = 0; do { val64 = readq(reg); if (!(val64 & mask)) return VXGE_HW_OK; udelay(1000); } while (++i <= max_millis); return ret; } /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset * in progress * This routine checks the vpath reset in progress register is turned zero */ enum vxge_hw_status __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog) { enum vxge_hw_status status; vxge_trace(); status = __vxge_hw_device_register_poll(vpath_rst_in_prog, VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff), VXGE_HW_DEF_DEVICE_POLL_MILLIS); return status; } /* * __vxge_hw_device_get_legacy_reg * This routine gets the legacy register section's memory mapped address * and sets the swapper. */ static struct vxge_hw_legacy_reg __iomem * __vxge_hw_device_get_legacy_reg(struct pci_device *pdev, void __iomem *bar0) { enum vxge_hw_status status; struct vxge_hw_legacy_reg __iomem *legacy_reg; /* * If the length of Bar0 is 16MB, then assume that we are configured * in MF8P_VP2 mode and then add 8MB to the legacy_reg offsets */ if (pci_bar_size(pdev, PCI_BASE_ADDRESS_0) == 0x1000000) legacy_reg = (struct vxge_hw_legacy_reg __iomem *) (bar0 + 0x800000); else legacy_reg = (struct vxge_hw_legacy_reg __iomem *)bar0; status = __vxge_hw_legacy_swapper_set(legacy_reg); if (status != VXGE_HW_OK) return NULL; return legacy_reg; } /* * __vxge_hw_device_toc_get * This routine sets the swapper and reads the toc pointer and returns the * memory mapped address of the toc */ struct vxge_hw_toc_reg __iomem * __vxge_hw_device_toc_get(void __iomem *bar0, struct vxge_hw_legacy_reg __iomem *legacy_reg) { u64 val64; struct vxge_hw_toc_reg __iomem *toc = NULL; val64 = readq(&legacy_reg->toc_first_pointer); toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64); return toc; } /* * __vxge_hw_device_reg_addr_get * This routine sets the swapper and reads the toc pointer and initializes the * register location pointers in the device object. It waits until the ric is * completed initializing registers. */ enum vxge_hw_status __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev) { u64 val64; u32 i; enum vxge_hw_status status = VXGE_HW_OK; hldev->legacy_reg = __vxge_hw_device_get_legacy_reg(hldev->pdev, hldev->bar0); if (hldev->legacy_reg == NULL) { status = VXGE_HW_FAIL; goto exit; } hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0, hldev->legacy_reg); if (hldev->toc_reg == NULL) { status = VXGE_HW_FAIL; goto exit; } val64 = readq(&hldev->toc_reg->toc_common_pointer); hldev->common_reg = (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64); val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer); hldev->mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64); for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) { val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]); hldev->srpcim_reg[i] = (struct vxge_hw_srpcim_reg __iomem *) (hldev->bar0 + val64); } for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) { val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]); hldev->vpmgmt_reg[i] = (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64); } for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) { val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]); hldev->vpath_reg[i] = (struct vxge_hw_vpath_reg __iomem *) (hldev->bar0 + val64); } val64 = readq(&hldev->toc_reg->toc_kdfc); switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) { case 0: hldev->kdfc = (u8 __iomem *)(hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64)); break; default: break; } status = __vxge_hw_device_vpath_reset_in_prog_check( (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog); exit: return status; } /* * __vxge_hw_device_access_rights_get: Get Access Rights of the driver * This routine returns the Access Rights of the driver */ static u32 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id) { u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH; switch (host_type) { case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION: if (func_id == 0) { access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; } break; case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION: access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; break; case VXGE_HW_NO_MR_SR_VH0_FUNCTION0: access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; break; case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION: case VXGE_HW_SR_VH_VIRTUAL_FUNCTION: case VXGE_HW_MR_SR_VH0_INVALID_CONFIG: break; case VXGE_HW_SR_VH_FUNCTION0: case VXGE_HW_VH_NORMAL_FUNCTION: access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; break; } return access_rights; } /* * __vxge_hw_device_host_info_get * This routine returns the host type assignments */ void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev) { u64 val64; u32 i; val64 = readq(&hldev->common_reg->host_type_assignments); hldev->host_type = (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64); hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments); for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!(hldev->vpath_assignments & vxge_mBIT(i))) continue; hldev->func_id = __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]); hldev->access_rights = __vxge_hw_device_access_rights_get( hldev->host_type, hldev->func_id); hldev->first_vp_id = i; break; } return; } /** * vxge_hw_device_hw_info_get - Get the hw information * Returns the vpath mask that has the bits set for each vpath allocated * for the driver, FW version information and the first mac addresse for * each vpath */ enum vxge_hw_status vxge_hw_device_hw_info_get(struct pci_device *pdev, void __iomem *bar0, struct vxge_hw_device_hw_info *hw_info) { u32 i; u64 val64; struct vxge_hw_toc_reg __iomem *toc; struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg; struct vxge_hw_common_reg __iomem *common_reg; struct vxge_hw_vpath_reg __iomem *vpath_reg; struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg; struct vxge_hw_legacy_reg __iomem *legacy_reg; enum vxge_hw_status status; vxge_trace(); memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info)); legacy_reg = __vxge_hw_device_get_legacy_reg(pdev, bar0); if (legacy_reg == NULL) { status = VXGE_HW_ERR_CRITICAL; goto exit; } toc = __vxge_hw_device_toc_get(bar0, legacy_reg); if (toc == NULL) { status = VXGE_HW_ERR_CRITICAL; goto exit; } val64 = readq(&toc->toc_common_pointer); common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64); status = __vxge_hw_device_vpath_reset_in_prog_check( (u64 __iomem *)&common_reg->vpath_rst_in_prog); if (status != VXGE_HW_OK) goto exit; hw_info->vpath_mask = readq(&common_reg->vpath_assignments); val64 = readq(&common_reg->host_type_assignments); hw_info->host_type = (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64); for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!((hw_info->vpath_mask) & vxge_mBIT(i))) continue; val64 = readq(&toc->toc_vpmgmt_pointer[i]); vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *) (bar0 + val64); hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg); if (__vxge_hw_device_access_rights_get(hw_info->host_type, hw_info->func_id) & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) { val64 = readq(&toc->toc_mrpcim_pointer); mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *) (bar0 + val64); writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask); wmb(); } val64 = readq(&toc->toc_vpath_pointer[i]); vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64); status = __vxge_hw_vpath_fw_ver_get(vpath_reg, hw_info); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_card_info_get(vpath_reg, hw_info); if (status != VXGE_HW_OK) goto exit; break; } for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!((hw_info->vpath_mask) & vxge_mBIT(i))) continue; val64 = readq(&toc->toc_vpath_pointer[i]); vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64); status = __vxge_hw_vpath_addr_get(vpath_reg, hw_info->mac_addrs[i], hw_info->mac_addr_masks[i]); if (status != VXGE_HW_OK) goto exit; } exit: return status; } /* * vxge_hw_device_initialize - Initialize Titan device. * Initialize Titan device. Note that all the arguments of this public API * are 'IN', including @hldev. Driver cooperates with * OS to find new Titan device, locate its PCI and memory spaces. * * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW * to enable the latter to perform Titan hardware initialization. */ enum vxge_hw_status vxge_hw_device_initialize( struct __vxge_hw_device **devh, void *bar0, struct pci_device *pdev, u8 titan1) { struct __vxge_hw_device *hldev = NULL; enum vxge_hw_status status = VXGE_HW_OK; vxge_trace(); hldev = (struct __vxge_hw_device *) zalloc(sizeof(struct __vxge_hw_device)); if (hldev == NULL) { vxge_debug(VXGE_ERR, "hldev allocation failed\n"); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } hldev->magic = VXGE_HW_DEVICE_MAGIC; hldev->bar0 = bar0; hldev->pdev = pdev; hldev->titan1 = titan1; __vxge_hw_device_pci_e_init(hldev); status = __vxge_hw_device_reg_addr_get(hldev); if (status != VXGE_HW_OK) { vxge_debug(VXGE_ERR, "%s:%d __vxge_hw_device_reg_addr_get " "failed\n", __func__, __LINE__); vxge_hw_device_terminate(hldev); goto exit; } __vxge_hw_device_host_info_get(hldev); *devh = hldev; exit: return status; } /* * vxge_hw_device_terminate - Terminate Titan device. * Terminate HW device. */ void vxge_hw_device_terminate(struct __vxge_hw_device *hldev) { vxge_trace(); assert(hldev->magic == VXGE_HW_DEVICE_MAGIC); hldev->magic = VXGE_HW_DEVICE_DEAD; free(hldev); } /* *vxge_hw_ring_replenish - Initial replenish of RxDs * This function replenishes the RxDs from reserve array to work array */ enum vxge_hw_status vxge_hw_ring_replenish(struct __vxge_hw_ring *ring) { struct __vxge_hw_device *hldev; struct vxge_hw_ring_rxd_1 *rxd; enum vxge_hw_status status = VXGE_HW_OK; u8 offset = 0; struct __vxge_hw_ring_block *block; u8 i, iob_off; vxge_trace(); hldev = ring->vpathh->hldev; /* * We allocate all the dma buffers first and then share the * these buffers among the all rx descriptors in the block. */ for (i = 0; i < ARRAY_SIZE(ring->iobuf); i++) { ring->iobuf[i] = alloc_iob(VXGE_LL_MAX_FRAME_SIZE(hldev->vdev)); if (!ring->iobuf[i]) { while (i) { free_iob(ring->iobuf[--i]); ring->iobuf[i] = NULL; } status = VXGE_HW_ERR_OUT_OF_MEMORY; goto iobuf_err; } } for (offset = 0; offset < VXGE_HW_MAX_RXDS_PER_BLOCK_1; offset++) { rxd = &ring->rxdl->rxd[offset]; if (offset == (VXGE_HW_MAX_RXDS_PER_BLOCK_1 - 1)) iob_off = VXGE_HW_RING_BUF_PER_BLOCK; else iob_off = offset % ring->buf_per_block; rxd->control_0 = rxd->control_1 = 0; vxge_hw_ring_rxd_1b_set(rxd, ring->iobuf[iob_off], VXGE_LL_MAX_FRAME_SIZE(hldev->vdev)); vxge_hw_ring_rxd_post(ring, rxd); } /* linking the block to itself as we use only one rx block*/ block = ring->rxdl; block->reserved_2_pNext_RxD_block = (unsigned long) block; block->pNext_RxD_Blk_physical = (u64)virt_to_bus(block); ring->rxd_offset = 0; iobuf_err: return status; } /* * __vxge_hw_ring_create - Create a Ring * This function creates Ring and initializes it. * */ enum vxge_hw_status __vxge_hw_ring_create(struct __vxge_hw_virtualpath *vpath, struct __vxge_hw_ring *ring) { enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_device *hldev; u32 vp_id; vxge_trace(); hldev = vpath->hldev; vp_id = vpath->vp_id; ring->rxdl = malloc_dma(sizeof(struct __vxge_hw_ring_block), sizeof(struct __vxge_hw_ring_block)); if (!ring->rxdl) { vxge_debug(VXGE_ERR, "%s:%d malloc_dma error\n", __func__, __LINE__); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } ring->rxd_offset = 0; ring->vpathh = vpath; ring->buf_per_block = VXGE_HW_RING_BUF_PER_BLOCK; ring->rx_poll_weight = VXGE_HW_RING_RX_POLL_WEIGHT; ring->vp_id = vp_id; ring->vp_reg = vpath->vp_reg; ring->common_reg = hldev->common_reg; ring->rxd_qword_limit = VXGE_HW_RING_RXD_QWORD_LIMIT; status = vxge_hw_ring_replenish(ring); if (status != VXGE_HW_OK) { __vxge_hw_ring_delete(ring); goto exit; } exit: return status; } /* * __vxge_hw_ring_delete - Removes the ring * This function freeup the memory pool and removes the ring */ enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_ring *ring) { u8 i; vxge_trace(); for (i = 0; (i < ARRAY_SIZE(ring->iobuf)) && ring->iobuf[i]; i++) { free_iob(ring->iobuf[i]); ring->iobuf[i] = NULL; } if (ring->rxdl) { free_dma(ring->rxdl, sizeof(struct __vxge_hw_ring_block)); ring->rxdl = NULL; } ring->rxd_offset = 0; return VXGE_HW_OK; } /* * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion. * Set the swapper bits appropriately for the legacy section. */ enum vxge_hw_status __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; vxge_trace(); val64 = readq(&legacy_reg->toc_swapper_fb); wmb(); switch (val64) { case VXGE_HW_SWAPPER_INITIAL_VALUE: return status; case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED: writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE, &legacy_reg->pifm_rd_swap_en); writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE, &legacy_reg->pifm_rd_flip_en); writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE, &legacy_reg->pifm_wr_swap_en); writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE, &legacy_reg->pifm_wr_flip_en); break; case VXGE_HW_SWAPPER_BYTE_SWAPPED: writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE, &legacy_reg->pifm_rd_swap_en); writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE, &legacy_reg->pifm_wr_swap_en); break; case VXGE_HW_SWAPPER_BIT_FLIPPED: writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE, &legacy_reg->pifm_rd_flip_en); writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE, &legacy_reg->pifm_wr_flip_en); break; } wmb(); val64 = readq(&legacy_reg->toc_swapper_fb); if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE) status = VXGE_HW_ERR_SWAPPER_CTRL; return status; } /* * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath. * Set the swapper bits appropriately for the vpath. */ enum vxge_hw_status __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg) { vxge_trace(); #if (__BYTE_ORDER != __BIG_ENDIAN) u64 val64; val64 = readq(&vpath_reg->vpath_general_cfg1); wmb(); val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN; writeq(val64, &vpath_reg->vpath_general_cfg1); wmb(); #endif return VXGE_HW_OK; } /* * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc. * Set the swapper bits appropriately for the vpath. */ enum vxge_hw_status __vxge_hw_kdfc_swapper_set( struct vxge_hw_legacy_reg __iomem *legacy_reg, struct vxge_hw_vpath_reg __iomem *vpath_reg) { u64 val64; vxge_trace(); val64 = readq(&legacy_reg->pifm_wr_swap_en); if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) { val64 = readq(&vpath_reg->kdfcctl_cfg0); wmb(); val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 | VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 | VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2; writeq(val64, &vpath_reg->kdfcctl_cfg0); wmb(); } return VXGE_HW_OK; } /* * vxge_hw_vpath_strip_fcs_check - Check for FCS strip. */ enum vxge_hw_status vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask) { struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg; enum vxge_hw_status status = VXGE_HW_OK; int i = 0, j = 0; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!((vpath_mask) & vxge_mBIT(i))) continue; vpmgmt_reg = hldev->vpmgmt_reg[i]; for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) { if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j]) & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS) return VXGE_HW_FAIL; } } return status; } /* * __vxge_hw_fifo_create - Create a FIFO * This function creates FIFO and initializes it. */ enum vxge_hw_status __vxge_hw_fifo_create(struct __vxge_hw_virtualpath *vpath, struct __vxge_hw_fifo *fifo) { enum vxge_hw_status status = VXGE_HW_OK; vxge_trace(); fifo->vpathh = vpath; fifo->depth = VXGE_HW_FIFO_TXD_DEPTH; fifo->hw_offset = fifo->sw_offset = 0; fifo->nofl_db = vpath->nofl_db; fifo->vp_id = vpath->vp_id; fifo->vp_reg = vpath->vp_reg; fifo->tx_intr_num = (vpath->vp_id * VXGE_HW_MAX_INTR_PER_VP) + VXGE_HW_VPATH_INTR_TX; fifo->txdl = malloc_dma(sizeof(struct vxge_hw_fifo_txd) * fifo->depth, fifo->depth); if (!fifo->txdl) { vxge_debug(VXGE_ERR, "%s:%d malloc_dma error\n", __func__, __LINE__); return VXGE_HW_ERR_OUT_OF_MEMORY; } memset(fifo->txdl, 0, sizeof(struct vxge_hw_fifo_txd) * fifo->depth); return status; } /* * __vxge_hw_fifo_delete - Removes the FIFO * This function freeup the memory pool and removes the FIFO */ enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_fifo *fifo) { vxge_trace(); if (fifo->txdl) free_dma(fifo->txdl, sizeof(struct vxge_hw_fifo_txd) * fifo->depth); fifo->txdl = NULL; fifo->hw_offset = fifo->sw_offset = 0; return VXGE_HW_OK; } /* * __vxge_hw_vpath_pci_read - Read the content of given address * in pci config space. * Read from the vpath pci config space. */ enum vxge_hw_status __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath, u32 phy_func_0, u32 offset, u32 *val) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg; val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset); if (phy_func_0) val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0; writeq(val64, &vp_reg->pci_config_access_cfg1); wmb(); writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ, &vp_reg->pci_config_access_cfg2); wmb(); status = __vxge_hw_device_register_poll( &vp_reg->pci_config_access_cfg2, VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vp_reg->pci_config_access_status); if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) { status = VXGE_HW_FAIL; *val = 0; } else *val = (u32)vxge_bVALn(val64, 32, 32); exit: return status; } /* * __vxge_hw_vpath_func_id_get - Get the function id of the vpath. * Returns the function number of the vpath. */ u32 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg) { u64 val64; val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1); return (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64); } /* * __vxge_hw_read_rts_ds - Program RTS steering critieria */ static inline void __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg, u64 dta_struct_sel) { writeq(0, &vpath_reg->rts_access_steer_ctrl); wmb(); writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0); writeq(0, &vpath_reg->rts_access_steer_data1); wmb(); return; } /* * __vxge_hw_vpath_card_info_get - Get the serial numbers, * part number and product description. */ enum vxge_hw_status __vxge_hw_vpath_card_info_get( struct vxge_hw_vpath_reg __iomem *vpath_reg, struct vxge_hw_device_hw_info *hw_info) { u32 i, j; u64 val64; u64 data1 = 0ULL; u64 data2 = 0ULL; enum vxge_hw_status status = VXGE_HW_OK; u8 *serial_number = hw_info->serial_number; u8 *part_number = hw_info->part_number; u8 *product_desc = hw_info->product_desc; __vxge_hw_read_rts_ds(vpath_reg, VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) return status; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); ((u64 *)serial_number)[0] = be64_to_cpu(data1); data2 = readq(&vpath_reg->rts_access_steer_data1); ((u64 *)serial_number)[1] = be64_to_cpu(data2); status = VXGE_HW_OK; } else *serial_number = 0; __vxge_hw_read_rts_ds(vpath_reg, VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) return status; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); ((u64 *)part_number)[0] = be64_to_cpu(data1); data2 = readq(&vpath_reg->rts_access_steer_data1); ((u64 *)part_number)[1] = be64_to_cpu(data2); status = VXGE_HW_OK; } else *part_number = 0; j = 0; for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0; i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) { __vxge_hw_read_rts_ds(vpath_reg, i); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) return status; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); ((u64 *)product_desc)[j++] = be64_to_cpu(data1); data2 = readq(&vpath_reg->rts_access_steer_data1); ((u64 *)product_desc)[j++] = be64_to_cpu(data2); status = VXGE_HW_OK; } else *product_desc = 0; } return status; } /* * __vxge_hw_vpath_fw_ver_get - Get the fw version * Returns FW Version */ enum vxge_hw_status __vxge_hw_vpath_fw_ver_get( struct vxge_hw_vpath_reg __iomem *vpath_reg, struct vxge_hw_device_hw_info *hw_info) { u64 val64; u64 data1 = 0ULL; u64 data2 = 0ULL; struct vxge_hw_device_version *fw_version = &hw_info->fw_version; struct vxge_hw_device_date *fw_date = &hw_info->fw_date; struct vxge_hw_device_version *flash_version = &hw_info->flash_version; struct vxge_hw_device_date *flash_date = &hw_info->flash_date; enum vxge_hw_status status = VXGE_HW_OK; val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); data2 = readq(&vpath_reg->rts_access_steer_data1); fw_date->day = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY( data1); fw_date->month = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH( data1); fw_date->year = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR( data1); snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%d/%d/%d", fw_date->month, fw_date->day, fw_date->year); fw_version->major = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1); fw_version->minor = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1); fw_version->build = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1); snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d", fw_version->major, fw_version->minor, fw_version->build); flash_date->day = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2); flash_date->month = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2); flash_date->year = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2); snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%d/%d/%d", flash_date->month, flash_date->day, flash_date->year); flash_version->major = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2); flash_version->minor = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2); flash_version->build = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2); snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d", flash_version->major, flash_version->minor, flash_version->build); status = VXGE_HW_OK; } else status = VXGE_HW_FAIL; exit: return status; } /* * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath * from MAC address table. */ enum vxge_hw_status __vxge_hw_vpath_addr_get( struct vxge_hw_vpath_reg *vpath_reg, u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN]) { u32 i; u64 val64; u64 data1 = 0ULL; u64 data2 = 0ULL; u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY; enum vxge_hw_status status = VXGE_HW_OK; while (1) { val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) break; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); data2 = readq(&vpath_reg->rts_access_steer_data1); data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1); data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK( data2); for (i = ETH_ALEN; i > 0; i--) { macaddr[i-1] = (u8)(data1 & 0xFF); data1 >>= 8; macaddr_mask[i-1] = (u8)(data2 & 0xFF); data2 >>= 8; } if (is_valid_ether_addr(macaddr)) { status = VXGE_HW_OK; break; } action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY; } else status = VXGE_HW_FAIL; } return status; } /* * __vxge_hw_vpath_mgmt_read * This routine reads the vpath_mgmt registers */ static enum vxge_hw_status __vxge_hw_vpath_mgmt_read( struct __vxge_hw_virtualpath *vpath) { u32 i, mtu = 0, max_pyld = 0; u64 val64; enum vxge_hw_status status = VXGE_HW_OK; for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) { val64 = readq(&vpath->vpmgmt_reg-> rxmac_cfg0_port_vpmgmt_clone[i]); max_pyld = (u32) VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN (val64); if (mtu < max_pyld) mtu = max_pyld; } vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE; val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone); if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK) VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP); else VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN); return status; } /* * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed * This routine checks the vpath_rst_in_prog register to see if * adapter completed the reset process for the vpath */ enum vxge_hw_status __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath) { enum vxge_hw_status status; vxge_trace(); status = __vxge_hw_device_register_poll( &vpath->hldev->common_reg->vpath_rst_in_prog, VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG( 1 << (16 - vpath->vp_id)), VXGE_HW_DEF_DEVICE_POLL_MILLIS); return status; } /* * __vxge_hw_vpath_reset * This routine resets the vpath on the device */ enum vxge_hw_status __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; vxge_trace(); val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id)); __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), &hldev->common_reg->cmn_rsthdlr_cfg0); return status; } /* * __vxge_hw_vpath_prc_configure * This routine configures the prc registers of virtual path using the config * passed */ void __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev) { u64 val64; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; vxge_trace(); vpath = &hldev->virtual_path; vp_reg = vpath->vp_reg; val64 = readq(&vp_reg->prc_cfg1); val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE; writeq(val64, &vp_reg->prc_cfg1); val64 = readq(&vpath->vp_reg->prc_cfg6); val64 &= ~VXGE_HW_PRC_CFG6_RXD_CRXDT(0x1ff); val64 &= ~VXGE_HW_PRC_CFG6_RXD_SPAT(0x1ff); val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN; val64 |= VXGE_HW_PRC_CFG6_RXD_CRXDT(0x3); val64 |= VXGE_HW_PRC_CFG6_RXD_SPAT(0xf); writeq(val64, &vpath->vp_reg->prc_cfg6); writeq(VXGE_HW_PRC_CFG5_RXD0_ADD( (u64)virt_to_bus(vpath->ringh.rxdl) >> 3), &vp_reg->prc_cfg5); val64 = readq(&vp_reg->prc_cfg4); val64 |= VXGE_HW_PRC_CFG4_IN_SVC; val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3); val64 |= VXGE_HW_PRC_CFG4_RING_MODE( VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER); val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE; writeq(val64, &vp_reg->prc_cfg4); return; } /* * __vxge_hw_vpath_kdfc_configure * This routine configures the kdfc registers of virtual path using the * config passed */ enum vxge_hw_status __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; u64 vpath_stride; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; vxge_trace(); vpath = &hldev->virtual_path; vp_reg = vpath->vp_reg; status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vp_reg->kdfc_drbl_triplet_total); vpath->max_kdfc_db = (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE( val64+1)/2; vpath->max_nofl_db = vpath->max_kdfc_db; val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0( (vpath->max_nofl_db*2)-1); writeq(val64, &vp_reg->kdfc_fifo_trpl_partition); writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE, &vp_reg->kdfc_fifo_trpl_ctrl); val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl); val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) | VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF)); val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE( VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) | #if (__BYTE_ORDER != __BIG_ENDIAN) VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN | #endif VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0); writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl); writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address); wmb(); vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride); vpath->nofl_db = (struct __vxge_hw_non_offload_db_wrapper __iomem *) (hldev->kdfc + (vp_id * VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE( vpath_stride))); exit: return status; } /* * __vxge_hw_vpath_mac_configure * This routine configures the mac of virtual path using the config passed */ enum vxge_hw_status __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; vxge_trace(); vpath = &hldev->virtual_path; vp_reg = vpath->vp_reg; writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER( vpath->vsport_number), &vp_reg->xmac_vsport_choice); val64 = readq(&vp_reg->rxmac_vcfg1); val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) | VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE); writeq(val64, &vp_reg->rxmac_vcfg1); return status; } /* * __vxge_hw_vpath_tim_configure * This routine configures the tim registers of virtual path using the config * passed */ enum vxge_hw_status __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; vxge_trace(); vpath = &hldev->virtual_path; vp_reg = vpath->vp_reg; writeq((u64)0, &vp_reg->tim_dest_addr); writeq((u64)0, &vp_reg->tim_vpath_map); writeq((u64)0, &vp_reg->tim_bitmap); writeq((u64)0, &vp_reg->tim_remap); writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM( (vp_id * VXGE_HW_MAX_INTR_PER_VP) + VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn); val64 = readq(&vp_reg->tim_pci_cfg); val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD; writeq(val64, &vp_reg->tim_pci_cfg); /* TX configuration */ val64 = VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( (VXGE_TTI_BTIMER_VAL * 1000) / 272); val64 |= (VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC | VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI | VXGE_HW_TIM_CFG1_INT_NUM_TXFRM_CNT_EN); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(TTI_TX_URANGE_A) | VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(TTI_TX_URANGE_B) | VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(TTI_TX_URANGE_C); writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]); val64 = VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(TTI_TX_UFC_A) | VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(TTI_TX_UFC_B) | VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(TTI_TX_UFC_C) | VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(TTI_TX_UFC_D); writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]); val64 = VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL( VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_NET_UTIL); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( (VXGE_TTI_LTIMER_VAL * 1000) / 272); writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]); /* RX configuration */ val64 = VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( (VXGE_RTI_BTIMER_VAL * 1000) / 272); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(RTI_RX_URANGE_A) | VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(RTI_RX_URANGE_B) | VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(RTI_RX_URANGE_C); writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]); val64 = VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(RTI_RX_UFC_A) | VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(RTI_RX_UFC_B) | VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(RTI_RX_UFC_C) | VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(RTI_RX_UFC_D); writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]); val64 = VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL( VXGE_HW_TIM_UTIL_SEL_LEGACY_RX_NET_UTIL); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( (VXGE_RTI_LTIMER_VAL * 1000) / 272); writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]); val64 = 0; writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]); writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]); writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]); writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]); writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]); writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]); return status; } /* * __vxge_hw_vpath_initialize * This routine is the final phase of init which initializes the * registers of the vpath using the configuration passed. */ enum vxge_hw_status __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; u32 val32; int i; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg *vp_reg; vxge_trace(); vpath = &hldev->virtual_path; if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) { status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE; goto exit; } vp_reg = vpath->vp_reg; status = __vxge_hw_legacy_swapper_set(hldev->legacy_reg); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_swapper_set(vpath->vp_reg); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp); for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (val64 & vxge_mBIT(i)) vpath->vsport_number = i; } status = __vxge_hw_vpath_mac_configure(hldev); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_tim_configure(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl); /* Get MRRS value from device control */ status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32); if (status == VXGE_HW_OK) { val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12; val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7)); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE; } val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7)); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY( VXGE_HW_MAX_PAYLOAD_SIZE_512); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN; writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl); exit: return status; } /* * __vxge_hw_vp_initialize - Initialize Virtual Path structure * This routine is the initial phase of init which resets the vpath and * initializes the software support structures. */ enum vxge_hw_status __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id, struct __vxge_hw_virtualpath *vpath) { enum vxge_hw_status status = VXGE_HW_OK; vxge_trace(); if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) { status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE; goto exit; } vpath->vp_id = vp_id; vpath->vp_open = VXGE_HW_VP_OPEN; vpath->hldev = hldev; vpath->vp_reg = hldev->vpath_reg[vp_id]; vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id]; __vxge_hw_vpath_reset(hldev, vp_id); status = __vxge_hw_vpath_reset_check(vpath); if (status != VXGE_HW_OK) { memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath)); goto exit; } VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0, hldev->tim_int_mask1, vp_id); status = __vxge_hw_vpath_initialize(hldev, vp_id); if (status != VXGE_HW_OK) { __vxge_hw_vp_terminate(hldev, vpath); goto exit; } status = __vxge_hw_vpath_mgmt_read(vpath); exit: return status; } /* * __vxge_hw_vp_terminate - Terminate Virtual Path structure * This routine closes all channels it opened and freeup memory */ void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, struct __vxge_hw_virtualpath *vpath) { vxge_trace(); if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) return; VXGE_HW_DEVICE_TIM_INT_MASK_RESET(hldev->tim_int_mask0, hldev->tim_int_mask1, vpath->vp_id); memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath)); } /* * vxge_hw_vpath_mtu_set - Set MTU. * Set new MTU value. Example, to use jumbo frames: * vxge_hw_vpath_mtu_set(my_device, 9600); */ enum vxge_hw_status vxge_hw_vpath_mtu_set(struct __vxge_hw_virtualpath *vpath, u32 new_mtu) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; vxge_trace(); new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE; if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu)) status = VXGE_HW_ERR_INVALID_MTU_SIZE; val64 = readq(&vpath->vp_reg->rxmac_vcfg0); val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff); val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu); writeq(val64, &vpath->vp_reg->rxmac_vcfg0); return status; } /* * vxge_hw_vpath_open - Open a virtual path on a given adapter * This function is used to open access to virtual path of an * adapter for offload, GRO operations. This function returns * synchronously. */ enum vxge_hw_status vxge_hw_vpath_open(struct __vxge_hw_device *hldev, struct vxge_vpath *vpath) { struct __vxge_hw_virtualpath *vpathh; enum vxge_hw_status status; vxge_trace(); vpathh = &hldev->virtual_path; if (vpath->vp_open == VXGE_HW_VP_OPEN) { status = VXGE_HW_ERR_INVALID_STATE; goto vpath_open_exit1; } status = __vxge_hw_vp_initialize(hldev, hldev->first_vp_id, vpathh); if (status != VXGE_HW_OK) goto vpath_open_exit1; status = __vxge_hw_fifo_create(vpathh, &vpathh->fifoh); if (status != VXGE_HW_OK) goto vpath_open_exit2; status = __vxge_hw_ring_create(vpathh, &vpathh->ringh); if (status != VXGE_HW_OK) goto vpath_open_exit3; __vxge_hw_vpath_prc_configure(hldev); return VXGE_HW_OK; vpath_open_exit3: __vxge_hw_fifo_delete(&vpathh->fifoh); vpath_open_exit2: __vxge_hw_vp_terminate(hldev, vpathh); vpath_open_exit1: return status; } /* * vxge_hw_vpath_rx_doorbell_init - Post the count of the refreshed region * of RxD list * @vp: vpath handle * * This function decides on the Rxd replenish count depending on the * descriptor memory that has been allocated to this VPath. */ void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_virtualpath *vpath) { u64 new_count, val64; vxge_trace(); if (vpath->hldev->titan1) { new_count = readq(&vpath->vp_reg->rxdmem_size); new_count &= 0x1fff; } else new_count = VXGE_HW_RING_RXD_QWORDS_MODE_1 * 4; val64 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count)); writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val64), &vpath->vp_reg->prc_rxd_doorbell); } /* * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open * This function is used to close access to virtual path opened * earlier. */ enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_virtualpath *vpath) { struct __vxge_hw_device *devh = NULL; u32 vp_id = vpath->vp_id; enum vxge_hw_status status = VXGE_HW_OK; vxge_trace(); devh = vpath->hldev; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto vpath_close_exit; } devh->vpaths_deployed &= ~vxge_mBIT(vp_id); __vxge_hw_ring_delete(&vpath->ringh); __vxge_hw_fifo_delete(&vpath->fifoh); __vxge_hw_vp_terminate(devh, vpath); vpath->vp_open = VXGE_HW_VP_NOT_OPEN; vpath_close_exit: return status; } /* * vxge_hw_vpath_reset - Resets vpath * This function is used to request a reset of vpath */ enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_virtualpath *vpath) { enum vxge_hw_status status; u32 vp_id; vxge_trace(); vp_id = vpath->vp_id; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } status = __vxge_hw_vpath_reset(vpath->hldev, vp_id); exit: return status; } /* * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize. * This function poll's for the vpath reset completion and re initializes * the vpath. */ enum vxge_hw_status vxge_hw_vpath_recover_from_reset(struct __vxge_hw_virtualpath *vpath) { enum vxge_hw_status status; struct __vxge_hw_device *hldev; u32 vp_id; vxge_trace(); vp_id = vpath->vp_id; hldev = vpath->hldev; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } status = __vxge_hw_vpath_reset_check(vpath); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_initialize(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; __vxge_hw_vpath_prc_configure(hldev); exit: return status; } /* * vxge_hw_vpath_enable - Enable vpath. * This routine clears the vpath reset thereby enabling a vpath * to start forwarding frames and generating interrupts. */ void vxge_hw_vpath_enable(struct __vxge_hw_virtualpath *vpath) { struct __vxge_hw_device *hldev; u64 val64; vxge_trace(); hldev = vpath->hldev; val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET( 1 << (16 - vpath->vp_id)); __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), &hldev->common_reg->cmn_rsthdlr_cfg1); }