/****************************************************************************** * Copyright (c) 2004, 2008 IBM Corporation * All rights reserved. * This program and the accompanying materials * are made available under the terms of the BSD License * which accompanies this distribution, and is available at * http://www.opensource.org/licenses/bsd-license.php * * Contributors: * IBM Corporation - initial implementation *****************************************************************************/ #include "device.h" #include "rtas.h" #include #include #include // use translate_address_dev and get_puid from net-snk #include "debug.h" typedef struct { uint8_t info; uint8_t bus; uint8_t devfn; uint8_t cfg_space_offset; uint64_t address; uint64_t size; } __attribute__ ((__packed__)) assigned_address_t; // scan all adresses assigned to the device ("assigned-addresses" and "reg") // store in translate_address_array for faster translation using dev_translate_address static void dev_get_addr_info(void) { // get bus/dev/fn from assigned-addresses int32_t len; //max. 6 BARs and 1 Exp.ROM plus CfgSpace and 3 legacy ranges assigned_address_t buf[11]; len = of_getprop(bios_device.phandle, "assigned-addresses", buf, sizeof(buf)); bios_device.bus = buf[0].bus; bios_device.devfn = buf[0].devfn; DEBUG_PRINTF("bus: %x, devfn: %x\n", bios_device.bus, bios_device.devfn); //store address translations for all assigned-addresses and regs in //translate_address_array for faster translation later on... int i = 0; // index to insert data into translate_address_array int taa_index = 0; uint64_t address_offset; for (i = 0; i < (len / sizeof(assigned_address_t)); i++, taa_index++) { //copy all info stored in assigned-addresses translate_address_array[taa_index].info = buf[i].info; translate_address_array[taa_index].bus = buf[i].bus; translate_address_array[taa_index].devfn = buf[i].devfn; translate_address_array[taa_index].cfg_space_offset = buf[i].cfg_space_offset; translate_address_array[taa_index].address = buf[i].address; translate_address_array[taa_index].size = buf[i].size; // translate first address and store it as address_offset address_offset = buf[i].address; translate_address_dev(&address_offset, bios_device.phandle); translate_address_array[taa_index].address_offset = address_offset - buf[i].address; } //get "reg" property len = of_getprop(bios_device.phandle, "reg", buf, sizeof(buf)); for (i = 0; i < (len / sizeof(assigned_address_t)); i++) { if ((buf[i].size == 0) || (buf[i].cfg_space_offset != 0)) { // we dont care for ranges with size 0 and // BARs and Expansion ROM must be in assigned-addresses... so in reg // we only look for those without config space offset set... // i.e. the legacy ranges continue; } //copy all info stored in assigned-addresses translate_address_array[taa_index].info = buf[i].info; translate_address_array[taa_index].bus = buf[i].bus; translate_address_array[taa_index].devfn = buf[i].devfn; translate_address_array[taa_index].cfg_space_offset = buf[i].cfg_space_offset; translate_address_array[taa_index].address = buf[i].address; translate_address_array[taa_index].size = buf[i].size; // translate first address and store it as address_offset address_offset = buf[i].address; translate_address_dev(&address_offset, bios_device.phandle); translate_address_array[taa_index].address_offset = address_offset - buf[i].address; taa_index++; } // store last entry index of translate_address_array taa_last_entry = taa_index - 1; #ifdef DEBUG //dump translate_address_array printf("translate_address_array: \n"); translate_address_t ta; for (i = 0; i <= taa_last_entry; i++) { ta = translate_address_array[i]; printf ("%d: %02x%02x%02x%02x\n\taddr: %016llx\n\toffs: %016llx\n\tsize: %016llx\n", i, ta.info, ta.bus, ta.devfn, ta.cfg_space_offset, ta.address, ta.address_offset, ta.size); } #endif } // to simulate accesses to legacy VGA Memory (0xA0000-0xBFFFF) // we look for the first prefetchable memory BAR, if no prefetchable BAR found, // we use the first memory BAR // dev_translate_addr will translate accesses to the legacy VGA Memory into the found vmem BAR static void dev_find_vmem_addr(void) { int i = 0; translate_address_t ta; int8_t tai_np = -1, tai_p = -1; // translate_address_array index for non-prefetchable and prefetchable memory //search backwards to find first entry for (i = taa_last_entry; i >= 0; i--) { ta = translate_address_array[i]; if ((ta.cfg_space_offset >= 0x10) && (ta.cfg_space_offset <= 0x24)) { //only BARs if ((ta.info & 0x03) >= 0x02) { //32/64bit memory tai_np = i; if ((ta.info & 0x40) != 0) { // prefetchable tai_p = i; } } } } if (tai_p != -1) { ta = translate_address_array[tai_p]; bios_device.vmem_addr = ta.address; bios_device.vmem_size = ta.size; DEBUG_PRINTF ("%s: Found prefetchable Virtual Legacy Memory BAR: %llx, size: %llx\n", __FUNCTION__, bios_device.vmem_addr, bios_device.vmem_size); } else if (tai_np != -1) { ta = translate_address_array[tai_np]; bios_device.vmem_addr = ta.address; bios_device.vmem_size = ta.size; DEBUG_PRINTF ("%s: Found non-prefetchable Virtual Legacy Memory BAR: %llx, size: %llx", __FUNCTION__, bios_device.vmem_addr, bios_device.vmem_size); } // disable vmem //bios_device.vmem_size = 0; } static void dev_get_puid(void) { // get puid bios_device.puid = get_puid(bios_device.phandle); DEBUG_PRINTF("puid: 0x%llx\n", bios_device.puid); } static void dev_get_device_vendor_id(void) { uint32_t pci_config_0 = rtas_pci_config_read(bios_device.puid, 4, bios_device.bus, bios_device.devfn, 0x0); bios_device.pci_device_id = (uint16_t) ((pci_config_0 & 0xFFFF0000) >> 16); bios_device.pci_vendor_id = (uint16_t) (pci_config_0 & 0x0000FFFF); DEBUG_PRINTF("PCI Device ID: %04x, PCI Vendor ID: %x\n", bios_device.pci_device_id, bios_device.pci_vendor_id); } /* check, wether the device has a valid Expansion ROM, also search the PCI Data Structure and * any Expansion ROM Header (using dev_scan_exp_header()) for needed information */ uint8_t dev_check_exprom(void) { int i = 0; translate_address_t ta; uint64_t rom_base_addr = 0; uint16_t pci_ds_offset; pci_data_struct_t pci_ds; // check for ExpROM Address (Offset 30) in taa for (i = 0; i <= taa_last_entry; i++) { ta = translate_address_array[i]; if (ta.cfg_space_offset == 0x30) { rom_base_addr = ta.address + ta.address_offset; //translated address break; } } // in the ROM there could be multiple Expansion ROM Images... start searching // them for a x86 image do { if (rom_base_addr == 0) { printf("Error: no Expansion ROM address found!\n"); return -1; } set_ci(); uint16_t rom_signature = *((uint16_t *) rom_base_addr); clr_ci(); if (rom_signature != 0x55aa) { printf ("Error: invalid Expansion ROM signature: %02x!\n", *((uint16_t *) rom_base_addr)); return -1; } set_ci(); // at offset 0x18 is the (16bit little-endian) pointer to the PCI Data Structure pci_ds_offset = in16le((void *) (rom_base_addr + 0x18)); //copy the PCI Data Structure memcpy(&pci_ds, (void *) (rom_base_addr + pci_ds_offset), sizeof(pci_ds)); clr_ci(); #ifdef DEBUG DEBUG_PRINTF("PCI Data Structure @%llx:\n", rom_base_addr + pci_ds_offset); dump((void *) &pci_ds, sizeof(pci_ds)); #endif if (strncmp((const char *) pci_ds.signature, "PCIR", 4) != 0) { printf("Invalid PCI Data Structure found!\n"); break; } //little-endian conversion pci_ds.vendor_id = in16le(&pci_ds.vendor_id); pci_ds.device_id = in16le(&pci_ds.device_id); pci_ds.img_length = in16le(&pci_ds.img_length); pci_ds.pci_ds_length = in16le(&pci_ds.pci_ds_length); if (pci_ds.vendor_id != bios_device.pci_vendor_id) { printf ("Image has invalid Vendor ID: %04x, expected: %04x\n", pci_ds.vendor_id, bios_device.pci_vendor_id); break; } if (pci_ds.device_id != bios_device.pci_device_id) { printf ("Image has invalid Device ID: %04x, expected: %04x\n", pci_ds.device_id, bios_device.pci_device_id); break; } //DEBUG_PRINTF("Image Length: %d\n", pci_ds.img_length * 512); //DEBUG_PRINTF("Image Code Type: %d\n", pci_ds.code_type); if (pci_ds.code_type == 0) { //x86 image //store image address and image length in bios_device struct bios_device.img_addr = rom_base_addr; bios_device.img_size = pci_ds.img_length * 512; // we found the image, exit the loop break; } else { // no x86 image, check next image (if any) rom_base_addr += pci_ds.img_length * 512; } if ((pci_ds.indicator & 0x80) == 0x80) { //last image found, exit the loop DEBUG_PRINTF("Last PCI Expansion ROM Image found.\n"); break; } } while (bios_device.img_addr == 0); // in case we did not find a valid x86 Expansion ROM Image if (bios_device.img_addr == 0) { printf("Error: no valid x86 Expansion ROM Image found!\n"); return -1; } return 0; } uint8_t dev_init(char *device_name) { uint8_t rval = 0; //init bios_device struct DEBUG_PRINTF("%s(%s)\n", __FUNCTION__, device_name); memset(&bios_device, 0, sizeof(bios_device)); bios_device.ihandle = of_open(device_name); if (bios_device.ihandle == 0) { DEBUG_PRINTF("%s is no valid device!\n", device_name); return -1; } bios_device.phandle = of_finddevice(device_name); dev_get_addr_info(); dev_find_vmem_addr(); dev_get_puid(); dev_get_device_vendor_id(); return rval; } // translate address function using translate_address_array assembled // by dev_get_addr_info... MUCH faster than calling translate_address_dev // and accessing client interface for every translation... // returns: 0 if addr not found in translate_address_array, 1 if found. uint8_t dev_translate_address(uint64_t * addr) { int i = 0; translate_address_t ta; //check if it is an access to legacy VGA Mem... if it is, map the address //to the vmem BAR and then translate it... // (translation info provided by Ben Herrenschmidt) // NOTE: the translation seems to only work for NVIDIA cards... but it is needed // to make some NVIDIA cards work at all... if ((bios_device.vmem_size > 0) && ((*addr >= 0xA0000) && (*addr < 0xB8000))) { *addr = (*addr - 0xA0000) * 4 + 2 + bios_device.vmem_addr; } if ((bios_device.vmem_size > 0) && ((*addr >= 0xB8000) && (*addr < 0xC0000))) { uint8_t shift = *addr & 1; *addr &= 0xfffffffe; *addr = (*addr - 0xB8000) * 4 + shift + bios_device.vmem_addr; } for (i = 0; i <= taa_last_entry; i++) { ta = translate_address_array[i]; if ((*addr >= ta.address) && (*addr <= (ta.address + ta.size))) { *addr += ta.address_offset; return 1; } } return 0; }