/****************************************************************************** * Copyright (c) 2004, 2008 IBM Corporation * All rights reserved. * This program and the accompanying materials * are made available under the terms of the BSD License * which accompanies this distribution, and is available at * http://www.opensource.org/licenses/bsd-license.php * * Contributors: * IBM Corporation - initial implementation *****************************************************************************/ #include #include #include #include "device.h" #include "rtas.h" #include "debug.h" #include "device.h" #include #include #include #include "io.h" //defined in net-snk/kernel/timer.c extern uint64_t get_time(void); uint32_t pci_cfg_read(X86EMU_pioAddr addr, uint8_t size); void pci_cfg_write(X86EMU_pioAddr addr, uint32_t val, uint8_t size); uint8_t handle_port_61h(void); uint8_t my_inb(X86EMU_pioAddr addr) { uint8_t rval = 0xFF; uint64_t translated_addr = addr; uint8_t translated = dev_translate_address(&translated_addr); if (translated != 0) { //translation successful, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __FUNCTION__, addr); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr); rval = read_io((void *)translated_addr, 1); DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %02x\n", __FUNCTION__, addr, rval); return rval; } else { switch (addr) { case 0x61: //8254 KB Controller / Timer Port rval = handle_port_61h(); //DEBUG_PRINTF_IO("%s(%04x) KB / Timer Port B --> %02x\n", __FUNCTION__, addr, rval); return rval; break; case 0xCFC: case 0xCFD: case 0xCFE: case 0xCFF: // PCI Config Mechanism 1 Ports return (uint8_t) pci_cfg_read(addr, 1); break; case 0x0a: CHECK_DBG(DEBUG_INTR) { X86EMU_trace_on(); } M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F; //HALT_SYS(); // no break, intentional fall-through to default!! default: DEBUG_PRINTF_IO ("%s(%04x) reading from bios_device.io_buffer\n", __FUNCTION__, addr); rval = *((uint8_t *) (bios_device.io_buffer + addr)); DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %02x\n", __FUNCTION__, addr, rval); return rval; break; } } } uint16_t my_inw(X86EMU_pioAddr addr) { uint64_t translated_addr = addr; uint8_t translated = dev_translate_address(&translated_addr); if (translated != 0) { //translation successful, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __FUNCTION__, addr); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr); uint16_t rval; if ((translated_addr & (uint64_t) 0x1) == 0) { // 16 bit aligned access... uint16_t tempval = read_io((void *)translated_addr, 2); //little endian conversion rval = in16le((void *) &tempval); } else { // unaligned access, read single bytes, little-endian rval = (read_io((void *)translated_addr, 1) << 8) | (read_io((void *)(translated_addr + 1), 1)); } DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %04x\n", __FUNCTION__, addr, rval); return rval; } else { switch (addr) { case 0xCFC: case 0xCFE: //PCI Config Mechanism 1 return (uint16_t) pci_cfg_read(addr, 2); break; default: DEBUG_PRINTF_IO ("%s(%04x) reading from bios_device.io_buffer\n", __FUNCTION__, addr); uint16_t rval = in16le((void *) bios_device.io_buffer + addr); DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %04x\n", __FUNCTION__, addr, rval); return rval; break; } } } uint32_t my_inl(X86EMU_pioAddr addr) { uint64_t translated_addr = addr; uint8_t translated = dev_translate_address(&translated_addr); if (translated != 0) { //translation successful, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __FUNCTION__, addr); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr); uint32_t rval; if ((translated_addr & (uint64_t) 0x3) == 0) { // 32 bit aligned access... uint32_t tempval = read_io((void *) translated_addr, 4); //little endian conversion rval = in32le((void *) &tempval); } else { // unaligned access, read single bytes, little-endian rval = (read_io((void *)(translated_addr), 1) << 24) | (read_io((void *)(translated_addr + 1), 1) << 16) | (read_io((void *)(translated_addr + 2), 1) << 8) | (read_io((void *)(translated_addr + 3), 1)); } DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %08x\n", __FUNCTION__, addr, rval); return rval; } else { switch (addr) { case 0xCFC: //PCI Config Mechanism 1 return pci_cfg_read(addr, 4); break; default: DEBUG_PRINTF_IO ("%s(%04x) reading from bios_device.io_buffer\n", __FUNCTION__, addr); uint32_t rval = in32le((void *) bios_device.io_buffer + addr); DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %08x\n", __FUNCTION__, addr, rval); return rval; break; } } } void my_outb(X86EMU_pioAddr addr, uint8_t val) { uint64_t translated_addr = addr; uint8_t translated = dev_translate_address(&translated_addr); if (translated != 0) { //translation successful, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n", __FUNCTION__, addr, val); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr); write_io((void *) translated_addr, val, 1); DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %02x\n", __FUNCTION__, addr, val); } else { switch (addr) { case 0xCFC: case 0xCFD: case 0xCFE: case 0xCFF: // PCI Config Mechanism 1 Ports pci_cfg_write(addr, val, 1); break; default: DEBUG_PRINTF_IO ("%s(%04x,%02x) writing to bios_device.io_buffer\n", __FUNCTION__, addr, val); *((uint8_t *) (bios_device.io_buffer + addr)) = val; break; } } } void my_outw(X86EMU_pioAddr addr, uint16_t val) { uint64_t translated_addr = addr; uint8_t translated = dev_translate_address(&translated_addr); if (translated != 0) { //translation successful, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n", __FUNCTION__, addr, val); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr); if ((translated_addr & (uint64_t) 0x1) == 0) { // little-endian conversion uint16_t tempval = in16le((void *) &val); // 16 bit aligned access... write_io((void *) translated_addr, tempval, 2); } else { // unaligned access, write single bytes, little-endian write_io(((void *) (translated_addr + 1)), (uint8_t) ((val & 0xFF00) >> 8), 1); write_io(((void *) translated_addr), (uint8_t) (val & 0x00FF), 1); } DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %04x\n", __FUNCTION__, addr, val); } else { switch (addr) { case 0xCFC: case 0xCFE: // PCI Config Mechanism 1 Ports pci_cfg_write(addr, val, 2); break; default: DEBUG_PRINTF_IO ("%s(%04x,%04x) writing to bios_device.io_buffer\n", __FUNCTION__, addr, val); out16le((void *) bios_device.io_buffer + addr, val); break; } } } void my_outl(X86EMU_pioAddr addr, uint32_t val) { uint64_t translated_addr = addr; uint8_t translated = dev_translate_address(&translated_addr); if (translated != 0) { //translation successful, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n", __FUNCTION__, addr, val); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __FUNCTION__, addr, translated_addr); if ((translated_addr & (uint64_t) 0x3) == 0) { // little-endian conversion uint32_t tempval = in32le((void *) &val); // 32 bit aligned access... write_io((void *) translated_addr, tempval, 4); } else { // unaligned access, write single bytes, little-endian write_io(((void *) translated_addr + 3), (uint8_t) ((val & 0xFF000000) >> 24), 1); write_io(((void *) translated_addr + 2), (uint8_t) ((val & 0x00FF0000) >> 16), 1); write_io(((void *) translated_addr + 1), (uint8_t) ((val & 0x0000FF00) >> 8), 1); write_io(((void *) translated_addr), (uint8_t) (val & 0x000000FF), 1); } DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %08x\n", __FUNCTION__, addr, val); } else { switch (addr) { case 0xCFC: // PCI Config Mechanism 1 Ports pci_cfg_write(addr, val, 4); break; default: DEBUG_PRINTF_IO ("%s(%04x,%08x) writing to bios_device.io_buffer\n", __FUNCTION__, addr, val); out32le((void *) bios_device.io_buffer + addr, val); break; } } } uint32_t pci_cfg_read(X86EMU_pioAddr addr, uint8_t size) { uint32_t rval = 0xFFFFFFFF; if ((addr >= 0xCFC) && ((addr + size) <= 0xCFF)) { // PCI Configuration Mechanism 1 step 1 // write to 0xCF8, sets bus, device, function and Config Space offset // later read from 0xCFC-0xCFF returns the value... uint8_t bus, devfn, offs; uint32_t port_cf8_val = my_inl(0xCF8); if ((port_cf8_val & 0x80000000) != 0) { //highest bit enables config space mapping bus = (port_cf8_val & 0x00FF0000) >> 16; devfn = (port_cf8_val & 0x0000FF00) >> 8; offs = (port_cf8_val & 0x000000FF); offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly if ((bus != bios_device.bus) || (devfn != bios_device.devfn)) { // fail accesses to any device but ours... printf ("Config access invalid! bus: %x, devfn: %x, offs: %x\n", bus, devfn, offs); HALT_SYS(); } else { rval = (uint32_t) rtas_pci_config_read(bios_device. puid, size, bus, devfn, offs); DEBUG_PRINTF_IO ("%s(%04x) PCI Config Read @%02x, size: %d --> 0x%08x\n", __FUNCTION__, addr, offs, size, rval); } } } return rval; } void pci_cfg_write(X86EMU_pioAddr addr, uint32_t val, uint8_t size) { if ((addr >= 0xCFC) && ((addr + size) <= 0xCFF)) { // PCI Configuration Mechanism 1 step 1 // write to 0xCF8, sets bus, device, function and Config Space offset // later write to 0xCFC-0xCFF sets the value... uint8_t bus, devfn, offs; uint32_t port_cf8_val = my_inl(0xCF8); if ((port_cf8_val & 0x80000000) != 0) { //highest bit enables config space mapping bus = (port_cf8_val & 0x00FF0000) >> 16; devfn = (port_cf8_val & 0x0000FF00) >> 8; offs = (port_cf8_val & 0x000000FF); offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly if ((bus != bios_device.bus) || (devfn != bios_device.devfn)) { // fail accesses to any device but ours... printf ("Config access invalid! bus: %x, devfn: %x, offs: %x\n", bus, devfn, offs); HALT_SYS(); } else { rtas_pci_config_write(bios_device.puid, size, bus, devfn, offs, val); DEBUG_PRINTF_IO ("%s(%04x) PCI Config Write @%02x, size: %d <-- 0x%08x\n", __FUNCTION__, addr, offs, size, val); } } } } uint8_t handle_port_61h(void) { static uint64_t last_time = 0; uint64_t curr_time = get_time(); uint64_t time_diff; // time since last call uint32_t period_ticks; // length of a period in ticks uint32_t nr_periods; //number of periods passed since last call // bit 4 should toggle with every (DRAM) refresh cycle... (66kHz??) time_diff = curr_time - last_time; // at 66kHz a period is ~ 15 ns long, converted to ticks: (tb_freq is ticks/second) // TODO: as long as the frequency does not change, we should not calculate this every time period_ticks = (15 * tb_freq) / 1000000; nr_periods = time_diff / period_ticks; // if the number if ticks passed since last call is odd, we toggle bit 4 if ((nr_periods % 2) != 0) { *((uint8_t *) (bios_device.io_buffer + 0x61)) ^= 0x10; } //finally read the value from the io_buffer return *((uint8_t *) (bios_device.io_buffer + 0x61)); }